
The Project is co-financed by the European Union from resources of the European Social Fund

WOJCIECH JAMROGA

LOGICAL METHODS 
FOR SPECIFICATION
AND VERIFICATION 
OF MULTI-AGENT SYSTEMS

WOJCIECH JAMROGA

LOGICAL METHODS 
FOR SPECIFICATION 
AND VERIFICATION 
OF MULTI-AGENT SYSTEMS

M
O

N
O

G
R

A
PH

 SER
IES

M
O

N
O

G
R

A
PH

 SER
IES

INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S
INSTITUTE OF COMPUTER SCIENCE 
P O L I S H  AC A D E M Y  O F  S C I E N C E S

ISBN 978-83-63159-25-2

KAPITAŁ LUDZKI
NARODOWA STRATEGIA SPÓJNOŚCI

UNIA EUROPEJSKA
EUROPEJSKI

FUNDUSZ SPOŁECZNY

10M
O

N
O

G
R

A
PH

 SER
IES:

10

W
. JA

M
RO

G
A - LO

G
ICA

L M
ETH

O
D

S FO
R SPECIFICATIO

N
 A

N
D

 V
ERIFICATIO

N
 O

F M
U

LTI-A
G

EN
T SY

STEM
S



MONOGRAPH SERIES
INFORMATION TECHNOLOGIES: RESEARCH

AND THEIR INTERDISCIPLINARY APPLICATIONS

10

WOJCIECH JAMROGA

LOGICAL METHODS FOR SPECIFICATION 
AND VERIFICATION OF MULTI-AGENT SYSTEMS

i
INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES

Warsaw, 2015



Publication issued as a part of the project:
“Information technologies: research and their interdisciplinary applications”, 
Objective 4.1 of Human Capital Operational Programme.
Agreement number UDA-POKL.04.01.01-00-051/10-01.

Publication is co-financed by European Union from resources of European Social Fund.

Project leader: Institute of Computer Science, Polish Academy of Sciences

Project partners: System Research Institute, Polish Academy of Sciences, Nałęcz
Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences

Editors-in-chief: Olgierd Hryniewicz
Jan Mielniczuk
Wojciech Penczek
Jacek Waniewski

Reviewers: Wojciech Penczek

Wojciech Jamroga
Institute of Computer Science, Polish Academy of Sciences
w.jamroga@ipipan.waw.pl
http://krak.ipipan.waw.pl/~wjamroga/

ISBN 978-83-63159-25-2 

 Cover design: Waldemar Słonina

© Copyright by Wojciech Jamroga
© Copyright by Institute of Computer Science, Polish Academy of Sciences, 2015

Publication is distributed free of charge



Contents

1 Preface 5

2 Specification and Verification of Systems 8
2.1 Expressing properties of MAS . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Reasoning about Knowledge . . . . . . . . . . . . . . . . . . 12

2.2 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . 18

2.2.3 Local and Global Model Checking . . . . . . . . . . . . . . . 19

2.2.4 Verification of Epistemic Properties . . . . . . . . . . . . . . 20

3 Temporal Specification and Verification 25
3.1 Specification of System Dynamics . . . . . . . . . . . . . . . . . . . 25

3.1.1 Modal Logics of Time and Action . . . . . . . . . . . . . . . 26

3.1.2 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Branching Time Logic CTL� . . . . . . . . . . . . . . . . . 31

3.1.4 Fixpoint Equivalences and Modal μ-Calculus . . . . . . . . . 35

3.2 Verification of Temporal Properties . . . . . . . . . . . . . . . . . . . 37

3.2.1 Fixpoint Model Checking for CTL . . . . . . . . . . . . . . . 37

3.2.2 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Combining Knowledge and Time . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Temporal-Epistemic Logic . . . . . . . . . . . . . . . . . . . 44

3.3.2 Interpreted Systems . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Model Checking Temporal-Epistemic Properties . . . . . . . 47

3.3.4 Back to Motivating Examples . . . . . . . . . . . . . . . . . 48

4 Strategic Ability 50
4.1 Models of Strategic Behavior . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Games and Strategies . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Coalitional Play and Coalition Effectivity Models . . . . . . . 52

4.2 Models of Multi-Step Interactions . . . . . . . . . . . . . . . . . . . 54

4.2.1 Concurrent Game Models . . . . . . . . . . . . . . . . . . . 54

4.2.2 Strategies in Concurrent Game Models . . . . . . . . . . . . 55

4.2.3 Representing Games as Concurrent Games Models . . . . . . 57

4.3 Logics for Strategic Ability . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Coalition Logic . . . . . . . . . . . . . . . . . . . . . . . . . 59

3



4 CONTENTS

4.3.2 Alternating-Time Temporal Logic . . . . . . . . . . . . . . . 60

4.3.3 Properties of ATL∗ and ATL . . . . . . . . . . . . . . . . . 63

4.3.4 Back to Motivating Examples . . . . . . . . . . . . . . . . . 67

4.4 Other Logical Approaches to Ability . . . . . . . . . . . . . . . . . . 68

5 Verification of Strategic Ability 74
5.1 Model Checking Strategic Ability . . . . . . . . . . . . . . . . . . . 74

5.2 Complexity of Verification . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Model Checking ATL and CL . . . . . . . . . . . . . . . . 76

5.2.2 Model Checking ATL∗ . . . . . . . . . . . . . . . . . . . . 79

5.3 A Closer Look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Model Checking for Compact Representation of Transitions . 81

5.3.2 Higher-Order Representations of Models . . . . . . . . . . . 84

6 Imperfect Information 85
6.1 Knowledge and Ability . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Abilities under Imperfect Information . . . . . . . . . . . . . . . . . 87

6.2.1 Bringing Strategies and Uncertainty Together . . . . . . . . . 88

6.2.2 Alternating-Time Temporal Epistemic Logic . . . . . . . . . 90

6.2.3 Uniform Strategies . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.4 Reasoning about Abilities under Uncertainty . . . . . . . . . 92

6.3 Comparing Semantics of Strategic Ability . . . . . . . . . . . . . . . 95

6.3.1 Perfect vs. Imperfect Information . . . . . . . . . . . . . . . 96

6.3.2 Memory-Based vs. Memoryless Strategies . . . . . . . . . . 96

6.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Constructive Knowledge and Levels of Ability . . . . . . . . . . . . . 99

6.4.1 Epistemic Levels of Strategic Ability . . . . . . . . . . . . . 99

6.4.2 Constructive Strategic Logic . . . . . . . . . . . . . . . . . . 101

6.4.3 Closer Look at Constructive Knowledge . . . . . . . . . . . . 103

6.4.4 Expressing Epistemic Levels of Ability in CSL . . . . . . . . 104

7 Model Checking Uncertain Agents 108
7.1 Verification for Imperfect Information . . . . . . . . . . . . . . . . . 108

7.1.1 Model Checking ATLir . . . . . . . . . . . . . . . . . . . . 108

7.1.2 Model Checking Nexttime Formulae . . . . . . . . . . . . . . 112

7.1.3 Bad News for Agents with Perfect Recall . . . . . . . . . . . 114

7.1.4 Model Checking ATL∗ . . . . . . . . . . . . . . . . . . . . 116

7.2 Complexity Results for Compact Representations . . . . . . . . . . . 117

7.3 Taming the Complexity by Reinstating Fixpoints . . . . . . . . . . . 120

7.3.1 Alternating Epistemic μ-Calculus . . . . . . . . . . . . . . . 121

7.3.2 Specification of Fixpoint Abilities . . . . . . . . . . . . . . . 122

7.3.3 Expressive Power of AEMC . . . . . . . . . . . . . . . . . . 124

7.3.4 Complexity of Model Checking . . . . . . . . . . . . . . . . 125

8 Conclusions 128



Chapter 1

Preface

Interacting autonomous agents become ubiquitous in present-day IT environments.

More and more systems involve social as much as technological aspects, and even

those that focus on technology are often based on distributed components exhibiting

self-interested, goal-directed behavior. Moreover, the components (be it software pro-

cesses, hardware devices, or humans) act in environments characterized by incomplete

knowledge and uncertainty. The field of multi agent systems (MAS) studies the whole

spectrum of phenomena ranging from agent architectures to communication and coor-

dination in agent groups to agent-oriented software engineering. The theoretical foun-

dations are mainly based on game theory and formal logic.

The framework of MAS has been used to formalize various problems in computer

science, artificial intelligence, game theory, social choice theory, and other related dis-

ciplines. Depending on the context, multi agent systems are presented as a paradigm for

computation, programming, and/or design. Perhaps most importantly, however, they

can be seen a philosophical metaphor that provides a way of modeling the world, and

makes one use specific vocabulary when describing the phenomena we are interested

in. Putting it in another way, multi-agent systems form a paradigm for thinking and

talking about the world, and assigning it a specific conceptual structure. Components

of such systems are assumed to be autonomous, perhaps intelligent, definitely active or

even pro-active... having some goals and beliefs... et cetera. Thus, the metaphor builds

on the intuition that humans are agents, and that other entities we study can be just like

us to some extent.

Logic-based methods for multi-agent systems have several advantages. Logic pro-

vides a vocabulary for naming properties of systems, and the vocabulary is given pre-

cise meaning via models and semantic rules. Moreover, logical models provide a con-

ceptual apparatus for reasoning that can be as well used outside mathematical logic.

In this book, we focus on modal logics with their clear and intuitively appealing con-

ceptual machinery of possible world semantics (also known as Kripke semantics). The

logics draw from the long tradition of philosophical studies on human behavior and the

behavior of the world in general, that yielded epistemic logic, deontic logic, temporal

logic etc. In particular, we investigate a branch of modal logics that can be described as

strategic logics. That is, the generic modal structure is infused with game-theoretical

notions of player, coalition , choice, strategy, outcome, rationality, etc. Since all those

concepts are highly relevant for interaction between autonomous entities, it seems a

perfect starting point for specification and verification of multi-agent systems.

It should be pointed out that modal logics for multi-agent systems (and their mod-

5



6 CHAPTER 1. PREFACE

els) can be used in at least two ways. First, one may strive to represent an objective

observer’s view to an agent system with the instruments they provide. This is the view-

point we usually adopt while talking about “specification”, “design”, “verification”

etc. The observer (e.g., the designer or the administrator of the system) may collect

all relevant aspects of the system in a Kripke model, and then derive or check certain

properties of this model. Or, the designer can specify some desirable properties of a

system, and then try to engineer a model in which those properties hold. On the other

hand, a model can be also used to capture the subjective view of an agent to the re-

ality he is acting in. In that case, the agent can ask about properties of the world via

the properties of the model, or, more importantly, look for a strategy that makes some

desirable property true in the model.

This book presents an overview of some important concepts in the area of logic-

based specification and verification of multi-agent systems. We introduce modal log-

ics that can be used to specify temporal, epistemic, and strategic properties of MAS.

Moreover, we present basic verification algorithms for those logics, and discuss the

computational complexity of the corresponding verification problems. Each section

ends with a review of existing literature, and pointers to relevant further reading.
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Chapter 2

Introduction to Specification
and Verification of Systems

2.1 Expressing properties of MAS
This section serves as an introduction of some fundamental concepts that we are going

to use throughout.

2.1.1 Multi-Agent Systems
Multi-agent systems (MAS) are systems that involve several autonomous entities acting

in the same environment. The entities are called agents. What is an agent? Despite

numerous attempts to answer the question, there seems to be no conclusive definition.

We assume that MAS are, most of all, a philosophical metaphor that induces a specific

way of seeing the world. Thus, while some researchers present multi-agent systems as

a paradigm for computation or design, we believe that primarily multi-agent systems

form a new paradigm for thinking and talking about the world. As a consequence, the

paradigm makes us use agent-oriented vocabulary when describing the phenomena we

are interested in, and model them with a specific conceptual structure.

The metaphor of a multi-agent system builds on the intuition that we are agents –

and that other entities we study or create can be just like us to a large extent.

Example 1 (Robots on a Rescue Mission: Scenario)

A group of k robots operates in a burning house in order to rescue people from

the building. There are n people inside, and the house consists of m places.

The state of each robot can be characterized by its status (alive or dead), current

position, and an indication whether the robot is carrying some person (and, if

so, which person). Similarly, a person can be characterized by its current status

and position. If it is being carried by a robot, the information will be included in

the robot’s state. Each place can be burning, damaged, or still in a good shape.

Robots and people that are alive can try to move North, South, East or West.

Robots can additionally Pick up a person or Lay it on the ground. Every agent

can also decide to do nothing (action Wait).

8



2.1. EXPRESSING PROPERTIES OF MAS 9

Example 2 (Voting Scenario)

Citizens of Pneumonia are voting in the presidential election. There are n vot-

ers, each of them supposed to enter a voting booth at a polling station, select one

of the candidates from the ballot, register their vote, and exit the polling station.

There are also k coercers who can attempt to bribe or blackmail the voters into

voting for a particular candidate. The coercers are, among other things, capable

of intercepting unencrypted messages.

We will use the two scenarios to construct motivating examples throughout the

book, and show how various tasks can be achieved by use of formal methods based on

mathematical logic.

Features of agents

An agent can possibly be:

• Autonomous: operates without direct intervention of others, has some kind of

control over its actions and internal state,

• Reactive: reacts to changes in the environment,

• Pro-active: takes the initiative,

• Goal-directed: acts to achieve a goal,

• Social: interacts with others (i.e., engages in cooperation, communication, coor-

dination, competition, etc.),

• Embodied: has sensors and effectors to read from and make changes to the envi-

ronment,

• Intelligent: ...whatever it means,

• Rational: always does the right thing.

It can be argued, however, that the above properties of agents are secondary: they

are results of an introspection rather than primary assumptions we start with. So, is

there any essential (and commonly accepted) feature of an agent? Yes. An agent acts.

The classical AI approach to intelligent agents describes an agent by defining its

set of actions, set of perceptions, and a function

act : set of percept sequences �→ set of actions,

thus assuming that agents act in a systematic way, according to a clear recipe. Note

that, in game theory, such a function is called a strategy. In planning, it is called a

conditional plan.

Logics for MAS

Formal logic, especially the way it is used in philosophy and computer science, can be

seen as a framework for thinking and reasoning about systems. Describing a system

formally makes one realise the implicit assumptions that inform our understanding of
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the problem domain. Then, we can investigate the assumptions, and accept or reject

them. We can also relax some of the assumptions and still use a part of the formal

and conceptual machinery. The logics that we will use in this book are sufficiently

expressive for the properties that we need to address. Still, they are much simpler and

more rigorous than the full language of mathematics.

We note that this view of logic comes close to the role of multi-agent systems as

a metaphor for understanding and describing the world. Logic provides conceptual

structures for modeling and reasoning about the world in a precise manner – and, oc-

casionally, it also provides tools to do it automatically. The following generic ideas

provide logical specifications with different computational flavors:

• Verification: check specification against implementation;

• Other decision problems: validity, satisfiability, realizability;

• Executable specifications;

• Planning as model checking.

In the context of MAS, closely related computational problems are: game solving,

mechanism design, and reasoning about games. We will show that they all have natural

interpretation in decision problems for agent logics. Typically, the starting point is

to describe a desirable property in the logical language. Then, we can check if the

property holds in the model of a given system, in all possible models of all possible

systems, or in at least one possible system (that is hopefully synthesized and returned

by the checking process). Or, conversely, one can specify a dangerous property, and

check if the danger applies to the system at hand, all possible systems, or at least one

vulnerable scenario.

Example 3 (Rescue Robots: Properties)

Below we list some desirable properties that may (or may not) hold in the Res-

cue Robots scenario:

♣ Each person in the building is safe;

♣ Each person will eventually be safe;

♣ Each person may eventually be safe, provided that they cooperate

♥ People inside the building know that the robots are outside

♥ Each robot knows the position of every person

♥ If the robots shared information, then each of them would know the posi-

tion of every person

♠ The robots can rescue all the people in the building

♠ The robots can rescue all the people, and they know that they can

♠ The robots can rescue all the people, and they know how to do it
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Example 4 (Voting: Properties)

Desirable properties for the Voting scenario:

Privacy: The system cannot reveal how a particular voter voted. Thus, privacy

guarantees that the link between a voter and her vote remains secret.

Receipt-freeness: The voter does not gain any information (a receipt) which

can be used to prove to a coercer that she voted in a certain way.

Coercion-resistance: The voter cannot cooperate with a coercer to prove to

him that she voted in a certain way. Coercion resistance requires that the

coercer cannot become convinced of how the voter has voted, even if the

voter cooperates with him.

2.1.2 Modal Logic
Modal logic is an extension of classical logic with new operators � (necessity) and �

(possibility). Formula �ϕ says that statement ϕ is necessarily true, i.e., true in every

possible situation. Similarly, �ϕ means that ϕ is possibly true, that is, true in at least

one possible situation. We will soon give examples of what “situations” can mean.

However, independently of the precise definition, the following is usually assumed to

hold:

�ϕ↔ ¬�¬ϕ.
Formally, the Kripke semantics of standard modal logic is defined as follows.

Definition 1 (Kripke model) Let PV = p, p′, p′′, . . . be the set of propositional vari-

ables (also called atomic propositions). Models of modal logics are called Kripke

models or possible world models, and include the set of possible worlds (or states)
St, modal accessibility relation R ⊆ St × St, and interpretation of the propositions
V : PV → 2St.

Let M = (St,R,V) be a Kripke model, and q be a possible world in M . The truth

of formula ϕ in M, q is given by the semantic relation |=, and defined by induction on

the structure of ϕ:

M, q |= p iff q ∈ V(p), for p ∈ PV;

M, q |= ¬ϕ iff not M, q |= ϕ (often written M, q 
|= ϕ);

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;

M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ;

M, q |= �ϕ iff for every q′ ∈ St such that qRq′, we have M, q′ |= ϕ;

M, q |= �ϕ iff for some q′ ∈ St such that qRq′, we have M, q′ |= ϕ.

Note that disjunction and modal possibility can be omitted from the primitive con-

structs of the logic, since we can define them as combinations of the other operators.

Modal logic can be further extended to multi-modal logic, where we deal with

several modal operators: �i and �i, each of them interpreted over the corresponding

modal accessibility relation Ri ⊆ St× St.
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What we have presented so far is pretty generic. The actual accessibility relations

can capture various dimensions of the reality (and therefore give rise to different kinds

of modal logics): knowledge (� epistemic logic), beliefs (� doxastic logic), obliga-

tions (� deontic logic), actions (� dynamic logic), time (� temporal logic), ability

(� strategic logic) etc. In particular, various aspects of agents and agent systems can

be naturally captured within this generic framework.

We will present examples of modal logic specifications in the next subsection.

2.1.3 Reasoning about Knowledge
Epistemic logic deals with specification and reasoning about agents’ knowledge. Epis-

temic properties have simple interpretation in modal logic, and at the same time are

very important for reasoning about interaction between agents. We will use epistemic

logic here to present example properties, and show how they are evaluated in models

of simple multi-agent systems.

Example 5 (Rescue Robots: Properties to express)

Some interesting epistemic properties that can be written for the rescue robots

scenario are listed below:

♣ People inside the building know that there are some robots outside;

♣ Robot i knows that someone is still in the building;

♣ The robot knows that the person knows that it knows (so she will wait for

rescue);

♣ All the robots know the position of every person;

♣ If the robots shared information, then each of them would know the posi-

tion of every person;

♣ The robots have distributed knowledge, but not common knowledge

(...whatever it means) that person j is in location l.

Example 6 (Rescue Robots: Properties to express)

♠ The coercer does not know how a particular voter has voted (so he doesn’t

have an effective threat);

♠ The voter knows that the coercer does not know (so that she doesn’t have

to worry about blackmail);

♠ The coercer knows that the voter knows that the coercer does not know

(hence he knows that blackmail doesn’t make sense);

♠ ...and so on, ad infinitum.

The basic epistemic logic which we consider here involves modal necessity opera-

tors for individual knowledge. For historical reasons and greater readability, one uses

Ki rather than �i for knowledge modalities. Kiϕ is interpreted as “agent i knows that



2.1. EXPRESSING PROPERTIES OF MAS 13

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

1 1

22

pos0

pos1pos2

Figure 2.1: Two robots and a carriage: a schematic view (left) and a Kripke model

Mcarr1 of the robots’ knowledge (right).

ϕ.” Additionally, one can consider modalities for collective knowledge of groups of

agents: mutual knowledge (EAϕ: “everybody in group A knows that ϕ”), common
knowledge (CAϕ: “all the agents in A know that ϕ, and they know that they know it,

etc.”), and distributed knowledge (DAϕ: “if the agents shared their available informa-

tion, they would be able to recognize that ϕ”).

The formal semantics of epistemic logic is based on multi-agent epistemic models
M = 〈St,∼1, ...,∼k,V〉, where St is a set of epistemic states, V is a valuation of

propositions, and each ∼i⊆ St × St is an equivalence relation that defines the indis-
tinguishability of states for agent i.1 Operators Ki are provided with the usual Kripke

semantics given by the clause:

M, q |= Kiϕ iff M, q′ |= ϕ for all q′ such that q ∼i q′.

We mention in passing that epistemic models are usually constructed from the point

of view of an external omniscient observer, most typically a system designer or analyst

who has a complete view of the entire system.

Example 7 (Robots and Carriage) Consider the scenario depicted in Figure 2.1. Two
robots push a carriage from opposite sides. As a result, the carriage can move clock-
wise or anticlockwise, or it can remain in the same place – depending on who pushes
with more force (and, perhaps, who refrains from pushing). To make our model of the
domain discrete, we identify 3 different positions of the carriage, and associate them
with states q0, q1, and q2. We label the states by propositions pos0, pos1, pos2, re-
spectively, to allow for referring to the current position of the carriage in the object
language.

Moreover, we assume that robot 1 is only able to observe the color of the surface on
which it is standing, and robot 2 perceives only the texture. As a consequence, the first
robot can distinguish between position 0 and position 1, but positions 0 and 2 look the
same to it. Likewise, the second robot can distinguish between positions 0 and 2, but
not 0 and 1. In the resulting epistemic model, we have for instance that Mcarr1 , q0 |=
¬K1pos0∧¬K1pos2∧K1(pos0∨pos2): the first robot knows that the position is either
0 or 2, but not which of them precisely. Moreover, Mcarr1 , q0 |= K1¬pos1 (robot 1
knows that the current position is not 1). The robot also knows that the other agent can

1Symbol ∼i is used instead of Ri for historical reasons.
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Figure 2.2: Deriving the relation of mutual knowledge for robots 1 and 2 (relation

∼E{1,2} on the right hand side)

q0

q2 q1

1 1

22

pos0

pos1pos2

�

Figure 2.3: Deriving common knowledge (∼C{1,2})

currently distinguish between smooth and rough texture: Mcarr1 , q0 |= K1

(
(pos2 →

K2pos2) ∧ (¬pos2 → K2¬pos2)
)
. Finally, the robot knows that the other robot knows

that it knows: Mcarr1 , q0 |= K1K2K1

(
(pos2 → K2pos2) ∧ (¬pos2 → K2¬pos2)

)
.

We leave it to the reader to check that the above formulae indeed hold in the model.

How to interpret collective knowledge operators? The accessibility relation corre-

sponding to EA is defined as ∼E
A=

⋃
i∈A ∼i, and the semantics of EA becomes

M, q |= EAϕ iff M, q′ |= ϕ for all q′ such that q ∼E
A q
′.

Common knowledge CA is given semantics in terms of the relation ∼C
A defined as

the transitive closure of ∼E
A:

M, q |= CAϕ iff M, q′ |= ϕ for all q′ such that q ∼C
A q
′.

Finally, distributed knowledge DA is given semantics in terms of the relation ∼D
A

defined as
⋂
i∈A ∼i, following the same pattern:

M, q |= DAϕ iff M, q′ |= ϕ for all q′ such that q ∼D
A q
′.

Note that EAϕ ≡ ∧
i∈AKiϕ, and hence the operators for mutual knowledge can
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be also omitted from the language.

Example 8 (Robots and Carriage: Collective knowledge) The mutual, common, and
distributed knowledge relations of the two robots in the Robots & Carriage model are
shown in Figures 2.2, 2.3, and 2.4, respectively. With the indistinguishability relations
for collective knowledge in place, interpreting statements about collective knowledge
of the robots is straightforward. For instance, in state q2 (colorful surface, smooth tex-
ture), the robots do not have mutual knowledge about the current position of the car-
riage: Mcarr1 , q2 |= ¬E{1,2}pos2. On the other hand, they both know that the position
is not q1 (white surface, rough texture): Mcarr1 , q2 |= E{1,2}¬pos1. Still, their collec-
tive knowledge does not extend to common knowledge: Mcarr1 , q2 |= ¬C{1,2}¬pos1.
Finally, if the robots shared their information, they would know the current position
precisely: Mcarr1 , q2 |= D{1,2}pos2.

We conclude this part by showing how properties of rescue robots and voting agents

can be expressed in epistemic logic.

Example 9 (Voting: Expressing the properties)

♠ The coercer does not know how a particular voter has voted (so he doesn’t

have an effective threat):

∧
c∈Candidates

¬Kcoercvotedv,c.

♠ The voter knows that the coercer does not know (so that she doesn’t have

to worry about blackmail):

Kv
( ∧
c∈Candidates

¬Kcoercvotedv,c
)
.

♠ The coercer knows that the voter knows that the coercer does not know

(hence he knows that blackmail doesn’t make sense):

KcoercKv
( ∧
c∈Candidates

¬Kcoercvotedv,c
)
.

♠ ...and so on, ad infinitum:

Ccoerc,v
( ∧
c∈Candidates

¬Kcoercvotedv,c
)
.

Example 10 (Rescue Robots: Expressing the properties)

♣ People inside the building know that there are some robots outside:

∧
j∈People

Kj
( ∨
i∈Robots

outsidei
)
.
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Figure 2.4: Deriving distributed knowledge (∼D{1,2})

♣ Robot i knows that someone is still in the building:

Ki
( ∨
j∈People

insidej
)
.

♣ The robot knows that the person knows that it knows (so she will wait for

rescue):

KiKjKi insidej.

♣ All the robots know the position of every person:

∧
j∈People

∨
l∈Locations

ERobots atj,l.

♣ If the robots shared information, then each of them would know the posi-

tion of every person:

∧
j∈People

∨
l∈Locations

DRobots atj,l.

♣ The robots have distributed knowledge, but not common knowledge, that

person j is in location l:

DRobots atj,l ∧ ¬CRobots atj,l.

Why is the last distinction important? This is because only common knowledge

guarantees successful coordinated action (cf. the Coordinated Attack Problem [7]). On

the other hand, distributed knowledge means that it is possible to obtain knowledge
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by information exchange within the group. Thus, having distributed but not com-

mon knowledge suggests the need for communication and information sharing between

members of the group.

References and Further Reading. The standard AI account of agents and agent mod-

els can be found in [146]. Readers interested in issues related to multi-agent systems

are referred to [184, 182, 156]. Logical aspects of MAS have been covered, from

various angles in the compendia [50, 166].

The modern treatment of modal logic has been proposed by Kripke in [106]. A

gentle introduction to modal logic can be found in [23].

[63] presents what has become the standard treatment of reasoning about knowl-

edge within the computer science community. More lightweight surveys can be found

in [75, 169]. We also recommend a recent compendium on various aspects of epistemic

reasoning [174].

2.2 Model Checking
There are several ways of applying formal logic to facilitate multi-agent systems. First,

they can be used to support analysis of a problem domain and design of a new system,

e.g., by providing intuitive conceptual structures and a systematic approach to specify

desirable properties of the system. Secondly, one can use logic for verification and ex-

ploration of an existing MAS through model checking, theorem proving, or correctness

testing. Thirdly, modal logics have been employed for automatic generation of behav-

iors by programming with executable specifications and automatic planning. The idea

of planning as model checking also fall into this category. Finally, formal logic is often

used in philosophy of mind and theories of agency to characterize mental attitudes,

discuss concepts of rational agents, and test different rationality assumptions.

In this book, we focus especially on the second strand, and in particular on ver-

ification by model checking. We begin our exposition of model checking by a brief

introduction to logical decision problems and their complexity.

2.2.1 Decision Problems
Theory of computation formalizes tasks like verification through so called decision
problems. A decision problem asks, given representation of an instance of the problem,

whether the instance belongs to the set of “good” instances. For example, the Hamilto-

nian path problem determines whether a path that visits each vertex exactly once exists

in a given graph. Clearly, each decision problem can be seen as a yes/no question. The

answer depends on the input, i.e., the actual values of the problem parameters.

Example 11 (Rescue Robots: Tasks to be done)

♣ Check whether robot i knows that someone is still in the building;

♣ Verify that if person j gets outside the building then she will never be in

danger anymore;

♣ Check if all the robots in all rescue missions know the positions of every

involved person;
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♣ Show or disprove that a group of robots sharing information knows at

least as much as its members.

Example 12 (Voting: Tasks to be done)

♠ Verify that the coercer does not know how a particular voter has voted;

♠ Design a system that does not issue receipts;

♠ Show (or disprove) that no system will ever reveal how a particular voter

voted.

Typical problems for logical specifications are: validity, satisfiability, and model

checking:

• Validity: given formula ϕ, determine if ϕ is valid (i.e., true in every model);

• Satisfiability: given formula ϕ, determine if ϕ is satisfiable (i.e., true in some

model);

• Model checking: given formula ϕ and model M , determine if ϕ is true in M .

The usual view at decision problems is algorithmic: We want a machine (an al-

gorithm) to answer the question captured by the problem. The user gives the input,

and the machine returns the answer. Does that work? It depends on how difficult the

question is, i.e., on the computational complexity of the problem.

2.2.2 Computational Complexity
In this book we consider both algorithms for verifying properties of MAS, and the

theoretical complexity of the corresponding problems. Here is a short and rather infor-

mal description of the most relevant complexity classes. A formal introduction can be

found in any textbook on complexity theory.

• P (deterministic polynomial time): problems solvable in polynomially many
steps by a deterministic Turing machine;

• NP (nondeterministic polynomial time): problems solvable in polynomially
many steps by a nondeterministic Turing machine. NP can be seen as the class

of problems that will be solved fast if the algorithm makes shrewd guesses about

how to search the space of possible solutions;

• co-NP: the complement of NP. The class of problems that can be solved fast

if the algorithm makes shrewd guesses about where to look for counterexamples;

• ΔP
2 = PNP: problems solvable in polynomial time by a deterministic Tur-

ing machine asking adaptive queries to an oracle for a problem in NP (i.e., a

“guessing machine”);

• ΣP
2 = NPNP: problems solvable in polynomial time by a nondeterministic

Turing machine asking adaptive queries to an oracle for a problem in NP. That

is, one guessing machine is allowed to query another guessing machine;
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• ΠP
2 = co-ΣP

2 : the complement of ΣP
2 ;

• ΔP
n / ΣP

n / ΠP
n : problems solvable in polynomial time with use of adaptive

queries to an n-level heap of oracles;

• PH =
⋃∞
n=1 Σ

P
n (Polynomial Hierarchy): problems solvable by queries to a

heap of oracles with bounded height (for any given bound);

• PSPACE (polynomial space): Problems solvable by a Turing machine that

uses only polynomially many memory cells. Alternatively: problems solvable

by queries to a heap of oracles with unbounded height;

• EXPTIME: problems solvable in exponential time by a deterministic Turing

machine;

• k-EXPTIME: problems solvable by a deterministic Turing machine in k-fold
exponential time, i.e., the number of steps is restricted by a function that “stacks”

k exponents;

• ELEMENTARY =
⋃∞
k=1 k-EXPTIME: elementary problems (solvable

in multiple-exponential time, i.e., time restricted by a function that stacks a

bounded number of exponents for some given bound);

• NONELEMENTARY: nonelementary problems (may require time expressed

by an unbounded stack of exponents).

Of course, theoretical complexity has many deficiencies: it refers only to the worst

(hardest) instance in the set, neglects coefficients in the function characterizing the

complexity, etc. However, it often gives a good indication of the inherent hardness of

the problem in terms of scalability. For low complexity classes, scaling up from small

instances of the problem to larger instances is relatively easy. For high complexity

classes, this is not the case anymore.

Also, the difference between deterministic and nondeterministic complexity classes

draws the borderline between problems that can rely on brute force algorithms, and

those that should use smart heuristics. In particular, the problems in P can in principle

be solved efficiently by a brute force approach. NP collects problems that can be

solved fast if one comes up with the right heuristics. Problems in EXPTIME do not

scale even with smart heuristics; they are inherently exponential in terms of the time

that they demand.

2.2.3 Local and Global Model Checking
There are various ways to verify the correctness of a system. By far, the most popular

and successful is model checking which answers whether a given formula ϕ is satis-

fied in a state q of model M . Formally, model checking is the decision problem that

determines membership in the set

MC(L, Struc, |=) = {((M, q), ϕ) ∈ Struc× L | M, q |= ϕ},

where L is a logical language, Struc is a class of (pointed) models for L, and |= is a

semantic satisfaction relation compatible with L and Struc.

Algorithmically, this amounts to implementing the function

mcheck(M, q, ϕ) =

{ � if M, q |= ϕ
⊥ else
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that answers “true” if and only if formula ϕ holds in the pointed model (M, q). This

variant of the problem is sometimes called local model checking to emphasize that the

value of ϕ is computed for a particular state of the system.

It is often useful to compute the set of states in M that satisfy formula ϕ instead

of checking if ϕ holds in a given state. This variant of the problem is known as global
model checking. That is, we want to implement the function

mcheck(M,ϕ) = {q ∈ St |M, q |= ϕ}.

For the verification problems that we will consider here, the complexities of local and

global model checking coincide, and the algorithms for one variant of model checking

can be adapted to the other variant in a simple way. As a consequence, we will use

both notions of model checking interchangeably.2

2.2.4 Verification of Epistemic Properties
Model checking epistemic logic is rather straightforward. Still, it is instructive to begin

our study of verification algorithms with the simple case. Below, we present the re-

cursive algorithm for local model checking of knowledge related properties. It is easy

to notice that clauses of the algorithm simply map the respective semantic clauses of

epistemic logic to an executable form.

function mcheck(M, q, ϕ).
Recursive model checking for formulae of epistemic logic.

Returns � if M, q |= ϕ and ⊥ otherwise.

case ϕ ≡ p : return (q ∈ V(p))
case ϕ ≡ ¬ψ : return (not mcheck(M, q, ψ))
case ϕ ≡ ψ1 ∧ ψ2 : return (mcheck(M, q, ψ1) and mcheck(M, q, ψ2))
case ϕ ≡ Kaψ : return (∀q′. if q ∼a q′ then mcheck(M, q′, ψ))
end case

We omit the clause for disjunction, as it can be defined as a combination of conjunction

and negation.

Instead of Ka, it is sometimes convenient to use the “epistemic possibility” opera-

tor Ka (defined formally as Kaϕ ≡ ¬Ka¬ϕ). Local model checking for Kaψ can be

done as follows:

case ϕ ≡ Kaψ : return (∃q′. q ∼a q′ and mcheck(M, q′, ψ))

Global model checking for knowledge

An algorithm for global model checking takes a model and a formula as input, and re-

turns the exact subset of states in the model that satisfy the formula. It can be obtained

by mapping the logical operations from local model checking to their set-theoretic

counterparts. That is, negation becomes the complement, conjunction turns into in-

tersection, and so on. Modal operators are mapped to pre-images of the appropriate

modal relation. More precisely, necessity operator Ki maps to the universal pre-image

2The only logic mentioned in this book, for which the complexities of global and model checking differ,

is Constructive Strategic Logic in Chapter 6. However, we will not discuss model checking or CSL.
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model Mcarr1 mcheck(Mcarr1 , pos2)

mcheck(Mcarr1 ,¬pos2) mcheck(Mcarr1 ,K1¬pos2)

Figure 2.5: Global model checking: mcheck(Mcarr1 ,K1¬pos2)

function pre∀ generated by relation ∼i, and possibility operator Ki maps to the ex-

istential pre-image function pre∃. Thus, the algorithm for model checking epistemic

specifications is revised as follows:

function mcheck(M,ϕ).
Global model checking for formulae of epistemic logic.

Returns the exact subset of states in M for which formula ϕ holds.

case ϕ ≡ p : return V(p)
case ϕ ≡ ¬ψ : return St \mcheck(M,ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M,ψ1) ∩mcheck(M,ψ2)
case ϕ ≡ Kaψ : return pre∀(a,mcheck(M,ψ))
case ϕ ≡ Kaψ : return pre∃(a,mcheck(M,ψ))
end case

pre∀(a,Q) = {q | ∀q′ . q ∼a q′ ⇒ q′ ∈ Q}
pre∃(a,Q) = {q | ∃q′ . q ∼a q′&q′ ∈ Q}
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model Mcarr1 mcheck(Mcarr1 , pos2)

mcheck(Mcarr1 ,¬pos2) mcheck(Mcarr1 ,K1¬pos2)

Figure 2.6: Model checking of robots & carriage: mcheck(Mcarr1 ,K1¬pos2)

The set-theoretic operations of complement, intersection and pre-image will show

up throughout the book as the main ingredients of model checking algorithms for more

complex logics (temporal, strategic, etc.).

Example 13 (Robots and Carriage: Model checking) Consider the Robots and Car-
riage model Mcarr1 in Figure 2.1. The execution of the global model checking algo-
rithm for formula K1¬pos2 is shown in Figure 2.5. Similarly, Figure 2.6 shows the
execution of the algorithm for formula K1¬pos2 in Mcarr1 .

Complexity of epistemic model checking

It is clear that the above algorithms run in relatively few steps. The following standard

result states this in a formal way.

Theorem 1 Model checking of the multi-agent epistemic logic Kn is P-complete with
respect to the size of the Kripke model and the length of the formula.

The result looks appealing, but it is in fact rather imprecise. What kind of polyno-

mial should we expect? And, more importantly, what do we mean by “the size of the
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Kripke model” and “the length of the formula”? A more informative phrasing of the

same result is given below.

Theorem 2 Model checking of the multi-agent epistemic logic Kn is P-complete, and
can be performed in time O(|M | · |ϕ|) where |M | is the number of the vertices and the
edges in the Kripke model,3 and |ϕ| is the length of the formula, defined as the number
of the subformulae in ϕ.4

How does it compare to other decision problems for reasoning about knowledge?

The following theorem indicates that validity and satisfiability checking are featured

much higher in the complexity hierarchy:

Theorem 3 Validity checking and satisfiability checking for the multi-agent epistemic
logic Kn is PSPACE-complete with respect to the number of distinct subformulae in
the formula.

Thus, validity and satisfiability checking seem much harder than model checking.

Is that really the case? Not necessarily. One must remember that the complexity of

a decision problem is always relative to the size of the input, and the three concerned

problems do not have the same input. So, the only thing we can state for sure is that

validity and satisfiability checking are much harder than model checking for inputs of
comparable size.

We conclude the chapter by showing how the reasoning tasks from Section 2.2.1

for our motivating scenarios can be translated to appropriate decision problems.

Example 14 (Rescue Robots: Implementing the tasks)

♣ Check whether robot i knows that someone is still in the building:

Model checking of formula Ki
(∨

j∈People insidej
)

in the model

of the rescue mission;

♣ Verify that if person j gets outside the building then she will never be in

danger anymore:

Model checking of formula AG(outsidej → AGsafej) in the

model of the rescue mission;a

♣ Check if all the robots in all rescue missions know the positions of every

involved person:

Validity checking of formula
∧
j∈People

∨
l∈Locations ERobots atj,l;

♣ Show or disprove that a group of robots sharing information knows at

least as much as its members:

Validity checking of formula
∧
i∈A(Kiϕ→ DAϕ).

a “AG” means “for all states that can be possibly reached from the current state.” The construc-

tion will be formally introduced in Chapter 3.

3Note that, since the epistemic relations are reflexive, this can be actually simplified to “the number of

the edges.”
4|ϕ| can be also defined as the number of the symbols in ϕ without affecting any of the results presented

in this book.
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Example 15 (Voting: Implementing the tasks)

♠ Verify that the coercer does not know how voter v has voted:

Model checking of formula
∧
c∈Candidates ¬Kcoercvotedv,c in

the model of the voting protocol;

♠ Design a system that does not issue receipts:

Satisfiability checking of AG(
∧
v∈Voters

∧
c∈Candidates ¬receiptVotev,c);

♠ Show (or disprove) that no system will ever reveal how voter v voted:

Validity checking of AG(
∧
c∈Candidates ¬revealedVotev,c).

References and Further Reading. Model checking was proposed in early 1980s

by Clarke and Emerson [59, 45] and independently by Queille and Sifakis [141].

For a comprehensive treatment of model checking, we refer the interested reader to

the textbooks [47, 15]. An introduction to computational complexity can be found

e.g. in [126, 14]. A compact introduction to the basics of specification and verification

for multi-agent systems was published in [98].



Chapter 3

Specification and Verification of
Temporal Properties

3.1 Specification of System Dynamics
In this section, we present a brief overview of logics that refer to dynamics of systems.

That is, logics that focus on actions which can be performed by (or in) a system, and

which make the system evolve over time. We will first briefly consider the approach

that takes actions as first-class citizens of the object language (called dynamic logic).

Then, we will abstract from particular actions, and show how to reason about change

in general and the evolution of the system over time (temporal logic).

Example 16 (Rescue Robots: Properties to express)

♣ Each person in the building is safe;

♣ Each person will eventually be safe;

♣ Each person may eventually be safe, if everything goes fine;

♣ Whenever person i gets in trouble, she will eventually be rescued;

♣ If person i gets outside the building, then she will never be in danger

anymore;

♣ Person i may be rescued without any robot ever entering the building, but

guaranteed rescue requires some robots to enter.

Example 17 (Voting: Properties to express)

♠ The system will not reveal how a particular voter voted;

♠ The system does not issue receipts;

♠ The voter can vote, and can refrain from voting;

♠ The voter can vote, and can refrain from voting. If she votes, the system

25
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will not reveal afterwards how she voted.

3.1.1 Modal Logics of Time and Action
Propositional Dynamic Logic

Propositional dynamic logic (PDL), which was primarily designed to reason about

computer programs, is probably the most typical representative of logics with explicit

actions. Actions are represented in the language by action labels α1, α2, ... from a

finite set Act. Complex action terms can be also constructed, for example sequential

composition (α1;α2), nondeterministic choice (α1∪α2), finite iteration (α∗) etc. Now,

[α]ϕ expresses the fact that ϕ is bound to hold after every execution of α, and 〈α〉ϕ ≡
¬[α]¬ϕ says that ϕ holds after at least one possible execution of α. On the semantic

side, we have labeled transition systemsM = 〈St, α1−→, . . . ,
αk−→,V〉, where actions are

modeled as (nondeterministic) state transformations
αi−→ ⊆ St× St. The semantics of

dynamic operators is given as follows:

M, q |= [αi]ϕ iff M, q′ |= ϕ for all q′ such that q
αi−→ q′.

We mention PDL only in passing here, as it will not be used in the rest of the book.

Temporal Logic

Temporal logic leaves actions implicit, and instead focuses on possible patterns of evo-

lution. Typical temporal operators are: X (“next”), G (“always”), F (“sometime”),

and U (“strong until”) that are used to build more complex formulae according to the

following scheme:

Xϕ ϕ will be true in the next moment in time

Gϕ ϕ will be true in all future moments, from now on

Fϕ ϕ is true now, or will be true in some future moment

ϕUψ ψ will be true in some future moment, and ϕ will be true until
the moment before ψ becomes true.

For example, formula G((¬passport ∨ ¬ticket) → X¬board flight) expresses

that, whenever a passenger arrives with no passport or no ticket, she will not be allowed

to board the flight. Similarly, send(msg, rcvr) → Freceive(msg, rcvr) says that if the

message is sent to the receiver now, it will be eventually received.

Temporal Specification Templates

Temporal logic was originally developed in order to represent tense in natural language.

Within computer science, it has achieved significant success in the formal specification
and verification of concurrent and distributed systems. Much of the popularity was

achieved because some useful concepts can be formally and concisely specified using

temporal logics, namely:

• safety properties,
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• liveness properties, and

• fairness properties.

Safety properties correspond to maintenance goals, and refer to a state of affairs

that should be preserved (or avoided) throughout the lifespan of the system. That is,

they correspond to statements like: “something bad will never happen” or “something

good will always hold.” As an example, G¬bankrupt can be used to require that I will

never go bankrupt. Similarly, G(fuelOK ∨ XfuelOK) expresses that the fuel tank will

never be empty for more than one time unit. Thus, the temporal template for safety

properties is Gϕ.

Liveness properties correspond to achievement goals, and refer to a state of affairs

that should be achieved at some point in the future (“something good will happen”).

As an example, Frich can be used to express that I will eventually be rich. Better

still, FGrich requires that I will become and stay rich from some moment on. Finally,

requested → Fgranted says that if a resource is requested now, it will be granted

sooner or later. Thus, the temporal template for liveness properties is Fϕ.

Fairness properties correspond to service goals, and refer to qualities that should

be provided sufficiently often. Typically, they correspond to statements like: “When-

ever something is attempted/requested, it will be successful/granted.” For example,

GFrich can be used to express that even if I happen to be poor in the future, I will

always recover and become rich again. Alternatively, it can be read as “I will be rich

infinitely often.” G(attempt → Fsuccess) says that whenever an action is attempted,

it will eventually succeed. A weaker property, (GFattempt) → (GFsuccess), ex-

presses that if the action is attempted infinitely often, it will also succeed infinitely

often. Thus, the temporal templates for fairness properties are GFϕ and G(ϕ → Fψ).
Fairness properties are useful when specifying properties for scheduling processes, re-

sponding to messages, etc. Most importantly, they can be used to specify properties of

the environment in which agents are embedded.

Models of Time

Models of temporal logic include one transition relation, and come in two versions.

Linear time models define a total ordering on possible worlds (“time moments”), so

that a model can be seen as a single infinite path λ with successive states λ[0], λ[1], ... .

Branching-time models, on the other hand, consist of a tree that encapsulates all possi-

ble evolutions of the system. In a way, a linear time model is supposed to capture what

will happen in the system from now on, whereas a branching time tree captures what

may possibly happen. Such infinite models of the future are often called behavioral
structures of temporal evolution.

Obviously, when reasoning about properties of a particular system, a model given

in the form of an infinite path or an infinite tree would be rather impractical. Instead, the

behavior of the system is usually represented by a Kripke transition model, sometimes

also called the computational structure.

Definition 2 (Unlabelled transition system, Kripke transition model) An unlabelled

transition system is a pair 〈St,−→〉 where St is a non-empty set of states, and −→⊆
St× St is a transition relation.

A Kripke transition model 〈St,−→,V〉 is an unlabeled transition system aug-
mented by a valuation of atomic propositions.



28 CHAPTER 3. TEMPORAL SPECIFICATION AND VERIFICATION

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Figure 3.1: Robots and carriage: simple transition model Mcarr2
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Figure 3.2: Behavioral structures for linear time (left) and branching time (right)

Example 18 (Robots & Carriage: Simple dynamics) Consider the following varia-
tion of the Robots and Carriage scenario, depicted in Figure 3.1. Now, robot 1 can
push the carriage so that it moves clockwise. It can also refrain from pushing, in which
case the carriage does not move. Robot 2 has no influence on the position of the car-
riage. The corresponding Kripke transition model is shown on the right hand side of
the picture.

We show how the computational structure gives rise to behavioral models of linear
and branching time in Figure 3.2. On the left hand side, the linear time model is
presented for the carriage staying in position 0 for two moments, and then moving to
position 1. The right hand side depicts the branching time model that assumes q0 to be
the initial state of the system.

Paths

Dynamics of the system for a particular chain of events is captured by a path. In case

of computational systems, it is often referred to as a computation path. Formally, a

path is a “complete” sequence of states that can be effected by subsequent transitions.

Definition 3 (Path in a transition system) A path λ is a sequence of states that can
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be effected by subsequent transitions. A path must be full, i.e., either infinite or ending
in a state with no outgoing transition.

Usually, we assume that the transition relation is serial (i.e., time flows forever).

Then, all paths are infinite.

3.1.2 Linear Temporal Logic
Let PV be the set of atomic propositions with the typical element p. The syntax of

linear time logic (LTL) is formally defined as follows:

γ ::= p | ¬γ | γ ∧ γ | Xγ | γU γ.

Additional boolean operators (disjunction, implication etc.) are defined as usual. More-

over, one can define additional temporal operators for “sometime in the future” (Fγ ≡
�U γ), “always from now on” (Gγ ≡ ¬F¬γ), “weak until” (γ1 W γ2 ≡ γ1 U γ2 ∨
Gγ1). Another temporal operator for “release” is deifned as γ1 R γ2 ≡ γ2 W(γ1 ∧ γ2)
or, equivalently, γ1 R γ2 ≡ ¬(¬γ1 U¬γ2).

The semantics of LTL is typically defined in behavioral models, i.e., infinite paths

drawn from executions of a Kripke transition model M . Let λ be a path in M . We

define the necessary notation as follows:

• λ[i] denotes the ith state on λ (starting from 0),

• λ[i . . . j]: denotes the part of λ between moments i and j, and

• λ[i . . .∞] is the suffix of λ starting from position i.

The semantic relation for LTL is given below:

λ |= p iff λ[0] ∈ V(p) (i.e., p is true at moment λ[0]);

λ |= ¬γ iff λ 
|= γ;

λ |= γ1 ∧ γ2 iff λ |= γ1 and λ |= γ2;

λ |= Xγ iff λ[1..∞] |= γ;

λ |= γ1 U γ2 iff λ[i..∞] |= γ2 for some i ≥ 0, and λ[j..∞] |= γ1 for all

0 ≤ j < i.

Thus, the semantics of the additional temporal operators can be derived as follows:

λ |= Fγ iff λ[i..∞] |= γ for some i ≥ 0;

λ |= Gγ iff λ[i..∞] |= γ for all i ≥ 0;

λ |= γ1 W γ2 iff λ[i..∞] |= γ1 for all i = 0, . . . , j − 1 where j is the first

moment such that λ[j..∞] |= γ2, or j = ∞ otherwise;

λ |= γ1 R γ2 iff λ[i..∞] |= γ2 for all i = 0, . . . , j where j is the first mo-

ment such that λ[j..∞] |= γ1, or j = ∞ otherwise.

Example 19 (Robots & Carriage: Semantics of LTL) Consider λ = (q0q1q2)
ω =

q0q1q2q0q1q2q0q1q2 . . . from the Robots and Carriage transition model in Figure 3.1.
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For that path, we have for instance that λ |= Fpos2 (position 2 will be eventually
achieved), and even λ |= GFpos2 (position 2 will be achieved infinitely many times).
However, it is not the case that the carriage will stop and stay in position 0 for good:
λ |= ¬FGpos2.

When LTL is used for specifying properties of a particular system, the formulae

are usually interpreted over all the infinite paths from a transition model of the system.

Definition 4 (Semantics of LTL in Kripke models) LetM be a Kripke transition mo-
del, q a state in M , and γ a formula of LTL. We say that γ holds in M, q (written
M, q |= γ) iff λ |= γ for every path λ in M starting from q.

Example 20 (Robots & Carriage: Semantics of LTL, ctd.) For the Kripke transition
model Mcarr2 in Figure 3.1, we have for instance that Mcarr2 , q0 
|= Fpos2. Note that
this does not imply Mcarr2 , q0 |= ¬Fpos2; on the contrary, it is also the case that
Mcarr2 , q0 
|= ¬Fpos2. Similarly, Mcarr2 , q0 
|= Gpos0 and Mcarr2 , q0 
|= ¬Gpos0.

An example formula that does hold inMcarr2 , q0 is (¬Gpos0) → Fpos1: if at some
point the carriage moves away from position 0, it must achieve position 1.

Example 21 (Rescue Robots: Expressing the properties)

♣ Everybody is safe: ∧
j∈People

safej.

♣ Everybody will eventually be safe:∧
j∈People

Fsafej.

Another interpretation: F
(∧

j∈People safej
)
.

♣ Everybody will always be safe, from some moment on:∧
j∈People

FGsafej.

Equivalently: FG
(∧

j∈People safej
)
.

♣ Everybody may eventually be safe, if everything goes fine:

Cannot be expressed in LTL!

♣ Whenever person j gets in trouble, she will eventually be rescued:

G(¬safej → Fsafej).

♣ If person j gets outside, she will never be in danger anymore:

G(outsidej → Gsafej).

♣ Person j may be rescued without any robot ever entering the building, but

guaranteed rescue requires some robots to enter:

Cannot be expressed in LTL!
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Example 22 (Voting: Expressing the properties)

♠ The system will not reveal how a particular voter voted:

G
( ∧
c∈Candidates

¬revealedVotev,c
)
.

♠ The system does not issue receipts:

G
( ∧
c∈Candidates

¬receiptVotev,c
)
.

♠ The voter can vote, and can refrain from voting:

Cannot be expressed in LTL!

♠ The voter can vote, and can refrain from voting. If she votes, the system

will not reveal afterwards how she voted:

Cannot be expressed in LTL!

3.1.3 Branching Time Logic CTL�

Linear temporal logic lacks the ability to distinguish between necessary and possible
courses of action. Given a particular infinite path, LTL addresses what will happen.

Given a Kripke transition model, it captures what must happen. However, it is some-

times also important to express that something may happen on at least one possible

path.

Computation tree logic (CTL�) extends LTL with path quantifiers E (“there is a

path”) and A (“for every path”). Formally, the language of CTL� is given as the set

of all the state formulae ϕ (interpreted in the states of a model), defined using path

formulae γ (interpreted on the paths of a model), by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ,

γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

The derived boolean and temporal operators are defined like in the previous sections.

Additionally, we define Aγ ≡ ¬E¬γ.

The semantics of CTL� is typically defined in computational structures. Let M =
(St,−→,V) be a Kripke transition model, and q a state inM . The semantics of CTL�

state formulae is given by the following clauses:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= Eγ iff there is a path λ in M , starting from q, for which we

have that M,λ |= γ.

The semantics of CTL� path formulae essentially copies the semantic clauses of LTL:
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Figure 3.3: Simple Rocket model Mrockt

M,λ |= ϕ iff M,λ[0] |= ϕ (i.e., ϕ holds in state λ[0] of model M );

M,λ |= ¬γ iff M,λ 
|= γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= Xγ iff M,λ[1..∞] |= γ;

M,λ |= γ1 U γ2 iff M,λ[i..∞] |= γ2 for some i ≥ 0, and M,λ[j..∞] |= γ1
for all 0 ≤ j < i.

It is easy to see that the derived semantics of “for all paths” is as expected:

M, q |= Aγ iff for all paths λ in M starting from q we have M,λ |= γ.

Example 23 (Robots & Carriage: Semantics of CTL�) Recall modelMcarr2 in Fig-
ure 3.1. In that model, we have for instance Mcarr2 , q0 |= EFpos2: in state q0, there
is a path such that the carriage will reach position 2 sometime in the future. The same
is clearly not true for all paths, so we also have that Mcarr2 , q0 |= ¬AFpos2.

Example 24 (Simple Rocket Domain) Figure 3.3 presents a Kripke model Mrockt

for a simple variant of the rocket domain that used to be popular in the STRIPS plan-
ning community. A rocket can be either in its base in London (denoted by proposition
roL) or at the aerodrome in Paris (roP). The rocket may also move between the aero-
dromes if it has fuel (fuelOK), but the flight uses up all fuel and empties the fuel tank
(nofuel) until it is refilled. A piece of cargo can be either at the London base (caL), at
the Paris base (caP), or inside the rocket (caR). When outside, it can be loaded into
the rocket if they are in the same location. When inside, it can be unloaded.
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The following example formulae hold in every state of Mrockt:

• EFcaP: there is a path such that eventually the cargo will be in Paris,

• AG(roL ∨ roP): in all the reachable states the rocket is in London or in Paris,

• roL → AX(roP → nofuel): if the rocket is in London, then, in all the successor
states after the rocket has moved to Paris, the fuel will be used up.

CTL (called sometimes “vanilla” CTL or “CTL without star”) is a sublanguage

of CTL� where every occurrence of a path quantifier is immediately followed by ex-

actly one temporal operator:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | EϕUϕ.

Note that in “vanilla” CTL it is not possible anymore to express Gϕ by a boolean

combination of U -formulae. Thus, the case of G must be explicitly added to the

syntax. CTL is important because it allows to interpret temporal formulae entirely in

terms of their satisfaction in the states:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= EXϕ iff there is a path λ starting from q such that M,λ[1] |= ϕ;

M, q |= EGϕ iff there is a path λ starting from q such that λ[i] |= ϕ for

all i ≥ 0;

M, q |= Eϕ1ϕ2 iff there is a path λ starting from q such that M,λ[i] |= ϕ2

for some i ≥ 0 and M,λ[j] |= ϕ1 for all 0 ≤ j < i.

As a consequence, reasoning in “vanilla” CTL is usually much easier to automatize

than in CTL�. We will present the standard CTL model checking algorithm in Sec-

tion 3.2.

Example 25 (Rescue Robots: Expressing the properties)

♣ Everybody is safe: ∧
j∈People

safej.

♣ Everybody will eventually be safe:

∧
j∈People

AFsafej.

Another interpretation: AF
(∧

j∈People safej
)
.

♣ Everybody will always be safe, from some moment on:

∧
j∈People

AFGsafej.

Equivalently: AFG
(∧

j∈People safej
)
.
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♣ Everybody may eventually be safe, if everything goes fine:

∧
j∈People

EFsafej.

Another interpretation: EF
(∧

j∈People safej
)
.

♣ Whenever person j gets in trouble, she will eventually be rescued:

AG(¬safej → AFsafej).

♣ If person j gets outside the building, then she will never be in danger

anymore:

AG(outsidej → AGsafej).

♣ Person j may be rescued without any robot ever entering the building, but

guaranteed rescue requires some robots to enter:

E
(
Fsafej ∧G(

∧
i∈Robots

outsidei)
) ∧ ¬A(Fsafej ∧G(

∧
i∈Robots

outsidei)
)
.

Alternative formalization:

E(
∧
i∈Robots outsidei)U safej ∧ ¬A(∧i∈Robots outsidei)U safej.

Example 26 (Voting: Expressing the properties)

♠ The system will not reveal how a particular voter voted:

AG
( ∧
c∈Candidates

¬revealedVotev,c
)
.

♠ The system does not issue receipts:

AG
( ∧
c∈Candidates

¬receiptVotev,c
)
.

♠ The voter can vote, and can refrain from voting:

Interpretation 1 The voter may vote, and may refrain from vot-

ing: EFvotedv ∧ EG¬votedv.

More refined specification:

EF(
∨
c∈Candidates votedv,c) ∧ EG(

∧
c∈Candidates ¬votedv,c).

Interpretation 2 She is able to vote, and able to refrain from

voting:

Cannot be expressed in CTL�!

♠ If the voter votes, the system will not reveal afterwards how she voted:∧
c∈Candidates

AG
(
votedv,c → AG(¬revealedVotev,c)

)
.
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Temporal and dynamic dimensions have been combined with other modalities, e.g.,

in the well-known BDI logics of beliefs, desires, and intentions [48, 144]. We will

present simple extension of CTL with epistemic modalities, and discuss verification

of temporal-epistemic properties in Section 3.3.

3.1.4 Fixpoint Equivalences and Modal μ-Calculus
Fixpoint Characterization of CTL Operators

The following formulae are valid in CTL, i.e., true in every state of every model:

EFϕ ↔ ϕ ∨ EXEFϕ,

EGϕ ↔ ϕ ∧ EXEGϕ,

Eϕ1 Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ EXEϕ1 Uϕ2),

AFϕ ↔ ϕ ∨ AXAFϕ,

AGϕ ↔ ϕ ∧ AXAGϕ,

Aϕ1 Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ AXAϕ1 Uϕ2).

What is the importance of fixpoint equivalences? Essentially, they say that paths

satisfying CTL specifications can be constructed incrementally, step by step. More-

over, solutions to the verification problem, as well as satisfiability checking, can be ob-

tained iteratively. The algorithmic view at computing states satisfying a temporal for-

mula can be formalized through logics of fixpoint computation, i.e., variants of modal
μ-calculus.

Modal μ-Calculus

The μ-calculus is an extension of propositional modal logic with the least and great-

est fixpoint operators μ, ν. The main idea is to use denotational semantics of modal

sentences, in which formulae are assumed to denote sets of states, and (unary) modal

operators are interpreted as transformers of such sets. Then, for a transformer τ , for-

mula μZ.τ(Z) refers to the least fixpoint of τ , that is, the smallest set of states Q such

that τ(Q) = Q. Analogously, νZ.τ(Z) denotes the greatest fixpoint of τ , i.e., the

largest set of states Q such that τ(Q) = Q.

The μ-calculus is usually built on top of PDL operators. Here, we present the

simpler variant based on the CTL “nexttime” operators. Formally, let PV be a set of

atomic propositions with typical element p, and let FV be a set of fixpoint variables

with typical elementZ. Elements of FV will serve as second-order variables that range

over sets of states. The language of μ-calculus is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | Z | μZ.ϕ(Z),

where ϕ(Z) is a modal μ-calculus formula syntactically monotone in the fixed-point

variable Z, i.e., all the free occurrences of Z in ϕ(Z) fall under an even number of

negations. Additionally, we can define AXϕ ≡ ¬EX¬ϕ, and νZ.ϕ(Z) ≡ ¬μZ.¬ϕ(¬Z).
Let M = (St,−→,V) be a Kripke transition model. Additionally, let E : FV →

2St be the valuation of second-order variables (the “environment”). Notice that the set

2St of all subsets of St forms a lattice under the set inclusion ordering. Each element

Q ⊆ St of the lattice can also be thought of as a predicate on St. The predicate is

viewed as being true for exactly the states in Q. The least element in the lattice is the



36 CHAPTER 3. TEMPORAL SPECIFICATION AND VERIFICATION

empty set, which we also refer to as ⊥, and the greatest element in the lattice is the

whole set St, which we sometimes write as �. A function τ mapping 2St to 2St is

called a predicate transformer. A set Q ⊆ St is a fixed point (or fixpoint) of τ iff

τ(Q) = Q.

Now we can define the semantics of μ-calculus. We write [[ϕ]]M,E for the set of

states that satisfy ϕ in model M for environment E .

[[p]]M,E = VM (p);

[[Z]]M,E = E(Z);
[[¬ϕ]]M,E = StM \ [[ϕ]]M,E ;

[[ϕ ∧ ψ]]M,E = [[ϕ]]M,E ∩ [[ϕ]]M,E ;

[[EXϕ]]M,E = {q | there is q′ such that q−→q′ and q′ ∈ [[ϕ]]M,E};

[[μZ.ϕ(Z)]]M,E = the smallest Q ⊆ St such that [[ϕ(Z)]]M,E[Z←Q] = Q

where E [Z ← Q] is like E except that it maps Z to Q. Consequently, the semantics of

derived operators is as follows:

[[ϕ ∨ ψ]]M,E = [[ϕ]]M,E ∪ [[ϕ]]M,E ;

[[AXϕ]]M,E = {q | for all q′ such that q−→q′ and q′ ∈ [[ϕ]]M,E};

[[νZ.ϕ(Z)]]M,E = the largest Q ⊆ St such that [[ϕ(Z)]]M,E[Z←Q] = Q.

Finally, M, q |= ϕ iff q ∈ [[ϕ]]M,E for every environment E . Note that if ϕ contains

only bounded second-order variables then [[ϕ]]M,E does not depend on E , and we can

use the notation [[ϕ]]M without loss of generality.

The following results greatly facilitate computing fixed points:

Theorem 4 (Knaster-Tarski fixed point theorem) If τ is a monotonic1 transformer
of state sets, then its least and greatest fixpoints exist, are unique, and can be obtained
according to the following equations:

[[μZ.τ(Z)]]M,E =
⋂{Q ⊆ St | [[τ(Z)]]M,E[Z←Q] ⊆ Q};

[[νZ.τ(Z)]]M,E =
⋃{Q ⊆ St | [[τ(Z)]]M,E[Z←Q] ⊇ Q}.

Theorem 5 (Kleene fixed point theorem) If τ is monotonic and
⋃

-continuous2 then
its least fixpoint can be obtained as follows:

μZ.τ(Z) =
⋃
i≥0

τ i(⊥).

If τ is monotonic and
⋂

-continuous3 then its greatest fixpoint can be obtained by:

νZ.τ(Z) =
⋂
i≥0

τ i(�).

1τ is monotonic iff S1 ⊆ S2 implies τ(S1) ⊆ τ(S2).
2τ is

⋃
-continuous iff S1 ⊆ S2 ⊆ . . . implies τ(

⋃
i≥0 Si) =

⋃
i≥0 τ(Si).

3τ is
⋂

-continuous iff S1 ⊇ S2 ⊇ . . . implies τ(
⋂

i≥0 Si) =
⋂

i≥0 τ(Si).
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What does that mean in practice?

• In order to compute [[μZ.ϕ(Z)]]M , it suffices to start with the empty set of states,

and keep adding “good” states until the set gets stable.

• In order to compute [[νZ.ϕ(Z)]]M , it suffices to start with the set of all states,

and keep removing “bad” states until the set gets stable.

Embedding Temporal Logics in μ-Calculus

Modal μ-calculus is strictly more expressive than PDL, LTL, CTL and CTL�. In

particular, every formula of CTL� can be translated into μ-calculus. While the trans-

lation of full CTL� is rather involved, the basic CTL modalities can be translated to

fixpoint formulae by following a simple scheme:

tr(EFϕ) ≡ μZ . (tr(ϕ) ∨ EXZ);

tr(EGϕ) ≡ νZ . (tr(ϕ) ∧ EXZ);

tr(Eϕ1 Uϕ2) ≡ μZ . (tr(ϕ2) ∨ tr(ϕ1) ∧ EXZ);

tr(AFϕ) ≡ μZ . (tr(ϕ) ∨ AXZ);

tr(AGϕ) ≡ νZ . (tr(ϕ) ∧ AXZ);

tr(Aϕ1 Uϕ2) ≡ μZ . (tr(ϕ2) ∨ tr(ϕ1) ∧ AXZ).

Thus, modal μ-calculus can be seen as a kind of “assembly language” for reasoning

about time. On one hand, μ-calculus is more expressive and closer to actual algorithms.

On the other hand, specifications written in logics such as CTL and CTL� are often

much more readable, and express temporal properties in a more intuitive way.

References and Further Reading. Dynamic logic is treated extensively in [76]. Read-

ers interested in temporal logic are referred to [58, 64] for an in-depth exposition. An

introduction to μ-calculus can be found in [160].

Propositional modal μ-calculus was introduced by Kozen in [105]. Fixpoint trans-

lations of PDL, CTL and CTL� can be found in [105, 57]. For the fixed point

theorems, see [161].

3.2 Verification of Temporal Properties
In this section, we look at model checking of temporal logic. We start by presenting

the standard fixpoint algorithm for global model checking of CTL. Then, we discuss

the most important complexity results for verification of temporal properties.

3.2.1 Fixpoint Model Checking for CTL
The standard model checking algorithm for CTL combines the ideas from verifica-

tion of epistemic properties (see Section 2.2.4) with fixpoint computation (cf. Sec-

tion 3.1.4). That is, verification of “one step” modalities proceeds by computing the

appropriate pre-image, whereas model checking of long-term properties is done by

computing the right fixpoint. The former applies to the “nexttime” operators EX,AX.

The latter forms the backbone of the algorithm for long-term modalities EU ,AU (by
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function mcheckctl(M,ϕ).
Global model checking for formulae of CTL.

Returns the exact subset of states in M for which formula ϕ holds.

case ϕ ≡ p : return V(p)
case ϕ ≡ ¬ψ : return St \mcheckctl(M,ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheckctl(M,ψ1) ∩mcheckctl(M,ψ2)
case ϕ ≡ EXψ : return pre∃(mcheckctl(M,ψ))
case ϕ = EGψ :
Q1 := St; Q2 := mcheckctl(M,ψ);
while Q1 
⊆ Q2

do Q1 := Q2; Q2 := pre∃(Q1) ∩Q1 od;

return Q1

case ϕ = Eψ1 Uψ2 :
Q1 := ∅; Q2 := mcheckctl(M,ψ1);
Q3 := mcheckctl(M,ψ2);
while Q3 
⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre∃(Q1) ∩Q2 od;

return Q1

end case

pre∃(Q) = {q | ∃q′.q−→q′ & q′ ∈ Q}

Figure 3.4: Fixpoint model checking for CTL

computing the least fixpoint) as well as EG,AG (by computing the greatest fixpoint).

The algorithm is shown in Figure 3.4. We also present the additional cases for universal

path quantification in Figure 3.5.

Example 27 (Simple Rocket: Model checking) Consider the simple rocket model
Mrockt in Figure 3.3. Figure 3.6 shows the execution of the CTL model checking
algorithm for formula EFcaR by computing the least fixpoint of Z∨(EXZ). As it turns
out, all the states in Mrockt satisfy the formula.

Similarly, Figure 3.7 shows the computation of the greatest fixpoint for formula
AG(roL∨ caL) which turns out to be satisfied in no state of Mrockt. Finally, Figure 3.8
presents the least fixpoint computation for formula E(fuelOk U caR), with the set of
states {q2, q5, q6, q7, q8, q12} as the output.

3.2.2 Complexity Results
Let M be a Kripke transition model and q be a state in the model. Model checking a

CTL formula ϕ in M, q determines whether M, q |= ϕ, i.e., whether ϕ holds in M, q.

The same applies to model checking CTL�. For LTL, checking M, q |= ϕ means

that we check the validity of ϕ in the pointed model M, q, i.e., whether ϕ holds on all
the paths in M that start from q (equivalent to CTL� model checking of formula Aϕ
in M, q).

It has been known since the 1980s that formulae of CTL can be model-checked

in time linear with respect to the size of the model and the length of the formula. This

follows directly from the correctness of the algorithm presented in Figure 3.4. The size
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case ϕ ≡ AXψ : return pre∀(mcheckctl(M,ψ))
case ϕ = AGψ :
Q1 := St; Q2 := mcheckctl(M,ψ);
while Q1 
⊆ Q2

do Q1 := Q2; Q2 := pre∀(Q1) ∩Q1 od;

return Q1

case ϕ = Aψ1 Uψ2 :
Q1 := ∅; Q2 := mcheckctl(M,ψ1);
Q3 := mcheckctl(M,ψ2);
while Q3 
⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre∀(Q1) ∩Q2 od;

return Q1

end case

pre∀(Q) = {q | ∀q′.q−→q′ ⇒ q′ ∈ Q}

Figure 3.5: Fixpoint model checking for CTL: additional cases for operator A

of the model M , denoted by |M |, is defined by the sum of the number of its states and

its transitions |St| + | −→ |.4 The length of the formula ϕ, denoted by |ϕ|, is defined

by the number of the subformulae in ϕ.

Moreover, the problem is not easier than P, which can be for instance proven by a

reduction of the tiling problem [150].

Theorem 6 Model checking CTL is P-complete, and can be performed in time
O(|M | · |ϕ|).

Formulae of LTL and CTL� are significantly harder to verify.

Theorem 7 Model checking LTL is PSPACE-complete, and can be performed in
time 2O(|ϕ|)O(|M |).

The classical approach to LTL model checking is based on automata theory. Given

an LTL formula γ, a Büchi automaton A¬γ of size 2O(|γ|) is constructed accepting

exactly the paths satisfying ¬γ. The pointed Kripke model (M, q) is also interpreted

as a Büchi automaton AM,q of size O(|M |) accepting all possible paths in M starting

from q. Then, model checking of γ in (M, q) reduces to the non-emptiness check of

L(AM,q)∩L(A¬γ), which can be performed in time O(|M |) · 2O(|γ|) by constructing

the product automaton of size O(|M |) · 2O(|γ|), and then checking the non-emptiness

in linear time with respect to the size of the product automaton. A PSPACE-hardness

proof can be for instance found in [158].

The model checking algorithm for CTL� applies the CTL and LTL model check-

ing technique recursively. Consider a CTL� formula ϕ which contains a state subfor-

mula Eγ, where γ is a pure LTL formula. We use the LTL model checking algorithm

to determine the states that satisfy Eγ (these are all states q in which the LTL formula

¬γ is not true). We label them by a fresh propositional symbol, say p, replace Eγ in

4Since the transition relation is serial, we can equivalently define the size of M by the number of the

transitions only.
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model Mrockt mcheckctl(Mrockt, caR)

mcheckctl(Mrockt,EFcaR): 2nd iteration

1st iteration

3rd iteration 4th iteration

Figure 3.6: Model checking CTL: mcheckctl(Mrockt,EFcaR)
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model Mrockt mcheckctl(Mrockt, roL ∨ caL)

mcheckctl(Mrockt,AG(roL ∨ caL)): 2nd iteration

1st iteration

3rd iteration 4th & 5th iteration

Figure 3.7: Model checking CTL: mcheckctl(Mrockt,AG(roL ∨ caL))
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mcheckctl(Mrockt, caR) mcheckctl(Mrockt,E(fuelOk U caR)):
1st & 2nd iteration

Figure 3.8: Model checking CTL: mcheckctl(Mrockt,E(fuelOk U caR))

|M |, |ϕ|
Epistemic logic P-complete

PDL P-complete

CTL P-complete

LTL PSPACE-complete

CTL� PSPACE-complete

Figure 3.9: Basic complexity results: model checking

ϕ by p, and model-check the resulting CTL� formula. The procedure can be imple-

mented by an oracle machine of type PPSPACE = PSPACE, since the LTL model

checking algorithm is executed polynomially many times. As a consequence, we have

the following.

Theorem 8 Model checking CTL� is PSPACE-complete, and can be performed in
time 2O(|ϕ|)O(|M |).

Figure 3.9 presents the basic complexity results for model checking of temporal and

epistemic logics. For comparison, we also list the complexities of analogous satisfiabil-

ity problems in Figure 3.10. The header of each table indicates the relevant complexity

parameters. The input of the SAT problem is given by a logical formula, and its size

is measured by the length of the formula. The input of the model checking problem

is given by the formula and the model; the size of an input instance is measured as

|M | · |ϕ|, where |M | is the size of the model, and |ϕ| is the length of the formula.

References and Further Reading. Readers interested in the complexity of temporal

model checking are referred to the excellent survey [150]. Additional information on

verification of temporal logics can be also found in [47, 87, 132].

The idea of model checking was introduced in [59, 45] and independently in [141].

The basic algorithms and results for CTL were proposed in [45, 46]. Model checking
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|ϕ|
Epistemic logic PSPACE-complete

PDL PSPACE-complete

CTL EXPTIME-complete

LTL PSPACE-complete

CTL� 2EXPTIME-complete

Figure 3.10: Basic complexity results: satisfiability

of LTL (especially automata-based) was studied in [158, 110, 178]. The complexity

of model checking CTL� was established in [46, 61].

3.3 Combining Knowledge and Time

We have seen how one can use modal logic to reason about knowledge (Section 2.1.3)

and the dynamics of a multi-agent system (Section 3). Similarly, one can address other

dimensions of an agent system: beliefs, desires, obligations, and so on. One of the

biggest advantages of modal logic is that it allows for combining various dimensions in

a unified framework. In this section we discuss how the interaction between knowledge

and time can be captured in modal logic. To this end, we combine epistemic and

temporal dimensions in a multi-modal logic. We consider two variants of temporal-

epistemic logics, namely CTLK� and CTLK (Section 3.3.1). Then, in Section 3.3.2,

we discuss the idea of interpreted systems that provide a “grounded” methodology for

modeling multi-agent systems, built on the modalities for agents’ knowledge and the

system’s evolution. Finally, the model checking problem for temporal-epistemic logic

is addressed in Section 3.3.3.

Example 28 (Rescue Robots: Properties to express)

♣ Person i may eventually be safe, and she knows about it;

♣ Person i knows that she may eventually be safe, and when she is, she will

know about it;

♣ Each person will eventually be safe, and they know about it;

♣ Robot i may eventually know the position of every person;

♣ The robots may eventually have distributed knowledge that person j is in

location l, but they will never obtain common knowledge about that;

♣ The robots can rescue a given person, and they know that they can;

♣ The robots can rescue a given person, and they know how to do it.



44 CHAPTER 3. TEMPORAL SPECIFICATION AND VERIFICATION

Example 29 (Voting: Properties to express)

Privacy: The coercer will never know how the voter has voted;

Receipt-freeness: The system does not issue pieces of information which can

be used to convince the coercer that the voter voted in a certain way;

Coercion-resistance: The voter cannot cooperate with a coercer to prove to

him that she voted in a certain way.

3.3.1 Temporal-Epistemic Logic
How to combine reasoning about the dynamics of the system state with properties of

agents’ mental states? The simplest, and quite effective, idea is to take a straightfor-

ward combination of the “component” logics.

CTLK�. In the most general syntactic variant, the language of temporal-epistemic

logic includes all the operators of CTL� and standard epistemic logic, with knowledge

operators joining the set of state formulae:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAϕ | EAϕ | DAϕ | Eγ,

γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

This syntax allows us to specify requirements on what agents will learn in the fu-

ture (AFKr1savedpers1), what they know now about things to come (Kr1AFsavedpers1),

what they know they will learn (Kr1AFKr1savedpers1), and so on.

The semantics is based on Kripke models which include both temporal and epis-

temic accessibility relations: M = 〈St,−→,∼1, . . . ,∼k,V〉.
Formulae are interpreted according to semantic relation |= defined by the union

of the semantic clauses for CTL� from Section 3.1.3 and those for epistemic logic

presented in Section 2.1.3:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= Eγ iff there is a path λ starting from q such that M,λ |= γ;

M, q |= Kaϕ iff for each q′ ∈ St such that q ∼a q′, we have M, q′ |= ϕ;

M, q |= KAϕ iff for every q′ ∈ St such that q ∼KA q′, we haveM, q′ |= ϕ
(for K = C,E,D);

M,λ |= ϕ iff M,λ[0] |= ϕ (i.e., ϕ holds in state λ[0] of model M );

M,λ |= ¬γ iff M,λ 
|= γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= Xγ iff M,λ[1..∞] |= γ;

M,λ |= γ1 U γ2 iff M,λ[i..∞] |= γ2 for some i ≥ 0, andM,λ[j..∞] |= γ1
for all 0 ≤ j < i.
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q0

q2 q1

pos0

pos1pos2

1
2

Figure 3.11: Robots and carriage: temporal-epistemic model Mcarr3 . Arrows indicate

possible one-step transitions. Dotted lines indicate indistinguishability of states

Thus, formally speaking, the logic CTLK� is a fusion of CTL� and multi-agent

epistemic logic.

Example 30 (Robots & Carriage: Temporal-epistemic properties) Let Mcarr3 be
the temporal-epistemic fusion of models Mcarr1 and Mcarr2 from Figures 2.1 and 3.1,
respectively. The combined model is presented in Figure 3.11.

Now, Mcarr3 , q0 |= EX
∨
i=0,1,2(posi → K1posi): in state q0, it is possible that

in the next moment robot 1 will know its position precisely. Moreover, Mcarr3 , q0 |=
K1EFpos2: robot 1 knows that the carriage can eventually get to position 2. On the
other hand, the same is not true if we require the robot to see that the system got to
position 2, i.e., Mcarr3 , q0 
|= K1EFK1pos2.

“Vanilla” CTLK. CTLK is the syntactic fragment of CTLK� where each path

quantifier is coupled with exactly one temporal operator. As before, the importance

of CTLK stems from the fact that its semantics can be given entirely in terms of

states, rather than infinite paths in the model. This will again prove advantageous when

constructing verification algorithms for CTLK, see Section 3.3.3.

Example 31 (Robots & Carriage: CTLK) Consider again the model in Figure 3.11.
The following CTLK formula expresses that both robots might eventually (simultane-
ously) know the position of the carriage: EF

(
(
∨
iK1posi) ∧ (

∨
iK2posi)

)
. Unfortu-

nately, the property does not hold in the Robots & Carriage scenario, i.e.,

Mcarr3 , q0 
|= EF
(
(
∨
i

K1posi) ∧ (
∨
i

K2posi)
)
.

A property that does hold says that both robots might learn the position but not
necessarily at the same moment:

Mcarr3 , q0 |= E
(
F(

∨
i

K1posi) ∧ F(
∨
i

K2posi)
)
.

Notice, however, that the formula does not belong to “vanilla” CTLK. Still, there is
a CTLK formula that expresses exactly the same property, and indeed it holds in our
scenario:

Mcarr3 , q0 |= EF
(
(
∨
i

K1posi)∧ EF(
∨
i

K2posi) ∨ (
∨
i

K2posi)∧ EF(
∨
i

K1posi)
)
.
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Similarly to CTLK, one can also consider other syntactic restrictions of CTLK�,

such as LTLK.

3.3.2 Interpreted Systems
The above formulation is pretty abstract. In particular, it does not indicate how the

interplay between mental states of agents should be represented in a Kripke model.

The best known proposal in this respect is that of interpreted systems which build on a

notion of local states, defined formally as follows.

Let Agt = {1, . . . , k} be the set of all agents. Each agent i ∈ Agt = {1, . . . , k}
has a set of its local states Sti that represent different “states of mind” of the agent.

Additionally, we assume a set of environment states Ste that capture different states of

the “external reality.” Now, a global state of the system is represented by a tuple of

agents’ local states plus a state of the environment: 〈q1, . . . , qk, qe〉. Thus, the global

state space St is a subset of St1 × · · · × Stk × Ste. It has been frequently argued that

interpreted systems provide a more grounded semantics for agents’ knowledge than

abstract Kripke models, because starting from the local state spaces makes it clearer

how the temporal-epistemic model should be made up.

It is usually assumed in interpreted systems that each agent has access only to its

own local state, i.e.:

〈q1, . . . , qk, qe〉 ∼i 〈q′1, . . . , q′k, q′e〉 iff qi = q′i.

The temporal dimension is added by considering runs, i.e., sequences of global states:

r : N → St.

A system is a set R of such runs. An interpreted system is a system plus a valuation of

propositions: I = 〈R,V〉. Given an interpreted system I, a point in I is a pair 〈r,m〉
where r is a run and m ∈ N refers to a time moment on r. Epistemic equivalence

between points is defined as follows:

〈r,m〉 ∼i 〈r′,m′〉 iff r(m) ∼i r′(m′).

Now, all epistemic modalities can be interpreted as before, e.g.:

I, r,m |= Kiϕ iff I, r′,m′ |= ϕ for all 〈r′,m′〉 such that 〈r,m〉 ∼i
〈r′,m′〉.

Moreover, the standard temporal operators of LTL can be interpreted as follows:

I, r,m |= Xϕ iff I, r,m+ 1 |= ϕ,

I, r,m |= ϕUψ iff I, r,m′ |= ψ for some m′ > m and I, r,m′′ |= ϕ for

all m′′ such that m ≤ m′′ < m′.

Finally, the semantics of CTL� path quantifiers can be defined in interpreted systems,

too:

I, r,m |= Eϕ iff there is r′ such that r′[0..m] = r[0..m] and I, r′,m |= ϕ.

It should be pointed out that the semantics of knowledge presented above is only

one of several possibilities. It encodes the assumption that agents are memoryless in
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the sense that they do not have “external” memory of past events; the whole memory

of an agent is encapsulated in its local state.

The other extreme is to assume that local states represent the agents’ observations

rather than knowledge, and that agents have perfect recall of everything that has been

observed. If we additionally assume the existence of a global universally accessible

clock, the semantics of knowledge can be defined as follows:

〈r,m〉 ≈i 〈r′,m′〉 iff m = m′ and r(j) ∼i r′(j) for all j ≤ m,

I, r,m |= Kiϕ iff I, r′,m′ |= ϕ for all 〈r′,m′〉 such that 〈r,m〉 ≈i
〈r′,m′〉.

This is sometimes called the synchronous perfect recall semantics of temporal-epistemic

logic. We will use the subscript “R” (perfect Recall) to indicate when the semantics is

used, writing e.g. CTLKR, LTLR, and so on.

Interpreted systems have been applied to modeling of distributed systems, knowl-

edge bases, message passing systems, etc. Among other things, they have been used

to represent phenomena like different types of recall, synchrony and asynchrony, fault

tolerance and influence of norms and obligations on the behavior of a multi-agent sys-

tem.

3.3.3 Model Checking Temporal-Epistemic Properties
Since CTLK is a straightforward fusion of CTL and epistemic logic, verification of

CTLK properties can be obtained by the union of the model checking algorithm for

epistemic logic (Section 2.2.4) and the fixpoint CTL model checking algorithm from

Section 3.2.1. This gives us the following complexity result.

Theorem 9 Model checking CTLK in Kripke models is P-complete, and can be per-
formed in time O(|M | · |ϕ|), where |M | = |St|+ | −→ |+ | ∼1 |+ · · ·+ | ∼k | is the
size of the model, and |ϕ| is the number of the subformulae in the formula.

Similarly, combining techniques for LTL and CTL� with epistemic model check-

ing leads to the following:

Theorem 10 Model checking LTLK and CTLK� in Kripke models is PSPACE-
complete.

Assuming perfect recall changes the situation considerably. We define model check-

ing for CTLK�
R and its subsets in the following way. LetM = 〈St,−→,∼1, . . . ,∼k,V〉

be a generator of interpreted systems, i.e., a finite Kripke model where St ⊆ St1 ×
· · · × Stk × Ste, and the indistinguishability relations are ∼i such that q ∼i q′ iff

q[i] = q′[i]. By I(M), we denote the interpreted system 〈R,V〉 with R being the set

of infinite paths in M . Moreover, let q be a state in M , and ϕ a formula of CTLK�
R.

Checking ϕ in M, q asks if I(M), r, 0 |= ϕ for any run r such that r(0) = q.

Theorem 11 Model checking CTLKR with common knowledge operator in gener-
ators of interpreted systems is undecidable. The same applies to model checking
LTLKR with common knowledge and CTLK�

R with common knowledge.

Theorem 12 Model checking CTLKR, LTLKR, and CTLK�
R without common

knowledge operators is decidable with nonelementary upper and lower bounds.
For formulae of epistemic depth5 of at most k, the model checking problem is in

5The maximal number of nested epistemic operators.



48 CHAPTER 3. TEMPORAL SPECIFICATION AND VERIFICATION

k-EXPTIME.

3.3.4 Back to Motivating Examples
We conclude the chapter by showing how the interplay between dynamics of the sys-

tems and knowledge of the agents can be specified for our motivating examples of

rescue robots and voting agents.

Example 32 (Rescue Robots: Expressing the properties)

♣ Person j may eventually be safe, and she knows about it:

KjEFsafej.

♣ Person j knows that she may eventually be safe, and that when she is, she

will know about it:

KjEFsafej ∧ KjAG(safej → Kjsafej).

♣ Each person will eventually be safe, and they know about it:∧
j∈People

KjAFsafej.

Another interpretation: EPeople
∧
j∈People AFsafej.

Another interpretation: CPeople
∧
j∈People AFsafej.

Yet another interpretation: DPeople
∧
j∈People AFsafej.

Other interpretations: EPeopleAF
∧
j∈People safej,

CPeopleAF
∧
j∈People safej, DPeopleAF

∧
j∈People safej.

♣ Robot i may eventually know the position of every person:

EF
( ∧
j∈People

∨
l∈Locations

Kiatj,l
)
.

Another interpretation:
∧
j∈People

∨
l∈Locations EFKiatj,l.

♣ The robots may obtain distributed knowledge that person j is in location

l, but they will never have common knowledge about that:

EFDRobotsatj,l ∧ AG¬CRobotsatj,l.

♣ The robots can rescue a given person, and they know that they can:

Interpretation 1 The robots may rescue the person, and they

know that they may:

ERobotsEFsafei or CRobotsEFsafei or DRobotsEFsafei.

Interpretation 2 They are able to do it, and they know that they

are:

Cannot be expressed in CTLK* (no notion of ability) !

♣ The robots can rescue a given person, and they know how to do it:

Cannot be expressed in CTLK* (no notion of ability) !
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Example 33 (Voting: Expressing the properties)

Privacy. The coercer will never know how the voter has voted:

AG
( ∧
c∈Candidates

¬Kcoercvotedv,c
)
.

Receipt-freeness. The system does not issue pieces of information which can

be used to convince the coercer that the voter voted in a certain way:

Cannot be expressed in CTLK* (no notion of knowledge update) !

Coercion-resistance: The voter cannot cooperate with a coercer to prove to

him that she voted in a certain way:

Cannot be expressed in CTLK* (no notions of ability & cooperation) !

References and Further Reading. The standard reference on combination of knowl-

edge and time is [63], including different ways of how the temporal and epistemic

dimensions can intertwine. The model checking problem for CTLK was treated ex-

tensively in [112]. For other non-symbolic approaches to verification of temporal-

epistemic properties, see e.g. [170] where a translation of a fragment of LTLK to

LTL was proposed, and the SPIN model checker was used for experiments. The re-

sults for (un)decidability and complexity of model checking for temporal-epistemic

logics with perfect recall can be found in [173, 155, 154].



Chapter 4

Strategic Ability

So far, we have presented logics that allow to specify how things must go, or how they

may evolve. In multi-agent systems, it is often very important to know who can make

them evolve in a particular way.

In this chapter, we focus on modal logics that can be used to reason about strate-

gies and abilities of agents in game-like scenarios. We begin with a short exposition

of the game-theoretic inspiration. However, it should be pointed out that the current

modal logic-based approaches to reasoning about strategic play are very weak in game-

theoretic sense. They are based on the worst case analysis (“surely winning”) and

binary winning conditions, and hence roughly correspond to maxmin analysis in two-

player zero-sum games with binary payoffs. Some attempts have been made at incorpo-

rating more sophisticated solution concepts like Nash equilibrium, dominance, Pareto-

optimality, etc. [78, 77, 167, 181, 40] as well as probabilistic features like chance nodes

and mixed strategies [51, 91, 37, 152, 85]. Still, none of them matches the elegance

and simplicity of the way models and solution concepts are defined in game theory.

Example 34 (Rescue Robots: Properties to express)

♣ The robots can rescue all the people in the building;

♣ If person i gets outside the building, then she can stay away from trouble

forever;

♣ Person i may be rescued without any robot ever entering the building, but

guaranteed rescue requires some robots to enter;

♣ The robots can rescue all the people, and they know that they can;

♣ The robots can rescue all the people, and they know how to do it.

Example 35 (Voting: Properties to express)

Privacy: The system cannot reveal how a particular voter voted;

Receipt-freeness: The voter cannot gain any information (a receipt) which can

be used to prove to a coercer that she voted in a certain way;

50



4.1. MODELS OF STRATEGIC BEHAVIOR 51

Coercion-resistance: The voter cannot cooperate with the coercer to prove to

him that she voted in a certain way.

4.1 Models of Strategic Behavior
Logics of strategic reasoning build upon several fundamental concepts from game the-

ory, the most important being that of a strategy. We understand strategies as conditional

plans that prescribe what action a given agent (or a coalition of agents) should take in

every possible situation that may arise in the game. The notion will be made mathemat-

ically more precise, and we will use it to provide formal logical semantics of abilities.

We will use the terms “agent” and “player” interchangeably, and consider an ar-

bitrary nonempty finite set of all agents Agt. We also fix a nonempty set of atomic

propositions PV that encode basic properties of game states.

4.1.1 Games and Strategies
Interactions between autonomous and rational agents acting strategically have been

extensively studied in the field of game theory. The models used in game theory can

be categorised into two types: non-cooperative games, in which the possible actions

of individual players are taken as primitives, and coalitional (or cooperative) games

which are based on the possible joint actions of groups of players.

A standard model in non-cooperative game theory is that of a strategic game (or

normal form game). In a strategic game, it is assumed that each agent chooses her

future actions (her strategy) once and for all at the beginning of the game, and that

all agents do this simultaneously. As a consequence, all players perform a vector of

actions that determines the outcome of the game. This does not mean that the game

must necessarily describe a one-shot interaction, but even if it doesn’t, the interaction

is represented as atomic.

Definition 5 (Strategic game frame, strategic game) A strategic game frame is a tu-
ple Γ = (Agt, {Acta | a ∈ Agt},Ω, o) that consists of a nonempty finite set of players
Agt, a nonempty set of actions (also known as choices) Acta for each player a ∈ Agt,
a nonempty set of outcomes Ω, and an outcome function o :

∏
a∈AgtActa → Ω, that

associates an outcome with every action profile – that is, a tuple of actions, one per
player.1

A strategic game G is a strategic game frame endowed with preference orders

≤a on the set of outcomes, one for each player. Players’ preferences are often ex-
pressed by functions ua : Ω → R, representing agent a’s utility or payoff in each
possible outcome. Then, the preference relations are implicitly defined as follows:
o ≤a o′ iff ua(o) ≤ ua(o

′). Thus, strategic games can be represented either as tuples
(Agt, {Acta | a ∈ Agt},Ω, o, (≤a)a∈Agt) or (Agt, {Acta | a ∈ Agt},Ω, o, (ua)a∈Agt).

Example 36 (Prisoner’s Dilemma) We illustrate the basic concepts by a variant of
the well-known Prisoner’s Dilemma game, see Figure 4.1. Each of the two play-
ers can choose to “cooperate” with the other one (i.e., play action coop) or to “de-
fect” his comrade (i.e., play action defct). Formally, the game is defined as G =

1We assume a default ordering on Agt which is respected in the definitions of action profiles, collective

strategies, etc.
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1\2 coop defct
coop (3, 3) (0, 5)

defct (5, 0) (1, 1)

Figure 4.1: Prisoner’s Dilemma

({1, 2}, {Act1, Act2}, {o1, o2, o3, o4}, o, (≤1,≤2)) withAct1 = Act2 = {coop, defct},
o(coop, coop) = o1, o(coop, defct) = o2, o(defct , coop) = o3, and o(defct , defct) =
o4. Moreover, we define ≤1 and ≤2 as the smallest transitive relations with o2 ≤1

o4 ≤1 o1 ≤1 o3 and o3 ≤2 o4 ≤2 o1 ≤2 o2. In the figure we have shown the play-
ers’ utilities, given by functions u1 and u2 defined as follows: u1(o1) = u2(o1) = 3,
u1(o4) = u2(o4) = 1, u1(o2) = u2(o3) = 0, and u1(o3) = u2(o2) = 5.

In this book, we abstract from players’ preferences, and focus on their powers to

enforce particular properties of game outcomes. We formalize this approach through

game models, defined as follows.

Definition 6 (Strategic game model) A strategic game model is defined as a tuple
M = (Agt, St, {Acta | a ∈ Agt}, o,V) where Γ = (Agt, {Acta | a ∈ Agt}, St, o) is
a strategic game frame with outcomes drawn from a set of states St, and V : PV → 2St

is a valuation of atomic propositions in states.

4.1.2 Coalitional Play and Coalition Effectivity Models
It is important to note that in strategic games none of the players knows in advance

the actions chosen by the other players, and therefore has relative little control over

the outcome of the game. In cooperative game theory, agents can join forces and

coordinate their actions towards a chosen goal. We assume a very simple model of

cooperation in games. A coalition is just a group of agents A ⊆ Agt. Coalitional

actions are tuples of individual actions, one per member of the coalition; formally,

ActA =
∏
i∈AActi.

What power does an individual player or a coalition of players have to influence

the outcome in such a game? One way to represent strategic power is by effectivity
functions, introduced in cooperative game theory by Moulin and Peleg and in social

choice theory by Abdou and Keiding.

Definition 7 (Effectivity functions) Given a set of players Agt and a set of outcomes
Ω, a coalitional effectivity function over Agt and Ω is a mapping E : 2Agt → 22

Ω

that
associates a family of sets of outcomes with each coalition of players.

Given a set of outcomes X , we say that a coalition A is effective for X if A can

cooperate to ensure that the outcome of the game will be in X . Thus, E(A) consists of

goals that coalition A can successfully pursue.

Intuitively, every element of E(A) is a set of possible outcomes that can result from

a joint action of players in A, depending on how the remaining agents decide to play.

In other words, for every set X in E(A) the coalition A has a collective action that is

guaranteed to yield an outcome in X , regardless of the actions taken by the players in

A = Agt \ A. Effectivity functions induced from game frames in this way are called

α-effectivity functions in social choice theory.
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Definition 8 (Effectivity in strategic games) For a strategic game frame Γ, the α-

effectivity function EαΓ : 2Agt → 22
Ω

is defined as follows: X ∈ EαΓ(A) if and only if
there exists a joint action σA for A such that for every joint action σA of A we have
o(σA, σA) ∈ X .

Example 37 (Coalitional effectivity for prisoners) The Prisoner’s Dilemma frame of
Example 36 can be represented by the following effectivity function over Agt = {1, 2}
and Ω = {o1, . . . , o4}:

E(∅) = {Ω},
E({1}) = {X ⊆ Ω | {o1, o2} ⊆ X or {o3, o4} ⊆ X},
E({2}) = {X ⊆ Ω | {o1, o3} ⊆ X or {o2, o4} ⊆ X}, and

E({1, 2}) = 2Ω \ {∅}.

Effectivity models define the powers of coalitions in every possible state of the

system, and add an interpretation of atomic statements.

Definition 9 (Effectivity models) A coalitional effectivity model is defined as a tuple
E = (St,E,V) where St is a set of states, E : St → (2Agt → 22

St

) is a global

effectivity function that maps each state to an effectivity function drawing outcomes
from St, and V : PV → 2St is a valuation of atomic propositions.

Example 38 (Prisoner’s Dilemma as effectivity model) Take St = Ω, and assume
E(q) to be the effectivity function of Example 37 for every q ∈ St. This corresponds to
repeated Prisoner’s Dilemma with infinite horizon, i.e., the game is going to be played
in subsequent rounds, infinitely many times.

Additionally, let us adopt atomic propositions {pja | a ∈ Agt, j ∈ {0, 1, 3, 5}}
representing the utility values for each agent, and label the outcomes appropriately.
Then, for example, we have V(o1) = {u31, u32} and V(o2) = {u01, u52}.

Characterization of Effectivity in Strategic Games

Clearly, every strategic game induces an effectivity function, but not every abstract

effectivity function must correspond to a strategic game frame. The following notion

captures the properties required for such correspondence.

Definition 10 (True playability) An effectivity function E : 2Agt → 22
Ω

is truly play-

able iff the following conditions hold:

Outcome monotonicity: X ∈ E(A) and X ⊆ Y implies Y ∈ E(A);

Safety: E(A) 
= ∅;

Liveness: ∅ /∈ E(A);

Superadditivity: If A1 ∩ A2 = ∅, X ∈ E(A1) and Y ∈ E(A2), then X ∩ Y ∈
E(A1 ∪A2);

Agt-maximality: X 
∈ E(∅) implies X ∈ E(Agt);

Determinacy: If X ∈ E(Agt), then {x} ∈ E(Agt) for some x ∈ X .

It is easy to see that everyα-effectivity function of a strategic game is truly playable.

The converse holds, too.
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Theorem 13 (Representation Theorem for effectivity in strategic games) An effec-
tivity function E for (Agt,Ω) is truly playable if and only if there exists a strategic game
frame Γ = (Agt, {Acti | i ∈ Agt},Ω, o) such that EαΓ = E .

References and Further Reading. [125] is a standard textbook in game theory;

for alternative expositions see [80, 109]. In [156], game-theoretical concepts are ap-

proached from the multi-agent systems perspective. Effectivity functions were intro-

duced in [124, 1], and studied e.g. in [129, 24, 70], including correspondence results

between concrete and abstract models of strategic power in games.

4.2 Models of Multi-Step Interactions
Typical interaction between agents does not correspond to a simultaneous atomic ac-

tivity. Thus, strategic games are often considered in a repeated setting: game G is

played a number of times, and the payoffs from all rounds are aggregated. This kind of

models is especially popular in evolutionary game theory. Another class of models for

multi-step scenarios are games in extensive form that model the interaction with a finite

tree whose nodes stand for game states and edges represent moves available to players

in the game. Extensive form games are turn-based, i.e., every non-terminal node is

controlled by exactly one player. The payoffs are distributed at the end of the game,

that is, in the leaves of the tree.

Concurrent game structures, also known as multi-player game frames, generalize

the setting of repeated games by allowing different strategic games to be played at dif-

ferent stages. This way we can model multi-step interactions defined on some state

space in which every state is connected to a strategic game with outcomes being states

again. The resulting multi-step game consists of playing one-shot strategic games in

successive rounds. The outcome of every round determines the successor state, and

therefore the strategic game to be played in the next round. Alternatively, one can see

concurrent game structures as a generalization of extensive form games where simul-

taneous moves of different players are allowed, as well as loops to previously visited

states.

4.2.1 Concurrent Game Models
Models of concurrent multi-step interaction can be defined as follows.

Definition 11 (Concurrent game structures and models) A concurrent game struc-

ture (CGS) is a tuple S = (Agt, St, Act, d, o) which consists of a non-empty finite set
of players Agt = {1, . . . , k}, a non-empty2 set of states St, a non-empty set of atomic
actions Act, a function d : Agt×St→ 2Act \ {∅} that defines the set of actions avail-
able to each player at each state, and a (deterministic) transition function o that as-
signs a unique successor state o(q, α1, . . . , αk) to each state q and each tuple of actions
〈α1, . . . , αk〉 that can be executed in q, i.e., such that αa ∈ d(a, q) for every a ∈ Agt.
We will sometimes write da(q) instead of d(a, q), and use dA(q) =

∏
a∈A da(q) to

denote the set of joint actions of coalition A in state q.
A concurrent game model (CGM) M = (Agt, St, Act, d, o,V) over a set of atomic

propositions PV is a concurrent game structure extended with a valuation of atomic
propositions V : PV → 2St.

2The set of states is sometimes assumed finite but that restriction is not necessary for our purposes.
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Figure 4.2: The robots and the carriage: concurrent game model Mcarr4

Thus, all players in a CGS execute their actions synchronously, and the combination

of the actions together with the current state determines the transition to a successor

state in the CGS.

Example 39 (Robots and Carriage: Modeling the interaction) Models and langua-
ges in Chapter 3 enabled studying evolution of the robots and carriage as a whole.
However, they did not allow for representing who can achieve what, and how pos-
sible actions of the agents interfere. Concurrent game model Mcarr4 , presented in
Figure 4.2, fills the gap. We assume that each robot can either push (action push) or
refrain from pushing (action wait). Moreover, both robots use the same force when
pushing. Thus, if they push simultaneously or wait simultaneously, the carriage does
not move. When only one of the robots is pushing, the carriage moves accordingly:
clockwise if pushed by robot 1, and anticlockwise when robot 2 is pushing.

Atomic propositions pos0, pos1, pos2 will later enable us to refer to various posi-
tions of the carriage in logical formulae.

4.2.2 Strategies in Concurrent Game Models
Similarly to temporal models, we define a path in a CGM to be an infinite sequence

of states λ ∈ Stω that can result from subsequent transitions. Moreover, we define

a history h ∈ St+ as a finite sequence of states that can occur in the system. A

strategy of a player a in a CGM M is a conditional plan that specifies what a should

do in each possible situation. Depending on the type of memory that we assume for

the players, a strategy can be memoryless (alias positional), formally represented by

a function sa : St → Act such that sa(q) ∈ da(q), or memory-based (alias perfect
recall), represented by a function sa : St+ → Act such that sa(〈. . . , q〉) ∈ da(q).
The latter corresponds to players with perfect memory of the past states; the former

corresponds to players whose memory, if any, is entirely encoded in the current state

of the system. Intermediate types of strategies for agents with finite memory have been

studied by Ågothes and Walther [6] as well as Vester [179].

Remark 1 Note that concurrent game structures include no semantic means for repre-
senting agents’ uncertainty. In particular, strategies can freely assign arbitrary choices
in states (resp. histories). In consequence, CGM’s can be only used to model agents
that always have perfect information about the current global state of the system.
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A collective strategy of coalition A = {a1, ..., ar} is simply a tuple of strategies

sA = 〈sa1 , ..., sar 〉, one per player from A. We denote agent a’s component of the

collective strategy sA by sA[a]. Then, in the case of a positional collective strategy sA,

the action that sA[a] prescribes to player a at state q is sA[a](q). Analogously, sA[a](h)
is the action that a memory-based collective strategy sA prescribes to a after history

h. We will denote the set of memoryless strategies of team A by ΣIr
A (Ir standing

for perfect Information and imperfect recall). Similarly, the set of A’s memory-based

strategies A will be denoted by ΣIR
A (perfect Information and perfect Recall).

Example 40 (Robots and Carriage: Strategies) An example memoryless strategy for
robot 1 is s1(q0) = s1(q1) = s1(q2) = wait, i.e., robot 1 will execute wait no
matter what happens. A slightly more sophisticated strategy is s′1(q0) = s′1(q1) =
wait, s′1(q2) = push (wait unless the carriage is in the position 2; in that case, push).

An example memory-based strategy is “s′′1(h) = push if h is of even length and
ends with q0, otherwise wait.” Obviously, strategies s1 and s′1 also belong to perfect
recall strategies of robot 1.

Function out(q, sA) returns the set of all paths λ ∈ Stω that may occur when agents

A execute strategy sA from state q onward. For a memoryless strategy the set is given

as follows:

out(q, sA) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists

〈αia1 , . . . , αiak〉 such that αia ∈ da(qi) for every a ∈ Agt, and αia = sA[a](qi)
for every a ∈ A, and qi+1 = o(qi, α

i
a1 , . . . , α

i
ak
)}.

For a memory-based strategy sA, the outcome set is defined analogously:

out(q, sA) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists

〈αia1 , . . . , αiak〉 st. αia ∈ da(qi) for every a ∈ Agt, and αia = sA[a](〈q0 . . . , qi〉)
for every a ∈ A, and qi+1 = o(qi, α

i
a1 , . . . , α

i
ak
)}.

Example 41 (Robots and Carriage: Outcomes of strategies) Consider the strategies
presented in Example 40. The outcome set of the memoryless strategy s1 from state q0
is as follows:

out(s1, q0) = {λ ∈ {q0, q1, q2}ω | λ[0] = q0 &

∀i . (λ[i] = qj) ⇒ (λ[i+ 1] = qj or λ[i+ 1] = q(j−1)mod 3)}.

Similarly, the outcome set of the perfect recall strategy s′′1 from state q0 is:

out(s′′1 , q0) = {λ ∈ {q0, q1, q2}ω | λ[0] = q0 &

if (|λ[0..i]| ∈ 2N & λ[i] = q0)

then (λ[i+ 1] = q0 or λ[i+ 1] = q1)

else ∀j . (λ[i] = qj) ⇒ (λ[i+ 1] = qj or λ[i+ 1] = q(j−1)mod 3))}.

Given a concurrent game model, an interesting question is: what can a particu-
lar player or a coalition achieve in the game? So far, the objectives of players and

coalitions are not formally specified, but a typical objective would be to reach a state

satisfying a given property, e.g. a winning state. Generally, an objective is a property

of paths resulting from playing the strategy. For instance, one can mark some paths as

winning, and other ones as losing for the given coalition. More precisely, we say that
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Figure 4.3: Prisoner’s Dilemma modelled as CGM Mpris

coalitionA can enforce objective γ from state q if there is a collective strategy sA forA
such that every play in out(q, sA) satisfies γ. The central issue that we will discuss in

the rest of this chapter is how to use modal logic to formally specify strategic objectives

of players and coalitions, and how to formally determine their abilities with respect to

such objectives.

4.2.3 Representing Games as Concurrent Games Models
Concurrent game models have a close relationship to strategic, repeated, and extensive

form games with perfect information. The major difference is that CGM’s lack the no-

tion of payoffs (or, more generally, players’ preferences over possible game outcomes).

However, those can be embedded in CGM’s in a natural way, for example by adding

auxiliary propositions in the leaf nodes of the CGM. Formally, consider any strategic

or extensive game G, and let U be the set of all possible payoff/utility values in it. For

each value v ∈ U and agent a ∈ Agt, we introduce a proposition uv
a and fix uv

a ∈ V(q)
iff a gets a payoff v in state q.

We illustrate the correspondence with two examples of how strategic and extensive

games can be represented as concurrent game models.

Example 42 (Prisoner’s Dilemma as CGM) The Prisoner’s Dilemma game of Ex-
ample 36 can be represented by the following concurrent game model:

Mpris = ({1, 2}, {q0, . . . , q4}, {defct , coop}, d, o,V)
with da(q) = {defct , coop} for all players a and states q, o(q0, coop, coop) = q1,
o(q0, coop, defct) = q2, o(q0, defct , coop) = q3, o(q0, defct , defct) = q4, and
o(qi, a1, a2) = qi for i = 1, . . . , 4 and a1, a2 ∈ {defct , coop}. The CGM is shown in
Figure 4.3. The labeling function V is defined over atomic propositions PV = {start}∪
{uv

a | a ∈ Agt, v ∈ {0, 1, 3, 5}}. As shown in the figure, we have e.g. V(q2) = {u01, u52}
representing that players 1 and 2 receive utility of 0 and 5, respectively, if strategy
profile (coop, defct) is played.

For embeddings of extensive form games in CGM’s, we additionally assume that

the resulting concurrent game structure is tree-like. Moreover, each non-leaf state pro-

vides an appropriate set of available actions to the player whose turn it is to move from

the state. All the other players are only allowed a single action “pass.” In leaf states,
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Figure 4.4: CGM Mbarg modeling the bargaining game

all the players are only allowed to “pass,” and the result of such collective “do nothing”

action is a transition to the same state, thus looping there forever.

Example 43 (Bargaining) The following example shows that CGM’s are rich enough
to model (possibly infinite) extensive form games. Consider bargaining with time dis-
count. Two players, 1 and 2, bargain over how to split goods worth initially w0 = 1k
euro. After each round without agreement, the subjective worth of the goods reduces
by discount rates δ1 (for player 1) and δ2 (for player 2). So, after t rounds the goods
are worth 〈δt1, δt2〉, respectively. Subsequently, 1 (if t is even) or 2 (if t is odd) makes
an offer to split the goods in proportions 〈x, 1− x〉, and the other player accepts or
rejects it. If the offer is accepted, then 1 takes xδt1, and 2 gets (1− x)δt2; otherwise the
game continues.

The CGM corresponding to this extensive form game is shown in Figure 4.4. Note
that the model has a tree-like structure with infinite depth and an infinite branching
factor. Nodes represent various states of the negotiation process, and arcs show how
agents’ moves change the state of the game. A node label refers to the history of the
game for better readability. For instance,

⎡
⎣ 0, 1

1, 0
acc

⎤
⎦ has the meaning that in the first

round player 1 offered to split the goods 〈0, 1〉 which was rejected by agent 2. In the
next round, 2’s offer 〈1, 0〉 was accepted by 1, and the game has ended.

References and Further Reading. Concurrent game models a.k.a. multi-player game

models were introduced and studied independently in [129, 12]. Effectivity functions

for multi-step multi-player games were investigated in [68]. Other interesting models

of interaction include alternating transition systems [10, 11], together with appropri-

ate correspondence results [66, 67]. Various embeddings of players’ preferences in

concurrent game models were considered in [79, 17, 165, 177, 100].
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4.3 Logics for Strategic Ability
Logics for strategic ability are an important field of study in multi-agent systems. They

build on game models and the concept of strategic play, but the main inspiration came

from artificial intelligence rather than game theory. AI attempts to develop a logi-

cal formalization of ability date back at least to the 1969 paper Some Philosophical
Problems from the Standpoint of Artificial Intelligence by McCarthy and Hayes, which

offers the following observation:

We want a computer program that decides what to do by inferring in a

formal language [i.e., a logic] that a certain strategy will achieve a certain

goal. This requires formalizing concepts of causality, ability, and knowl-

edge.3

From the late 1980s on, philosophy and artificial intelligence have witnessed the

emergence of several influential logical treatments of strategic ability. In philosophical

logic, this goes back to the work of Brown [30] and especially Belnap and Perloff [20]

who proposed their logic of “seeing to it that” (stit). More computation-friendly ap-

proaches began with Parikh [127], and culminated in the work of Alur, Henzinger and

Kupferman on alternating-time temporal logic [10, 12]. Independently, Pauly proposed

his coalition logic in [128, 129]. In this book, we focus on the latter kind of approaches.

4.3.1 Coalition Logic
Modal logics of strategic ability form one of the fields where logic and game theory

can successfully meet. Coalition logic (CL) formalises reasoning about the abilities

of coalitions in one-shot games. The language of CL extends propositional logic with

modalities [A] for each coalition A. The intended meaning of [A]ϕ is that A can make

the outcome of the game satisfy ϕ.

The semantics of CL, interpreted over concurrent game models, is given by the

following clauses:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= [A]ϕ iff there is a collective action αA ∈ dA(q) such that,

for every response αAgt\A ∈ dAgt\A(q), we have that

M, o(q, αA, αAgt\A) |= ϕ.

Example 44 (Robots and Carriage: One-step abilities) The following CL formula
holds in the Robots and Carriage scenario: Mcarr4 , q0 |= ¬[1]pos0 ∧ ¬[2]pos0 ∧
[1, 2]pos0, expressing that neither robot can keep the carriage in its current position
singlehandedly, but they can enforce that if they cooperate.

Alternatively, CL can be interpreted over coalition effectivity models by means of

the following, extremely simple semantic clause:

E , q |= [A]ϕ iff ϕE ∈ E(q)(A)

3Quoted after [115].
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where E is the global effectivity function in model E , and ϕE = {q ∈ St : E , q |=
ϕ}. We recall the intuition that coalition effectivity models are usually based on α-

effectivity functions of some strategic game model. Indeed, the two semantics of coali-

tion logic are equivalent in the following sense:

Theorem 14 Given a concurrent game model M and a state q in M , we have that
M, q |= ϕ iff EαM , q |= ϕ.

Axiomatization of CL

Pauly has shown that the conditions of liveness, safety, superadditivity, and Agt-maxi-

mality in Definition 10 can be captured by a few simple axiom schemes presented

below, where A,A1, A2 ⊆ Agt are arbitrary coalitions of players:

1. Complete set of axioms for classical propositional logic,

2. [Agt]�,

3. ¬[A]⊥,

4. ¬[∅]ϕ→ [Agt]¬ϕ, and

5. [A1]ϕ ∧ [A2]ψ → [A1 ∪A2](ϕ ∧ ψ) for any disjoint A1, A2 ⊆ Agt.

These, together with the standard inference rule of Modus Ponens and a new rule of

Monotonicity:

ϕ→ ψ

[A]ϕ→ [A]ψ

provide a sound and complete axiomatization of the valid formulae of CL.

4.3.2 Alternating-Time Temporal Logic

Coalition logic allows to reason about agents’ outcomes in strategic games. What if

the interaction consists of multiple steps, like in the case of extensive form games?

In this section, we focus on alternating-time temporal logic (ATL∗), one of the most

important logics of time and strategies that have emerged in recent years. ATL∗ can

be seen as a generalization of the branching time temporal logic CTL�, in which

path quantifiers (E: “there is a path”, A: “for every path”) are replaced with strategic
quantifiers 〈〈A〉〉. The formula 〈〈A〉〉γ expresses that coalitionA has a collective strategy

to enforce the temporal property γ throughout the interaction. ATL∗ formulae include

the usual temporal operators: X (“in the next state”), G (“always from now on”), F
(“now or sometime in the future”), and U (“until”).

Syntax and Semantics

Formally, the language of the full variant ATL∗ is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,

γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.



4.3. LOGICS FOR STRATEGIC ABILITY 61

Figure 4.5: The robots and the carriage: playing strategically

where A ⊆ Agt and p ∈ PV . The derived temporal operators can be defined as usual,

i.e., Fγ ≡ �U γ and Gγ ≡ ¬F¬γ.

Several semantics have been introduced for ATL∗, of which the one based on

concurrent game models is the most popular, given by the following semantic clauses:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is a collective strategy sA ∈ ΣIR
A , such that

M,λ |= γ for every λ ∈ out(q, sA).

Notably, the clause for 〈〈A〉〉 asks about existence of a suitable perfect recall strategy.

We will later see that, for a relevant part of the language, the semantics can be equiva-

lently defined in terms of memoryless plans.

Again, the interpretation of path formulae essentially copies the semantics of LTL:

M,λ |= ϕ iff M,λ[0] |= ϕ (i.e., ϕ holds in state λ[0] of model M );

M,λ |= ¬γ iff M,λ 
|= γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= Xγ iff M,λ[1..∞] |= γ;

M,λ |= γ1 U γ2 iff M,λ[i..∞] |= γ2 for some i ≥ 0, and M,λ[j..∞] |= γ1
for all 0 ≤ j < i.

As we have already observed in Section 4.2.2, concurrent game structures do not

allow for representation of agents’ uncertainty. In consequence, ATL can be seen as

a logic for reasoning about agents with perfect information. That is, it is implicitly

assumed that each agent always precisely knows the current state of the game. The no-

tions of perfect vs. imperfect information will be address more formally in Chapter 6.

Example 45 (Robots and Carriage: Long-term abilities) Consider again the concur-
rent game model Mcarr4 in Figure 4.2. The immediate outcome of each robot’s action
depends on the concurrent action of the other robot, and in consequence no agent
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can make sure that the carriage moves to any particular position. So, we have for
example that Mcarr4 , q0 |= ¬〈〈1〉〉Xpos0 ∧ ¬〈〈2〉〉Xpos0, and similarly for proposi-
tions pos1, pos2. The same applies to long-term abilities of the robots, for example
Mcarr4 , q0 |= ¬〈〈1〉〉Fpos0 as well as Mcarr4 , q0 |= ¬〈〈1〉〉Gpos0.

On the other hand, robot 1 can at least make sure that the carriage will avoid partic-
ular positions. For instance, it holds that Mcarr4 , q0 |= 〈〈1〉〉G¬pos1, the right strategy
being s1(. . . q0) = wait and s1(. . . q2) = push. The actions to be executed after histo-
ries ending with q1 are irrelevant, so we can choose arbitrarily, e.g., s1(. . . q1) = wait.
Note also that the same behavior of the system can be obtained by the following mem-
oryless strategy of robot 1: s′1(q0) = wait, s′1(q2) = push, s′1(q1) = wait. The
transitions enabled by both strategies are depicted in Figure 4.5; it is easy to see that
the system will never reach q1.

Moreover, the robots together can move the carriage to any position they like:
Mcarr4 , qi |= 〈〈1, 2〉〉Fpos0∧〈〈1, 2〉〉Fpos1∧〈〈1, 2〉〉Fpos2 for every i = 0, 1, 2. They can
even achieve this by a single strategy: Mcarr4 , qi |= 〈〈1, 2〉〉(Fpos0 ∧ Fpos1 ∧ Fpos2),
an example strategy being push for robot 1 and wait for robot 2 in any situation that
can arise.

“Vanilla” ATL

The above clauses define the semantics of the full version of alternating-time logic,

called ATL∗ for historical reasons. It must be noted, however, that the typical vari-

ant of alternating-time logic is restricted to formulae in which strategic and temporal

operators are coupled into compound modalities:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

We will refer to the restricted variant as “vanilla” ATL, or simply ATL. ATL allows

to interpret formulae entirely in states of the system, without explicit reference to paths

in the sematic relation:

M, q |= p iff q ∈ V(p);
M, q |= ¬ϕ iff M, q 
|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉Xϕ iff there is a collective strategy sA ∈ ΣIR
A such that,

for every path λ ∈ out(q, sA), we have that

M,λ[1] |= ϕ;

M, q |= 〈〈A〉〉Gϕ iff there is a collective strategy sA ∈ ΣIR
A such that,

for every path λ ∈ out(q, sA), we have that λ[i] |=
ϕ for all i ≥ 0;

M, q |= 〈〈A〉〉ϕ1 Uϕ2 iff there is a collective strategy sA ∈ ΣIR
A such that,

for every path λ ∈ out(q, sA), we have that

M,λ[i] |= ϕ2 for some i ≥ 0 and M,λ[j] |= ϕ1

for all 0 ≤ j < i.

Example 46 (Robots and Carriage: State-based specifications) All but the last for-
mula of Example 45 are in fact formulae of ATL. The last formula, 〈〈1, 2〉〉(Fpos0 ∧
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Fpos1 ∧ Fpos2), is a formula of ATL∗ but not “vanilla” ATL. Still, it can be trans-
lated to an equivalent ATL formula:

〈〈1, 2〉〉F (
pos0 ∧ 〈〈1, 2〉〉F(pos1 ∧ 〈〈1, 2〉〉Fpos2 ∨ pos2 ∧ 〈〈1, 2〉〉Fpos1) ∨
pos1 ∧ 〈〈1, 2〉〉F(pos0 ∧ 〈〈1, 2〉〉Fpos2 ∨ pos2 ∧ 〈〈1, 2〉〉Fpos0) ∨
pos2 ∧ 〈〈1, 2〉〉F(pos0 ∧ 〈〈1, 2〉〉Fpos1 ∨ pos1 ∧ 〈〈1, 2〉〉Fpos0)

)
.

As an aside, we notice two things. First, the translation exponentially increases the
number of the subformulae in the formula. Secondly, it only works in the perfect recall
semantics of ATL∗. With memoryless strategies, the two properties are not equivalent
anymore.

Embedding Simpler Logics in ATL∗

We observe that ATL∗ syntactically embeds two important logics. First, the branch-

ing time logic CTL� can be seen as a subset of ATL∗ with very limited strategic

quantification. This is because the path quantifiers of CTL� can be expressed in the

standard semantics of ATL∗ as follows: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ. We point

out that the above translation of E does not work for several extensions of ATL∗, e.g.,

with imperfect information, nondeterministic strategies, and irrevocable strategies. On

the other hand, the translation of A into 〈〈∅〉〉 does work for all the semantic variants

of ATL∗ considered in this book. Thanks to that, we can define a translation atl(ϕ)
from CTL� to ATL∗ as follows. First, we convert ϕ so that it only includes univer-

sal path quantifiers, and then replace every occurrence of A with 〈〈∅〉〉. For example,

atl(EG(p1 ∧ AFp2)) = ¬〈〈∅〉〉F(¬p1 ∨ ¬〈〈∅〉〉Fp2).
Secondly, coalition logic can be seen as the fragment of ATL that uses only the

“nexttime” temporal operators X, with the following embedding of the central modality

of CL: [A]ϕ ≡ 〈〈A〉〉Xϕ.

We also point out that, semantically, CTL� can be seen as the single-agent frag-

ment of ATL∗ where formulae are interpreted over structures that include only one

player (“the system”).

4.3.3 Properties of ATL∗ and ATL

Fixpoint Characterization of ATL Operators

The following formulae are valid in ATL, i.e., true in every state of every model:

〈〈A〉〉Fϕ ↔ ϕ ∨ 〈〈A〉〉X 〈〈A〉〉Fϕ,
〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X 〈〈A〉〉Gϕ,

〈〈A〉〉ϕ1 Uϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉X 〈〈A〉〉ϕ1 Uϕ2).

Note that the validities are straightforward adaptations of the CTL fixpoint equiv-

alences from Section 3.1.4.

Alternating μ-Calculus

Similarly to temporal logics, one can define a version of modal μ-calculus for express-

ing strategic properties in game-like scenarios. To do this, we observe that the lan-

guage of μ-calculus consists of generic constructs – namely boolean connectives and
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fixpoint operators – plus one or more basic modality which is specific to the phenom-

ena we want to reason about. For example, the classical version of modal μ-calculus

is built upon PDL-style action operators 〈α〉. In case of branching-time logic, the ba-

sic modality is EX allowing for statements about immediate successors of the current

state. In general, μ-calculus can be seen as a generic template, parameterized by a set

of basic modal constructs.

Alternating μ-calculus (AMC) is the variant of μ-calculus with strategic-nexttime

operators 〈〈A〉〉X given as basic modalities. Equivalently, one can see AMC as the

fixpoint extension of coalition logic. The denotational semantics of AMC is obtained

by replacing the clause for EX from Section 3.1.4 with the following clause:

[[〈〈A〉〉Xϕ]]M,E = {q | there is αA ∈ dA(q) such that for all αAgt\A ∈
dAgt\A(q) we have o(q, αA, αAgt\A) ∈ [[ϕ]]M,E}.

Alternating μ-calculus is strictly more expressive than ATL∗, i.e., every formula

of ATL∗ can be translated into an equivalent formula of AMC. Like for CTL�, the

translation of full ATL∗ is technically involved, but the strategic-temporal modalities

of “vanilla” ATL can be translated to fixpoint formulae according to a simple scheme:

tr(〈〈A〉〉Fϕ) ≡ μZ . (tr(ϕ) ∨ 〈〈A〉〉XZ);
tr(〈〈A〉〉Gϕ) ≡ νZ . (tr(ϕ) ∧ 〈〈A〉〉XZ);
tr(〈〈A〉〉ϕ1 Uϕ2) ≡ μZ . (tr(ϕ2) ∨ tr(ϕ1) ∧ 〈〈A〉〉XZ).

Thus, alternating μ-calculus can serve as a logical “assembly language” for reason-

ing about outcomes of perfect information strategies.

Axiomatic System for ATL

ATL extends coalition logic with long-term modalities G, U . Thus, in order to obtain

an axiomatization of ATL, we first need to rephrase the inference system for CL,

obtaining the following axioms:

1. Complete set of axioms for classical propositional logic,

2. 〈〈Agt〉〉X�,

3. ¬〈〈A〉〉X⊥,

4. ¬〈〈∅〉〉Xϕ→ 〈〈Agt〉〉X¬ϕ,

5. 〈〈A1〉〉Xϕ ∧ 〈〈A2〉〉Xψ → 〈〈A1 ∪A2〉〉X(ϕ ∧ ψ) for any disjoint A1, A2 ⊆ Agt,

together with the inference rules Modus Ponens and Monotonicity:

ϕ→ ψ

〈〈A〉〉Xϕ→ 〈〈A〉〉Xψ .

Modalities 〈〈A〉〉G and 〈〈A〉〉U satisfy the following axioms that define them recur-

sively as fixpoints of certain monotone operators:

(FPG) 〈〈A〉〉Gϕ↔ ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ,

(GFPG) 〈〈∅〉〉G(θ → (ϕ ∧ 〈〈A〉〉Xθ)) → 〈〈∅〉〉G(θ → 〈〈A〉〉Gϕ),
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(FPU ) 〈〈A〉〉ψUϕ↔ ϕ ∨ (ψ ∧ 〈〈A〉〉X〈〈A〉〉ψUϕ),

(LFPU ) 〈〈∅〉〉G((ϕ ∨ (ψ ∧ 〈〈A〉〉Xθ)) → θ) → 〈〈∅〉〉G(〈〈A〉〉ψUϕ→ θ).

Adding yet another inference rule for 〈〈∅〉〉G-Necessitation:

ϕ

〈〈∅〉〉Gϕ
we obtain a sound and complete axiomatization for “vanilla” ATL.

No explicit axiomatizations of ATL∗ are known yet.

Bisimulation for ATL

The concept of bisimulation is central in formal analysis of discrete processes. In

process-algebraic approaches, bisimulation allows to compare seemingly different pro-

cess descriptions, and prove them equivalent. This in turn provides a powerful machin-

ery for checking correctness of an implementation with respect to specification, both

given by the same kind of mathematical structures.

In modal logic, bisimulation is typically understood as a relationship between se-

mantic structures, i.e., models. It is often studied in the context of expressiveness, more

specifically: the distinguishing power of a given logic. That is, a suitable bisimulation

for logic L is such that two bisimilar structures satisfy exactly the same formulae of

L. An adaption of the standard concept of bisimulation to ATL∗ and concurrent game

models is presented below.

Let D(q, A) =
∏
a∈A da(q) denote the set of joint actions of coalition A in state q.

For aA ∈ D(q, A), we use

nextM (q,aA) = {o(q, α) : there is α ∈ D(q,Agt) such that aa = αa for all a ∈ A}
to denote the set of possible successor states inM when coalitionA choose actions aA.

Given two concurrent game models M1 = (Agt, St1, Act1, d1, o1,V1) and M2 =
(Agt, St2, Act2, d2, o2,V2), and a set of agents A ⊆ Agt, a relation β ⊆ St1 × St2
is an A-bisimulation between M1 and M2, denoted M1 �A

β M2, iff it satisfies the

following conditions for each pair of states q1 ∈ St1, q2 ∈ St2 such that q1βq2:

Local harmony V1(q1) = V2(q2);

Forth For every joint action a1A ∈ D1(q1, A) for A, there exists a joint action a2A ∈
D2(q2, A) for A such that for all states q′2 ∈ nextM2

(q2,a
2
A), there exists a state

q′1 ∈ nextM1(q1,a
1
A) such that q′1βq

′
2;

Back Likewise, for 1 and 2 swapped.

Relation β is a strategic bisimulation (also called alternating bisimulation) between

M1 and M2 iff M1 �A
β M2 for every A ⊆ Agt. We denote this by M1 �β M2.

Theorem 15 ATL∗ is invariant under bisimulation. That is, if M1 �β M2 and
q1βq2, then for every ATL∗ formula ϕ we have that:

M1, q1 |= ϕ iff M2, q2 |= ϕ.

Note that the above theorem is correct only for the perfect recall semantics of

ATL∗, based on IR strategies. ATL∗ with memoryless strategies is not invariant

under bisimulation, as we will soon demonstrate.
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q0
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q2
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cle
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Figure 4.6: Single-agent model Mclean : robot with multiple tasks

The Role of Memory

In Section 4.2.2, two types of strategies were introduced. Memoryless strategies (or Ir
strategies) assign actions to states of the system, whereas perfect recall strategies (or IR
strategies) are mappings from possible histories of the game to actions. The semantics

of 〈〈A〉〉 can be defined in both ways, by restricting the quantification in the semantic

clause (“there is a strategy”) to either ΣIr
A or ΣIR

A . To make the distinction formal, we

will refer to the two resulting semantics of ATL∗ as |=
Ir

and |=
IR

. The corresponding

logical systems will be denoted by ATL∗Ir and ATL∗IR, respectively.

Note that, up to now, we have used |=IR as the semantic relation.

We can now show that, for “vanilla” ATL, memory does not matter: the interpre-

tation of a formula is exactly the same when agents use perfect recall strategies and

when they use only memoryless strategies. On the other hand, memory matters for the

full language of ATL∗: then, the truth of a formula depends on the type of recall char-

acterizing agents in the coalition. The proof relies on the following, rather technical

result:

Theorem 16 ATLIr is invariant under bisimulation. That is, if M1 �β M2 and
q1βq2, then for every ATL formula ϕ we have that: M1, q1 |=Ir ϕ iff M2, q2 |=Ir ϕ.

Now, we obtain the following.

Theorem 17 For “vanilla” ATL, memory does not matter, i.e.,

M, q |=
Ir
ϕ iff M, q |=

IR
ϕ.

We sketch the proof as the reasoning is illustrative of how strategic bisimulation

can be used to prove meta-properties of ATL.

Proof. Let histM (q) denote the set of finite prefixes of computations starting in q, and

let last(q0 . . . qk) = qk. Given a CGM M = (Agt, St, Act, d, o,V) and q ∈ St, the

tree unfolding T (M, q) of M from q is defined as follows:

T (M, q) = (Agt, St∗, Act, d∗, o∗,V∗),

where St∗ = histM (q), V∗(h) = V(last(h)), d∗i (h) = di(last(h)), and o∗(h, α) =
h · o(last(h), α).

First, we observe that the tree unfolding includes exactly the same possibilities of

action as the original model. Formally, for any (M, q), we have that T (M, q) �β

M with β = {(h, last(h)) | h ∈ histM (q)}. Secondly, perfect recall strategies in
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M correspond exactly to memoryless strategies in the tree unfolding of M . Thus,

T (M, q), q |=
Ir
ϕ iff M, q |=

IR
ϕ for every q and ϕ. Finally, by invariance under

bisimulation, we obtain that M, q |=
Ir
ϕ iff T (M, q), q |=

Ir
ϕ iff M, q |=

IR
ϕ. �

On the other hand, memory matters for ATL∗.

Theorem 18 There is a pointed model (M, q) and a formula ϕ of ATL∗ such that the
truth of ϕ in the model is different in the Ir and IR semantics.

Proof. Consider the single-agent CGM Mclean given in Figure 4.6 and the ATL∗ for-

mula ϕ ≡ 〈〈a〉〉(Fclean ∧ Fdelivered). It is easy to see that Mclean , q0 |=IR ϕ but

Mclean , q0 
|=Ir ϕ. �

Corollary 1 ATL∗Ir is not invariant under bisimulation.

4.3.4 Back to Motivating Examples

We wrap up the section by showing how the strategic properties of rescue robots and

voting systems can be expressed in ATL∗.

Example 47 (Rescue Robots: Expressing the properties)

♣ The robots can rescue all the people in the building:

∧
j∈People

〈〈Robots〉〉Fsafej.

Another interpretation: 〈〈Robots〉〉F(∧j∈People safej
)
.

♣ If person j gets outside the building, then she can stay away from trouble

forever:

〈〈∅〉〉G(outsidej → 〈〈j〉〉Gsafej).

♣ Person j may be rescued without any robot ever entering the building, but

guaranteed rescue requires some robots to enter (new interpretation):

〈〈Agt〉〉(Fsafej ∧G(
∧

i∈Robots

outsidei)
)

∧ ¬〈〈Robots〉〉(Fsafej ∧G(
∧

i∈Robots

outsidei)
)
.

♣ The robots can rescue all the people, and they know that they can:

Cannot be expressed in ATL*!

♣ The robots can rescue all the people, and they know how to do it:

Cannot be expressed in ATL*!
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Example 48 (Voting: Expressing the properties)

♠ The system cannot reveal how a particular voter voted:

¬〈〈system〉〉F(
∨

c∈Candidates

revealedVotev,c).

♠ The voter can gain no receipt which can be used to prove that she voted

in a certain way:

¬〈〈v〉〉F(
∨

c∈Candidates

receiptVotev,c).

♠ The voter cannot cooperate with the coercer to prove to him that she voted

in a certain way:

Cannot be expressed in ATL*!
(we need a notion of knowledge for the coercer)

References and Further Reading. A survey of logical formalisms for strategic rea-

soning can be found in the handbook chapter [36].

Coalition logic was introduced and studied in [129, 131]. Alternating-time tempo-

ral logic was originally proposed in [10], and later substantially revised in [12]. Our

presentation of ATL∗ and its properties follows the latter paper. Different semantics

of ATL∗, based on concurrent game models, alternating transition systems, and effec-

tivity functions were compared in [67, 68]. Meta-properties of ATL that were studied

include expressivity [12, 108], axiomatization [72], and model equivalence [13, 4].

4.4 Other Logical Approaches to Ability

It is rather surprising that until the 1980s formal logic had been seldom employed to

either analyze or facilitate strategic reasoning. However, with the ongoing invasion of

logic into multi-agent systems over the past 20 years, its role in strategic reasoning

has become increasingly more instrumental and recognized. The logical systems pre-

sented and discussed in this chapter focus mainly on reasoning about objective strate-

gic abilities of players and coalitions pursuing a specific goal in competitive concurrent

multi-player games where the remaining players are regarded as adversaries. We con-

clude the chapter by presenting an overview of several related logic-based approaches

to strategic reasoning.

Logics for Compositional Reasoning about Strategies

Modern approaches at game logics have been initiated by Parikh in 1985 [127]. In

his view, strategies are treated as first-class citizens to which an endogenous, structural

view is applied, and “the study of rationality in extensive form games largely takes

a functional view of strategies.” In a way, Parikh’s approach pre-dates ATL-style

reasoning about strategies, and combines it with dynamic logic-style compositional

reasoning about complex programs.
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A similar approach was later adopted by Harrenstein et al. in [77], with the main

goal being a logical characterization of game-theoretic solution concepts, such as Nash

equilibrium.

Philosophical Logics of Agency

Philosophical attempts to come up with a logic of agency and ability began with early

works of von Wright and Kanger. More recently, Brown [30] proposed in 1988 a modal

logic formalising the idea that the modality for ability should have a more complex,

existential-universal meaning (the agent has some action or choice, such that every
outcome potentially resulting from executing that action achieves the aim).

At about the same time, Belnap and Perloff developed in [20] the basics of their

theory of seeing to it that, usually abbreviated to stit. The stit family of logics were

formulated in an attempt to define a formal semantics of the concept of agency, where

an agent is loosely understood as an entity that makes deliberate purposeful actions.

Although accounts differ on details, the general aim is to make sense of statements

such as “the agent a purposefully sees to it that ϕ” denoted by the logical formula

stitaϕ. The semantics of Belnap and Perloff’s operator (known as achievement stit)

is presented below. We base our exposition of the main concepts on [84, 28]. For a

broader discussion and extensions of stit, we refer the reader to [20, 21, 83, 28, 82, 26].

Models of “seeing to it that” take branching time structures as the starting point,

and enhance them to give account of how agents can influence the dynamics of the

system. Formally, a stit frame is a tuple (St,<,Agt, Choice) where:

• (St,<) is a branching-time structure;

• Agt is a finite set of agents;

• Choice : Agt× St→ 22
Paths

assigns agents with their choices. Paths is the set

of all maximal linearly ordered sequences of points in (St,<).4 Moreover, for

every a ∈ Agt and q ∈ St, we requite that Choice(a, q) is a partition of the set

Paths(q) of all paths passing through q. The partition represents the available

choices for a at q, similarly to effectivity functions.

A stit model extends a stit frame with a valuation of atomic propositions into sets of

paths.

Note that, since (St,<) is a tree, we can see the elements of St as both states

and (finite) histories of interaction. To avoid confusion, they will be referred to in

the remainder of this section as positions. Moreover, for stit models, the concepts of

memoryless and perfect recall play coincide.

Collective choices – when considered – are usually assumed to independently in-

fluence the resulting evolution of the system. Thus, the outcome of a collective choice

can be seen as the intersection of the individual choices that it combines. This can

be formally modeled by extending the function Choice to type 2Agt × St → 22
Paths

as follows. First, for each q ∈ St, a choice selection function at q is a function

sq : Agt → 2Paths(q), such that sq(a) ∈ Choice(a, q) for each a ∈ Agt. The set of all

selection functions sq for a given q is denoted by Selectq . Now, for any A ⊆ Agt and

q ∈ St, we define

Choice(A, q) =
{⋂

a∈A sq(a) | sq ∈ Selectq
}

.

4In the literature on stit, such sequences are called histories, and their set is denoted by H . We use the

term paths here to be consistent with the terminology used throughout the book.



70 CHAPTER 4. STRATEGIC ABILITY

It is easy to see that Choice(A, q) forms a partition of Paths(q) refining each of the

individual partitions Choice(a, q) for a ∈ A, and representing the possible collective

choices of A.

The following condition of Independence of agents’ choices must hold for Choice:

∅ /∈ Choice(Agt, q) for all q ∈ St.

Roughly speaking, we say that stitaϕ holds in a world/moment pair if there was

some earlier moment in the history at which point the agent a made a choice such that:

• ϕ is true in all histories consistent with that choice, and

• at the point where the choice was made, the status of ϕ was not settled, i.e., there

were possible histories in which ϕ was false.

Expressed differently, stitaϕ means that the agent a made a choice such that ϕ was

a necessary consequence of this choice, while ϕ would not necessarily have been true

had the agent not made the choice.

Troquard [163] presented a survey of stit variants, in which he discussed a number

of possible axioms characterising stit statements. Some relevant candidate axioms and

deduction rules for a logic of agency are:

(M) stita(ϕ ∧ ψ) → (stitaϕ ∧ stitaψ)

(C) (stitaϕ ∧ stitaψ) → stita(ϕ ∧ ψ)
(N) stita�
(No) ¬stita�
(T) stitaϕ→ ϕ

(RE) If ϕ↔ ψ, then stitaϕ→ stitaψ.

Taken together, axioms (M) and (C) essentially state that seeing to it that is compo-

sitional with respect to conjunction: a sees to it that ϕ∧ψ iff a sees to ϕ and ψ. Axioms

(N) and (No) are clearly contradictory, and one can accept at most one of them. Axiom

(N) says that agent a sees to all the inevitabilities, while (No) says that a cannot bring

about things that are inevitable anyway. Most treatments of stit reject axiom (N), pre-

ferring instead the axiom (No). Axiom (T) essentially states that agents are successful:

if a brings it about that ϕ, then ϕ becomes indeed the case.

stit logics are connected to alternating-time temporal logic through a number of

formal results. In particular, Broersen, Herzig, and Troquard have shown how stit
logics can be used to extend and embed ATL∗ [29, 28, 26]. The price to pay for that

expressiveness is intractability and – usually – undecidability of reasoning with stit.

ATL∗ with Persistent Strategies

The introduction of ATL∗ triggered much activity related to logical foundations of

multi-agent systems. Many extensions have been proposed, most notably allowing

for persistent strategy commitment and explicit references to concrete strategies in the

logical language.

The meaning of the ATL∗ formula 〈〈A〉〉γ is that coalition A has a collective strat-

egy, say sA, to bring about the truth of γ if the agents in A follow that strategy. How-

ever, the evaluation of γ in the possible paths of the system enabled by sA does not take
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that strategy into account anymore. That is, if γ contains a subformula 〈〈B〉〉γ′, then

in the evaluation of 〈〈B〉〉γ′ the agents in A ∩ B are free to choose any other strategy

as part of their collective play within B. This is in agreement with the semantics of

path quantifiers in CTL�, where it is natural to read claims like EGEγ as “there is a

path such that the system can always deviate to another path satisfying γ.” One may

argue, however, that it disagrees with the game-theoretic view of a strategy as a full

conditional plan that completely specifies the agent’s future behavior. The issue has

been independently addressed in different ways in [4, 138, 25], where various propos-

als were made in order to incorporate strategic commitment and persistent strategies in

the syntax and semantics of ATL∗.
ATL∗ with irrevocable strategies (IATL∗) [4] redefines the semantics of strate-

gic modalities by assuming that agents’ strategic choices persist forever. This is imple-

mented by pruning all the transitions that are not compliant with the selected strategies.

Formally, let M be a CGM, A a coalition, and sA a strategy for A. The update of M
by sA, denoted M † sA, is the model M where the choices of every agent a ∈ A are

permanently fixed by the strategy sA[a]; that is, da(q) = {sa(q)} for each state q. The

semantics of strategic play in IATL∗ is now defined as follows:

M, q |= 〈〈A〉〉γ iff there is a collective strategy sA such that for every path

λ ∈ out(q, sA) we have that M † sA, λ |= γ.

A somewhat different and more flexible approach has been proposed by Brihaye et

al. [25]. Instead of a “hard” model update that transforms the CGM according to the

chosen strategy, the model is kept intact and the strategy is only added to the strategy
context. The context collects strategies being currently executed, and hence influences

the outcome paths that can occur. On the other hand, since the model itself does not

change, each strategy can be revoked – in particular when an agent chooses another

strategy in a nested cooperation modality. Formally, let sA be a joint strategy of agents

A (the current strategy context), and let tB be a new joint strategy of agents B. We

define the context update sA ◦ tB as the joint strategy f for agents in A ∪ B such that

f [i] = tB [i] for i ∈ B and f [i] = sA[i] for i ∈ A \ B. That is, the new strategies

from tB are added to the context, possibly replacing some of the previous ones. The

semantic rule for strategic modalities becomes:

M, q, f |= 〈〈A〉〉γ iff there is a joint strategy sA for the agents in A such

that for every path λ ∈ out(q, f ◦ sA) we have that

M,λ, f ◦ sA |= γ.

Additionally, M, q |= ϕ iff M, q, f∅ |= ϕ, where f∅ is the only joint strategy of the

empty coalition (i.e., the empty strategy).

For more details and a thorough analysis of the model checking problem for ATL∗

with strategy contexts, we refer the reader to [25]. The satisfiability problem was in-

vestigated in [164], and proved undecidable even for “vanilla” ATL.

Reasoning about Particular Strategies

Counterfactual ATL (CATL), proposed by van der Hoek et al. [167], extends ATL
with operators of “counterfactual commitment” Ca(σ, ϕ) where a is an agent, σ is a

strategic term, and ϕ is a formula. The informal reading of Ca(σ, ϕ) is: “if it were the
case that agent a committed to strategy σ, then ϕ would hold.” The semantics is based

on model updates:
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M, q |= Ca(σ, ϕ) iff M † [[σ]]a, q |= ϕ

where [[σ]]a is the strategy of agent a denoted by σ.

ATL with Intentions (ATLI), proposed by Jamroga et al. [100], is similar to

CATL, but its counterfactual operators have a different flavour: (stra σ)ϕ reads as

“suppose that agent a intends to play strategy σ, then ϕ holds.” An intention is a

kind of commitment – it persists – but it can be revoked by switching to another in-

tention. Semantically, this is done by an additional “marking” of the intended actions

in the concurrent game model. Moreover, strategies can be nondeterministic, which

provides semantic tools for e.g. partial strategies as well as explicit release of commit-

ments. Thus, Jamroga et al. provide in fact the semantics of ATL based on strategy

contexts (here called intentions), that was later explored in more detail by Brihaye and

colleagues [25]. However, ATLI does not allow to quantify over intentions, and hence

allows only for limited context change. ATLI and its richer cousin ATLP (“ATL
with Plausibility” [40]) have been used to e.g. characterize game-theoretic solution

concepts and outcomes that can be obtained by rational agents.

Alternating-time temporal logic with explicit strategies (ATLES), see [181], is a

revised version of CATL which dispenses with the counterfactual operators. Instead,

strategic modalities are subscripted by commitment assignments which are partial func-

tions of the form ρ = {a1 �→ σ1, . . . , al �→ σl} where each aj is an agent and σj is

a strategy term. The meaning of formula 〈〈A〉〉
ρ
Gϕ is that there exists a strategy for

A ∪ {a1, . . . , al}, where each aj is required to play [[σj ]], such that ϕ will hold. Note

that the semantics of ATLES involves limited strategic commitment. Consider, for

instance, formula 〈〈A〉〉ρG〈〈A〉〉ρFϕ. If A is a subset of the domain of ρ, then in the

evaluation of the subformula 〈〈A〉〉
ρ
Fϕ, the agents in A are bound to play the same

joint strategy they selected for the outer modality 〈〈A〉〉
ρ
G.

Alternating-time temporal epistemic logic with actions (ATELA), proposed by

Ågotnes [3], enables reasoning about the interplay between explicit strategies of boun-

ded length and agents’ knowledge. The issue is very important, and we will focus on it

specifically in Chapter 6.

Explicit Quantification on Strategies

Strategy Logic, introduced by Chatterjee et al. [44] treats strategies in two-player turn-

based games as first-order variables that can be subject to explicit existential and uni-

versal quantification. This enables specification of important properties for non-zero-

sum games in a simple and natural way. In particular, the one-alternation fragment of

strategy logic subsumes ATL∗ and is expressive enough to characterize the existence

of Nash equilibria and secure equilibria.

The idea of explicit quantification over strategies has been subsequently followed in

a series of papers by Mogavero, Murano and colleagues [118, 116, 117], where Strategy

Logic was extended and generalized to k-player concurrent games. This degree of

expressivity yields undecidability of all the important decision problems (satisfiability,

validity, model checking). However, a decidable fragment has been identified, which is

strictly more expressive than ATL∗, and yet does not exceed ATL∗ in the complexity

of related computational problems.

References and Further Reading. In the quest for the “right” logical toolbox to rea-

son about strategic play, many variants of strategic logics have been proposed, mainly

extending and/or revising the framework of alternating-time temporal logic. Some
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approaches are mentioned above. Other interesting extensions include rationality as-

sumptions and solution concepts [177, 40], agents with with bounded memory [6],

bounded resources [8, 34, 9, 35], coalition formation and negotiation [32], opponent

modeling and action in stochastic environments [91, 37, 152, 151] and reasoning about

irrevocable plans and interplay between strategies of different agents [4, 25].

Also, a large number of works have considered the issue of modeling and reason-

ing about abilities under imperfect information. We will discuss the topic in detail in

Chapter 6.



Chapter 5

Verification of Strategic Ability

5.1 Model Checking Strategic Ability
In this section, we look at model checking of alternating-time temporal logic. We

start by presenting the standard fixpoint algorithm for global model checking of ATL,

shown in Figure 5.1. The main idea is as follows: to verify a formula of type 〈〈A〉〉γ,

the algorithm tries to construct a winning strategy for A, i.e., one that guarantees the

truth of γ no matter what the other agents do. To achieve that, the procedure starts

with the appropriate candidate set of states (∅ for U and the whole set St for G), and

iterates backwards over A’s one-step abilities until the set gets stable.

The correctness of the algorithm follows immediately from the fixpoint characteri-

zations of strategic-temporal modalities, presented already in Section 4.3.3. Note that it

does not matter whether perfect recall or memoryless strategies are used: the algorithm

is correct for the IR semantics, but it always finds an Ir-strategy.

It is worth pointing out that the algorithm can be easily adapted for the, seemingly

much more difficult, task of strategy synthesis for temporal goals.

Example 49 (Simple Rocket: Model checking strategic abilities) To demonstrate
how the algorithm in Figure 5.1 works, we revisit the simple rocket scenario of Ex-
ample 24. The story is extended by assuming that the rocket is operated by 3 workers
(called simply 1, 2, and 3) with the following capabilities:

• Agent 1 can: try to load the cargo, try to unload the cargo, initiate the flight, or
do nothing (action nop);

• Agent 2 can do unload or nop;

• Agent 3 can do load, refill the fuel tank (action fuel), or do nothing (nop).

The actual transition depends on the combination of actions that the workers try to
simultaneously execute. We assume the following interaction between choices:

• Flying has highest priority: if agent 1 initiates the flight, current actions of the
other agents have no effect;

• If loading is attempted when the cargo is not around, nothing happens;

• Same for unloading when the cargo is not in the rocket, and refilling a full tank;

74
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function mcheckatl(M,ϕ).
ATL model checking. Returns the set of states in model M = 〈Agt, St,V, o〉 for

which formula ϕ holds.

case ϕ ∈ PV : return V(p)
case ϕ = ¬ψ : return St \mcheckatl(M,ψ)
case ϕ = ψ1 ∨ ψ2 : return mcheckatl(M,ψ1) ∪mcheckatl(M,ψ2)
case ϕ = 〈〈A〉〉Xψ : return pre(M,A,mcheckatl(M,ψ))
case ϕ = 〈〈A〉〉Gψ :
Q1 := St; Q2 := mcheckatl(M,ψ); Q3 := Q2;

while Q1 
⊆ Q2

do Q1 := Q2; Q2 := pre(M,A,Q1) ∩Q3 od;

return Q1

case ϕ = 〈〈A〉〉ψ1 Uψ2 :
Q1 := ∅; Q2 := mcheckatl(M,ψ1);
Q3 := mcheckatl(M,ψ2);
while Q3 
⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1) ∩Q2 od;

return Q1

end case

function pre(M,A,Q).
Auxiliary function; returns the exact set of states Q′ such that, when the system is

in a state q ∈ Q′, agents A can cooperate and enforce the next state to be in Q.

return {q | ∃αA∀αAgt\A o(q, αA, αAgt\A) ∈ Q}

Figure 5.1: ATL model checking in explicit models

• If different agents try to load and unload at the same time, then the majority
prevails;

• Refilling fuel can be done in parallel with loading/unloading.

The resulting CGM Mrockt2 is depicted in Figure 5.2. We only show labels of
transitions outgoing from state q1 to keep the picture readable.

Suppose that we want to find the set of states from which the coalition of agents
1 and 3 can move the cargo to any given location. This corresponds to global model
checking of formula 〈〈1, 3〉〉FcaP ∧ 〈〈1, 3〉〉FcaL in Mrockt2. To save space, we only
focus on the first part of the conjunction: Figure 5.3 shows the execution of the ATL
model checking algorithm for formula 〈〈1, 3〉〉FcaP by computing the appropriate least
fixpoint. As it turns out, all the states in Mrockt2 satisfy the specification.

Does anything change when the team consists of agents 1 and 2? This can be
answered by model checking formula 〈〈1, 2〉〉FcaP; the computation is shown in Fig-
ure 5.4. Indeed, coalition {1, 2} can guarantee that the cargo gets to Paris only if the
initial state of the system is q2, q6, q7, q8, q9, q10, q11 or q12.

Finally, we can use model checking to find out whether one of the workers, say
3, can keep the cargo forever at the Paris airport. To this end, Figure 5.5 shows the
computation of the greatest fixpoint for formula 〈〈3〉〉GcaP. It turns out that the formula
is satisfied only in state q9, i.e., 3 can guarantee the property only if the cargo is already
in Paris, the rocket is in London, and it has empty fuel tank.
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Figure 5.2: Concurrent game model for Simple Rocket Mrockt2

References and Further Reading. The standard fixpoint algorithm for model check-

ing ATL was presented and discussed extensively in [12]. More advanced techniques

were relatively scarce. Unbounded Model Checking was studied in [102], and MC-

MAS includes an implementation of ATL model checking based on Ordered Binary

Decision Diagrams [114, 142, 113]. Abstraction techniques for ATL and related log-

ics were proposed in [16, 104, 111].

Studies on other decision problems than model checking were much less frequent,

though satisfiability of the basic variant of ATL has been investigated in [72, 180, 149,

71].

5.2 Complexity of Verification

We will now discuss the most important complexity results for model checking of

ATL∗ and its subsets.

5.2.1 Model Checking ATL and CL

One of the main results concerning ATL says that it can be model-checked in deter-

ministic linear time, analogously to CTL. It is easy to see that the algorithm from

Section 5.1 needs to traverse each transition at most once per state from St and subfor-

mula of ϕ. Formally, function mcheckatl is called at most O(|ϕ|) times, and each call

terminates after O(|St| · |o|) steps. The latter can be improved by translating the model
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mcheckatl(Mrockt2, caP) mcheckatl(Mrockt2, 〈〈1, 3〉〉FcaP):
1st iteration

2nd iteration 3rd iteration

4th iteration 6th & 7th iteration

Figure 5.3: Model checking ATL: mcheckatl(Mrockt2, 〈〈1, 3〉〉FcaP)
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mcheckatl(Mrockt2, caP) mcheckatl(Mrockt2, 〈〈1, 2〉〉FcaP):
1st iteration

2nd iteration 3rd & 4th iteration

Figure 5.4: Model checking ATL: mcheckatl(Mrockt2, 〈〈1, 2〉〉FcaP)

mcheckatl(Mrockt2, 〈〈3〉〉GcaP): 2nd & 3rd iteration

1st iteration

Figure 5.5: Model checking ATL: mcheckatl(Mrockt2, 〈〈3〉〉GcaP)
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to a two-player game, and then solving the “invariance game” [18] on it in polyno-

mial time. P-hardness can be shown by a reduction of reachability in And-Or-Graphs,

which is P-complete [88], to model checking the constant size LATL-formula 〈〈1〉〉Fp
in a two-player game. Each Or-state is controlled by player 1, and each And-state is

“owned” by player 2. In consequence, we get the following.

Theorem 19 Model checking ATL is P-complete, and can be performed in time
O(|M | · |ϕ|), where |M | is the number of the transitions in M , and |ϕ| is the num-
ber of the subformulae in ϕ.

So, it seems that ATL is strictly more expressive than CTL with no computational

price to pay. It is important to emphasize, however, that the result is relative to the

number of the transitions in the model. We will come back to this issue in Section 5.3.

The next theorem states that model checking is equally hard even when the lan-

guage is restricted to “nexttime” modalities. Putting it in another way, model checking

coalition logic is as hard as for ATL.

Theorem 20 Model checking CL is P-complete, and can be performed in time O(|M |·
|ϕ|).

The upper bound follows from Theorem 19. P-hardness can be shown by the fol-

lowing adaption of the reduction of And-Or-Graph reachability. First, we observe that

if state y is reachable from state x in graph G then it is also reachable via a path whose

length is bounded by the number n of states in the graph. Like in the proof of Theo-

rem 19, we take G to be a turn-based CGM in which player 1 “owns” all the Or-states

and player 2 controls all the And-states. We also label node y with a special proposition

y, and replace all the transitions outgoing from y with a deterministic loop. Now, we

have that y is reachable from x in G iff G, x |= (〈〈1〉〉X)n
y, where opn denotes the

n-fold repetition of operator op. The reduction uses only logarithmic space.

On the other hand, checking strategic properties in strictly one-step games is some-

what easier. Let us call a formula flat if it contains no nested cooperation modalities.

Moreover, a formula is simple if it is flat and does not include Boolean connectives. In

particular, the language of “Simple CL” consists only of formulae p and 〈〈A〉〉Xp, for

p ∈ PV and A ⊆ Agt.

Theorem 21 Model checking “Simple CL” is in AC0 with respect to the number of
the transitions in the model and the length of the formula.1

The above results apply to the semantic variants based on memoryless as well as

perfect recall strategies, i.e., to both ATLIr and ATLIR.

5.2.2 Model Checking ATL∗

We now turn to the complexity of model checking for the full language of ATL∗.
Since the IR and Ir semantics of ATL∗ do not coincide, both variants must be studied

separately.

Theorem 22 Model checking ATL∗IR is 2EXPTIME-complete in the number of the
transitions in the model and the length of the formula.

1AC0 is the complexity class corresponding to constant-depth, unbounded-fanin, polynomial-size

Boolean circuits with AND, OR, and NOT gates [65].
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Ir IR

CTL P-complete

Simple CL in AC0 in AC0

CL P-complete P-complete

ATL P-complete P-complete

ATL∗ PSPACE-complete 2EXPTIME-complete

Figure 5.6: Overview of the model checking complexity for concurrent game models.

Rows indicate syntactic variants, columns indicate the selected semantics.

The upper bound can be obtained by the following construction. Let M be a CGM,

and 〈〈A〉〉γ be an ATL∗ formula, where γ is a formula of LTL. Given a strategy sA
of A and a state q in M , the model can be unfolded into a q-rooted tree representing

all possible behaviors with agents A following their strategy sA. This structure can be

seen as the tree induced by out(q, sA) and we will refer to it as a (q, A)-execution tree.

Note that every collective strategy forAmay result in a different execution tree. Now, a

Büchi tree automaton AM,q,A can be constructed that accepts exactly (q, A)-execution

trees. Moreover, one can construct a Rabin tree automaton which accepts all trees that

satisfy the CTL� formula Aγ [62]. The ATL∗ formula 〈〈A〉〉γ holds in M, q iff there

is a tree accepted by AM,q,A and by Aψ .

The lower bound can be shown by a reduction of LTL realizability [139, 145].

What about verification of ATL∗ with memoryless strategies? It turns out to be

much easier than the perfect recall case. Consider the following nondeterministic al-

gorithm for model checking 〈〈A〉〉γ where γ is an LTL formula. First, a memoryless

strategy sA is guessed and the model is “trimmed” according to the strategy, i.e., all

transitions which cannot occur by following sA are removed. Note that a memory-

less strategy can be guessed in polynomially many steps with respect to the size of the

model, and hence also using only polynomially many memory cells. Then, we model-

check the CTL� formula Aψ in the new model (doable in deterministic polynomial

time), and return the result. The procedure runs in NPSPACE = PSPACE. More-

over, PSPACE-hardness follows from the fact that ATL∗Ir embeds LTL (every LTL
formula ϕ is equivalent to the ATL∗ formula 〈〈∅〉〉ϕ), which renders the following re-

sult.

Theorem 23 Model checking ATL∗Ir is PSPACE-complete in the number of the
transitions in the model and the length of the formula.

Thus, model checking ATL∗ with memoryless strategies is no more complex than

model checking LTL and CTL�, at least in terms of complexity classes. Figure 5.6

presents an overview of the model checking complexity results for strategic logics in

concurrent game models.

References and Further Reading. We refer the reader to [33] for an overview of

complexity results for model checking strategic logics. Most technical results presented

in this section were obtained in [12].
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5.3 A Closer Look
The above results are clearly optimistic: model checking ATL has the same complex-

ity as that of CTL, and verification of ATL∗ with memoryless strategies is no more

complex than model checking CTL� and LTL. Thus, apparently, we get extra expres-

sivity for free. Is it really the case? Not quite. The picture changes when we measure

the size of models with the number of the states, agents, and actions, rather than the

number of the transitions.

We begin by observing that, for CGM’s, the number of the transitions can be ex-

ponential in the number of the states, actions, and agents. In this sense, the standard

fixpoint algorithm for model checking ATL provides only an exponential-time upper

bound for the problem.

Theorem 24 Let |St| be the number of the states in a concurrent game model M ,
|Agt| denote the number of the agents, and |Act| the maximal number of available
decisions (actions) per agent and state. Then, the number of the transitions |o| =
O(|St| · |Act||Agt|). Thus, the ATL model checking algorithm in Figure 5.1 runs
in time O(|St| · |Act|(|Agt|·|ϕ|)) where |ϕ| is the length of the formula, and hence its
complexity is exponential if the number of the agents is a parameter of the problem.

In comparison, for an unlabeled transition system with |St| states and |−→| transi-

tions, we have that |−→| = O(|St|2). This means that CTL model checking is in P
also with respect to the number of the states in the model and the length of the formula.

The following theorem is an immediate corollary of the fact (and Theorem 6).

Theorem 25 CTL model checking over unlabeled transition systems is P-complete
in the number of the states and the length of the formula, and can be performed in time
O(|St|(2|ϕ|)).

For ATL and concurrent game models, however, the situation is different.

5.3.1 Model Checking for Compact Representation of Transitions
In this section we consider the complexity of the model checking problem with respect
to the number of the states, agents, and an implicitly encoded transition function, rather

than the explicit number of the transitions.

Implicit concurrent game models are defined similarly to CGM’s but the transition

function is encoded in a more compact way by a sequence

((ϕr0, q
r
0), . . . , (ϕ

r
tr , q

r
tr ))r=1,...,|St|

where tr ∈ N0, qri ∈ St and each ϕri is a Boolean combination of propositions execjα
where j ∈ Agt, α ∈ Act, i = 1, . . . , t and r = 1, . . . , |St|. It is required that ϕrtr = �.

Symbol execjα stands for “agent j executes action α”. We use ϕ[α1, . . . , αk] to refer

to the Boolean formula over {�,⊥} obtained by replacing exec
aj
α with � (resp. ⊥) if

αj = α (resp. αj 
= α). The encoding defines the transition function ô as follows:

ô(qi, α1, . . . , αk) = qij where j = min{κ | ϕiκ[α1, . . . , αk] ≡ �}

That is, ô(qi, α1, . . . , αk) returns the state belonging to the formula ϕiκ (associ-

ated with state qi) with the minimal index κ that evaluates to “true” given the ac-

tions α1, . . . , αk. Note that the function is well defined as the last formula in each
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sequence is given by �: no deadlock can occur. The size of ô is defined as |ô| =∑
r=1,...,|St|

∑
j=1,...,tr

|ϕrj |, that is, the sum of the sizes of all formulae. Hence, the

size of an implicit CGM is given by |St|+ |Agt|+ |ô|. Recall that the size of an explicit

CGM is |St|+ |Agt|+ |o|, where |o| is the number of the transitions.

Theorem 26 Model checking ATLIR and ATLIr over implicit CGM’s is ΔP
3 -complete

with respect to the number of the states, agents, and implicit transitions in the model,
and the length of the formula.

The idea of the lower bound proof is clear if we reformulate the model checking of

M, q |= 〈〈a1, . . . , ar〉〉Xϕ as

∃(α1, . . . , αr)∀(αr+1, . . . , αk)M, o(q, α1, . . . , αk) |= ϕ,

which closely resembles QSAT2, a typical ΣP
2 -complete problem. A reduction of

this problem to our model checking problem is straightforward. For each instance

of QSAT2, we create a model where the values of propositional variables p1, . . . , pr
are “declared” by agents A and the values of pr+1, . . . , pk by Agt \A. The subsequent

transition leads to a state labeled by proposition yes iff the given Boolean formula holds

for the underlying valuation of p1, . . . , pk. Then, QSAT2 reduces to model checking

formula 〈〈a1, . . . , ar〉〉Xyes. In order to obtain ΔP
3 -hardness, the above schema is com-

bined with nested cooperation modalities, which yields a rather technical reduction of

the SNSAT3 problem that can be found in [108].

For the upper bound, consider the following algorithm for checking M, q |= 〈〈A〉〉γ
with no nested cooperation modalities. First, we guess a strategy sA of the proponents

and fix A’s actions to the ones described by sA. Then we check if Aγ is true in state

q of the resulting model by asking an oracle about the existence of a counterstrategy

sĀ for Agt \ A that falsifies γ and reverting the oracle’s answer. The evaluation takes

place by calculating ô (which takes polynomially many steps) regarding the actions pre-

scribed by (sA, sĀ) at most |St| times. For nested cooperation modalities, we proceed

recursively (bottom-up).

Model Checking ATL∗ over Implicit CGM’s

Theorem 27 Model checking ATL∗Ir over implicit CGM’s is PSPACE-complete
with respect to the number of the states, agents, and implicit transitions in the model,
and the length of the formula.

We observe that every explicit CGM can be encoded as an implicit CGM with no

blowup in size. In consequence, the lower bound follows from Theorem 23.

For the upper bound, we model-check M, q |= 〈〈A〉〉γ by guessing a memoryless

strategy sA for coalition A. Then we guess a perfect information memoryless counter-

strategy sĀ of the opponents. Having a complete strategy profile, we proceed as in the

proof of Theorem 29 and check the LTL path formula γ on the resulting (polynomial

model) M ′ which can be performed in polynomial space (Theorem 23). For nested

cooperation modalities, we proceed recursively.

Theorem 28 Model checking ATL∗IR over implicit CGM’s is 2EXPTIME-complete
with respect to the number of the states, agents, and implicit transitions in the model,
and the length of the formula.
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Again, the lower bound follows from Theorem 22. For the upper bound, we have to

modify the algorithm given in the proof of Theorem 22 so that it is capable of dealing

with implicit models. More precisely, we need to modify the construction of the Büchi

automaton AM,q,A that is used to accept the (q, A)-execution trees. Before, we simply

checked all the moves of A in polynomial time and calculated the set of states A is

effective for (as the moves are bounded by the number of the transitions). Here, we have

to incrementally generate all these moves from A using ô. This may take exponential

time (as there can be exponentially many moves in terms of the number of the states

and agents). However, as this can be done independently of the non-emptiness check,

the overall runtime of the algorithm is still double exponential.

CTL Revisited

It seemed so far that the complexity of CTL model checking is not affected when we

measure the size of the model in terms of states rather than transitions. Is it really the

case? That depends on the representation of transitions. For an unlabeled transition

system, with the transition relation represented explicitly by pairs of states, the prob-

lem stays in deterministic polynomial time, cf. Theorem 25. For transitions labeled

by combinations of agents’ actions, represented in a compressed way, the problem be-

comes distinctly harder.

Theorem 29 Model checking CTL over implicit CGM’s is ΔP
2 -complete with respect

to the number of the states, agents, and implicit transitions in the model, and the length
of the formula.

To see the upper bound, observe that M, q |=CTL Eγ iff M, q |=ATLIR 〈〈Agt〉〉γ
which is in turn equivalent to M, q |=ATLIr

〈〈Agt〉〉γ. In other words, Eγ holds

iff the grand coalition has a memoryless strategy to achieve γ. Thus, we can ver-

ify M, q |=CTL Eγ (with no nested path quantifiers) as follows: we guess a strat-

egy sAgt for Agt (in polynomially many steps), then we construct the resulting model

M ′ by asking ô which transitions are enabled by following the strategy sA, check if

M ′, q |=CTL Eγ, and return the answer. Note that M ′ is an unlabeled transition sys-
tem, so constructing M ′ and checking M ′, q |=CTL Eγ can be done in polynomial

time. For nested modalities, we proceed recursively.

The lower bound is obtained by a reduction of the canonical NP-complete problem

of boolean satisfiability (SAT), defined formally as follows:

Definition 12 (SAT)
Input: A boolean formula Φ in Conjunctive Normal Form over propositional variables
x1, . . . , xk.

Output: � if there exists a valuation ϑ of x1, . . . , xk such that ϑ makes Φ true; other-
wise ⊥.

Thus, SAT decides satisfiability of a formula Φ ≡ C1 ∧ · · · ∧ Cn involving k propo-

sitional variables from set X = {x1, ..., xk}.

Below we sketch the reduction of SAT to model checking CTL formulae with

only one path quantifier. For propositional variables p1, . . . , pk and boolean formula

ϕ, we construct an implicit CGM where the values of p1, . . . , pk are “declared” by

agents Agt = {a1, . . . , ak} (in parallel). The subsequent transition leads to a state

labeled by proposition yes iff ϕ holds for the underlying valuation of p1, . . . , pk. Then,
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Figure 5.7: Overview of the model checking complexity for implicit CGM’s

SAT reduces to model checking formula 〈〈Agt〉〉Xyes. The reduction of SNSAT2 (a

canonical ΔP
2 -complete problem) to model checking of CTL formulae with nested

path quantifiers is an extension of the above SAT reduction, analogous to the one

presented in Section 7.1.1.

A summary of complexity results for the alternative representation of transitions is

presented in Figure 5.7.

5.3.2 Higher-Order Representations of Models
Explicit models of realistic systems are prohibitively large, both in the size of their state

spaces and the number of the transitions. Thus, for practical verification, systems must

be represented in a more compact way, for instance by generating the state space as

valuations of some discrete-valued attributes, and defining transitions through boolean

pre– and postconditions. Such high-level representations of multi-agent systems in-

clude, e.g., concurrent programs, reactive modules, ISPL specifications, modular in-

terpreted systems, etc. It is easy to see that unfolding a compact representation to an

explicit model involves usually an exponential blowup in its size. Consider, for exam-

ple, a system whose state space is defined by r boolean variables (binary attributes).

Obviously, the number of global states in the system is n = O(2r).
Below, we quote the main results for model checking temporal and strategic logics

in compact representations of states and transitions.

Theorem 30 Model checking CTL, LTL, and CTL� over concurrent programs is
PSPACE-complete with respect to the number of local states and agents, and the
length of the formula.

Theorem 31 Model checking ATL over simple reactive modules and modular inter-
preted systems is EXPTIME-complete with respect to the number of local states and
agents, and the length of the formula.

Thus, while ATL appears to have the same model checking complexity as CTL
at the first glance, it turns out distinctly harder when compact representations of states

and/or transitions are considered.

References and Further Reading. Again, we refer the reader to the survey chap-

ter [33] for an overview of relevant results. The technical results presented in this sec-

tion have been obtained in [107, 95, 168, 92, 96, 97, 108]. Implicit CGM’s were first

called this way in [108], but had been already present in the ISPL modeling language

of the MCMAS model checker [143, 142].



Chapter 6

Imperfect Information

6.1 Knowledge and Ability
The community of artificial intelligence recognized the importance of the concept of

ability for reasoning about machines and computational systems already in the 1960s.

Since the beginning of the discourse, ability and knowledge were seen as intimately

connected. We would like to begin this chapter by recalling the quote from McCarthy

and Hayes, already presented in Section 4.3:

We want a computer program that decides what to do by inferring in a

formal language that a certain strategy will achieve a certain goal. This

requires formalizing concepts of causality, ability, and knowledge. ([115],

emphasis added)

Although McCarthy and Hayes did not present a formalisation of ability, they did

speculate on what such a formalism might look like. They suggested three possible

interpretations of what it means for a computer program π to be able to achieve a state

of affairs ϕ (again quoting after [115]):

1. There is a sub-program σ and room for it in memory which would

achieve ϕ if it were in memory, and control were transferred to π.

No assertion is made that π knows σ or even knows that σ exists.

2. σ exists as above and that σ will achieve ϕ follows from information

in memory according to a proof that π is capable of checking.

3. π’s standard problem-solving procedure will find σ if achieving ϕ is

ever accepted as a subgoal.

The three cases address three viable interpretations of ability for a software agent,

that can be in fact generalized to all kinds of autonomous agents. In case (1), ability is

viewed from the standpoint of an omniscient external observer who can see that there

is some action or procedure such that, if agent π executes the action or followed the

procedure, then the achievement of ϕ will result. Thus, it corresponds to objective abil-

ity of the agent to bring about ϕ. Case (2) implies knowledge of the fact on the part of

the agent (at least in the theoretical sense of modal epistemic logic). We will later refer

to this kind of ability as subjective ability. Interpretation (3) refers to practical ability:

not only does the possibility for the agent to achieve ϕ exist, but the agent is capable

of computing and executing an appropriate strategy σ. Thus, the last interpretation

85
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is algorithmic, and may be formalized through the computational problem of strategy
synthesis.

After the seminal work of McCarthy and Hayes, probably the best-known and most

influential study of ability in AI was Moore’s analysis of the relationship between

knowledge and ability in a dynamic variant of first order epistemic logic. The basic

components of the framework are a set of possible worlds (essentially, system states)

and set of actions. To keep things simple, we will assume that there is just one agent in

the system. The modal operator (Res α ϕ) expresses that after action α is performed,
ϕ will be true, similarly to the dynamic logic expression [α]ϕ. Quantification plays an

important role in Moore’s logic of ability. Consider the distinction between the fol-

lowing quantified epistemic formulae, where Murderer(x) means that the individual

denoted by x is a murderer:

K(∃x : Murderer(x))

∃x : (K Murderer(x))

The first formula is called a de dicto formula, while the second is a de re formula.

The first property asserts that, in every world consistent with the agent’s knowledge,

∃x : Murderer(x) is true. Thus, it expresses that the agent knows that somebody is

a murderer, but it does not imply that the agent knows the identity of the individual in

question. In contrast, the de re formula asserts something stronger. It says that there is

some individual x such that in all epistemic alternatives for the agent, x is a murderer.

This time, the value of x is fixed across all epistemic alternatives for the agent, and

hence the agent knows the identity of the murderer.

Remark 2 The distinction between knowledge de dicto and knowledge de re can be
traced back to earlier philosophical discourse on the nature of knowledge. In par-
ticular, the works of Ryle on the concept of mind included an important distinction
between knowing that and knowing how. Roughly speaking, “knowing that” is the
standard concept of knowledge as a relation between agents and true propositions, ex-
pressed e.g. in epistemic logic. The concept of “knowing how” seems related, but is
clearly different: it is concerned with the knowledge of how to achieve things.

Researchers in AI have largely adopted the view that know-how can be reduced to
know-that. However, with a sufficiently rich logical formalism, the two notions turn out
distinct again, as we will argue in Section 6.4.

With the concepts of de dicto and de re in place, we can turn to Moore’s formalisa-

tion of ability. He was concerned with developing a theory of ability that would capture

the following two aspects of the interaction between knowledge and action:

1. As a result of performing an action, an agent can gain knowledge, and in partic-

ular, agents can perform “test” actions, in order to find things out.

2. In order to perform some actions, an agent needs knowledge: these are knowl-
edge preconditions. For example, in order to open a safe, it is necessary to know

the combination.

The ultimate aim is to define a unary operator (Can ϕ), intended to mean that the agent

has the ability to achieve ϕ. A naive attempt to define Can may be as follows:

(Can ϕ) ↔ (∃α : K(Res α ϕ))
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This definition says that the agent can bring about ϕ if there exists some action α
for which the agent knows that ϕ will result from the performance of α. Notice that

the variable α denoting the relevant action is quantified de re, and so this definition

implies that the agent knows the identity of the action. Moore pointed out, however,

that the definition suffers from one major drawback: the agent is required to know in

advance the identity of the whole of the action required to achieve the desired outcome.

In everyday usage, this seems much too strong a requirement. For example, I might

truthfully assure the publisher that “I can finish writing this book before the end of the

month” without knowing up front the exact text I am going to type. Moore proposed

the following adaptation of the definition:

(Can ϕ) ↔
∃α.K(Res α ϕ) ∨
∃α.K(Res α (Can ϕ))

Thus, an agent has the ability to achieve ϕ if either:

1. She knows the identity of an action for which she knows that after this action is

performed, ϕ will hold; or

2. She knows the identity of an action for which she knows that after this action is

performed, (Can ϕ) will hold.

The second case allows for the possibility of performing an action that will provide the

agent with the capability to achieve ϕ. Note the distinctly fixpoint flavor of the above

definition. We will come back to it in Section 7.3.

Moore’s formalism was enormously influential in the AI community. Many re-

searchers used ideas from his work to define and characterize ability. The idea of an

agent requiring de re knowledge of an action has been of particular lasting significance.

In this chapter, we focus on a somewhat more complex notion of ability, that looks at

strategies, i.e., conditional plans rather than simple actions. Still, the issue to what

extent an agent (or a group of agents) knows the right strategy, and the difference be-

tween knowing a suitable strategy de re vs. de dicto is a central one. We will discuss it

extensively in Section 6.4.

References and Further Reading. For a deeper overiew of philosophical and AI

approaches to knowledge and its influence on abilities, we refer the reader to the hand-

book [174], and especially the chapter [5].

The famous desideratum of McCarthy and Hayes can be found in [115]. For

Moore’s formalization of ability, see [119, 120]; the list of later works inspired by

Moore’s idea includes at least [121, 122, 123, 157, 183, 99, 93]. Ryle’s discourse on

“knowing that” vs. “knowing how” was proposed in [147], cf. also [159] for additional

discussion.

6.2 Abilities under Imperfect Information
Agents usually have incomplete knowledge about the environment where they act, as

well as about the current course of affairs, including the current mental states of the

other agents, the actions they took in the past, etc. That significantly affects their

abilities to achieve individual and collective objectives. In this section, we combine

concurrent game models and epistemic models in order to give semantics to a language
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expressing strategic ability under imperfect and/or incomplete information. Except

for a brief spell in Section 6.2.2, we do not involve epistemic operators in the object

language yet (this will be done more seriously in Section 6.4). Thus, knowledge is

reflected only in the models, through agents’ epistemic relations, but not explicitly

referred to in the formulae. As we will show, taking knowledge into account on purely

semantic level is already sufficient to make a strong impact on the meaning of strategic

operators and the patterns of ability that emerge.

In game theory, two different terms are traditionally used to indicate lack of in-

formation: incomplete and imperfect information. The former refers to uncertainties

about the game structure, whereas the latter refers to uncertainties about the current

state of the game while it is played. The models that we use allow for representing

both types of uncertainty in a uniform way. Thus, we take the liberty to use the two

terms interchangeably to indicate any possible relevant lack of information.

Example 50 (Rescue Robots: Properties to express)

♣ The robots can rescue person j;

♣ The robots can rescue person j, and they know that they can;

♣ The robots can rescue person j, and they know how to do it.

Example 51 (Voting: Properties to express)

Privacy: The system cannot reveal how a particular voter voted;

Receipt-freeness: The voter cannot gain any information (a receipt) which can

be used to prove to a coercer that she voted in a certain way;

Coercion-resistance: The voter cannot cooperate with the coercer to prove to

him that she voted in a certain way.

6.2.1 Bringing Strategies and Uncertainty Together
The decision making and abilities of strategically reasoning players are strongly influ-

enced by the knowledge they have about the world, other players, past actions, and so

on. In Chapters 4 and 5, we considered games of perfect information in the sense that

players were completely aware of the structure of the system as well as the current state

of the play, and the only information they lacked was the choices of the other players at

the current state. In reality, this is seldom the case: usually players have only partial in-

formation, both about the setup in general and about the specific play. In the following,

we are concerned with the question: What can players achieve in such scenarios?

We represent players’ incomplete information by indistinguishability relations ∼a⊆
St×St on the state space, similarly to models of epistemic logic in Section 2.1.3. The

relations are assumed to be equivalences. We note that in game theory clusters of in-

distinguishable states are called information sets of player a.

Formally, concurrent multi-player games with incomplete information can be mod-

elled by concurrent epistemic game structures (CEGS), defined as a tuples

S = (Agt, St, {∼a| a ∈ Agt}, Act, d, out),
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Figure 6.1: Robber in a bank (Mrobb). The dotted line indicates states indistinguishable

to the robber.

where (Agt, St, Act, d, out) is a concurrent game structure, and ∼a are indistinguisha-

bility relations over St, one per agent in Agt. A standard assumption in the case of

incomplete information is that players have the same available choices in indistinguish-

able states, for otherwise they would have a way to discern between these states. That

is, we require that q ∼a q′ implies da(q) = da(q
′). Such structures are sometimes

called uniform CEGS. A concurrent epistemic game model (CEGM) extends a CEGS

with an interpretation of atomic propositions V : PV → 2St. Below we present two

examples that will be used to test our intuitions with respect to the semantics of ability

under imperfect information.

Example 52 (Schobbens’ Robber) Figure 6.1 models the following scenario. A vault
containing a large sum of money is protected by a binary code. Realistically, the code
should be ca. 20 digits long, but in order to simplify the graph, we assume that it
consists of only 1 digit, either 0 or 1. If someone enters the right code, the vault opens
and gives access to what is stored there. If an incorrect code is entered, the alarm
system switches on. The code is set anew every morning by the guard agent g. Some
time later during the day, the robber (r) enters the bank and tries to open the vault.
However, he doesn’t know the current code, which is indicated by indistinguishability
of states q1 and q2.

Can we say that the rober has the ability to open the vault and get access to the
money? Intuitively not. He has all the necessary physical capabilities, but at the same
time lacks an important “soft” resource: knowledge which action should be used to
achieve the goal.

Example 53 (Poor Duck) Consider model Mduck in Figure 6.2, with the following
story. A man wants to shoot down a yellow rubber duck in a shooting gallery. The
man knows that the duck is in one of the two cells in front of him, but he does not
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Figure 6.2: Poor Duck model Mduck with one player (a) and transitions labeled with

a’s actions. Automatic transitions (i.e., such that there is only one possible transition

from the starting state) are left unlabeled.

know in which one. He can either decide to shoot to the left (action shootL), or to the
right (action shootR), or reach out to the cells and look what is in (action look). Note
that only one of the shooting actions can be successful – which one it depends on the
starting state of the game.1

Intuitively, the man does not have a strategy to ensure shooting down the duck in
one step, at least not from his subjective point of view. On the other hand, he should be
able to ensure it in multiple steps if he has a perfect recall of his observations. Finally,
getting the duck shot in one step can be guaranteed if the man is told the right strategy
before the start of the game. For instance, if the starting state is q0, then the right
strategy is “shoot to the left no matter what you see.” The man is perfectly capable of
executing the strategy (and making sure that the duck gets shot), though he would not
be able to come up with it on his own.

We will formalize the intuitions in the rest of the chapter.

6.2.2 Alternating-Time Temporal Epistemic Logic

The standard semantics of ATL does not take into account the epistemic limitations

of agents. Thus, it assumes implicitly that every agent has complete information about

the current global state of the system. We have already seen that actions, transitions,

and imperfect information can be put together in logical structures by a straightforward

fusion of concurrent game models and epistemic Kripke models. Alternating-time tem-
poral epistemic logic (ATEL) extends this idea to the level of logical formulae. That

is, ATEL is a straightforward combination of the multi-agent epistemic logic and

ATL. Formally, the syntax of ATEL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ | Kaϕ.

1For more seriously minded readers, we propose an alternative story: agent a is a doctor who can apply

two different treatments to a patient with symptoms that fit two different diseases. Additionally, the doctor

can order a blood test to identify the disease precisely.
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The semantics of ATEL is based on concurrent epistemic game models, and defined

by the union of semantic clauses for ATL and epistemic logic, that we presented in

detail in Chapters 2 and 4.

The logic enables specification of various modes and nuances of interaction be-

tween knowledge and strategic abilities, e.g.:

• 〈〈A〉〉γ → EA〈〈A〉〉γ: if group A can bring about γ, then everybody in A knows

that they can;

• EA〈〈A〉〉γ∧¬CA〈〈A〉〉γ: the agents inA have mutual knowledge but not common

knowledge that they can enforce γ;

• 〈〈a〉〉γ → Ka¬〈〈Agt \ {a}〉〉¬γ: if a can bring about γ, then she knows that the

rest of agents cannot prevent it, etc.

While ATEL indeed extends both ATL and epistemic logic, it also raises a num-

ber of conceptual problems. Most importantly, one would expect that an agent’s ability

to bring about property γ should at least imply that the agent has enough control and

knowledge to execute a strategy that enforces γ. Unfortunately, this is not the case.

Example 54 (Schobbens’ Robber: Counterintuitive abilities) Consider again model
Mrobb in Figure 6.1. According the semantics of ATEL, we have Mrobb , q0 |=
〈〈r〉〉Fopen, the right strategy being sr(q0) = −, sr(q1) = try0, sr(q2) = try1.
Note that nothing in the semantics of ATL and ATEL exclude this strategy. More-
over, combining strategic and epistemic operators does not help, as Mrobb , q0 |=
Kr〈〈r〉〉Fopen (in q0, the robber knows precisely the state of the system). So, using
ATEL makes us conclude that the robber can enforce opening the safe, and knows
about it, while none of those should intuitively be the case.

A number of approaches have been proposed to overcome this problem. Most of

the solutions agree that only so called uniform strategies are really executable. That

is, agents cannot plan different actions for states that they are not able to distinguish.

Moreover, it is often intuitive to assume that ability with respect to γ entails also the

agents’ capacity to identify the right strategy for achieving γ. Note that, in order to

identify a successful strategy, the agents must consider not only the courses of action

starting from the current state of the system, but also from states that are indistinguish-

able from the current one. We will discuss this in more detail in Section 6.4.1.

6.2.3 Uniform Strategies
In case of standard ATL, abilities were derived from strategies defined on states or

their sequences, i.e., memoryless or perfect recall strategies. For incomplete infor-

mation, the picture is similar. However, the two notions of a strategy must take into

account some constraints due to uncertainty of the players. That is, an executable strat-

egy has to assign the same choices to indistinguishable situations. Such strategies are

called uniform.

Definition 13 (Uniform strategy) A memoryless strategy sa is uniform if the follow-
ing condition is satisfied:

for all states q, q′ ∈ St, if q ∼a q′, then sa(q) = sa(q
′).
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Alternatively, a uniform memoryless strategy can be seen as a mapping from informa-
tion sets of a player to his actions (in that case, no additional constraints are needed).

For perfect recall strategies, we first lift the indistinguishability between states to
indistinguishability between sequences of states. Two histories h = q0q1 . . . qn and
h′ = q′0q

′
1 . . . q

′
n′ are indistinguishable for agent a, denoted by h ≈a h′, if and only if

n = n′ and qi ∼a q′i for i = 1, . . . , n.2 Now, a perfect recall strategy sa is uniform if
the following condition holds:

for all histories h, h′ ∈ St+, if h ≈a h′, then sa(h) = sa(h
′).

Uniform collective strategies are defined as tuples of uniform individual strategies.
Note that the constraints in collective strategies refer to individual choices and indi-
vidual relations ∼a (resp. ≈a), and not to collective choices and any derived relations
(e.g., ∼EA, ≈EA, ∼DA , etc.). In particular, no communication is presumed between the
agents that would reduce their uncertainties.

Example 55 (Uniform strategies for robbers and duck hunters) It is easy to see that
the strategy sr of Example 54 is not uniform, as it specifies different actions in states
q1, q2 that look exactly the same to the robber. Since q0q1 ≈r q0q2, the same applies
if we consider the analogous perfect recall strategy, i.e., s′r(q0) = −, s′r(q0q1) =
try0, s

′
r(q0q2) = try1. In fact, there is no uniform strategy for r in Mrobb – either

memoryless or memory-based – which would guarantee in q0 that the system will even-
tually reach q3.

The situation in model Mduck is more subtle. Consider q0 as the starting state.
Contrary to what one might expect, there is a uniform memoryless strategy for agent a
which guarantees that the system will reach shot, namely sa(q0) = sa(q1) = shootL.
When executed in q0, it brings the system to state q2 in one step. However, the agent
does not know that he sa is surely winning, since to his knowledge the initial state of
the game can be as well q1, and in q1 the strategy does not succeed. Finally, the perfect
recall strategy s′a(q0) = s′a(q1) = look, s′a(q0q4) = s′a(q1q5) = −, s′a(q0q4q0) =
shootL, s

′
a(q1q5q5) = shootR is uniform and guarantees success from both q0 and q1.

We will soon present two variants of alternating-time logic that take into account

the above considerations.

6.2.4 Reasoning about Abilities under Uncertainty
Agents’ incomplete information and use of memory can be incorporated into ATL∗

in different ways. One possible approach is not to change the logical language but to

consider variations of the semantics by suitably varying the notion of strategy employed

in the truth definition of the strategic operators. Combining the dimensions of memory

and information gives rise to four natural semantic relations for ATL∗:

|=
IR

: perfect Information and perfect Recall strategies;

|=
Ir

: perfect Information and imperfect recall strategies;

|=
iR

: imperfect information and perfect Recall strategies;

|=ir : imperfect information and imperfect recall strategies.

2We note that this corresponds to the notion of synchronous perfect recall according to [63].
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In this approach, the semantics of ATL∗ is parameterized with the type of strate-

gies – yielding four different semantic variants of the logic, that we label accordingly

ATL∗IR, ATL∗Ir, ATL∗iR, and ATLir. The following types of strategies are used in

the respective semantic variants:

• Ir: sa : St→ Act such that sa(q) ∈ d(a, q) for all q;

• IR: sa : St+ → Act such that sa(q0 . . . qn) ∈ d(a, qn) for all q0, . . . , qn;

• ir: like Ir, with the additional constraint that q ∼a q′ implies sa(q) = sa(q
′);

• iR: like IR, with the additional constraint that h ≈a h′ implies sa(h) = sa(h
′).

The four semantic variants are obtained by different updating of the main semantic

clause from Section 4.3.2. LetM be a CEGM, and let ∼EA=
⋃
a∈A ∼a be the epistemic

relation corresponding to the mutual knowledge of coalition A (i.e., what everybody in

A knows). Moreover, let [q]a = {q′ | q ∼a q′} denote the information set of agent a,

and analogously for coalitions A. The truth definitions for |=xy , where x ∈ {I, i}, y ∈
{R, r}, read as follows:

M, q |=
Iy

〈〈A〉〉γ iff there is a collective Iy strategy sA for A such that

M,λ |= γ for every play λ ∈ out(q, sA);

M, q |=iy 〈〈A〉〉γ iff there is a collective iy strategy sA for A such that

M,λ |= γ for every play λ ∈ ⋃
q′∈[q]A out(q

′, sA).

It is easy to see that the semantic relation |= for standard ATL∗ corresponds to |=
IR

.

Example 56 (Shooting the duck in variants of ATL∗) Consider the Poor Duck mo-
del Mduck of Example 53. There is no good strategy for the man to shoot down the
duck in one step regardless of the kind of memory that the man possesses – formally,
Mduck , q0 |=iR ¬〈〈a〉〉Xshot and Mduck , q0 |=ir ¬〈〈a〉〉Xshot. However, he should be
able to achieve it in multiple steps if he can remember and use his observations, i.e.,
Mduck , q0 |=iR 〈〈a〉〉Fshot.

On the other hand, suppose that it has been a long party, and the man is very tired,
so he is only capable of using memoryless strategies at the moment. Does he have
a memoryless strategy which he knows will achieve the goal? No. For each of the
three available strategies (shoot left whatever happens, shoot right whatever happens,
look whatever happens), the man has to take into account the possibility of failure. In
consequence, Mduck , q0 |=ir ¬〈〈a〉〉Fshot. However, interestingly enough, the man can

identify an opening strategy that will guarantee his knowing how to shoot the duck in
the next moment: Mduck , q0 |=

ir
〈〈a〉〉X〈〈a〉〉Fshot. The opening strategy is to look; if

the system proceeds to q4, then the second strategy is to shoot to the left, otherwise the
second strategy is to shoot to the right.

Example 57 Let us consider the concurrent epistemic game structure Mcarr5 in Fig-
ure 6.3 that combines the strategic structure from model Mcarr4 (Figure 4.2) with the
epistemic relations fromMcarr1 (Figure 7). Now, no agent knows how to make the car-
riage reach or avoid any selected state singlehandedly from q0, i.e., Mcarr5 , q0 |=iy
¬〈〈i〉〉Fposj and Mcarr5 , q0 |=iy ¬〈〈i〉〉G¬posj for all y ∈ {r,R}, i ∈ {1, 2}, j ∈
{1, 2, 3}. Note in particular that the strategy of Example 45 cannot be used here be-
cause it is not uniform. The robots cannot even identify the right strategy together, e.g.,
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Figure 6.3: Two robots and a carriage: concurrent epistemic game model Mcarr5 .

Dashed lines represent indistinguishability relations between states.

Mcarr5 , q0 |=iy ¬〈〈1, 2〉〉G¬pos1 (when in q0, robot 2 considers it possible that the
system is already in the “bad” state q1). So, do the robots know how to play to achieve
anything? Yes, for example they know how to make the carriage reach a particular
state eventually: Mcarr5 , q0 |=iy 〈〈1, 2〉〉Fpos1 etc. – it suffices that one of the robots
pushes all the time and the other waits all the time.

For the above properties the type of robots’ recall does not matter (they hold in
both memoryless and perfect recall strategies). 〈〈1, 2〉〉FGpos1 is an example ATL∗

formula that distinguishes between the two sets of strategies.

Objective Ability under Imperfect Information

Ability under incomplete information can be additionally classified into subjective and

objective. The latter refers to existence of a strategy that is guaranteed to succeed from

the perspective of an external observer with complete information, while the former

requires the strategy to guarantee success from the perspective of the player/coalition

executing it. The semantic definitions above are based on the subjective view. As it re-

quires that the executing players must be able to identify the right strategy on their own

(within the limits of their incomplete information), it imposes stronger requirements

on the strategy than the objective ability. Technically, this is because in the evaluation

of a state formula 〈〈A〉〉γ in state q, when judging the suitability of the selected uniform

strategy for A in terms of the coalition’s subjective ability all epistemic alternatives of

q with respect to ∼A are to be taken into account, whereas objectively it suffices to

check that the strategy only succeeds from q. Whenever confusion can arise, we will

refer to subjective and objective abilities by is and io, respectively.

The semantics of objective ability under imperfect information can be formally

defined as follows:

M, q |=ioy 〈〈A〉〉γ iff there is a collective iy-strategy sA for A such that

M,λ |= γ for every play λ ∈ out(q, sA).

Example 58 (Poor Duck: Subjective vs. objective ability) We have seen that
Mduck , q0 |=ir ¬〈〈a〉〉Xshot because the agent cannot identify the right strategy to
ensure Xshot. On the other hand, the strategy sa(q0) = sa(q1) = shootL does ob-
jectively work from q0. In consequence, we have that Mduck , q0 |=ior 〈〈a〉〉Xshot, and
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hence also Mduck , q0 |=
ioR

〈〈a〉〉Xshot.

Strategies Based on Aggregate Coalitional Uncertainty

Most modal logics of strategic ability agree that executable strategies are exactly the

ones that obey the uniformity constraints. For a joint strategy, this means that each

member of the coalition must be able to carry out his part of the joint plan individually.

An alternative approach is to redefine the notion of uniform coalitional strategy, based

on a suitable group indistinguishability relation for the coalition. The most interesting

case is when the “distributed knowledge” relation is used. Conceptually, this amounts

to assuming that members of the coalition have unlimited communicating capabilities,

and freely share relevant information during the execution of the strategy.

It can be shown that ATL∗ with the alternative semantics can be embedded in

the syntactic restriction that talks only about abilities of individual agents. Formally

and more precisely: there exists a truth-preserving translation of models and formulae

to the fragment of ATL∗ that allows only for singleton coalitions. Thus, in a way,

coalitions whose members can fully coordinate their actions and share their knowledge

can be seen as single agents in disguise.

References and Further Reading. For an overview of the issues that arise when

strategic ability is combined with incomplete information, we refer the reader to the

handbook chapters [5, 36].

Semantic variants for ATL with imperfect information have been studied in nu-

merous papers. We recommend especially [153, 99] as the starting point. The former

clarifies the basic conceptual structure of what it means to have strategic ability with

respect to some temporal property. The latter gives a more involved treatment of the

interplay between the epistemic and the strategic dimensions. Concurrent epistemic

game models, as well as ATEL, were proposed in [171, 172]. Other works on the log-

ical semantics of imperfect information strategies include e.g. [12, 89, 101, 176, 41].

The distinction between objective and subjective abilities was investigated in [39]. Al-

ternative semantics with coalitional strategies based on aggregate uncertainty were pro-

posed and studied in [73, 53, 74, 52], cf. also [103] for additional results.

6.3 Comparing Semantics of Strategic Ability
Semantic variants of ATL are derived from different assumptions about agents’ ca-

pabilities. Can the agents “see” the current state of the system, or only a part of it?

Can they memorize the whole history of observations in the game? Different answers

to these questions induce different semantics of strategic ability, and they provide dif-

ferent ways of analysing interaction models. However, it is not entirely clear to what

extent they give rise to different logics. One natural question that arises is whether the

semantic variants generate different sets of valid (and, dually, satisfiable) sentences. In

this section, we show a comparison of the validity sets for ATL∗ with respect to the

four semantic variants presented in the previous section.

The comparison of the validity sets is important for at least two reasons. Firstly,

many logicians identify a logic with the set of sentences that are valid in the logic. Thus,

by comparing validity sets we compare the respective logics in the traditional sense.

Perhaps more importantly, the validities of ATL∗ capture general properties of games

under consideration. If two variants of ATL∗ generate the same valid sentences, then

the underlying notions of ability induce the same kind of games. Conversely, if they
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generate different sets of validities, then they capture two different classes of games,

despite using the same class of models. All the variants studied here are defined over

concurrent epistemic game models. Hence, the difference between games induced

by different semantics lies in available strategies and the type of winning conditions,

encoded in semantic clauses.

We recall that we use the “star”/“no star” notation to identify the syntactic variant of

ATL, and subscripts to denote the semantic variant being used. For example, ATL∗ir
denotes the full language of ATL∗ interpreted with the semantic relation |=ir, that is,

the one which assumes incomplete information and memoryless strategies. Moreover,

we will use Valid(L) to denote the set of validities of logic L, and Sat(L) to denote

the set of satisfiable formulae in L.

6.3.1 Perfect vs. Imperfect Information
We begin by comparing properties of games with limited information to those where

players can always recognize the current state of the world. Firstly, we recall that

complete information can be seen as a special case of incomplete information: each

CGM can be seen as a CEGM in which each indistinguishability relation is taken as

the smallest reflexive relation. Hence, every valid formula of ATL∗ir is also a validity

of ATL∗Ir: if there were a CEGM M with M 
|=Ir ϕ, then also M 
|=ir ϕ would be the

case. On the other hand, the formula

〈〈A〉〉Fϕ↔ ϕ ∨ 〈〈A〉〉X〈〈A〉〉Fϕ

is a validity of ATLIr but not of ATLir, which shows that the containment is strict

even in the limited syntactic fragment of ATL.

Remark 3 The equivalence between 〈〈A〉〉Fϕ and ϕ∨〈〈A〉〉X〈〈A〉〉Fϕ is very important
since it provides a fixpoint characterization of 〈〈A〉〉Fϕ. The fact that 〈〈A〉〉Fϕ ↔
ϕ∨〈〈A〉〉X〈〈A〉〉Fϕ is not valid under incomplete information is one of the main reasons
why constructing verification and satisfiability checking algorithms is so difficult for
incomplete information strategies.

The argument for ATLiR vs. ATLIR is analogous. Thus, we get that

Valid(ATLir) � Valid(ATLIr) and Valid(ATLiR) � Valid(ATLIR), and the

same for the full language of ATL∗. Since the IR and Ir semantics coincide for ATL,

the second result implies also that Valid(ATLiR) � Valid(ATLIr). For the broader

language, the sets Valid(ATL∗iR) and Valid(ATLIr) turn out incomparable. The ar-

gument is rather technical, and we omit it here.

6.3.2 Memory-Based vs. Memoryless Strategies
The comparison of memory-based and memoryless strategies is technically more in-

volved. Firstly, we observe that for any tree-like CGM M the sets of memory-based

and memoryless strategies coincide. Secondly, one can show that every CGM M and

state q in M can be unfolded into an equivalent (more precisely, bisimilar) tree-like

CGM T (M, q). Thus, M, q 
|=IR ϕ implies T (M, q), q 
|=IR ϕ (by the latter observa-

tion) and in consequence also T (M, q), q 
|=Ir ϕ (by the first observation). Hence, we

get that ATL∗Ir ⊆ ATL∗IR. Moreover, the formula

ϕ ≡ 〈〈A〉〉(Fϕ1 ∧ Fϕ2) ↔ 〈〈A〉〉F((ϕ1 ∧ 〈〈A〉〉Fϕ2) ∨ (ϕ2 ∧ 〈〈A〉〉Fϕ1))
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is a validity of ATL∗IR but not of ATL∗Ir, which shows that the inclusion is strict. The

formula expresses decomposability of conjunctive goals: being able to achieve ϕ1∧ϕ2

must be equivalent to having a strategy that achieves first ϕ1 and ϕ2, or vice versa. It is

easy to see that the requirement holds for agents with perfect memory, but not for ones

bound to use memoryless strategies (and hence to play the same action whenever the

game comes back to a previously visited state).

Note, however, that ϕ is not a formula of ATL. Indeed, it is well known that the se-

mantics given by |=IR and |=Ir coincide in ATL. As a consequence, Valid(ATL∗Ir) �
Valid(ATL∗IR) and Valid(ATLIr) = Valid(ATLIR). On the other hand, strict sub-

sumption holds already for the language of ATL+ which allows cooperation modali-

ties to be followed by a Boolean combination of simple path formulae.

Finally, we consider the effect of memory in the incomplete information setting.

The idea is the same as for perfect information, but the unfolding of a CEGM into an

equivalent tree-like CEGM is technically more complex, as one has to take into account

the indistinguishability relations. To show that the inclusion is strict, we use

〈〈A〉〉X〈〈A〉〉Fϕ→ 〈〈A〉〉Fϕ

which is valid in ATLiR but not in ATLir. The formula states that, if A has an

opening move and a follow-up strategy to achieve eventually ϕ, then both strategies

can be combined into a single strategy enforcing eventually ϕ already from the initial

state. Thus, we get that Valid(ATLir) � Valid(ATLiR), and analogously for the

broader language of ATL∗.

6.3.3 Summary
We have obtained above the following hierarchy of logics:

Valid(ATL∗ir) � Valid(ATL∗iR) � Valid(ATL∗IR),

Valid(ATL∗ir) � Valid(ATL∗Ir) � Valid(ATL∗IR),

and Valid(ATLir) � Valid(ATLiR) � Valid(ATLIr) = Valid(ATLIR).

Equivalently, we can observe the following pattern in the sets of satisfiable sentences:

Sat(ATL∗IR) � Sat(ATL∗Ir) � Sat(ATL∗ir),

Sat(ATL∗IR) � Sat(ATL∗iR) � Sat(ATL∗ir),

and Sat(ATLIR) = Sat(ATLIr) � Sat(ATLiR) � Sat(ATLir).

The first, and most important, conclusion is that all the semantic variants of ability,

considered so far, are different with respect to the properties of games they induce.

Moreover, the results capture formally the usual intuition: complete information is a

particular case of incomplete information, memory-based games are special cases of

memoryless games, and information is a more distinguishing factor than memory. Fig-

ure 6.4 presents a graphical summary of the relationships. In fact, the figure displays

six rather than four semantic variants, including the distinction between subjective and

objective ability under imperfect information. The subscript is refers to subjective

ability, that is, the standard “i” semantics. Subscript io refers to the “objective” abil-

ity, where one only looks at paths starting from the actual initial state of the game,

cf. Section 6.2.4. As it turns out, general properties of agents’ objective and subjective

abilities are incomparable.
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ATL∗iorATL∗isr

ATL∗isR ATL∗ioR

ATL∗IR

ATL∗Ir

(a)

ATLIR = ATLIr

ATLiorATLisr

ATLisR ATLioR

(b)

Figure 6.4: Comparison of the sets of validities induced by various semantics of (a)

ATL∗, and (b) ATL. The arrows depict strict subsumption of the sets of validities,

e.g., “ATL∗Ir → ATL∗IR” means that Validities(ATL∗Ir) � Validities(ATL∗IR).
The dotted lines connect semantic variants with incomparable sets of validities. We do

not include links that follow from transitivity of the subsumption relation.

This chapter is concerned with the influence of incomplete information on the abil-

ities of agents. So, what is the impact? The above results show that assuming imperfect

information changes the set of properties that are universally true, i.e., ones that hold

in every model and every state. Moreover, the change is essential in the sense that

some fundamental validities of standard ATL (with perfect information) do not hold

anymore under imperfect information. We give three examples of such formulae here:

〈〈A〉〉Gϕ ↔ ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ (6.1)

〈〈A〉〉ϕ1 Uϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉X〈〈A〉〉ϕ1 Uϕ2 (6.2)

〈〈Agt〉〉Fϕ ↔ ¬〈〈∅〉〉G¬ϕ (6.3)

Formulae (6.1) and (6.2) provide fixpoint characterizations of strategic-temporal modal-

ities. Formula (6.3) addresses the duality between necessary and obtainable outcomes

in a game. All three sentences are validities of ATLIR and ATLIr, but they are not
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valid in ATLiR and ATLir.
3 The invalidity of fixpoint equivalences is especially im-

portant for practical purposes, since they normally provide the basis for model checking

and satisfiability checking algorithms.

On a more general level, the results demonstrate that what agents can achieve is

more sensitive to the strategic model of an agent (and a precise notion of achievement)

than it was generally realized. Last but not least, they show that the language of ATL∗

is sufficiently expressive to distinguish the main notions of ability.

References and Further Reading. The detailed analysis and technical results can be

found in [39]. Analogous results that compare more sophisticated semantic variants

of ATL∗ to a standard variant include [90] for undominated play, [4] for irrevoca-

ble strategies, [6] for agents with bounded memory, [38] for recomputable strategies,

[42] for truly perfect recall, and [103] for coalitional uniformity based on aggregate

uncertainty of coalitions.

6.4 Constructive Knowledge and Levels of Ability
Knowledge and abilities are not independent: the more one knows, the more one can

achieve by choosing a better suited strategy. We have seen that limited information

influences the range of available strategies that agents and coalitions can choose. Re-

spectively, it also affects the semantics of claims about an agent (or a coalition) being

able to enforce a given outcome of the game.

So far, we have taken agents’ knowledge into account only semantically, by intro-

ducing epistemic indistinguishability relations in the models, and defining their influ-

ence on the set of possible behaviors. In this section, we show what can be specified

by adding a suitable variant of epistemic language. The aim is to better capture the

nuances of the interplay between knowledge and ability.

6.4.1 Epistemic Levels of Strategic Ability
There are several possible interpretations of A’s ability to bring about property γ, for-

malized by formula 〈〈A〉〉γ, under imperfect information:

1. There exists a specification σA (not necessarily executable!) of A’s behavior

such that, for every execution of σA, γ holds.

2. There is a uniform strategy sA such that, for every execution of sA, γ holds (i.e.,

A have the objective ability to enforce γ).

3. Agents A know (in one sense or another, see below) that there is a uniform sA
such that, for every execution of sA, γ holds (i.e., A have a strategy “de dicto”
to enforce γ).

4. There is a uniform strategy sA such that A know that, for every execution of sA,

γ holds (i.e., A have a strategy “de re” to enforce γ).

The above interpretations form a sequence of increasingly stronger levels of ability –

each next one implies the previous ones. Case (1) corresponds to formula 〈〈A〉〉γ inter-

preted in the original semantics of ATL∗. Cases (2)–(4), however, are not expressible

3Interestingly, (6.3) becomes valid again with the “objective” interpretation of ability under imperfect

information.
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in the perfect information semantics of ATL∗, nor in straightforward combinations

of ATL∗ and epistemic logic such as ATEL. The impossibility holds even for the

nexttime fragment of ATL (i.e., coalition logic) and even when only a single agent is

considered. We will show soon how those cases can be formally characterized with a

suitable combination of strategic and epistemic modalities.

We note that cases (2), (3), and (4) come close to various philosophical notions

of ability that we discussed in Section 6.1. Cases (4) and (3) clearly resemble Ryle’s

distinction between “knowing how” and “knowing that”. In (4),A know how to enforce

γ. In (3), they know that they can somehow enforce it. Moreover, the two cases link

the notion of ability to an appropriate type of Moore’s knowledge: de re (of the right

strategy to play) or de dicto (that such a strategy exists).

The distinction between objective and subjective ability is closely related to the first

two interpretations of program ability by McCarthy and Hayes. Case (2) corresponds

to their first level of ability – i.e., the objective existence of a strategy (a “subprogram”

σ in McCarthy and Hayes’ terminology) that, if executed, will guarantee γ. Case

(4) is analogous to the second level – the decision maker (the “main program” π for

McCarthy and Hayes) has enough information to verify that σ enforces γ. We note

that their third, strongest level of program ability cannot be expressed in the logics

presented in this chapter, as they embed no notion of a problem-solving procedure

inside their semantics.

Out of the four levels of ability, case (4) is arguably most interesting, as it formal-

izes the notion of agents in A knowing how to play. However, the statement “A know

that every execution of sA satisfies γ” is precise only if A is a singleton {a}. Then, we

take into account the paths starting from the states indistinguishable from the current

one according to a, i.e.,
⋃
q′∈img(q,∼a)

out(q′, sa). In case of proper teams, there are

several different “modes” in which the members can know the right strategy. That is,

given strategy sA, coalition A can have:

• Common knowledge that sA enforces γ. This requires the least amount of addi-

tional communication when coordinating a joint strategy (it suffices that agents

from A agree upon a total order over their collective strategies at the beginning

of the game and that they will always choose the maximal successful strategy

with respect to this order).

• Mutual knowledge that sA enforces γ: everybody in A knows that sA brings

about γ.

• Distributed knowledge that sA enforces γ: if the agents share their knowledge at

the current state, they can identify the strategy as successful.

• “Leader”: the strategy can be identified by an agent a ∈ A;

• “Headquarters committee”: sA can be identified by a subgroup A′ ⊆ A.

• “Consulting company”: sA can be identified by another group B.

• ...Other variations are possible, too.

We note that the semantics of coalitional ability in ATL∗ir as well as ATL∗iR, pre-

sented in Section 6.2.4, implements the mutual knowledge mode of knowing how to
play.
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6.4.2 Constructive Strategic Logic
The issue of expressing various knowledge-related levels of ability through a suitable

combination of strategic and epistemic logics has attracted significant attention. Most

extensions (or refinements) of ATL, proposed as solutions, cover only some of the

possibilities, albeit in an elegant way. Others offer a more general treatment of the

problem at the expense of an unnecessarily complex logical language. One of the main

problems is how to capture the interplay between epistemic, strategic, and temporal

aspects of play with the kind of quantifiers offered by ATL on one hand, and epistemic

logic on the other. For example, “agents A have distributed knowledge about how to

play to enforce γ” can be rephrased as “there is a strategy for A such that, for every

state that is indistinguishable from the current one for all agents in A, and for every

path from that state, possibly resulting from execution of the strategy, γ must hold

on the path.” This, however, cannot be directly expressed in ATL which combines

quantification over strategies and paths within a single operator 〈〈A〉〉.
One way out is to use separate modal operators that quantify over strategies and

paths, the way it is done e.g. in Strategic stit and Strategy Logic. Indeed, “knowing

how to play” in the simpler case of one-step games has been expressed using a com-

bination of Chellas stit and epistemic logic. One can speculate that a straightforward

combination of epistemic operators with Strategic stit or Strategy Logic should work

equally well for long-term abilities. Such combinations have been already hinted in the

literature, but not properly investigated yet.

Another solution is to define the success of a strategy from a set of states, instead

of a single global state. This idea was used in Constructive Strategic Logic (CSL)

which extends ATL with so called constructive knowledge operators. In CSL, each

formula is interpreted in a set of states, rather than a single state. We write M,Q |=
〈〈A〉〉ϕ to express the fact that A must have a strategy which is successful for all the

states from Q ⊆ St. The new epistemic operators Ki,EA,CA,DA for “practical” or

“constructive” knowledge yield the set of states for which a single evidence (i.e., a

successful strategy) should be presented (instead of checking if the required property

holds in each of the states separately, like standard epistemic operators do).

Formally, let [q]R = {q′ | qRq′} denote the image of state q with respect to relation

R. We also extend the notation to images of sets of states: [Q]R =
⋃
q∈Q[q]R. The

semantics of CSL over concurrent epistemic game models is defined by the following

clauses:

M,Q |= p iff p ∈ V(q) for every q ∈ Q;

M,Q |= ¬ϕ iff M,Q 
|= ϕ;

M,Q |= ϕ ∧ ψ iff M,Q |= ϕ and M,Q |= ψ;

M,Q |= 〈〈A〉〉ϕ iff there is a uniform strategy sA such that M,λ |= ϕ for

every λ ∈ ∪q∈Q out(q, sA);
M,Q |= Kiϕ iff M, [Q]∼i |= ϕ;

M,Q |= CAϕ iff M, [Q]∼C
A
|= ϕ;

M,Q |= EAϕ iff M, [Q]∼E
A
|= ϕ;

M,Q |= DAϕ iff M, [Q]∼D
A
|= ϕ.

The semantic clauses for temporal operators are exactly as in ATL∗. Additionally, we
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Figure 6.5: Simple market: model Mmarkt

define that M, q |= ϕ iff M, {q} |= ϕ.

Example 59 (Market scenario) Consider an industrial company that wants to start
production, and looks for a good strategy when and how to do it. The market model
is depicted in Figure 6.5. The economy is assumed to run in simple cycles: after
the moment of bad economy (bad-market), there is always a good time for small and
medium enterprises (s&m), after which the market tightens and an oligopoly emerges.
At the end, the market gets stale, and we have stagnation and bad economy again.

The company c is the only agent whose actions are represented in the model. The
company can wait (action wait) or decide to start production: either on its own (own-
production), or as a subcontractor of a major company (subproduction). Both deci-
sions can lead to either loss or success, depending on the current market conditions.
However, the company management cannot recognize the market conditions: bad mar-
ket, time for small and medium enterprises, and oligopoly market look the same to
them, as the epistemic links for c indicate.

The company can call the services of two marketing experts. Expert 1 specializes in
oligopolies, and can recognize oligopoly conditions (although she cannot distinguish
between bad economy and s&m market). Expert 2 can recognize bad economy, but
he cannot distinguish between other types of market. The experts’ actions have no
influence on the actual transitions in the model, and are omitted from the graph in
Figure 6.5. It is easy to see that the company cannot identify a successful strategy
on its own: for instance, for the small and medium enterprises period, we have that
Mmarkt , q1 |= ¬Kc〈〈c〉〉Fsuccess. It is also not enough to call the help of a single
expert: Mmarkt , q1 |= ¬K1〈〈c〉〉Fsuccess ∧ ¬K2〈〈c〉〉Fsuccess, or to ask the experts to
independently work out a common strategy: Mmarkt , q1 |= ¬E{1,2}〈〈c〉〉Fsuccess. Still,
the experts can propose the right strategy if they join forces and cooperate to find the
solution: Mmarkt , q1 |= D{1,2}〈〈c〉〉Fsuccess.

This is not true anymore for bad market: Mmarkt , q0 |= ¬D{1,2}〈〈c〉〉Fsuccess, as
c is a memoryless agent, and it has no uniform strategy to enforce success from q0 at
all. However, the experts can suggest a more complex scheme that involves consulting
them once again in the future: Mmarkt , q0 |= D{1,2}〈〈c〉〉X D{1,2}〈〈c〉〉Fsuccess.
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6.4.3 Closer Look at Constructive Knowledge

In order to “constructively know” that ϕ, agents A must be able to find (or “construct”)

a mathematical object that supports ϕ. This is relevant when ϕ ≡ 〈〈B〉〉γ; in that case,

the mathematical object in question is a strategy for B which guarantees achieving γ.

The semantic role of constructive knowledge operators is to produce sets of states that

will appear on the left hand side of the satisfaction relation. In a way, these modalities

“aggregate” states into sets, and sets into bigger sets.

Note that in CSL we can use two different notions of validity. We say that a

formula is weakly valid (or simply valid) if it is satisfied individually by each state in

every model, i.e.,, if M, q |= ϕ for all models M and states q in M . It is strongly
valid if it is satisfied by all non-empty sets in all models; i.e., if for each M and every

non-empty set of states Q it is the case that M,Q |= ϕ. We are ultimately interested

in the former. The importance of strong validity, however, lies in the fact that strong

validity of ϕ ↔ ψ makes ϕ and ψ completely interchangeable. That is, if ϕ1 ↔ ϕ2

is strongly valid, and ψ′ is obtained from ψ through replacing an occurrence of ϕ1 by

ϕ2, then M,Q |= ψ iff M,Q |= ψ′. It is not difficult to see that the same is not true

for weak validity.

Clearly, strong validity implies validity, but not vice versa.

Defining Standard Knowledge from Constructive Knowledge

In the semantics of CSL, formulae are interpreted in sets of states; in order for ϕ to

hold inM,Q, the formula must be “globally” satisfied in all states fromQ at once (i.e.,

with a single strategy). Notice, however, that M,Q |= 〈〈∅〉〉ϕUϕ iff M, q |= ϕ for

every q ∈ Q. This can be used as a technical trick to evaluate ϕ “locally” (i.e., in every

state of Q separately). In particular, we can use it to define standard knowledge from

constructive knowledge as:

Kaϕ ≡ Ka〈〈∅〉〉ϕUϕ,

and analogously for group knowledge operators. It is not difficult to see that M, q |=
Ka〈〈∅〉〉ϕUϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′. More generally, the

following formula of CSL is strongly valid:

KAϕ ↔ K̂A〈〈∅〉〉ϕUϕ,

where K = C,E,D and K̂ = C,E,D. In consequence, we obtain that standard
knowledge can be seen as a special case of constructive knowledge.

Properties of Constructive Knowledge

Operators CA, EA, DA, and Ka are supposed to capture a special kind of agents’

knowledge. An interesting question is: do these notions have the properties usually

associated with knowledge? In particular, do postulates K,D,T,4,5 of epistemic

logic hold for constructive knowledge? Below, we list the constructive knowledge

versions of the S5 axioms of individual knowledge. “Yes” means that the schema is

strongly valid; “No” means that it is not even weakly valid (keep in mind that strong

validity implies validity). Incidentally, none of the properties turns out to be weakly

but not strongly valid.
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K Ka(ϕ→ ψ) → (Kaϕ→ Kaψ) Yes

D ¬Ka⊥ Yes

T Kaϕ→ ϕ No

4 Kaϕ→ KaKaϕ Yes

5 ¬Kaϕ→ Ka¬Kaϕ Yes

Thus, in general, the answer is no; particularly, axiom T does not hold. Note,

however, that the axiom does hold in the restricted case when constructive knowledge

is applied to positive strategic formulae, i.e., Ka〈〈B〉〉γ → 〈〈B〉〉γ is strongly valid in

CSL. Moreover, the above results show that Ka satisfies the standard postulates for

beliefs: logical closure, consistency, and positive as well as negative introspection.

This suggests that “knowing how to play” sits somewhere in between the realms of

doxastic and epistemic logic: it is stronger than belief but not quite as strong as standard

knowledge.

6.4.4 Expressing Epistemic Levels of Ability in CSL
A nice feature of CSL is that standard knowledge operators can be defined using con-

structive knowledge. Thus, one can use formulae of CSL to express the following:

1. 〈〈a〉〉γ expresses that agent a has a uniform strategy to enforce γ from the current
state, i.e., a has the objective ability with respect to γ (but may not know about

it);

2. Ka〈〈a〉〉γ refers to agent a having a strategy “de dicto” to enforce γ (i.e. knowing

that some successful uniform strategy is available);

3. Ka〈〈a〉〉γ refers to agent a having a strategy “de re” to enforce γ (i.e. having a

successful uniform strategy and knowing the strategy);

It is interesting to see that Ka〈〈a〉〉γ captures the notion of a’s knowing how to play
to achieve γ, while Ka〈〈a〉〉γ refers to knowing only that a successful strategy is possi-
ble. This extends naturally to abilities of coalitions. Again, that connects neatly to the

fundamental discourse on ability that we mentioned in Section 6.1. It can be argued

that standard knowledge operators Ka capture Ryle’s notion of know-that, whereas

constructive knowledge operators Ka refer to the notion of know-how. Also, for-

malisations (1) and (3) above roughly correspond to McCarthy and Hayes’s levels (1)

and (2) of program ability. Finally, formulae Ka〈〈a〉〉γ and Ka〈〈a〉〉γ capture formally

Moore’s distinction between ability de re and de dicto for long-term strategies. This

extends naturally to abilities of coalitions, with CA〈〈A〉〉γ,EA〈〈A〉〉γ,DA〈〈A〉〉γ formal-

izing common, mutual, and distributed knowledge of how to play, Ka〈〈A〉〉γ capturing

the “leader” scenario, and so on. Different levels of knowledge “de dicto” are captured

analogously. We conclude the topic with the following examples.

Example 60 (Onion Soup Robbery) A virtual safe contains the recipe for the best
onion soup in the world. The safe can only be opened by a k-digit binary code, where
each digit ci is sent from a prescribed location i (1 ≤ i ≤ k). To open the safe and
download the recipe it is enough that at least n ≤ k correct digits are sent at the
same moment. However, if a wrong value is sent from one of the locations, or if an
insufficient number (i.e., between 1 and n−1) of digits is submitted, then the safe locks
up and activates an alarm.
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k agents are connected at the right locations; each of them can send 0, send 1,
or do nothing (nop). Moreover, individual agents have only partial information about
the code. To make the example more concrete, we assume that agent i (connected to
location i) knows the values of ci−1 XOR ci and ci XOR ci+1 (we take c0 = ck+1 = 0).
This implies that only agents 1 and k know the values of “their” digits. Still, every
agent knows whether his neighbors’ digits are the same as his.4

Formally, the concurrent epistemic game modelAttacknk is constructed as follows:

• Agt = {1, . . . , k};

• St = St1 ∪ St2, where states in St1 = {0, 1}k identify possible codes for the
(closed) safe, and states in St2 = {open, alarm} represent the situations when
the safe has been opened, or when the alarm has been activated;

• PV = {open}; V(open) = {open}; Act = {0, 1, nop};

• d(i, q) = {0, 1, nop} for q ∈ St1, and d(i, q) = {nop} for q ∈ St2;

• For all q ∈ St: o(q, nop, . . . , nop) = q. For q ∈ St1, and at least one αi 
= nop:
o(q, α1, . . . , αk) = open if αj = cj for at least n agents j and αi /∈ {ci, nop}
for no i; else, o(q, α1, . . . , αk) = alarm.

• q ∼i q′ iff q[i − 1]XOR q[i] = q′[i − 1]XOR q′[i] and q[i]XOR q[i + 1] =
q′[i]XOR q′[i+ 1].

The following CSL formulae hold in every state q ∈ St1 of model Attacknk , as-
suming that k ≥ 3:

• 〈〈Agt〉〉Fopen ∧ ¬EAgt〈〈Agt〉〉Fopen: there is an executable strategy for the
agents, which guarantees a win, but not all of them can identify it (in fact, none
of them can in this case);

• DAgt〈〈Agt〉〉Fopen: if the agents share information they can recognize who should
send what;

• D{1,...,n−1}〈〈Agt〉〉Fopen: it is enough that the first n − 1 agents devise the
strategy. Note that the same holds for the last n − 1 agents, i.e., the subteam
{k − n+ 2, . . . , k};

• Still, ¬D{1,...,n−1}〈〈1, . . . , n− 1〉〉Fopen: all agents are necessary to execute

the strategy.

We observe that constructive knowledge operators allow to approximate the amount
of communication that is needed to establish a winning strategy in scenarios where ex-
plicit modeling of communication is impossible or too expensive. For instance, formula
DAgt〈〈Agt〉〉Fopen says that if the agents in Agt share their information they will be
able to determine a strategy that opens the safe. Of course, the model does not include
a possibility of such “sharing”, at least not explicitly. That is, there is no transition
that leads to a state in which the epistemic relations of agents have been combined
via intersection. Still, DAϕ indicates that there is epistemic potential for agents in A
to realize/infer ϕ; what might be missing is means of exploiting the potential (e.g., by
communication). In the same way, DA〈〈A〉〉Fϕ says that the epistemic potential for A
to determine the right strategy for Fϕ is there, too. So, it might be profitable to design
efficient communication mechanisms that make the most of it.

4For the more seriously minded readers, we observe that the story is just a variant of coordinated attack.
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Example 61 (Rescue Robots: Expressing the properties)

♣ The robots can rescue person j:

〈〈Robots〉〉Fsafej.

Note: this looks like the specification in the previous chapter, but a uni-
form strategy is required for the robots now!

♣ The robots can rescue person j, and they know that they can:

ERobots〈〈Robots〉〉Fsafej.

Or: CRobots〈〈Robots〉〉Fsafej, DRobots〈〈Robots〉〉Fsafej, etc.

♣ The robots can rescue person j, and they know how to do it:

ERobots〈〈Robots〉〉Fsafej.

Or: DRobots〈〈Robots〉〉Fsafej, CRobots〈〈Robots〉〉Fsafej, etc.

Example 62 (Voting: Expressing the properties)

♠ The system cannot reveal how a particular voter voted:

¬〈〈system〉〉F(
∨

c∈Candidates

revealedVotev,c).

Or: ¬Ksystem〈〈system〉〉F(∨c∈Candidates revealedVotev,c).

A more refined specification: ¬〈〈system〉〉FKcoerc(
∨
c∈Candidates votedv,c).

What if the system revealed the information but the coercer were too dumb
to listen? � our final refinement of the specification:

¬〈〈system〉〉F
(
Kcoerc〈〈coerc〉〉F Kcoerc(

∨
c∈Candidates

votedv,c)
)
.

♠ The voter cannot cooperate with the coercer to prove to him that she voted

in a certain way:

¬〈〈v, coerc〉〉FKcoerc(
∨

c∈Candidates

votedv,c).

More liberal interpretation:

¬D{v,coerc}〈〈v, coerc〉〉FKcoerc(
∨
c∈Candidates votedv,c).

♠ The voter cannot gain any information (a receipt) which can be used to

prove to a coercer that she voted in a certain way:

Cannot be expressed in CSL!
(we need a notion of information update)
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Chapter 7

Model Checking Uncertain
Agents

7.1 Verification of Abilities in Imperfect Information
Scenarios

In contrast to the perfect information setting, analogous fixpoint characterizations need

not hold for the incomplete information semantics of ATL. This is because the choice

of a particular action at a state q has non-local consequences: it automatically fixes

agent i’s choices at all states q′ indistinguishable from q for i. Note that, for two

different members of coalition A, uniformity of their parts of the coalitional strategy

imposes different constraints on their choices if their epistemic relations are not exactly

the same. Moreover, the agents’ ability to identify a strategy as winning also varies

throughout the game in an arbitrary way (agents can learn as well as forget). This

suggests that winning strategies cannot be synthesized incrementally. The observation

is supported by the formal results that we will present in this section.

7.1.1 Model Checking ATLir

Schobbens was the first to show that model checking strategic ability for agents with

imperfect information is not doable anymore in deterministic polynomial time. His

argument follows by a reduction of the boolean satisfiability problem (SAT) already

presented in Section 5.3.1. We recall that SAT decides satisfiability of formulae Φ ≡
C1 ∧ · · · ∧ Cn involving k propositional variables from set X = {x1, ..., xk}. Each

clause Ci can be written as Ci ≡ x
si,1
1 ∨· · ·∨xsi,kk where si,j ∈ {+,−, 0}; x+j denotes

a positive occurrence of xj in Ci, x
−
j denotes an occurrence of ¬xj in Ci, and x0j

indicates that xj does not occur in Ci. The problem asks if ∃X.Φ, that is, if there is a

valuation of x1, ..., xk such that Φ becomes true.

Schobbens’ reduction is as follows: we construct a CEGMMSAT(Φ) with the states

grouped in n rows corresponding to subsequent clauses. Within row i, we put a se-

quence of states qi,j corresponding to literals x
si,j
j in clause Ci, such that si,j 
= 0.

There are also two additional states: the “winning” state q�, labeled by proposition

win, and the “failure” state q⊥. The system includes only one player v (the “verifier”).

At state qi,j , the verifier can declare the underlying variable xj true or false (actions

108
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Figure 7.1: Single-agent model MSAT(Φ) for boolean formula Φ ≡ C1 ∧ C2 with

C1 ≡ x1 ∨ ¬x3 ∨ x4 and C2 ≡ x1 ∨ x2 ∨ x4

� and ⊥, respectively). If she “misses” (i.e., the declared value makes the literal x
si,j
j

false), then the system proceeds to the next state in the row; for the last state in the row,

it proceeds to the failure state q⊥. If she makes a hit (i.e., the declaration makes the x
si,j
j

true), then the system proceeds to the initial state for the next clause. If Ci was already

the last clause (i.e., i = n), then hitting the right value makes the system proceed to the

winning state q�. Finally, the states corresponding to the same variable xj are indistin-

guishable to agent v so that she has to declare the same value for xj within a uniform

strategy. An example of the construction for Φ ≡ (x1 ∨¬x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) is

shown in Figure 7.1.

Now, we have that SAT(Φ) iff MSAT(Φ), q1,1 |=ir 〈〈v〉〉Fwin. Both the number of

the states and transitions inMSAT(Φ) are linear in the length of Φ, and the construction

of M requires linearly many steps. Thus, the model checking problem for ATLir is

NP-hard even for extremely simple instances.

Theorem 32 Model checking ATLir is NP-hard. It is NP-hard even for 1-player
models and formulae of type 〈〈a〉〉Fp.

The upper bound is obtained as follows. First, the algorithm in Figure 7.2 can

be used to nondeterministically check if M, q |=ir 〈〈A〉〉γ for flat formulae, i.e., such

that γ includes no nested cooperation modalities. For nested cooperation modalities,

we proceed recursively (bottom up), replacing subformulae by freshly created atomic

propositions that hold in exactly the same set of states. Since model checking CTL can

be performed in polynomial deterministic time, we get that model checking ATLir is

in ΔP
2 = PNP. In other words, it can be done in polynomially many steps by a

deterministic Turing machine making adaptive calls to an NP oracle. Note also that

for formulae of “Positive ATL” (where negation is allowed only at the level of literals),

the strategies for all the cooperation modalities in ϕ can be guessed in advance, at the

beginning of the algorithm. Thus, we get the following.

Theorem 33 Model checking Positive ATLir is NP-complete with respect to the
number of the transitions in the model and the length of the formula.
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function mcheckatlir(M, q, 〈〈A〉〉γ).
Model checking simple formulae of ATLir.

Returns � if M, q |=
ir
ϕ and ⊥ otherwise.

� Guess a uniform strategy sA;

� Remove from M all the transitions that are not going to be executed accord-

ing to sA;

� Model-check CTL formula Aγ in the resulting model, and return the out-

come.

Figure 7.2: Nondeterministic model checking for simple formulae of ATLir

The above bounds are not tight for model checking arbitrary ATLir formulae, and

the actual complexity can be anywhere between NP and ΔP
2 . As it turns out, the more

pessimistic estimate is the right one: the problem is in general ΔP
2 -complete. We will

show this by a reduction of a suitable ΔP
2 -complete problem. To this end, we first

present an alternative SAT reduction which will be subsequently “lifted” to a more

complex decision problem.

Given a boolean formula Φ in CNF, we construct the new CEGM MSAT2(Φ) as

follows. There are two players now: the “verifier” v and the “refuter” r. The refuter

decides at the beginning of the game which clause Ci will have to be satisfied: this is

done by proceeding from the initial state q0 to a “clause” state qi. At qi, the verifier

decides (by proceeding to a “literal” state qi,j) which of the literals x
si,j
j fromCi will be

attempted. Finally, at qi,j , the verifier attempts to prove Ci by declaring the underlying

propositional variable xj true (action �) or false (action ⊥). If she succeeds (i.e., if she

executes � for x+j , or executes ⊥ for x−j ), then the system proceeds to the “winning”

state q�. Otherwise, the system stays in qi,j . Additionally, “literal” states referring

to the same variable are indistinguishable for the verifier, so that she has to declare

the same value of xj in all of them within a uniform strategy. A sole proposition yes
holds only in the winning state q�. Obviously, states corresponding to literals x0j can

be omitted from the model.

Speaking more formally,MSAT2(Φ) = 〈Agt, St,Π, π, Act, d, o,∼1, ...,∼k〉, where:

• Agt = {v, r},

• St = {q0} ∪ Stcl ∪ Stlit ∪ {q�}, where Stcl = {q1, . . . , qn}, and Stlit =
{q1,1, . . . , q1,k, . . . , qn,1, . . . , qn,k};

• Π = {yes}, π(yes) = {q�},

• Act = {1, ...,max(k, n),�,⊥},

• d(v, q0) = d(v, q�) = {1}, d(v, qi) = {1, ..., k},

d(v, qi,j) = {�,⊥},

d(r, q) = {1, ..., n} for q = q0, and d(r, q) = {1} otherwise;

• o(q0, 1, i) = qi, o(qi, j, 1) = qi,j ,
o(qi,j ,�, 1) = q� if si,j = +, and qi,j otherwise,

o(qi,j ,⊥, 1) = q� if si,j = −, and qi,j otherwise;
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Figure 7.3: Alternative reduction of SAT for Φ ≡ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

• q0 ∼v q iff q = q0, qi ∼v q iff q = qi, qi,j ∼v q iff q = qi′,j .

As an example, the modelMSAT2(Φ) for Φ ≡ (x1∨¬x3)∧(¬x1∨x2∨x3) is presented

in Figure 7.3.

Now, we have SAT(Φ) iff MSAT2(Φ), q0 |=ir 〈〈v〉〉Fyes. We proceed to lift the

reduction so that it works for the sequential boolean satisfiability problem SNSAT2,

complete for the class ΔP
2 .

Definition 14 (SNSAT2)
Input: k sets of propositional variables Xr = {x1,r, ..., xn,r}, k propositional vari-
ables zr, and k boolean formulae Φr in CNF, where each Φr involves only variables
from Xr ∪ {z1, ..., zr−1}, with the following requirement:

zr is true iff there exists an assignment of variables in Xr which makes Φr true.

By a slight abuse of notation, this can be expressed as zr ≡ ∃Xr Φr(z1, ..., zr−1, Xr).
Output: The truth value of zk.

Let m be the maximal number of clauses in any Φ1, ...,Φk from the given input.

Now, each Φr can be written as:

Φr ≡ Cr1 ∧ · · · ∧ Crm, and Cri ≡ x
sri,1
1,r ∨ · · · ∨ xs

r
i,k

k,r ∨ zs
r
i,k+1

1 ∨ . . . zs
r
i,k+r−1

r−1 .

Again, sri,j ∈ {+,−, 0}; x+ denotes a positive occurrence of x, x− denotes an oc-

currence of ¬x, and x0 indicates that x does not occur in the clause. Similarly, sri,k+j
defines the “sign” of zj in clause Cri . Given such an instance of SNSAT2, we con-

struct a sequence of concurrent game structures Mr for r = 1, ..., k in a similar way

to MSAT2 . That is, clauses and variables xi,r are handled in exactly the same way as

before. Moreover, if zi occurs as a positive literal in Φr, we embed Mi in Mr, and add
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a transition to the initial state qi0 ofMi. If ¬zi occurs in Φr, we do almost the same: the

only difference is that we split the transition into two steps, with a state negri (labeled

with an ATLir proposition neg) added in between.

More formally, Mr = 〈Agt, Str,Π, πr, Actr, dr, or,∼r1, ...,∼rk〉, where:

• Agt = {v, r},

• Str = {qr0, qr1, . . . , qrm, qr1,1, . . . , qrm,k, negr1, . . . , negrr−1, q�} ∪ Str−1,

• Π = {yes, neg}, πr(yes) = {q�}, πr(neg) = {negji | i, j = 1, ..., r},

• Actr = {1, ...,max(k + r − 1,m),�,⊥},

• dr(v, qr0) = dr(v, negri ) = dr(v, q�) = {1}, dr(v, qri ) = {1, ..., k + r − 1},

dr(v, qri,j) = {�,⊥},

dr(r, q) = {1, ...,m} for q = qr0 and {1} for the other q ∈ Str.
For q ∈ Str−1, we simply include the function fromMr−1: dr(a, q) = dr−1(a, q);

• or(qr0, 1, i) = qri , or(qri , j, 1) = qri,j for j ≤ k,

or(qri , k + j, 1) = qj0 if sri,k+j = +, and or(qri , k + j, 1) = negrj if sri,k+j = −,

or(negrj , 1, 1) = qj0,

or(qri,j ,�, 1) = q� if sri,j = +, and qri,j otherwise,

or(qri,j ,⊥, 1) = q� if sri,j = −, and qri,j otherwise.

For q ∈ Str−1, we include the transitions from Mr−1: or(q, α) = or−1(q, α);

• qr0 ∼v q iff q = qr0 , qri ∼v q iff q = qri , qri,j ∼v q iff q = qri′,j .

For q, q′ ∈ Str−1, we include the tuples from Mr−1: q ∼rv q′ iff q ∼r−1v q′.

As an example, model M3 for Φ3 ≡ (x3 ∨ ¬z2) ∧ (¬x3 ∨ ¬z1), Φ2 ≡ z1 ∧ ¬z1,

Φ1 ≡ (x1 ∨ x2) ∧ ¬x1, is presented in Figure 7.4. Now, let

ϕ1 ≡ 〈〈v〉〉
ir
(¬neg)U yes,

ϕi ≡ 〈〈v〉〉
ir
(¬neg)U (yes ∨ (neg ∧ AX¬ϕi−1)).

We have that, for all r, zr is true iff Mr, q
r
0 |= ϕr. Thus, for r = k, we get a reduction

of SNSAT2. The following is a straightforward corollary.

Theorem 34 Model checking ATLir is ΔP
2 -complete with respect to the number of

the transitions in the model and the length of the formula.

7.1.2 Model Checking Nexttime Formulae
Model checking strategic ability under imperfect information turns out distinctly harder

than for perfect information. However, all the proofs in Section 7.1.1 used long-term

abilities to construct appropriate reductions. What about short-term abilities? That

is, what happens to the complexity if we restrict the language to formulae 〈〈A〉〉Xϕ of

ATL, or alternatively formulae [A]ϕ of Coalition Logic? It is easy to see that the

iR- and ir-semantics are equivalent for CL since X is the only temporal operator, and

thus only the first action in a strategy matters. As a consequence, whenever there is

a successful iR-strategy for agents A to enforce Xϕ, then there is also an ir-strategy

for A to obtain the same. Perfect recall of the past does not matter in one-step games.

Surprisingly, what matters is the size of teams that are allowed to cooperate.

Theorem 35 Model checking CLir and CLiR for formulae that include only strategic
operators 〈〈A〉〉with |A| ≤ 2 is P-complete with respect to the number of the transitions
in the model and the length of the formula, and can be performed in time O(|M | · |ϕ|).
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Figure 7.4: CEGM for the reduction of SNSAT2. The superscripts in state labels are

omitted since they can be deduced from the sub-machine in which the state resides.

The P-hardness follows from Theorem 20, since perfect information CGM’s can

be seen as a special kind of CEGM where indistinguishability relations contain only the

reflexive loops. To obtain the upper bound, we use the algorithm in Figure 7.5 to model

check formulae of type 〈〈A〉〉Xp where A ⊆ {a1, a2}. It is easy to see that the algo-

rithm never processes the same transition twice. For 〈〈A〉〉Xϕ with nested cooperation

modalities, we proceed recursively (bottom up).

What about larger coalitions? Surprisingly, having more than two agents on board

makes the problem NP-hard again:

Theorem 36 Model checking Simple CLir and Simple CLiR for |A| ≥ 3 is NP-
complete with respect to the number of the transitions in the model and the length of
the formula.

The upper bound is obtained by the following algorithm. To checkM, q |= 〈〈A〉〉Xp,

we guess a one-step strategy of A, remove from M the irrelevant transitions and states

outside [q]∼A
, and check if p holds for all the remaining “next” states.

For the lower bound, we use yet another reduction of SAT. Given a boolean

formula Φ in CNF, we construct a 3-agent CEGM MSAT3(Φ) as follows. Each literal l

from clause ψ in Φ is associated with a state qψl . At state qψl , player 1 indicates a literal

from ψ, and player 2 decides on the valuation of the underlying Boolean variable.

If 1 indicated a “wrong” literal l′ 
= l, then the system proceeds to state q� where

proposition yes holds. The same happens if 1 indicated the “right” literal (l) and 2
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function mcheckclir(M, q, 〈〈a1, a2〉〉Xp).
Model checking CL formulae with small coalitions and no nested modalities.

Let Q = [q]∼A
and D = da1(q)× da2(q);

while there is still a collective action (α1, α2) in D do:

� Fix α1 for a1 in [q]∼a1
and α2 for a2 in [q]∼a2

. Remove irrelevant transi-

tions;

� For every state in [q]∼A
there is at most one agent in A for whom the action

has not been fixed. If ai’s action is not fixed for q′, q′′ such that q′ ∼ai q′′
then collapse q′, q′′ into a single state (taking the union of the outgoing

transitions). Repeat iteratively;

� If in the resulting perfect information CEGM A have a one-step strategy

to enforce p in the next state from all states in [q]∼A
then return true else

remove (α1, α2) from D and revert to the original model M ;

od

Return false (since the loop ended with no success, there are no more available

actions);

Figure 7.5: Model checking Coalition Logic for small teams and imperfect information

selected the valuation that makes l true. Otherwise the system proceeds to the “failure”

state q⊥. Player 1 must select literals uniformly within clauses, so qψl ∼1 qψ
′

l′ iff

ψ = ψ′. Player 2 is to select uniform valuations of variables, i.e., qψl ∼2 qψ
′

l′ iff

var(l) = var(l′) where var(l) is the variable contained in l. Finally, all states except

q�, q⊥ are indistinguishable for 3. An example of the construction is presented in

Figure 7.6.

For models constructed this way, Φ is satisfiable iffMSAT3(Φ), q |= 〈〈1, 2, 3〉〉Xyes,
where q is an arbitrary “literal” state.

7.1.3 Bad News for Agents with Perfect Recall
The really bad news for model checking ATL with imperfect information await when

we concern memory-based strategies.

Theorem 37 Model checking ATLiR is undecidable.

Proof idea. The proof follows by a reduction of the non-halting problem for non-

deterministic Turing machines. Given a machine T , we construct a CEGM M such

that the evolution of the configuration of T is simulated by the tree of computations

in M . That is, subsequent configurations of T are represented by subsequent levels

in the tree unfolding of M . There are 3 agents in M : the verifiers (agents 1 and 2)

who “move” the head of the tape in T , and the refuter (agent 3) who takes care of

splitting the branches (i.e., adding new symbols to the tape whenever they are needed).

The indistinguishability relations for 1 and 2 are constructed so that moving the head

(and possibly changing the current state of T ) proceeds uniformly; 1 takes care of the

left-hand side of the head, and 2 of the right-hand side. Special proposition ok labels
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qC1
x1

qC1
x2

qC2¬x1
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q�

yes

q⊥

1 1

2 2

3 3 3
x
1 ,⊥ x

2 ,⊥ ¬
x
1
,�

x2
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Figure 7.6: Model MSAT3(Φ) for Φ ≡ C1 ∧ C2, where C1 ≡ x1 ∨ x2 and C2 ≡
¬x1 ∨x2. Only transitions leading to q⊥ are labeled; the other combinations of actions

lead to q�.

elements of configurations from which T has to proceed further. Thus, we get that T
does not terminate iff M, q0 |= 〈〈1, 2〉〉Gok.

An example unfolding is shown in Figure 7.7. For more details, we refer to the

technical construction in [55]. �

It is worth pointing out that for single-agent coalitions the model checking problem

is decidable – more precisely, EXPTIME-complete.

Remark 4 Theorem 37 is well aligned with the tradition of previous undecidability
results [134, 133, 140, 173, 155, 154] for various logical combinations of the temporal
and epistemic dimensions. At the first glance, one may even think that it follows from
those previously existing results. This impression is misleading. To give a better view
of the complicated landscape on the borderline of decidability for modal logics of time,
knowledge, and strategies, we comment on it below in more detail.

Classical results in [134, 133] show that solving games with imperfect information,
perfect recall and multiple proponents is undecidable. However, the games in [134,
133] are defined by Turing machines. In case of ATLiR models can be seen as Büchi
automata with simple acceptance conditions (reachability or safety). We note that,
for games defined by Turing machines, more sophisticated “winning conditions” can
be specified, e.g., we can imagine a game in which the protagonist agents must count
specific actions of the opponent in order to win. As a more precise example, imagine a
game in which team T1 = {a1, a2} is playing against the “environment” agent a0 in
the following way: first, the opponent (a0) throws in any finite number of © symbols
onto the tape, and then agents a1, a2 can write a number of #’s, before they decide
to “call”. After that, a0 checks if the amounts of ©’s and #’s are the same: if so,
team T1 wins, otherwise it loses the game. Clearly, such a winning condition cannot
be specified through a CEGM with a subset of states marked as “winning” states,
because the language {©n#nεω | n ∈ N} is not ω-regular. Moreover, using a Turing
Machine allows to define more sophisticated rules of how the game proceeds, e.g., the
protagonists can be allowed to put another symbol � on the tape only when they have
already put as many #’s as there are ©’s left by the opposition.

The paper [140] shows that that the LTL realizability problem for distributed sys-
tems is undecidable. This implies that model checking of ATL∗iR is undecidable, but
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Figure 7.7: Simulation of computation q0B ⇒ aq1B ⇒ q2ab of the Turing machine

it does not carry over to “vanilla” ATLiR. That is because “winning conditions” in
[140] are defined through LTL specifications, so we have winning paths rather than
states. Moreover, the reduction of the halting problem to the realizability problem em-
ploys LTL formulae that are expressible in neither CTL nor ATL (cf. [60]).

Finally, [173] shows undecidability of model checking for LTL with perfect recall
and common knowledge, and [155, 154] gives analogous results for CTL. However,
ATLiR does not allow for expressing common knowledge within teams of agents with
perfect recall.

7.1.4 Model Checking ATL∗

After all the bad news in preceding subsections, it comes as a bit of relief that ATL∗

specifications do not make things worse more than necessary. Of course, model check-

ing ATL∗iR must be undecidable by Theorem 37. On the other hand, model checking

ATL∗ with memoryless strategies is no more complex than for LTL, by the same

argument as for Theorem 23.

Theorem 38 Model checking ATL∗ir is PSPACE-complete with respect to the num-
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Figure 7.8: Overview of the model checking complexity results for explicit models.

All results are completeness results except where indicated. Rows indicate syntactic

restrictions, columns indicate semantic variants.

ber of the transitions in the model and the length of the formula.

Figure 7.8 presents an overview of the model checking complexity results for ex-

plicit models.

References and Further Reading. A survey of complexity results for model checking

in variants of strategic logics has been published in [33].

ATL with imperfect information and perfect recall was proved undecidable in [55].

EXPTIME-completeness of solving 2-player adversarial games with perfect recall

has been obtained in [56]. It also follows from the proof of a more general decidability

result in [74] for model checking abilities of coalitions with unrestricted communica-

tion. Model checking complexity for one-step abilities has been established in [38].

7.2 Complexity Results for Compact Representations
Compact Representations of Transitions

For compressed representations of the transitions in the model, model checking of

abilities under imperfect information turns out no harder than in the perfect information

case.

Theorem 39 Model checking ATLir over implicit CEGM’s is ΔP
3 -complete with re-

spect to the number of the states, agents, and implicit transitions in the model, and the
length of the formula.

Thus, the complexity of model checking for ATLir is the same as for ATLIr and

ATLIR. For the upper bound, we can use a straightforward adaptation of the algorithm

for ATLIr. For the lower bound, we observe that ATLIr can be embedded in ATLir

by explicitly assuming perfect information of agents (through the minimal reflexive

indistinguishability relations). Moreover, the hardness proof of Theorem 26 can be

reconstructed so that only the “nexttime” sublanguage of ATL is used. Thus, we

obtain the following.

Theorem 40 Model checking CLir, and CLiR over implicit CGM’s is ΔP
3 -complete

with respect to the number of the states, agents, and implicit transitions in the model,
and the length of the formula. The same applies to CLIR and CLIr.

It is worth mentioning that model checking Positive ATL (i.e., the fragment of

ATL where negation is allowed only on the level of literals) is ΣP
2 -complete with

respect to the size of implicit CGM’s, and the length of formulae for the IR, Ir, and



118 CHAPTER 7. MODEL CHECKING UNCERTAIN AGENTS
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Figure 7.9: Overview of the model checking complexity for implicit CEGM’s. All

results are completeness results.

ir semantics. We also observe that the proof of Theorem 27 can be directly applied to

uniform memoryless strategies.

Theorem 41 Model checking ATL∗ir over implicit CGM’s is PSPACE-complete with
respect to the number of the states, agents, and implicit transitions in the model, and
the length of the formula.

Notice that the finer-grained analysis puts verification of strategic abilities for

memoryless agents to the same complexity class regardless of whether they have per-

fect or imperfect information. It is somewhat unexpected, as the former case appears to

be strictly harder than the latter when we approach it from a more “distant” perspective

(i.e., when the input parameters are less detailed). What is different then, that makes

model checking of ATLir harder than standard ATL in relation to the number of the

transitions? Definitely not the size of the transition function itself, because CGM’s can

be seen as a special case of CEGM’s. A comparison of model checking complexity

results for turn-based structures gives us a hint in this respect. For such turn-based

models, the number of the transitions is bounded by |St| · |Act|, and in consequence

standard ATL can be model-checked in deterministic polynomial time by means of

the standard fixpoint algorithm in Figure 5.1. The same is not possible for ATLir.

Theorem 42 Model checking ATLIr and ATLIR over turn-based implicit CEGM’s is
P-complete and can be performed deterministically in time O(|St| · |Act| · |ϕ|). Since
|Act| ≤ |St| for turn-based structures, the bound can be replaced by O(|St|2 · |ϕ|).

On the other hand, model checking ATLir over turn-based implicit CEGM’s is
ΔP

2 -complete.

Moreover, the exhaustive model checking of arbitrary formulae of ATL with per-

fect information is performed in time O(|St| · |Act||Agt| · |ϕ|), while for ATLir it can

be done in O(|St| · |Act||Agt|·|St| · |ϕ|) steps. This is due to the fact that successful

ATLIr/ATLIR strategies can be computed incrementally, state by state. By contrast,

uniform strategies must be considered as a whole, which requires much more back-

tracking if we check the possibilities exhaustively.

We present a summary of the complexity results in Figure 7.9.

Local Representations of State Spaces

Another surprise comes to light when we study the verification complexity for compact

representations of state spaces.

Theorem 43 Model checking ATLir over simple reactive modules and modular inter-
preted systems is PSPACE-complete with respect to the number of local states and
agents, and the length of the formula.
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Figure 7.10: Overview of the model checking complexity for local representations of

state spaces. All the results are completeness results except where indicated.

Thus, model checking over local representations (such as modular interpreted sys-

tems) seems to be easier for imperfect rather than perfect information strategies. On

the other hand, the results for explicit models were exactly the reverse. There are

two possible reasons. The more immediate is that agents with limited information have

fewer available strategies than if they had perfect information about the current (global)

state of the game. Generally, the difference is exponential in the number of the agents.

More precisely, the number of perfect information strategies is double exponential with

respect to the number of the agents and their local states, while there are “only” expo-

nentially many uniform strategies – and that settles the results in favor of imperfect

information.

The other reason is more methodological. While model checking imperfect infor-

mation is easier when we are given a particular modular interpreted system, MIS’s may

represent systems in a more compact way for agents that have perfect information by

definition. In particular, the most compact MIS representation of a given CEGM M
can be exponentially larger than the most compact MIS representation of M with the

epistemic relations removed. This is because a modular interpreted system encoding

a CEGM must represent the epistemic relations explicitly (like in standard interpreted

systems where epistemic relations are generated by local state spaces, cf. Section 3.3).

In contrast, a modular interpreted system encoding a perfect information model ignores

the epistemic aspect, which gives some extra room for a more compact representation

of the transition relation.

On the other hand, it should be noted that for systems of agents with “reason-

ably imperfect information,” i.e., ones where the number of each agent’s local states

is logarithmic in the number of global states of the system, the optimal MIS encod-

ings for perfect and imperfect information are the same. Still, model checking ATLIR

is EXPTIME-complete and model checking ATLir is PSPACE-complete, which

suggests that imperfect information can offer some advantage in practical verification.

Finally, we report two results that are straightforward extensions of Theorem 40 and

Theorem 43, respectively. Figure 7.10 collects the known results for model checking

strategic logics over local representations.

Theorem 44 Model checking CLIR, CLIr, CLir, and CLiR is ΔP
3 -complete with

respect to the number of local states and agents in the local representation, and the
length of the formula.

Theorem 45 Model checking ATL∗ir over modular interpreted systems is PSPACE-
complete with respect to the number of local states and agents, and the length of the
formula.
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Logic \ Input Explicit CEGM Implicit CEGM Local represent.

CTL P ΔP
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CLIr,IR P ΔP
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2 ΔP
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ATL∗iR Undecidable Undecidable Undecidable

Figure 7.11: Overview of the model checking complexity for different syntactic and se-

mantic variants, and different representations of systems. All results are completeness

results except where indicated.

Summary

The most important complexity results obtained in Chapter 5 and this chapter are pre-

sented in Figure 7.11. An important outcome of theoretical research on verification is

to determine the precise boundary between variants that are decidable and those that

are not. As the results show, decidability depends on the specification language, the

amount of available information, the type of memory available to agents. Moreover,

even if the problem is decidable, the precise complexity of most variants ranges from

ΔP
2 to 2EXPTIME. Thus, Figure 7.11 is filled mostly with complexity classes that

are generally considered intractable.

But what does a hardness result really tell us? It shows that there is no general

algorithm, efficiently solving the problem at hand. Yet one is often not interested in

verification of all possible specifications in all possible models. This raises the ques-

tion: Which interesting fragments of the model checking problem have manageable
complexity? Answering the question seems crucial for the future of verification for

multi-agent systems.

References and Further Reading. Our exposition of the verification complexity for

different variants of ATL follows mostly [33]. Details of the technical results can be

found in [108, 97, 31, 92].

7.3 Taming the Complexity by Reinstating Fixpoints

An important feature that distinguishes variants of ATL for imperfect information

scenarios is that the standard fixpoint characterizations of temporal modalities do not

hold anymore. In this section, we show that adding explicit fixpoint operators to the

“nexttime” fragment of ATL allows to capture abilities that cannot be expressed in the

variants of ATL that have been considered so far. The new language enables specifica-

tion of an important kind of abilities, namely ones where agents can always recompute

their strategy while executing it. Thus, the agents are not assumed to remember their

strategy by definition, like in the previous variants. Even more importantly, verification
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of such abilities can be cheaper than for all the other variants of “ATL with imperfect

information.”

7.3.1 Alternating Epistemic μ-Calculus

One of the features that distinguish abilities under imperfect information from the

perfect information setting is that the fixpoint characterizations of strategic/temporal

modalities do not hold. On the conceptual level, this means that having a strategy to

achieve γ does not mean that the agents will be able to recompute the strategy when

they are executing it. Thus, the semantics includes an implicit assumption that the

agents can remember the strategy which they are executing even if they forget every-

thing else.

This can be a good thing or a bad thing, depending on the notion of ability that

one wants to formalize. Nevertheless, the other kind of ability (enforcing γ without

resorting to additional memory of the strategy) is equally important. It captures the

idea of agents “persistently knowing how to play to enforce γ”, i.e., so that they can

come up with the right strategy not only at the beginning of the game; they will know
how to recreate the strategy also in any future moment of the play. Moreover, this

kind of ability has a minimalistic flavor regarding epistemic prerequisites: agents are

supposed to achieve γ while resorting only to observations that they can make along

the way.

How can we reason about such recomputable strategies? Instead of considering yet

another semantics of strategic modalities, it suffices to add explicit fixpoint operators

to the “nexttime” fragment of ATL. As it turns out, the class of abilities obtained

this way cannot be expressed in the previously presented variants of ATL. Moreover,

recomputable strategies can be (by definition) synthesized incrementally, which makes

the synthesis tractable–at least for small coalitions.

Syntax and Semantics

Consider alternating μ-calculus, introduced in Section 4.3.3 for reasoning about fix-

point properties of agents with perfect information. The variant of AMC for imper-

fect information can be defined in a straightforward way. The main change concerns

the semantic clause for operator 〈〈A〉〉X. Now, 〈〈A〉〉Xϕ is only true if agents A have a

uniform one-step strategy which enforcesϕ from all the states that are indistinguishable

from the current one. We also add epistemic operators Ka to the language, since they

cannot be expressed in the “nexttime” fragment of ATLir. This way, we obtain the

alternation-free alternating epistemic μ-calculus (AEMC in short), given formally as

follows:

ϕ ::= p | Z | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | μZ(ϕ) | Kaϕ

where A ⊆ Agt, a ∈ Agt, p ∈ PV , Z ∈ FV and each free occurrence of Z in ϕ is

under the scope of an even number of negations in ϕ. The greatest fixpoint operator

νX(ϕ) is defined as before. In fact, we will only look at the alternation-free part of

the language , i.e., the formulae which, in their negation normal form, do not contain

both μ and ν on any syntactic path from μ/νX to a bound occurrence of X .

The denotational semantics of AEMC takes the semantics of alternating μ-calculus,

and updates it as follows:
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Figure 7.12: Models Mpub and Mpub2 , each with a single agent 1

[[〈〈A〉〉Xϕ]]M,E = {q | ∃sA ∈ ΣirA ∀q′ ∈ [q]∼E
A
∀λ ∈ out(q′, sA) .

λ[1] ∈ [[ϕ]]M,E},
[[Kaϕ]]M,E = {q | ∀q′ . q ∼a q′ implies q′ ∈ [[ϕ]]M,E}.

In other words, q ∈ [[〈〈A〉〉Xϕ]]M,E iff agents A have a collective uniform strategy

such that everybody in the group knows that it enforces ϕ in the next step. We write

M, q |=
i
ϕ iff q ∈ [[ϕ]]M,E for all valuations E of fixpoint variables in FV . Notice the

subscript i indicating that the semantics of 〈〈A〉〉X is based on imperfect information

strategies.

Example 63 Consider the concurrent epistemic game modelMpub in Figure 7.12. The
story is as follows: A married man is sitting in a pub drinking with his friends (q0). In
order to get back to his wife (q2), he needs to finish his drinking session first (q1), but
that will result in a temporary lapse of memory. In particular, the man will have a
nagging feeling that something might be wrong with his marriage, e.g., his wife could
have left him because of his drinking habits (q′1), in which case he can only come back
to an empty house (q′2).1

Obviously, we have that Mpub , q0 |=ir 〈〈1〉〉Fp, so the man should rest assured.
However, is it really the property he is after? He knows now that everything will be
fine, but he also knows that he will get confused on the way, which may prevent him
from reaching his goal. The stronger, more persistent kind of ability is captured by the
AEMC formula μZ(p ∨ 〈〈1〉〉XZ), which does not hold in Mpub , q0.

The right hand side of Figure 7.12 presents a slightly different model Mpub2 in
which the man’s marriage is indeed collapsing. Like in Mpub , we have Mpub2 , q0 
|=i

μZ(p ∨ 〈〈1〉〉XZ), but this time also Mpub2 , q0 
|=ir 〈〈1〉〉Fp.

The example suggests that ATLir and AEMC capture different types of strategic

ability. We analyse the new kind of ability in the next subsection.

7.3.2 Specification of Fixpoint Abilities
Alternating epistemic μ-calculus can be useful for specification and verification of per-

sistent strategic abilities. In the subsequent paragraphs, we show fixpoint properties

1For similar stories in serious literature on interpretation of game models, see [136, 135].
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Figure 7.13: Models Mforget and Mforget2 : inconveniences of forgetting

that formally capture the informal intuition.

Strategic Fixpoints: Achievement

Formulae of AEMC enable expressing that agents A have a strategy to enforce a

temporal property γ while knowing how to play all along the game. For achievement

properties, we have typically γ ≡ Fϕ. We note that the ability to eventually achieve ϕ
while knowing how to play all along can have at least two meaningful interpretations:

1. Agents A have a strategy which they know to achieve ϕ, can be recomputed

along the execution, and guarantees that they will know whenϕ has been achieved;

2. The agents have a recomputable strategy that they know to achieve ϕ, but they

will not necessarily know when ϕ is achieved.

For a single agent the first achievement ability corresponds closely to the AEMC-

formula:

μZ(Kaϕ ∨ 〈〈a〉〉XZ).
Analogously, we can describe the second interpretation by:

μZ(ϕ ∨ 〈〈a〉〉XZ).

We observe that these formulae (and formulae of AEMC in general) have a strong

“constructive” flavor. In particular, they require not only that a has a uniform strategy

to eventually obtain ϕ, but also that:

• she can recompute the strategy at any future state resulting from executing it,

• she knows about that, and furthermore

• with every step, a knows that the goal is closer, and hence the part of the strategy

that she needs to recompute becomes smaller.
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This is a stronger kind of ability than those typically expressed in ATLir. For

illustration, consider model Mforget in Figure 7.13. Agent a has a uniform strat-

egy to achieve p eventually: Mforget , q0 |=
ir

〈〈a〉〉Fp (the strategy is to play α ev-

erywhere). It is even the case that a can recompute the successful strategy on the

way: Mforget , q0 |=ir 〈〈a〉〉(〈〈a〉〉Fp)U p, which is trivial as only one action is avail-

able throughout the model. However, the corresponding AEMC specifications do not

hold: Mforget , q0 
|=
i
μZ(p ∨ 〈〈a〉〉XZ) and Mforget , q0 
|=

i
μZ(Kap ∨ 〈〈a〉〉XZ). This

is because a is never certain that the goal state is really approaching. More precisely,

suppose that a executes action α in state q0. In the next state, q1, she executes α again.

However, as she considers q3 possible when in q1, the resulting state might – from her

perspective – also be q0. Applying this reasoning iteratively, we get q0q3(q0q3)
ω as

one of possible execution paths, and it never satisfies p. Thus, the agent does not know

that she has a recomputable strategy to achieve p.

Strategic Fixpoints: Maintenance

Now we turn to maintenance goals, typically expressed by γ ≡ Gϕ. Like for achieve-

ment properties, the ability to maintain ϕwhile knowing how to play all along can have

at least two interpretations:

1. Agents A have a strategy to maintain both the truth of ϕ and the knowledge of

ϕ, and the strategy can be recomputed at every step.

2. The agents have a recomputable strategy to maintain the truth of ϕ (but they may

become unsure if ϕ is true at some steps).

Similarly to achievement properties, we can capture the first interpretation by

νZ(Kaϕ ∧ 〈〈a〉〉XZ).
The second interpretation can be characterized analogously by formula:

νZ(ϕ ∧ 〈〈a〉〉XZ).
For maintenance goals, the difference between ATLir and AEMC specifications

is even clearer. Consider model Mforget2 in Figure 7.13. We have Mforget2 , q0 |=ir

〈〈a〉〉G¬p which expresses that a can avoid p. For example, take the strategy in which

α is played everywhere. We even have Mforget2 , q0 |=
ir
〈〈a〉〉G(¬p∧〈〈a〉〉G¬p): while

avoiding p, the agent can recompute a successful strategy. However, at q1, she can

only come up with a strategy that is different from the original strategy (i.e., play β
everywhere), and indeedMforget2 , q0 
|=

i
νZ(¬p∧〈〈a〉〉XZ) as well asMforget2 , q0 
|=

i

νZ(Ka¬p ∧ 〈〈a〉〉XZ).
Combinations of achievement and maintenance, captured by the “until” operator

U , can be treated analogously.

7.3.3 Expressive Power of AEMC
We have already indicated that AEMC captures a different kind of ability than ATLir

and ATLiR. This can be shown formally by comparing their expressivity.

Definition 15 (Expressive and distinguishing power) Let L1 = (L1, |=1) and L2 =
(L2, |=2) be two logical systems over the same class of models M. By [[φ]]|= =
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{(M, q) | M, q |= φ}, we denote the class of pointed models that satisfy φ accord-
ing to the semantics given by |=. Likewise, [[φ,M ]]|= = {q |M, q |= φ} is the set of
states (or, equivalently, pointed models) that satisfy φ in a given structure M .

L2 is at least as expressive as L1 iff for every formula φ1 ∈ L1 there exists φ2 ∈ L2

such that [[φ1]]|=1
= [[φ2]]|=2

.

It is well known that alternating μ-calculus is strictly more expressive than ATL
and ATL∗ in the perfect information setting. We start our analysis of fixpoints in im-

perfect information scenarios by showing that, analogously, AEMC allows to capture

properties that cannot be expressed in ATLir.

Theorem 46 ATLir is not as expressive as AEMC over the class of CEGM’s.

Proof sketch. Alternation-free modal μ-calculus is strictly more expressive than CTL
over the class of Kripke models. Now suppose that ATLir is at least as expressive as

AEMC over the class of CEGM’s. Then, ATLir would also be at least as expressive

as AEMC over Kripke models, as Kripke models can be seen as single-agent CEGM’s

with perfect information. Thus, CTL would be at least as expressive as alternation-

free μ-calculus over the class of Kripke models, which is a contradiction.

Note that epistemic operators are not used in the proof, so they are not the reason

for the expressivity gap. �

It also turns out, rather unexpectedly, that AEMC does not cover the whole ex-

pressivity of ATLir. The main idea is to prove that the pointed models (Mpub , q0) and

(Mpub2 , q0) in Figure 7.12 satisfy exactly the same formulae of AEMC, but they are

distinguished by the ATLir formula 〈〈1〉〉Fp.

Theorem 47 AEMC is not as expressive as ATLir over the class of CEGM’s.

Corollary 2 AEMC is incomparable to ATLir in expressive power over the class of
CEGM’s.

How does the picture change if agents have memory? Let us compare ATLiR

and AEMC (recall that it does not make sense to consider memory-based strategies

in AEMC since the strategic modalities of AEMC refer only to one-step abilities).

Clearly, the analogue of Theorem 47 holds for ATLiR by the same argument. But also

analogue of Theorem 46 holds, since ATLiR and ATLir are equally expressive over

perfect information CEGM’s. Thus, if the claim were not true, then ATLiR would

also be at least as expressive as AEMC over Kripke models. As before this yields a

contradiction, since alternation-free μ-calculus is strictly more expressive than CTL.

Corollary 3 AEMC is incomparable to ATLiR in expressive power over the class
of CEGM’s.

7.3.4 Complexity of Model Checking
AEMC allows to specify interesting properties that cannot be expressed in the “stan-

dard” variants of ATL with imperfect information. A natural question arises: How

costly is the verification of those properties? We recall that:

• Model checking of strategic logics with perfect information (ATLIr, ATLIR,

alternation-free AMC) is in P;
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• Verification of ATLir (imperfect information and memoryless strategies) is ΔP
2 -

complete even for turn-based systems and singleton coalitions;

• Model checking ATLiR (imperfect information, memory-based strategies) is

undecidable.

It turns out that model checking of alternating epistemic μ-calculus is in P for

coalitions consisting of at most two agents (in a system including arbitrarily many

agents). Moreover, the problem is between NP and ΔP
2 if larger coalitions are in-

volved. Thus, verification with AEMC is distinctly cheaper than with ATL for abili-

ties of small coalitions, and no harder in the general case. To see this, we point out that

the μ-operator in AEMC is a standard least fixpoint operator. Thus, the crucial part of

model checking is the computation of the preimage for 〈〈A〉〉X (i.e., the set of states sat-

isfying 〈〈A〉〉Xp for a given proposition p). Then, an arbitrary formula can be verified

through a polynomial number of calls to preimage computations within the standard

iterative algorithm (cf. Figure 5.1). The complexity of the preimage computation was

already established in Theorems 35 and 36. Thus, we obtain the following.

Theorem 48 Model checking AEMC for the formulae that include only operators
〈〈A〉〉X with |A| ≤ 2 can be performed in polynomial time with respect to the number
of the transitions in the model and the length of the formula.

For arbitrary formulae, the problem is between NP and ΔP
2 . We conjecture that it

is actually ΔP
2 -complete, but this has yet to be formally proved.

Summary

The most important result for AEMC is that it admits polynomial-time verification

for formulae involving only small coalitions. The logic offers specifications for an

intuitive class of strategic properties (“persistent knowing how to play”) which neither

ATLir nor ATLiR can capture. In fact, we argue that AEMC formalizes Moore’s

fixpoint concept of knowledge-based ability that was discussed in Section 6.1.

At the same time, the logic has tractable model checking – though in a somewhat

limited scope. This is significant, both theoretically and in practical terms. Theoreti-

cally, AEMC is the first strategic logic of imperfect information with tractable verifi-

cation for a relevant subset of formulae. Even solving 2-player extensive form games

with binary payoffs is NP-complete in the sense of surely winning. Model checking

of all existing variants of ATL with imperfect information is at least NP-hard, and

this applies even to verification of 1-player(!) turn-based CEGM’s.

Practically, verification of abilities for small coalitions is useful in a number of

important scenarios, including fault-tolerance of communication protocols, correctness

of security protocols, etc. A typical property in such scenarios is “Alice and Bob can

communicate/interact in such a way that the correctness property γ is guaranteed,”

where γ can for instance refer to inability of the eavesdropper to intercept the message.

Note that the model can include an arbitrary number of eavesdroppers, intruders, and

neutral agents.

For larger groups of agents, model checking AEMC is in the same complexity

class as for ATLir. However, the scope of backtracking for AEMC is limited to

information sets of the coalition, whereas the straightforward verification algorithm

for ATLir searches through the set of complete strategies. In consequence, model

checking AEMC can be exponentially faster than ATLir for models that include

reasonably small indistinguishability classes.
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References and Further Reading. The idea of AEMC, as well as the technical

results, were proposed in [38]. Other works on recomputable abilities under imper-

fect information include attempts at more refined fixpoint charcterizations of strategic

modalities [54, 19] and invariance under bisimulation of abilities in 2-player reachabil-

ity games with perfect recall [22].



Chapter 8

Conclusions

In this book, we have surveyed several important logics for specification of multi-

agent systems, and the basic approaches to automatic verification for MAS. We paired

specification languages with complexity results for the corresponding model checking

problems. We also demonstrated how the complexity changes when we change the

representation of systems. Many examples were shown of how to represent impor-

tant properties of agents, and how the model checking algorithms proceed on concrete

instances of the problem.

We would like to emphasize that specification and verification of multi agent sys-

tems is a very rapidly developing area of computer science. Therefore, even at the time

of writing this text, new methods are emerging. In order to become acquainted with

the latest developments, we refer the interested reader to the proceedings of confer-

ences such as AAMAS, IJCAI, AAAI, ECAI, SR, LAMAS, ICSOC, ICEFM, MoChart,

ATVA, etc. Below we hesitantly list some open problems within the area, expecting

that – at the time this book is read – some of them may have been already solved, and

certainly many more research questions will have emerged:

1. Logics for specification of MAS with perfect information are relatively well stud-

ied. However, many issues regarding modeling, analysis, and reasoning about

systems with incomplete information are barely touched. This regards e.g. ax-

iomatization of ATL with imperfect information (some preliminary results were

obtained in [74] but the research is far from complete). Moreover, to our best

knowledge, no satisfiability-checking algorithms for any variant of ATL with

imperfect information have been proposed. It is not even known whether the

problem is decidable at all.

2. Model checking of strategies with incomplete information is largely left un-

touched, besides the theoretical complexity results that we presented in Chap-

ter 7. This is somewhat easy to understand, since the theoretical results are

quite pessimistic. Moreover, the imperfect information semantics of ATL does

not admit fixpoint equivalences, which makes incremental synthesis of strate-

gies impossible, or at least cumbersome. Some practical attempts at tackling

the problem started to emerge only very recently [137, 43, 86]. Up until now,

experimental results confirm that the initial intuition was right: model check-

ing strategic modalities for imperfect information is hard, and dealing with it

requires innovative algorithms and verification techniques.
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3. The coordination issue: the ATL formula 〈〈A〉〉γ only requires that there exists a

winning strategy for A to achieve γ. However, the agents in A may not be able

to successfully coordinate if there are multiple joint strategies with that property.

Some work on this issue was reported in [81] and [175], but the research is still

preliminary.

4. Correspondence between abstract and concrete models of agents’ strategic play

is becoming to attract interest again. The issue is relatively well studied for

perfect information games, both one-step (cf. [129, 69]) and multi-step [68].

On the other hand, no correspondence result exists for abilities under imperfect

information.

5. The connection between strategic logics and mainstream game theory is still

weak in the sense that game theory uses much more sophisticated models of

agents’ incentives and concepts of agents’ rationality. There have been sev-

eral attempts at characterizing game-theoretic solution concepts in modal logics

(e.g., [78, 77, 167, 181, 40, 162, 185]) but none of them match the elegance and

simplicity of preference models and solution concepts in game theory.

The Road goes ever on and on... We may even meet somewhere around the bend.
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[94] W. Jamroga and T. Ågotnes. Modular interpreted systems. In Proceedings of
AAMAS’07, pages 892–899, 2007.

[95] W. Jamroga and J. Dix. Do agents make model checking explode (computa-
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