30.05.2016 - Seminarium Instytutowe - godz. 13:00, dr Paweł Teisseyre (IPI PAN)
Referat dotyczy metod selekcji zmiennych dla klasyfikacji wieloetykietowej (KW) w sytuacji danych o dużym wymiarze. W ostatnich latach problem KW wzbudził bardzo duże zainteresowanie w wielu dziedzinach, takich, jak automatyczna anotacja obrazów (przewidywanie, jakie obiekty znajdują się na zdjęciu w oparciu o pewne cechy obrazu cyfrowego), kategoryzacja tekstów (przewidywanie, jakich tematów dotyczy tekst w oparciu o cechy używanego języka), marketing (przewidywanie kupowanych produktów w oparciu o pewne cechy klientów) i medycyna (przewidywanie, które choroby występują jednocześnie, na podstawie pewnych cech pacjentów). Jednym z podstawowych zadań w KW jest umiejętne wykorzystanie zależności między etykietami, co pozwala osiągnąć znacznie lepsze rezultaty niż "naiwna" metoda, w której budujemy oddzielnie klasyfikator dla każdej etykiety (nie biorąc pod uwagę zależności między odpowiedziami). W ostatnich latach opracowano szereg metod umożliwiających predykcję dla wielu etykiet jednocześnie. Większość metod bazuje na wykorzystaniu zależności między etykietami. Brakuje jednak wyników (zarówno teoretycznych, jak i empirycznych), które pokazują, jaki jest wpływ wyboru zmiennych na działanie klasyfikatorów. W referacie przedstawię metodę która umożliwia jednoczesną predykcję etykiet i selekcję istotnych zmiennych. Metoda ta wykorzystuje łańcuchy klasyfikatorów i sieć elastyczną.