
SŁAWOMIR T. WIERZCHOŃ
MIECZYSŁAW A. KŁOPOTEK

ALGORITHMS OF
CLUSTER ANALYSIS

M
O

N
O

G
R

A
PH

 SER
IES

M
O

N
O

G
R

A
PH

 SER
IES

INSTITUTE OF COMPUTER SCIENCE
P O L I S H AC A D E M Y O F S C I E N C E S
INSTITUTE OF COMPUTER SCIENCE
P O L I S H AC A D E M Y O F S C I E N C E S

33M
O

N
O

G
R

A
PH

 SER
IES:

3

 S.T. W
IER

ZC
H

O
Ń

, M
.A

. K
ŁO

PO
TEK

 A
LG

O
R

ITH
M

S O
F C

LU
STER

 A
N

A
LY

SIS

MONOGRAPH SERIES
INFORMATION TECHNOLOGIES: RESEARCH

AND THEIR INTERDISCIPLINARY APPLICATIONS

3

SŁAWOMIR T. WIERZCHOŃ
MIECZYSŁAW A. KŁOPOTEK

ALGORITHMS OF
CLUSTER ANALYSIS

i
INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES

Warsaw, 2015

Publication issued as a part of the project:
‘Information technologies: research and their interdisciplinary applications’,
Objective 4.1 of Human Capital Operational Programme.
Agreement number UDA-POKL.04.01.01-00-051/10-00.

Publication is co-financed by European Union from resources of European Social Fund.

Project leader: Institute of Computer Science, Polish Academy of Sciences

Project partners: System Research Institute, Polish Academy of Sciences, Nałęcz
Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences

Editors-in-chief: Olgierd Hryniewicz
Jan Mielniczuk
Wojciech Penczek
Jacek Waniewski

Reviewer: dr hab. inż. Jerzy Rudolf Tchórzewski, prof. UPH

Sławomir T. Wierzchoń
Institute of Computer Science, Polish Academy of Sciences
Slawomir.Wierzchon@ipipan.waw.pl
http://www.ipipan.waw.pl/staff/s.wierzchon

Mieczysław A. Kłopotek
Institute of Computer Science, Polish Academy of Sciences
Mieczyslaw.Klopotek@ipipan.waw.pl
http://www.ipipan.waw.pl/staff/m.klopotek/

Publication is distributed free of charge

ISBN 978-83-63159-10-8
e-ISBN 978-83-63159-11-5

Layout: Piotr Borkowski
Cover design: Waldemar Słonina

©Copyright by Sławomir T. Wierzchoń, Mieczysław A. Kłopotek
©Copyright by Institute of Computer Science, Polish Academy of Sciences, 2015
The herein contained material cannot be reproduced nor distributed, in its entirety
as well as with respect to the fragments thereof, by means of electronic, mechanical,
copying, registering and other devices, without the written consent from the
Authors.

Contents

1 Introduction . 17

2 Cluster Analysis . 21
2.1 Formalising the problem . 22
2.2 Measures of similarity/dissimilarity . 25

2.2.1 Comparing the objects having quantitative features 26
2.2.1.1 Minkowski distance . 27
2.2.1.2 Mahalanobis distance . 29
2.2.1.3 Bregman divergence . 30
2.2.1.4 Cosine distance . 31
2.2.1.5 Power distance . 32

2.2.2 Comparing the objects having qualitative features 32
2.3 Hierarchical methods of cluster analysis . 35
2.4 Partitional clustering . 38

2.4.1 Criteria of grouping based on dissimilarity 39
2.4.2 The task of cluster analysis in Euclidean space 40

2.4.2.1 Minimising the trace of in-group covariance 42
2.4.2.2 Approximating the data matrix 46
2.4.2.3 Iterative algorithm of finding clusters 47

2.4.3 Grouping according to cluster volume 48
2.4.4 Generalisations of the task of grouping 50

2.5 Other methods of cluster analysis . 51
2.5.1 Relational methods . 51
2.5.2 Graph and spectral methods . 52
2.5.3 Density-based methods . 54
2.5.4 Potential (kernel) function methods . 57
2.5.5 Cluster ensembles . 60

2.6 Whether and when grouping is difficult? . 65

3 Algorithms of combinatorial cluster analysis 69
3.1 k-means algorithm . 69

3.1.1 The batch variant of the k-means algorithm 72
3.1.2 The incremental variant of the k-means algorithm 73
3.1.3 Initialisation methods for the k-means algorithm 74

3.1.3.1 k-means++ algorithm . 77
3.1.4 Enhancing the efficiency of the k-means algorithm 78
3.1.5 Variants of the k-means algorithm . 80

4 Contents

3.1.5.1 On line variant of the k-means algorithm 80
3.1.5.2 Bisection variant of the k-means algorithm 81
3.1.5.3 Spherical k-means algorithm 82
3.1.5.4 KHM: the harmonic k-means algorithm 85
3.1.5.5 Kernel based k-means algorithm 87
3.1.5.6 k-medoids algorithm . 89
3.1.5.7 k-modes algorithm . 91

3.2 EM algorithm . 94
3.3 FCM: fuzzy c-means algorithm . 98

3.3.1 Basic formulation . 98
3.3.2 Basic FCM algorithm . 100
3.3.3 Measures of quality of fuzzy partition 104
3.3.4 An alternative formulation . 106
3.3.5 Modifications of the FCM algorithm 108

3.3.5.1 FCM algorithm with Minkowski metric 109
3.3.5.2 Gustafson-Kessel (GK) algorithm 111
3.3.5.3 FCV algorithm: Fuzzy c-varietes 113
3.3.5.4 FCS algorithm: Fuzzy c-shells 115
3.3.5.5 SFCM: spherical FCM algorithm 116
3.3.5.6 Kernel-based variants of the FCM algorithm 117

3.3.5.6.1 KFCM-X algorithm 117
3.3.5.6.2 KFCM-F algorithm 118

3.3.5.7 PCM: possibilistic clustering algorithm 120
3.3.5.8 Relational variant of the FCM algorithm 122

3.4 Affinity propagation . 124

4 Cluster quality versus choice of parameters 127
4.1 Preparing the data . 127
4.2 Setting the number of clusters . 128

4.2.1 Simple heuristics . 129
4.2.2 Methods consisting in the use of information criteria 131
4.2.3 Clustergrams . 131

4.3 Partition quality indexes . 132
4.4 Comparing partitions . 135

4.4.1 Simple methods of comparing partitions 136
4.4.2 Methods measuring common parts of partitions 137
4.4.3 Methods using mutual information . 138

4.5 Cover quality measures . 140

5 Spectral methods in clustering and dimensionality reduction . 143
5.1 Notation . 147
5.2 Spectral data analysis . 150

5.2.1 Spectral optimization . 150
5.2.1.1 The case of two classes . 151
5.2.1.2 Further applications of the Fiedler vector 156
5.2.1.3 The multiclass problem . 158

Contents 5

5.2.2 Other cutting criteria . 160
5.2.3 The problem of cutting a graph as a generalized

eigenproblem . 163
5.2.4 Methods of solving the generalized eigenproblem 167
5.2.5 Algorithms for spectral data clustering 171

5.2.5.1 SM – The algorithm of normalized cuts 173
5.2.5.2 VM – another algorithm of normalized cuts 174
5.2.5.3 NJW – spectral algorithm of Ng, Jordan & Weiss 175
5.2.5.4 DaSpec algorithm . 179

5.2.6 Maximization of group connectivity . 180
5.2.7 Some examples . 183
5.2.8 Tuning the algorithm . 186

5.2.8.1 Choosing ω parameter . 187
5.2.8.2 Amplifying the block-diagonal structure of a

matrix . 189
5.3 Random walks on graphs . 190

5.3.1 Random walk on undirected graph. 191
5.3.1.1 Simple interpretations . 191
5.3.1.2 Clustering according to the nodes potential 194
5.3.1.3 Resistance distance . 197
5.3.1.4 Grouping according to absorption time 198

5.3.2 Application of the random walk idea: the MCL algorithm . 201
5.3.2.1 Basic version of the algorithm 201
5.3.2.2 Disadvantages of the algorithm 203

5.4 Local methods . 204
5.4.1 The Nibble algorithm . 206
5.4.2 The PageRank-Nibble algorithm . 208

5.5 Semisupervised learning . 211
5.6 Some improvements and other methods . 214

5.6.1 Stochastic clustering . 214
5.6.2 Application of Singular Value Decomposition 217
5.6.3 The PIC algorithm . 219
5.6.4 The PRC algorithm. 220

5.7 Dimensionality reduction methods . 222

6 Data sets . 227

Appendices . 229

A Justification of the FCM algorithm . 229

B Matrix calculus . 231
B.1 Vectors and their properties . 231
B.2 Matrices and their properties . 231
B.3 Eigenvalues and eigenvectors . 233

B.3.1 Basic facts . 233

6 Contents

B.3.2 Left- and right-hand eigenvectors . 237
B.3.3 Determining eigenvalues and eigenvectors 238

B.3.3.1 The power method . 238
B.3.3.2 Determining the eigenpairs of the Laplacian 240

B.4 Norms of vectors and matrices . 242

C Graph theory . 243
C.1 Basic definitions . 243

C.1.1 Undirected graphs . 244
C.1.2 Directed graphs . 246

C.2 Graph matrices . 246
C.2.1 Laplacian of a graph . 247

C.2.1.1 Laplacian of an undirected graph 247
C.2.1.2 Pseudo-inverse of the Laplacian 249
C.2.1.3 Laplacian of a directed graph 250

C.2.2 Green functions . 251

D Random walk on a graph . 253
D.1 Random walk on undirected graphs . 253

D.1.1 Basic facts . 253
D.1.2 Characteristics of random walk . 256

D.1.2.1 Mean access time . 256
D.1.2.2 Commute time . 257
D.1.2.3 Coverage time . 258
D.1.2.4 Mixing time . 258

D.2 Random walk on directed graphs . 258

E Personalized PageRank vector . 261
E.1 Basic notions and interdependences . 261
E.2 Approximate algorithm of determining the personalized

PageRank vector . 264

F Axiomatic systems for clustering . 267
F.1 Kleinberg’s axioms . 267

F.1.1 Formal problems . 268
F.1.2 Common sense problems . 269
F.1.3 Clusterability theory concerns . 269
F.1.4 Learnability theory concerns . 271

F.2 Cluster quality axiomatisation . 272
F.3 Relaxations for overcoming the Kleinberg’s problems 273
F.4 Learnability oriented axiomatisation . 274
F.5 Graph clustering axiomatisation . 275

References . 279

Index . 305

List of Figures

2.1 The task of cluster analysis: to break down the set of observations
into k disjoint subsets, containing similar elements 23

2.2 Grouping of the set of randomly generated objects 24
2.3 Unit circles for the selected values of the parameter p 28
2.4 The influence of the parameter p on the properties of Minkowski

distance . 29
2.5 An exemplary data set and the corresponding dendrogram

obtained from the complete link method. 38
2.6 Voronoi tessellation . 49
2.7 Identification of clusters by examining mutual similarity between

objects . 52
2.8 An example of clusters with irregular shapes and various

densities. The data set contains also outliers. 54
2.9 Diagram of k-distances between the points of an exemplary data

set. 56
2.10 An example of the data set and its partitioning with the k-means

algorithm . 61
2.11 Unordered and ordered concordance matrices 64
2.12 Values of the cophenetic correlation coefficient for the partitions

obtained. The horizontal axis represents the number of groups,
the vertical axis shows the cophenetic correlation coefficient. 64

2.13 Exemplary data having spherical and non-spherical normal
distribution . 65

3.1 Local optima in the problem of partitioning the set of 10 points
into two subsets . 71

3.2 The influence of initialisation and scaling on the results of
clustering . 75

3.3 The distribution of the gravity centres in two methods of
initialisation . 77

3.4 Contour diagrams of the function min(a1, a2) and the harmonic
mh(a1, a2). 85

3.5 Results of application of the kernel-based variant of the k-means
algorithm. 89

3.6 Clustering of separable data sets with the k-medoids algorithm. . . 91
3.7 Clustering of data with the use of the FCM algorithm. 100

8 List of Figures

3.8 Influence of the value of fuzziness exponent on the number of
iterations and the quality of prototypes. 103

3.9 Influence of the α exponent on the value of reconstruction error . . 105
3.10 Test sets data6 2 and data4 2 . 106
3.11 Dependence of the values of quality criteria for the sets data 6 2

and data 4 2 on the assumed number of clusters 107
3.12 Diagrams of the function (3.74) for three values of the parameter

p : 0.4, 1, 3.5. 110
3.13 Comparison of partitions generated by the FCM and GK

algorithms . 113

4.1 Relation between an average cluster radius and the total distance
of objects from the prototypes depending on the number of
clusters . 130

5.1 An application of the Fiedler vector in visualization of the
structure of a dataset . 146

5.2 An exemplary graph . 155
5.3 Graph from Fig. 5.2 in spectral coordinates . 157
5.4 Eigenvalues of the Laplacian constructed for the sets data6 2

and 2moons. 158
5.5 Minimization vs. maximization of the function (5.25) 160
5.6 General structure of the graphs analyzed by Guattery and Miller

in [148] . 170
5.7 Spectral representation of three clusters . 176
5.8 NJW algorithm applied to the data3 2 dataset 178
5.9 Similarity matrix representing the dataset 2rings 183
5.10 Fiedler vector of the normalized Laplacian derived from the

similarity matrix . 184
5.11 The points with the coordinates determined by two dominating

eigenvectors of the matrix Ld . 184
5.12 Projection of the points from Figure 5.11 onto the unit sphere . . . 185
5.13 Results obtained from the NJW algorithm applied to iris dataset . 185
5.14 Spectral analysis of the dataset 2spirals . 186
5.15 The values of Σ(ω) plotted against ω for a given dataset 188
5.16 Histogram of distances between the elements of two datasets 188
5.17 A block-band matrix and its block-diagonal counterpart 190
5.18 The cluster corresponding to low normalized cut vs. the one

corresponding to low conductance . 193
5.19 Eigenvalues of the symmetric Laplacian computed for the sets

2rings and 2spirals . 194
5.20 Clustering the nodes of karate network by using the Wu and

Huberman algorithm [364] . 197
5.21 Agreement between theoretical and approximate values of the

absorption times . 200

List of Figures 9

5.22 The density of matrix M in subsequent iterations of the MCL

algorithm . 203
5.23 Unnatural clusters produced by the MCL algorithm 204
5.24 Partition of the set of nodes of the karate network into two

groups . 210
5.25 The values of the ordering function q and the values of

conductance computed for karate network . 210
5.26 Results of the algorithm 5.9. 213
5.27 Distribution of eigenvalues of a block diagonal and almost

block-diagonal doubly stochastic matrices . 216
5.28 Illustration of results produced by the stochastic clustering

algorithm . 218
5.29 Results obtained with the stochastic clustering algorithm 219
5.30 PIC algorithm in action . 221
5.31 Examples of the observations located on low dimensional

manifolds . 223
5.32 A qualitative difference between PCA and LLE 224

6.1 Test data sets. Collection no. 1 . 227
6.2 Test data sets. Collection no. 2 . 228

List of Tables

2.1 Bregman divergences generated by various convex functions 31

3.1 Parameters of Gaussian distributions used to generate samples
and quality indicators of the partitions obtained for them by the
algorithms FCM and GK (Gustafson-Kessel) 112

5.1 Brief characteristics of various algorithms of spectral clustering . . . 172

List of Algorithms

2.1 Algorithm of agglomerative cluster analysis . 35
2.2 Iterative algorithm of cluster analysis (generalised Lloyd’s

heuristics) . 48
2.3 DBSCAN algorithm . 55
2.4 Anchor grouping algorithm, [262] . 57
3.1 Incremental clustering algorithm BIMSEC . 74
3.2 k-means++ algorithm, [22] . 78
3.3 On line version of the k-means algorithm . 80
3.4 Bisectional k-means algorithm . 82
3.5 Spherical k-means algorithm . 84
3.6 Kernel-based k-means algorithm. 88
3.7 k-medoids algorithm . 90
3.8 k-modes algorithm, [183] . 93
3.9 EM algorithm for cluster analysis . 97
3.10 Affinity propagation, [135] . 126
5.1 Algorithm of thresholded discretization of the Fiedler vector 156
5.2 SM algorithm of normalized cuts, [311] . 174
5.3 Algorithm SM-VM for the determination of minimal normalized

cuts, [349] . 175
5.4 NJW – the algorithm designed by Ng, Jordan and Weiss, [269] . . . 177
5.5 Data spectroscopic clustering (DaSpec) algorithm, [312] 181
5.6 An algorithm for solving the system of equations (5.96) 197
5.7 MCL algorithm . 202
5.8 Nibble – algorithm for local identification of clusters, [323] 207
5.9 Spectral algorithm for semisupervised learning in undirected

graphs, [392] . 212
5.10 Spectral algorithm for semisupervised learning in directed

graphs, [391] . 213
5.11 Minimization of the product vTAv under the constraints

‖v‖ = 1, Bv = c, [372] . 214
5.12 Stochastic clustering algorithm, [256] . 216
5.13 The PIC algorithm, [234] . 221
B.1 Power method returning the principal eigenpair of the matrix A . . 239
B.2 Applying power method to determine the first p ≤ m eigenvectors

of the Laplacian . 241
E.1 Algorithm of determination of the approximation to the

personalised PageRank vector on the basis of equation (E.4) 265

14 LIST OF ALGORITHMS

E.2 Fast algorithm of determining an ǫ-approximation of the
personalised PageRank vector, [80] . 266

List of most important symbols

X set of objects (observations)
x an element of the set X

X ∈ R
m×n matrix, representing the set of objects, X = (x1 · · · xm)T

m cardinality of the set X
n dimensionality (number of coordinates) of the vector of features of x ∈ X
C set of clusters
k number of clusters

diag(v) diagonal matrix having the main diagonal equal to the vector v

G = (V,E) graph spanned over the set of vertices V linked with the edges
indicated in the set E

N(v) set of neighbours of the vertex v in graph G
Nk(v) set of k nearest neighbours of the vertex v in graph G
∂(C) edge separator in graph G: ∂(C) = {{u, v} ∈ E : u ∈ C, v /∈ C}

A neighbourhood matrix having elements aij ∈ {0, 1}, A = [aij]m×m

S similarity matrix having elements sij ∈ [0, 1], S = [sij]m×m

m number of edges in graph G
di degree (weight) of the i-th object, di =

∑m
j=1 sij

D matrix of degrees, D = diag([d1, . . . , dm])
L combinatorial Laplacian, L = D − S

L normalised Laplacian, L = D−1/2LD−1/2

L a variant of the Laplacian, L = I− P
P column-stochastic transition matrix, describing walk on graph G,

P = SD−1

P̃ row-stochastic transition matrix, describing walk on graph G, P̃ = D−1S

P̂ column-stochastic transition matrix in a lazy walk on graph G,

P̂ = 1
2
(I + SD−1)

π stationary distribution of the Markov chain having transition matrix P ,
that is, a vector such that π = Pπ

ρ(s, α) global PageRank with positive preference vector s and
the coefficient of teleportation α: ρ(s, α) = αs + (1− α)Pρ(s, α)

p(s, α) personalised PageRank vector with non-negative preference vector s
and the coefficient of teleportation α

e column vector having elements equal 1
I unit matrix

1

Introduction

The role of grouping is to divide the set of objects into homogeneous groups:
two arbitrary objects belonging to the same group are more similar to each other
than two arbitrary objects belonging to different groups. If we wish to apply this
recipe in practice, we must find the answers to two basic questions: (a) how to
define the similarity between the objects, and (b) in what manner should one
make use of the thus defined similarity in the process of grouping. The fact that
the answers to these questions are provided independently one from another
results in the multiplicity of algorithms

The methods of data analysis can be roughly classified into two categories1:
(a) the descriptive (exploratory) ones, which are recommended when, having
no initial models or hypotheses, we try to understand the general nature and
structure of the high-dimensional data, and (b) the confirmatory (inferential)
methods, applied in order to confirm the correctness of the model or of the
working hypotheses, concerning the data collected. In this context, a particular
role is played by various statistical methods, such as, for instance, analysis of
variance, linear regression, discriminant analysis, multidimensional scaling, fac-
tor analysis, or, finally, the subject of our considerations here - cluster analysis2

[213], [164].
It is really difficult to list all the domains of theoretical and practical ap-

plications of cluster analysis. Jain [190] mentions three basic domains: image
segmentation [191], information retrieval [246], and bio-informatics [34].

An interesting example of application of cluster analysis in modern infor-
mation retrieval is constituted by the CLUSTY search engine (clusty.com). The
methods of cluster analysis play an important role in the development of the
recommender systems [180], [300], in various kinds of economic, medical etc.
analyses. Application of these methods results from at least three reasons:
(a) To gain insight into the nature of the data, and, first of all, to indicate

the typical and the atypical (outlying) data items, to uncover the potential
anomalies, to find hidden features, or, finally - to be able to formulate and
verify the hypotheses concerning the relations between the observations;

(b) To obtain a compact description of data, to select the most representative
objects; here, the classical application is image compression;

1 See, e.g., J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
2 This area is also referred to as Q-analysis, typology, clumping, and taxonomy, [191],

depending upon the domain of application.

18 1 Introduction

(c) To obtain a natural classification of data, for instance - by determining the
similarities between pairs of objects to establish the respective hierarchical
structures.
Methods of cluster analysis are being applied there, where we wish to under-

stand the nature of the phenomenon, represented by the set of observations, to
get a sort of summary of the content of large data sets, and to process such sets
effectively.

Jain and Dubes [191] list the following challenges, linked with the practical
use of clustering:
(a) What is a cluster (group, module)?
(b) What features ought to be used to analyse the data collected?
(c) Should the data be normalised?
(d) Are there outliers in the analysed dataset, and if so - how should they be

treated?
(e) How to define the similarity between the pairs of objects?
(f) How many clusters are really there in the data set? Do we deal, at all, with

clusters?
(g) What method should be used in a given situation?
(h) Is the obtained partition of data justified?

Some of these questions find at least partial answers in a multiplicity of
books, devoted to various aspects of cluster analysis, like [10], [51], [112], [191],
[6], or [121].

The recent years, though, brought a number of new challenges. First, cluster
analysis is being applied nowadays to processing of huge sets of data, which
makes it necessary to develop specialised algorithms. Second, the necessity of
analysing the data sets having complex topologies (data being situated in certain
submanifolds) leads to the requirement of applying more refined tools. We mean
here the spectral methods, the methods making use of kernel functions, and the
relations between these two groups of methods.

The starting point for these methods is constituted by the matrix, describing
the strength of interrelations between the objects making up the data set. In the
case of the kernel-based methods, considerations are being transferred to the
highly dimensional and nonlinear space of features for the purpose of strength-
ening of the separability of data. Due to application of the so-called kernel trick
to determine the distance between objects in this new space, the knowledge of
a certain kernel function suffices. The elements of the matrix, mentioned before,
are the values of the kernel function, calculated for the respective pairs of ob-
jects. On the other hand, in the case of spectral methods, the elements of the
matrix correspond to the values of similarity of the pairs of objects. Eigenvalues
and eigenvectors of this matrix, or a matrix, being its certain transformation
(usually a form of the Laplacian of the graph, corresponding to the similarity
matrix), provide important information on relations between objects.

An interesting example is constituted by the problem of ordering of doc-
uments, collected by the crawlers, cooperating with a search engine. We deal
in such cases with enormous collections of objects (of the order of 109), with

1 Introduction 19

the issue of their effective representation, and, finally, with the task of indicat-
ing the important documents. The common sense postulate that the important
websites (documents) are the ones that are referred to (linked to) by other im-
portant websites allows for the reformulating of the problem of assigning ranks
in the ordering into the problem of determining the dominating eigenvector of
the stochastic matrix P , being a slight modification of the original matrix A,
representing connections between the websites, that is aij = 1 when on the
ith website there is a link to the jth one. Vector r, which satisfies the matrix
equation r = P Tr, is called the PageRank vector [274]. Both this vector and its
diverse variants (TotalRank, HillTop, TrustRank, GeneRank, IsoRank, etc.) are
the examples of the so-called spectral ranking, which find application not only in
the ordering of documents (or, more generally, in various aspects of bibliomet-
rics), but also in graph theory (and, consequently, also in the analysis of social
networks), in bio-informatics, and so on.

A development over the latter idea is constituted by the methods based on
random walk on graphs. Namely, the task of grouping is here considered as an
attempt of finding such a division of the graph that a randomly moving wanderer
shall remain for a long time in a single cluster (subgraph), only rarely jumping
between the clusters. An interesting work on this subject is presented in, e.g.,
[146], while a number of theoretical results have been shown by Chung [75], [77],
[14], and by Meila [252].

The transformation of the matrices, representing relations (e.g. similarity)
between the elements of the set of objects, into the stochastic Markovian matri-
ces leads to yet another interesting formalism. As we treat the eigenvectors of
these matrices as forming a new system of coordinates, we transform the mul-
tidimensional data into a cloud of points in a space with a much lower number
of dimensions. This new representation reflects the essential properties of the
original multidimensional structure. In this manner we enter the domain of the
so-called diffusion maps [83], which have two significant features, distinguishing
them from the classical methods: they are nonlinear, and, besides this, they do
faithfully map the local structure of data. From the point of view of, for instance,
processing of text documents, an essential advantage of such an approach is a
relatively straightforward adaptation to the semi-supervised clustering problems
and the coclustering problems - the important, quite recently developing, direc-
tions of machine learning.

These most up-to-date trends in grouping have not been, until now, systemat-
ically presented nor considered in an integrated manner against the background
of the classical methods of cluster analysis. Such a survey would be very welcome
indeed from the point of view of students with an interest in the techniques of
knowledge extraction from data and computer-based modelling, in the context
of their application in pattern recognition, signal analysis, pattern and inter-
dependence identification, and establishment of other interesting characteristics
in the large and very large collections of data, especially those put together
automatically in real time.

That is why we prepared this monograph, which:

20 1 Introduction

(a) Contains the survey of the basic algorithms of cluster analysis, along with
presentation of their diverse modifications;

(b) Makes apparent the issue of evaluation and proper selection of the number
of clusters;

(c) Considers the specialisation of selected algorithms regarding the processing
of enormous data sets;

(d) Presents in a unified form a homogeneous material, constituting the basis
for developing new algorithms of spectral and diffusion data analysis;

(e) Comments upon the selected solutions for the semi-supervised learning;
(f) Provides a rich bibliography, which might also be a starting point to various

individual research undertakings.
The limited volume of this book did not allow to cover all the developments

in the field. On the one hand, we do not discuss algorithms elaborated for theo-
retical purposes of clusterability theory. On the other hand, we do not consider
algorithms developed for particular applications only, like medical imaging. We
concentrated on the clustering paradigm of a cluster as group of objects that
are more similar to one another than to objects from other clusters. But other
concepts are possible, based e.g. on classification/regression capabilities. Some
researchers consider clusters as sets of objects where the attributes are (more)
easily predictable from one another than in general population (mutual predic-
tion). We mention only in passing that one may seek clusters either in a given
space or in its subspaces (projections of the original space), but this is by it-
self a separate research area, answering questions what is the optimal number
of features and which subspace (possibly linearly transformed) should be used.
Still another research area concentrates around the so-called optimal modularity,
where we seek clusters in which similarity pattern does not occur to be random.
Still another area of investigation are special forms of optimised cluster quality
function which ensure better convergence, like sub-modular functions.

2

Cluster Analysis

Cluster analysis consists in distinguishing, in the set of analysed data, the groups,
called clusters. These groups are disjoint1 subsets of the data set, having such a
property that data belonging to different clusters differ among themselves much
more than the data, belonging to the same cluster. The role of cluster analysis
is, therefore, to uncover a certain kind of natural structure in the data set. The
means enabling performing that task is constituted usually by a certain measure
of similarity or dissimilarity – the issue is discussed further on in Section 2.2.
Cluster analysis is not only an important cognitive tool, but, as well, a method
for reducing large sets of data, since it allows for the replacement of a group of
data by its compact characterisation, like, e.g. the centre of gravity of the given
group.

The task of cluster analysis can be perceived as a problem of grouping of
objects according to their mutual similarity. Objects, which are mutually similar
in a sufficiently high degree, form a homogeneous group (a cluster). It is also
possible to consider the similarity of objects to certain characteristic entities
(called prototypes) of the classes. In this case we deal more with the problem
of classification, that is - of finding the model patterns - see [112]. Yet, if the
characteristics corresponding to classes are not given a priori, they should be
established. And this is exactly what cluster analysis is about.

The term data clustering (meaning grouping of data) appeared for the first
time in 1954 in the title of a paper concerning the analysis of anthropological
data, [190, p.653]. Other equivalent names, given cluster analysis, are Q-analysis,
typology, clumping, and taxonomy [191], depending on the domain, in which
clustering is applied. There is a number of very good books, devoted to cluster
analysis. The classical ones include2: [10], [112], [121], [191], [201], [319], [337].
Among the more recent and specialised monographs we can mention:[5], [55],
[51], [54], [93], [209], [280], [289], [332]. A reader, interested in survey works may
wish to have a look at, e.g., [47], [192], [190], [373]. More advanced techniques
of cluster analysis are considered, in particular, in [124].

1 The requirement of disjoint subsets is used in the classical data analysis. In the
general case, the groups distinguished might constitute the coverage of the data set.
This is the case, for instance, in the fuzzy data analysis.

2 Many of those listed have been modified several times over and successive editions
have been published.

22 2 Cluster Analysis

2.1 Formalising the problem

It is usually assumed in cluster analysis, that a set of m objects X = {x1, . . . , xm}
is given, with every object being described by an n-dimensional vector xi =
(xi1 . . . xin)T, where xij denotes the value of the j-th feature of the object xi.
The vector xi is being called feature vector or image3.

The subject of cluster analysis is constituted, therefore, not so much by the
original set of objects X, as by its representation, given through the matrix
X = (x1 . . .xm)T, whose i-th row is a vector of features, describing the i-th
object. In view of the fact that to object xi corresponds the i-th row of matrix X ,
the term ,,object” shall be used to denote both the element xi ∈ X and the vector
of feature values xi, characterising this object. In statistics, vector xi is called
(n-dimensional) observation. Even though the values of individual measurements
of feature values might be expressed in different scales (nominal, ordinal or
quotient), the majority of practical and theoretical results have been obtained
under the assumption that the components of vectors xi are real numbers. Thus,
for a vast majority of cases, considered in the present book, we shall be assuming
that the observations are given by the vectors xi ∈ Rn.

It is alternatively assumed that information on the data set is provided in the
form of the matrix S of dimension m×m, the elements of this matrix sij repre-
sent similarities (or dissimilarities) for the pairs of objects xi, xj . When making
use of such a representation, we can give up the requirement of having the fea-
tures, describing the objects, measured on the quantitative scales. The pioneer
of such a perspective was Polish anthropologist, ethnographer, demographer and
statistician – Jan Czekanowski4. The method, developed by Czekanowski, and
presented in the first Polish handbook of modern methods of data analysis and
interpretation of its results [86], consists in replacing numbers in the matrix S
by the appropriately selected graphical symbols. In this manner, an unordered
diagram arises, which, after an adequate reordering of rows and columns of the
matrix, makes apparent the existence of groups of objects mutually similar. Al-
though the method was developed originally mora than 100 years ago, it is still
in use, mainly in archeology5, in economic sciences6, and even in musicology.

3 The latter term is particularly justified, when we treat the measurements as map-
pings f : X→ R

n of the set of objects into a certain set of values. Then, xi = f(xi),
and in the mathematical nomenclature xi is the image of the object xi.

4 See J.Gajek. Jan Czekanowski. Sylwetka uczonego. Nauka Polska, 6(2), 1958, 118-
127.

5 See, e.g., A. Soltysiak, and P. Jaskulski. Czekanowski’s Diagram: A method of mul-
tidimensional clustering. In: J.A. Barceló, I. Briz and A. Vila (eds.) New Techniques
for Old Times. CAA98. Computer Applications and Quantitative Methods in Ar-
chaeology. Proceedings of the 26th Conf., Barcelona, March 1998 (BAR International
Series 757). Archaeopress, Oxford 1999, pp. 175-184.

6 See, e.g., A. Wójcik. Zastosowanie diagramu Czekanowskiego do badania
podobieństwa krajów Unii Europejskiej pod wzglȩdem pozyskiwania energii ze źróde l
odnawialnych. Zarza̧dzanie i Finanse (J. of Management and Finance), 11(4/4),
353-365, 2013, http://zif.wzr.pl/pim/2013_4_4_25.pdf

2.1 Formalising the problem 23

Using the method of Czekanowski, the mathematicians from Wroc law: K. Flo-
rek, J. Lukaszewicz, J. Perkal, H. Steinhaus and S. Zubrzycki, elaborated the
so-called ,,Wroc law taxonomy”, which they presented in 1957 in 17-th issue of
Przegla̧d Antropologiczny. In further parts of the book we present other methods
of analysing the matrix of similarities. More advanced considerations of appli-
cation of the similarity matrix in cluster analysis have been presented in the
references [32] and [33].

The role of the classical cluster analysis is to split the set of objects
(observations) into k < m groups C = {C1, . . . , Ck}, where each i-th group Ci

is called cluster. Such a division fulfils three natural requirements:

(i) Each cluster ought to contain at least one object, Cj 6= ∅, j = 1, . . . , k.

(ii) Each object ought to belong to a certain cluster,
⋃k

j=1 Cj = X.
(iii) Each object ought to belong to exactly one cluster, Cj1 ∩ Cj2 = ∅, j1 6= j2.

In particular, when k = m, each cluster contains exactly one element from
the set X. This partition is trivial, and so we shall be considering the cases, in
which k is much smaller than m.

An exemplary illustration of the problem that we deal with in cluster analysis,
is provided in the Figure 2.1. The ”clouds” of objects, situated in the lower left
and upper right corners constitute distinctly separated clusters. The remaining
objects form three, two, or one cluster, depending on how we define the notion
of similarity between the objects.

Fig. 2.1. The task of cluster analysis: to break down the set of observations into k
disjoint subsets, composed of similar elements.

Cluster analysis is also referred to as unsupervised learning. We lack here,
namely, the information on the membership of the objects in classes, and it is not
known, how many classes there should really be. Even though the mechanical
application of the algorithms, which are presented in the further parts of the

24 2 Cluster Analysis

book allows for the division of any arbitrary set into a given number of classes,
the partition thus obtained may not have any sense. Assume that X is a set of
points selected conform to the uniform distribution from the set [0, 1] × [0, 1]
– see Figure 2.2(a). Mechanical application of an algorithm of grouping, with
the predefined parameter k = 3 leads to the result, shown in Figure 2.2b. It is
obvious that although the partition obtained fulfills the conditions set before, it
has no sense.

(a) (b)

Fig. 2.2. Grouping of the set of randomly generated objects. (a): 100 points randomly
selected from the set [0, 1]× [0, 1]. (b): Division of the objects into three groups using
the k-means algorithm. Bigger marks indicate the geometrical centers of groups.

In informal terms, the presence of a structure in a data set is manifested
through the existence of separate areas, and hence of clusters, enjoying such a
property that any two objects, belonging to the common cluster Ci are more
mutually similar than any two objects, picked from two different clusters, i.e.

s(x′, x′′) > s(y′, y′′)

if only x′, x′′ ∈ Ci, y
′ ∈ Cj1 , y′′ ∈ Cj2 and j1 6= j2. Symbol s denotes here a certain

measure of similarity, that is, a mapping s : X×X→ R. In many situations it is
more convenient to make use of the notion of dissimilarity (like, e.g., distance)
and require the objects, belonging to different clusters, to be more distant than
the objects, belonging to the same cluster. Various definitions of the measures of
similarity or dissimilarity are considered in the subsequent chapter. The choice
of the appropriate measure constitutes an additional factor of complexity of the
data analysis task. Yet another such factor is the choice of an adequate criterion
for determining the partition of the set X.

The majority of the methods of grouping consists in an ”intelligent” extrac-
tion of information from the matrix S, with elements representing similarity or

2.2 Measures of similarity/dissimilarity 25

dissimilarity of the pairs of objects. An excellent example of this kind of proce-
dure is provided by the hierarchical methods, shortly presented in Section 2.3 or
by the spectral methods, being the primary subject of Chapter 5 .

The most popular methods of grouping include the hierarchical methods, the
combinatorial methods (referred also to as relocation-based), the density-based
methods, the grid methods and the methods based on models. The descriptions
of these methods and comments on them can be found in numerous survey
studies, like, e.g. [192], [190], or [373]. In the further part of the chapter we shall
present their short characteristics.

2.2 Measures of similarity/dissimilarity

In order to be able to quantify asssociations between pairs of objects, a measure
of similarity s : X × X → R or of dissimilarity is introduced. The two measures
are, in principle, dual, that is - the lower the value of dissimilarity, the more
similar the two compared objects. A particular example of dissimilarity is dis-
tance (metric), that is, a function d : X×X→ R+∪{0} fulfilling three conditions:

(a) d(x, y) = 0 if and only if x ≡ y,
(b) d(x, y) = d(y, x) (symmetry),
(c) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality),

for arbitrary x, y, z ∈ X. When only conditions (b) and (c) are satisfied, then d
is called pseudo-distance.

For instance, if dmax denotes the maximum value of distance between the
pairs of objects from the set X, then distance can be transformed into a measure
of similarity (proximity) s(xi, xj) = dmax − d(xi, xj). The thus obtained measure
of proximity attains the maximum values, when i = j (object xi is identical with
itself), and the lower the value of this measure, the less mutually similar (more
dissimilar) the objects compared are.

In the above example, the maximum value of similarity is the number dmax =
s(xi, xi). It is more convenient to operate with the normalised similarity s(xi, xj) =
1−d(xi, xj)/dmax. Generally, if f : R→ R is a monotonously decreasing function,
such that f(0) > 0 and limξ→∞ f(ξ) = a ≥ 0, then

s(xi, xj) = f(d(xi, xj)) (2.1)

is a measure of similarity, induced by the distance d. Another, frequently ap-
plied example of ther measure of similarity is provided by the transforma-
tion s(xi, xj) = exp[−d2(xi, xj)/σ

2], where σ > 0 is a parameter, or, yet,
s(xi, xj) = 1/[d(xi, xj) + ǫ

]
, where ǫ > 0 is a small number7. The condition,

given above, a ≥ 0 is, in principle, not necessary; it is introduced in order to
preserve the symmetry with the non-negative values of the distance measure d.

7 In practice, a small number means one that compared to distances it is small but
still numerically significant under the available machine precision.

26 2 Cluster Analysis

Note also that if d is a distance, then the measure of similarity, defined through
the transformation f , reffered to above, fulfills the triangle condition in the form
- see [72]:

s(x, y) + s(y, z) ≤ s(x, z) + s(y, y)

Since the measures of similarity and dissimilarity are dual notions, see, e.g.,
[72], we shall be dealing in further course primarily with various measures of
dissimilarity, and in particular – with distances. Making use of distances requires
having the possibility of assigning to each object xi its representation xi. An
interesting and exhaustive survey of various measures of similarity/dissimilarity
can be found, for instance, e.g., in [66].

2.2.1 Comparing the objects having quantitative features

When all the features, which are used to describe objects from the set X are
quantitative, then every object xi ∈ X is identified with an n-dimensional vec-
tor xi = (xi1, xi2, . . . , xin)T. The most popular measure of dissimilarity is the
Euclidean distance

d(xi, xj) = ‖xi − xj‖ =

√√√√
n∑

l=1

(xil − xjl)2

or, more generally, the norm defined by the square form

dW (xi, xj) = ‖xi − xj‖W =
√

(xi − xj)TW (xi − xj) (2.2)

where W is a positive definite matrix of the dimensions n× n.
If W is a unit matrix, then equation (2.2) defines the Euclidean distance. If,

on the other hand, W is a diagonal matrix having the elements

wij =

{
ωi if i = j

0 otherwise

then (2.2) defines the weighted Euclidean distance, i.e.

dW (xi, xj) =

√√√√
n∑

l=1

ωl(xil − xjl)2 =

√√√√
n∑

l=1

(yil − yjl)2

where yil =
√
ωlxil is the weighted value of the feature l, measured for the i-th

object.
The Euclidean distance is being generalized in various manners. These most

commonly used are commented upon below.

2.2 Measures of similarity/dissimilarity 27

2.2.1.1 Minkowski distance

Minkowski distance (norm) is defined as follows

dp(xi,xj) = ‖xi − xj‖p =
[n∑

l=1

|xil − xjl|p
]1/p

, p ≥ 1, p ∈ R (2.3)

When we take p = 1, we obtain the city block distance (called also taxicab
or Manhattan distance)

d1(xi,xj) = ‖xi − xj‖1 =

n∑

l=1

|xil − xjl| (2.4)

For p = 2, equation (2.3) defines the Euclidean distance. In view of the
popularity of this distance definition, we shall be writing ‖xi − xj‖ instead of
‖xi − xj‖2.

Finally, when p =∞, we get Chebyshev distance

d∞(xi,xj) = ‖xi − xj‖∞ = max
l=1,...,n

|xil − xjl| (2.5)

Minkowski distance is used not only in exact sciences, but also in psychol-
ogy8, industrial design and generally in designing. Unit circles are described in
Minkowski metric by the equation

|x|p + |y|p = 1

which is also called the curve (or oval) of Lamé. The respective shapes for three
values of the parameter p are presented in Figure 2.3a. Danish mathematician
Piet Hein9 concluded that the case of p = 2.5 leads to the shape, featuring high
aesthetic qualities, see Figure 2.3b, this fact having been made use of in designing
Sergels roundabout in Stockholm.

Distances, deriving from the Minkowski metric, have two important short-
comings. First, as the dimensionality of the problem increases, the difference
between the close and the far points in the space Rn disappears, this being the
effect of summing of the differences in the locations of objects in the particular
dimensions10.

More precisely, the situation is as follows. Denote by dmin
p,n , d

max
p,n , respectively,

the minimum and the maximum values of distance (measured with distance dp)
between two arbitrary points, selected from the set of m randomly generated
points in n-dimensional space. Then, see [4]

8 See chapter 3 in: C.H. Coombs, R.M. Dawes, A. Tversky. Mathematical Psychology:
An Elementary Introduction. Prentice Hall, Englewood Cliffs, NJ 1970,

9 His profile can be found on the website http://www.piethein.com/.
10 Equivalently, one can say that two arbitrary vectors in R

n are orthogonal [289, p.
7.1.3].

28 2 Cluster Analysis

p=1
p=2
p=∞

(a) (b)

Fig. 2.3. Unit circles for the selected values of the parameter p: (a) p = 1, 2,∞, (b)
p = 2.5 (Hein’s super-ellipse)

Cp ≤ lim
n→∞

E

[dmax
p,n − dmin

p,n

n1/p−1/2

]
≤ (m− 1)Cp (2.6)

where Cp is a constant, depending upon the value of p, and E denotes the
expected value. This inequality implies that in a high-dimensional space the
difference dmax

p,n − dmin
p,n increases proportionally to n1/p−1/2 irrespective of the

distribution of data [4]. This property plays a dominating role, when n ≥ 15. In
particular (see Figure 2.4a)

dmax
p,n − dmin

p,n →

C1
√
n if p = 1

C2 if p = 2

0 if p ≥ 3

In order to prevent this phenomenon, Aggarwal, Hinnenburg and Keim pro-
posed in [4] application of the fractional Minkowski distances with the parameter
p ∈ (0, 1] – see Figure 2.4(b). Yet, in this case (2.3) is no longer a distance, since
the triangle condition is not satisfied. If, for instance, x = (0, 0), y = (1, 1) and
z = (1, 0), then

d(x,y) = 21/p > d(x, z) + d(y, z) = 1 + 1

A subsequent, but not so critical issue is constituted by the fact that the
values of the Minkowski metric are dominated by these features, whose values
are measured on the scales with the biggest ranges. This issue can be relatively
easily resolved by introducing weighted distance, that is - by replacing each com-
ponent of the equation (2.3) by the expression ωl(xil − xjl)p, where wl is the
weight equal, e.g., the inverse of the standard deviation of the l-th feature, or
the inverse of the range of variability of the l-th feature. The counterpart to
the second variant is constituted by the initial normalization of data, ensuring

2.2 Measures of similarity/dissimilarity 29

0 20 40 60 80 100 120 140 160 180 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

L
2

L
3

p=0.3
p=0.5
p=0.8

(a) (b)

Fig. 2.4. The influence of the parameter p on the properties of Minkowski distance,
(a): Average values of the difference between the most distant points from a 100-point
set in dependence upon the number of dimensions, n, and the value of the exponent,
p, (b): Unit circles for p < 1

that xil ∈ [0, 1] for each of the features l = 1, . . . , n. This is, usually, a routine
procedure, preceding the proper data analysis. In some cases, instead of a sim-
ple normalization, standardization is applied, that is - the original value xil is
replaced by the quotient (xil−µl)/σl, where µl, σl are the average value and the
standard deviation of the l-th feature.

2.2.1.2 Mahalanobis distance

When defining distance (2.3) it is by default assumed that features are not
mutually correlated. When this assumption is not satisfied, Mahalanobis distance
is usually applied,

dΣ(xi,xj) =
√

(xi − xj)TΣ−1(xi − xj) (2.7)

which is a variant of the distance (2.2), where W is equal the inverse of the
covariance matrix. Covariance matrix is calculated in the following manner

Σ =
1

m

m∑

i=1

(xi − µ)(xi − µ)T (2.8)

with

µ =
1

m

m∑

i=1

xi (2.9)

being the vector of average values.
Note that:

30 2 Cluster Analysis

(a) By applying the transformation yi = Σ−1/2xi we reduce Mahalanobis dis-
tance dΣ(xi,xj) to Euclidean distance between the transformed vactors, that
is dΣ(xi,xj) = ‖yi − yj‖.

(b) When the features are independent, then the covariance matrix is a diagonal
matrix: the nonzero elements are equal the variances of the particular fea-
tures. In such a case Mahalanobis distance becomes the weighted Euclidean
distance of the form

dS(xi,xj) =

√√√√
n∑

l=1

(xil − xjl
sl

)2
(2.10)

Mahalanobis distance is useful in identification of the outliers (atypical ob-
servations). A number of properties of this distance are provided in the tuto-
rial [242].

2.2.1.3 Bregman divergence

The distances, that is – the measures of dissimilarity – considered up till now,
have a differential character: d(x,y) = ϕ(x − y), where ϕ : Rn → R is an ap-
propriately selected function. In certain situations, e.g. in problems concerning
signal compression, measures are needed that would account for more complex
relations between the vectors compared. An exhaustive survey thereof is given
in [42]. An instance is represented in this context by the measure, introduced for
the systems of speech compression by Chaffee11

dCh(x,y) = (x− y)TR(x)(x − y) (2.11)

While in the case of Mahalanobis distance (2.7) the covariance matrix, which
appears there, is established a priori, the matrix of weights, which is used in
the definition (2.11) depends upon the currently considered object x. Another
example is provided by the measure of Itakura-Saito12.

All these measures are generalized by the so-called Bregman divergence. It
is defined as follows, [37]

Definition 2.2.1 Let φ : S → R be a strictly convex function, defined on a
convex set S ⊂ Rn. Besides, we assume that the relative interior, rint(S), of
the set S is not empty, and φ is a function differentiable on rint(S). Bregman
divergence is then such a function dφ : S×rint(S)→ [0,∞) that for the arbitrary
x,y ∈ Rd

11 D.L. Chaffee, Applications of rate distortion theory to the bandwidth compression
of speech, Ph.D. dissertation, Univ. California, Los Angeles, 1975. See also R.M.
Gray, et al., Distortion measures for speech processing, IEEE Trans. on Acoustics,
Speech and Signal Processing, 28(4), 367-376, Aug. 1980.

12 See F. Itakura, S. Saito, Analysis synthesis telephony based upon maximum likeli-
hood method, Repts. of the 6th Intl. Cong. Acoust. Tokyo, C-5-5, C-17-20, 1968.

2.2 Measures of similarity/dissimilarity 31

dφ(x,y) = φ(x) − φ(y) − (x−y)T∇φ(y) (2.12)

Symbol ∇φ(y) denotes the gradient of the function φ(y). �

Examples of Bregman divergence are shown in Table 2.1. Special attention
ought to be paid to the last three examples. If we take for φ(x) the squared
length of vector x, then dφ(x,y) is equal squared Euclidean distance between
the points, represented by the vectors x and y. If the mapping φ is defined
as xTWx, where W is a positive definite matrix, then we obtain the squared
distance (2.2), in particular – defined in Subsection 2.2.1.2 Mahalanobis distance.
Finally, if x is a stochastic vector13, while φ is a negative value of entropy,
φ(x) =

∑n
j=1 xj log2 xj , then we obtain Kullback-Leibler divergence, referred to

frequently as KL-divergence. This notion plays an important role in information
theory, machine learning, and in information retrieval.

Domain φ(x) dφ(x,y) Divergence

R x2 (x− y)2 quadratic loss
function

R+ x log x x log(x

y
)− (x− y)

[0,1] x log x + (1− x) log(1− x) x log(x

y
) + (1− x) log(1−x

1−y
) logistic loss

function

R++ − log x x

y
− log(x

y
)− 1 Itakura-Saito

distance

R
n ‖x‖2 ‖x − y‖2 squared Euclidean

distance

R
n xTWx (x− y)TW (x− y) Mahalanobis

distance

n-simplex
∑n

j=1 xj log2 xj

∑n
j=1 xj log2(

xj

yj
) KL-divergence

Table 2.1. Bregman divergences generated by various convex functions,[37]

2.2.1.4 Cosine distance

Another manner of coping with the ”curse of dimensionality” is suggested by,
for instance, Hamerly, [159], namely by introducing distance dcos(xi,xj) defines
as 1 minus cosine of the angle between the vectors xi,xj ,

dcos(xi,xj) = 1− cos(xi,xj) = 1− xT

ixj

‖xi‖|xj‖
= 1−

∑n
l=1 xilxjl
‖xi‖‖xj‖

(2.13)

The value of cosine of an angle, appearing in the above formula, constitutes
and example of a measure of similarity, which is the basic measure, applied
in the information retrieval systems for measuring the similarity between the
documents [29]. In this context the components xil represent the frequency

13 That is – all of its components are non-negative and
∑n

j=1 xj = 1.

32 2 Cluster Analysis

of appearance of a keyword indexed l in the i-th document. Since frequen-
cies are non-negative, then, for two arbitrary vectors, representing documents,
0 ≤ cos(xi,xj) ≤ 1 and 0 ≤ dcos(xi,xj) ≤ 1. Other measures, which quantify
the similarity of documents, are considered in [181].

2.2.1.5 Power distance

When we wish to increase or decrease the growing weight, assigned to these
dimensions, for which the objects considered differ very much, we can apply the
so-called power distance14:

dp,r(xi,xj) =
(n∑

l=1

|xil − xjl|p
)1/r

(2.14)

where p and r are parameters. The parameter p controls the increasing weight,
which is assigned to the differences for the particular dimensions, while param-
eter r controls the increasing weight, which is assigned to the bigger differences
between objects. Of course, when p = r, this distance is equivalent to Minkowski
distance.

2.2.2 Comparing the objects having qualitative features

Similarly as in the preceding point, we assume here, that for reasons related
to the facility of processing, each object is represented by the vector x, but
now its components are interpreted more like labels. If, for instance, the feature
of interest for us is eye color, then this feature may take on such values as 1
– blue, 2 – green, etc. It is essential that for such labels there may not exist
a natural order of such label ”values”, proper for a given phenomenon under
consideration. In such situations one can use as the measure of dissimilarity the
generalized Hamming distance: dH(xi,xj), equal the number of these features,
whose values for the compared objects are different.

When we deal with mixed data, that is – a part of features have a qualitative
character, and a part – quantitative character, then we can apply the so-called
Gower coefficient [213], which is the weighted sum of the partial coefficients
of divergence δ(i, j, l), determined for each feature of the objects xi i xj . For
a nominal (qualitative) feature we take δ(i, j, l) = 1, when the value of this
feature in both objects is different and δ(i, j, l) = 0 in the opposite case. If, on
the other hand, we deal with the quantitative feature having values from the
interval [xmin

l , xmax
l], then we replace δ(i, j, l) by

δ(i, j, l) =
|xil − xjl|

xmax
l − xmin

l

Ultimately, we take as the distance between two objects

14 Por. np. Web-based handbook of statistics. Cluster analysis: Agglomeration. http:

//www.statsoft.pl/textbook/stathome.html.

2.2 Measures of similarity/dissimilarity 33

dm(xi,xj) =

∑n
l=1 w(i, j, l)δ(i, j, l)∑n

l=1 w(i, j, l)
(2.15)

where w(i, j, l) is the weight equal zero when either one of the values xil, xjl
was not observed, or we deal with a so-called asymmetric binary feature15 and
for one of the compared objects the value of this feature is equal zero. In the
remaining cases we have w(i, j, l) = 1.

The recommender systems [60], whose purpose is to suggest to the users the
selection of broadly understood goods (books, movies, discs, information, etc.)
matching in a possibly best manner the tastes and the preferences of the users,
make use of the similarity measure s(xi,xj) between the preferences of the given
user, xi, and the preferences of other users, xj , where j = 1, . . . ,m, j 6= i. Here,
the l-th component of the preference vector corresponds to the evaluation of the
l-th good. One of the most often applied measures of similarity is, in this case,
the modified Pearson correlation coefficient

r(xi,xj) =
(xi − xi) · (xj − xj)

‖xi − xi‖‖xj − xj‖
(2.16)

where xi denotes the average of the vector xi. Modification concerns the nu-
merator of the above expression: when summing up the respective products one
accounts for only those components of the vectors, which represent the common
evaluations of the users compared. Instead of Pearson correlation one can apply,
of course, other measures of correlation, adapted to the character of the features
used in describing objects. The most popular variants applied for the qualitative
features are Spearman or Kendall correlations.

Just like in the case of the cosine similarity measure, also here one can in-
troduce the correlation-based distance dr1(xi,xj) = 1− r(xi,xj), taking values
from the interval [0, 2]. Another variant was proposed in [339]: dr2(xi,xj) =√

2[1− r(xi,xj)]. This distance also takes values from the interval [0, 2]; the
positively and strongly correlated variables correspond to small distances, while
negatively and strongly correlated variables correspond to large distances, the
weakly correlated variables being situated midway. One should also note that
when we deal with the centered variables (i.e. xi = xj = 0), then the value of the
correlation coefficient is identical with the value of cosine of the angle between
the two vectors. This fact was taken advantage of by Trosset [339] to formulate
the angular representation of correlation, used then to construct a new algorithm
of cluster analysis. Finally, in [142], side by side with dr2, the (pseudo-)distance

dr3(xi,xj) =
(1− r(xi,xj)

1 + r(xi,xj)

)β

where β > 0 is a parameter, was introduced. This distance was applied in the
FCM algorithm (which is presented in Section 3.3). The coefficient β controls, in

15 E.g. in medical tests it is often assumed that lack of a given feature for a patient is
denoted by symbol 0, while its presence – by the symbol 1. In such situations it is
better not to account in the comparisons for the number of zeroes.

34 2 Cluster Analysis

this case, the degree of fuzziness of the resulting partition. When r(xi,xj) = −1,
then the distance is undefined.

Since the value of r represents the cosine of the angle between the (centered)
vectors xi, xj , then

dtan(xi,xj) =

√
1− r2(xi,xj)

r2(xi,xj)
(2.17)

can be treated as tangent distance. The tangent distance measure, dtan, is based
on the volume of joint information, carried by the features analysed. The parallel
vectors (r = 1), as well as the anti-parallel ones (r = −1) carry the very same
information, and hence their distance is equal 0, while similarity is the highest
and equal 1. On the other hand, the orthogonal vectors are infinitely distant and
have zero similarity, since each of them carries entirely different information.
Vectors, having correlation coefficients different from 0 and ±1 contain partly a
specific information, and partly common information. The volume of the common
information constitutes the measure of their similarity. The tangent measure of
distance has nowadays a wide application in the analysis of similarity16. Another,
normalized variant of the correlation-based similarity measure is

rn(xi,xj) =
1

2

(
r(xi,xj) + 1

)
(2.18)

which guarantees that r(xi,xj) ∈ [0, 1]. In bioinformatics the s-called squared
correlation distance is being applied db(xi,xj) = 1 − r2(xi, rj) when compar-
ing genetic profiles 17. One can find a number of interesting comments on the
properties of the correlation coefficient in [294].

Pearson correlation is an adequate yardstick when the variables compared
are normally distributed. When this is not the case, other measures of similarity
ought to be applied.

Let us also mention the chi-square distance, which is defined as follows

dχ2 (x,y) =
1

2

n∑

i=1

(xi − yi)2
xi + yi

(2.19)

and which is used in comparing histograms18. This distance finds application in
correspondence analysis, as well as in the analysis of textures of digital images.

16 see, e.g., J. Mazerski. Podstawy chemometrii, Gdańsk 2004. Electronic edition
available at http://www.pg.gda.pl/chem/Katedry/Leki_Biochemia/dydaktyka/
chemometria/podstawy_chemometrii.zip.

17 See http://www.improvedoutcomes.com/docs/WebSiteDocs/Clustering/
Clustering_Parameters/Pearson_Correlation_and_Pearson_Squared_Distance_

Metric.htm.
18 See V. Asha, N.U. Bhajantri, and P. Nagabhushan: GLCM-based chi-square his-

togram distance for automatic detection of defects on patterned textures. Int. J. of
Computational Vision and Robotics, 2(4), 302-313, 2011

2.3 Hierarchical methods of cluster analysis 35

Another measure, which is used in this context, is the Bhattacharyya distance,
which measures the separability of classes; this distance is defined as follows:

dB(x,y) =
(

1−BC(x,y)
)1/2

(2.20)

where BC(x,y) =
∑n

i=1

√
xiyi is the so-called Bhattacharyya coefficient. Some-

times, the following definition is used: dB(x,y) = − lnBC(x,y).
A survey on the measures of similarity / dissimilarity, used in grouping of

the time series is provided, for instance, in [232].

2.3 Hierarchical methods of cluster analysis

Hierarchical methods are among the traditional techniques of cluster analysis.
They consist in successive aggregation or division of the observations and their
subsets. Resulting from this kind of procedure there is a tree-like structure, which
is referred to as dendrogram.

The agglomerative techniques start from the set of observations, each of which
is treated as a separate cluster. Clusters are aggregated in accordance with the
decreasing degree of similarity (or the increasing degree of dissimilarity) until
one, single cluster is established. The manner of proceeding is represented by
the following pseudo-code 2.1:

Algorithm 2.1 Algorithm of agglomerative cluster analysis

1: Initialization. Establish m single-element clusters and calculate distance for each
pair of such clusters. Memorize the distances calculated in the symmetric square
matrix D = [dij].

2: Find a pair Ci, Cj of the clusters that are the closest to each other.
3: Form a new cluster Ck = Ci ∪ Cj . In the generated dendrogram this corresponds

to introducing a new node and connecting it with the nodes, corresponding to the
clusters Ci, Cj .

4: Update the distance matrix, i.e. calculate the distance between the cluster Ck and
the remaining clusters, except for Ci and Cj .

5: Remove from the matrix D rows and columns, corresponding to the aggregated
clusters Ci, Cj and add a row and a column, for the new cluster Ck.

6: Repeat steps (2) - (5) until only one, single cluster is created.

In step 3 of the above algorithm we join together two closest clusters. By
defining more precisly the notion, related to the new distances from the cluster
thus created to the remaining ones, one obtains seven different variants of the
agglomerative algorithms (abbreviations in brackets correspond to the names,
introduced in [318]):

(a) Single linkage method or nearest neighbor method (single linkage): Distance
between two clusters is equal to the distance between two closest elements

36 2 Cluster Analysis

belonging to different clusters. The resulting clusters form, in this case, long
”chains”. In order to find the optimum solution to the task, involving the
method specified, the algorithms are used, referring to the minimum span-
ning tree 19.

(b) Complete linkage method or the farthest neighbor method (complete link-
age): Distance between two clusters is equal to the distance between two
farthest objects, belonging to different clusters. This method is most appro-
priate, when the real objects form well separated and compact clusters.

(c) Average linkage method (unweighted pair-group average, UPGA): Distance
between two clusters is equal the average distance between all pairs of objects
belonging to both clusters considered.

(d) Weighted pair-group average method (weighted pair-group average, WPGA):
This method is similar to the preceding one, but calculations are carried out
with the weights, equal the numbers of objects in the two clusters considered.
This method is advised in cases, when we deal with clusters having distinctly
different numbers of objects.

(e) Centroid method (unweighted pair-group centroid, UPGC): Distance between
two clusters is equal to distance between their centroids (gravity centers).

(f) Method of weighted centroids or of the median (weighted pair-group cen-
troid, WPGC): Distance between two clusters is calculated as in the previous
method, but with introduction of weights, which are equal the numbers of
objects in the clusters considered.

(g) Ward method of minimum variance. In this method the sum of squares
of distances between objects and the center of the cluster, to which the
objects belong, is minimized. This method, even though considered to be
very effective, tends to form clusters having similar (low) cardinalities.

The opposition to the agglomerative techniques is constituted by the divisive
techniques. Here, analysis starts from a single all-encompassing cluster, which is
subject to successive divisions, according to the increasing degree of similarity.
These techniques, even though apparently symmetric to the agglomerative ones,
are used in practice much less frequently.

Since for a given set of observations one can obtain multiple different hierar-
chies, the question arises: ”To what extent a dendrogram reflects the distances
between the particular pairs from the set X?” One of the popular means for as-
sessing the quality of grouping was introduced by Sokal and Rohlf20, namely the
cophenetic correlation coefficient . Given a dendrogram, the matrix DT is formed,
presenting the levels of aggregation, at which the pairs of objects appeared for
the first time in the same cluster. Let further E be a vector (variable) formed of
the elements located above the main diagonal of the distance matrix D and let T
be the vector (variable) formed out of the elements situated above the main di-

19 M. Delattre and P. Hansen. “Bicriterion cluster analysis”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol-2, No. 4, pp. 277-291, 1980

20 R.R. Sokal, F.J. Rohlf. 1962. The comparison of dendrograms by objective methods.
Taxon, 11(2), 1962,33-40

2.3 Hierarchical methods of cluster analysis 37

agonal21 of the DT matrix. The cophenetic correlation coefficient is the Pearson
correlation coefficient between these two variables. The computational details
are presented in the example 2.3.1. Another coefficient, which allows for assess-
ing the degree of matching between the dendrogram and the matrix of distances
(similarities) is the Goodman-Kruskal coefficient22 (Goodman-Kruskal gamma
coefficient, gamma index). It was introduced with the intention of assessing the
concordance of orderings of features expressed on the ordinal scale.

The hierarchical methods have some important shortcomings. We mention
below some of the most important ones:

(i) They lose their clarity with the increase of the number of analysed objects.
(ii) There is no way to shift objects from one cluster to another, even if they

had been wrongly classified at the initial stages of the procedure.
(iii) The results reflect the degree, to which the data match the structure implied

by the algorithm selected (”chain” or a compact ”cloud”).

Example 2.3.1 Consider the data from the diagram 2.5(a). The matrix of dis-
tances between the objects is of the form

D =

1 2 3 4 5 6
1 0 4.4721 4.2426 2.2361 2.8284 3.1623
2 0 1.4142 3.0000 2.0000 3.1623
3 0 2.2361 1.4142 2.0000
4 0 1.0000 1.0000
5 0 1.4142
6 0

By applying the complete link (farthest neighbour) method, we construct the cor-
responding dendrogram. In the first step we aggregate the objects with numbers 4
and 6, between which distance is equal 1 unit. In the next step we add object num-
ber 5, situated at the distance d({x4, x6}, x5) = max

(
d(x4, x5), d(x6, x5)

)
= 1.4142.

In the third step we glue together objects having numbers 2 and 3, between which
distance is equal 1.4142. Then, in the fourth step, we aggregate the clusters
formed until now into one cluster {{{x4, x6}, x5}, {x2, x3}}, the distance between
these clusters being equal 3.1623. Finally, in the last step, we add the element x1,
which is situated at the distance of 4.4721 from the cluster already established.
The dendrogram obtained therefrom is shown in Figure 2.5(b). The matrix of the
dendritic distances, determined on the basis of the calculations performed, is as
follows:

21 Both distance matrices are symmetric, it suffices, therefore, to consider their ele-
ments situated above (or below) the main diagonal.

22 L.A. Goodman, W.H. Kruskal. Measures of association for cross classifications. J.
of the American Statistical Association, 49(268), 1954, 732-764

38 2 Cluster Analysis

DT =

0 4.4721 4.4721 4.4721 4.4721 4.4721
0 1.4142 3.1623 3.1623 3.1623

0 3.1623 3.1623 3.1623
0 1.4142 1.0000

0 1.4142

Hence, vectors E and T are equal

E 4.47 4.24 2.23 2.83 3.16 1.41 3.00 2.00 3.16 2.24 1.41 2.00 1.00 1.00 1.41
T 4.47 4.47 4.47 4.47 4.47 1.41 3.16 3.16 3.16 3.16 3.16 3.16 1.41 1.00 1.41

The cophenetic correlation coefficient, expressing the degree of match between
the dendrogram from Figure 2.5(b) and the matrix of distances D is equal the
coefficient of Pearson correlation c(E, T) = 0.7977. �

2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

2

3

4 5

6

1

4 6 5 2 3 1

1

1.5

2

2.5

3

3.5

4

4.5

(a) (b)

Fig. 2.5. The exemplary data set (a) and the corresponding dendrogram, (b) obtained
from the complete link method

2.4 Partitional clustering

Let U = [uij]m×k denote the matrix with elements indicating the fact of assign-
ment of i-th object to the j-th class. When uij ∈ {0, 1}, then we speak of a
”crisp” partition of the set X, while for uij ∈ [0, 1] – we deal with the ”fuzzy”
partition. The latter case is considered in Section 3.3. here, we concentrate on
the ”crisp” partitions.

If matrix U is supposed to represent the partition of the set of objects (see
conditions, mentioned in Section 2.1), then this matrix has to satisfy the fol-
lowing conditions: (a) each object has to belong to exactly one cluster, that is∑k

j=1 uij = 1 and (b) each cluster must contain at least one object, but cannot

contain all the objects, i.e. 1 ≤ ∑m
i=1 uij < m. Denote by Um×k the set of all

2.4 Partitional clustering 39

the matrices, representing the possible partitions of the set of m objects into k
disjoint classes. It turns out, see, e.g., [10], [213], that for the given values of m
and k the cardinality of the set Um×k is defined by the formula

ϑ(m, k) =
1

k!

k∑

j=1

(−1)k−j
(k
j

)
jm (2.21)

For instance, ϑ(3, 2) = 3, but already ϑ(100, 5), is the number of the order of
1068. Generally, the number of ways, in which m observations can be divided
among k clusters is approximately equal km/k!, meaning that it is of the order
of O(km). In particular, when k = 2, then ϑ(m, 2) = 2m−1 − 1. The problem of
selection of the proper partition is, therefore, an NP-complete task of combina-
torial optimisation.

An effective navigation over the sea of the admissible partitions is secured by
the criteria of grouping and the methods of optimisation, coupled with them.

2.4.1 Criteria of grouping based on dissimilarity

The fundamental criteria, applied in the partitional clustering are homogeneity
and separation. Homogeneity of a cluster means that two arbitrary objects, which
belong to it, are sufficiently similar, while separation of clusters means that
two arbitrary objects, belonging to different clusters are sufficiently different. In
other words, the partition, induced by the clustering algorithm should contain
homogeneous and well separated groups of objects.

Let D = [dij]m×m denote the matrix with elements dij corresponding to the
dissimilarities of objects i and j. We assume that D is a symmetric and non-
negative matrix, having zeroes on the diagonal. The homogeneity of a cluster Cl

composed of nl objects can be measured with the use of one of four indicators
23, see, e.g., [162]:

h1(Cl) =
∑

xi,xj∈Cl

dij

h2(Cl) = max
xi,xj∈Cl

dij

h3(Cl) = min
xi∈Cl

max
xj∈Cl

dij

h4(Cl) = min
xi∈Cl

∑

xj∈Cl,j 6=i

dij

(2.22)

The first of these indicators is the sum of dissimilarities between the pairs of
objects belonging to the cluster Cl. If the elements of the set Cl are mutually
sufficiently similar, the set can be treated as a clique24, and so h1 represents the

23 For computational reasons, instead of distance, its squared value is often used, al-
lowing for omitting the square root operation.

24 In graph theory, a clique is such a subgraph, in which any two vertices are connected
by an edge. Admitting that we connect with an edge the vertices that are little
dissimilar, we treat a clique as a set of mutually similar vertices.

40 2 Cluster Analysis

weight of a clique. The second indicator is the maximum value of dissimilarity
in the group Cl; it corresponds to the diameter of the set Cl. The third indicator
is being referred to as the radius of the set Cl, while the fourth one is defined
as a minimum sum of dissimilarities between the objects from the set Cl and its
representative. This latter indicator is called star index or medoid.

Separation is quantified with the use of the following indicators

s1(Cl) =
∑

xi∈Cl

∑

xj /∈Cl

dij

s2(Cl) = min
xi∈Cl,xj /∈Cl

dij

(2.23)

The first of them, s1(Cl), called the cutting cost, is the sum of distances between
the objects from the set Cl and the objects from outside of this set. The second
one, s2(Cl) is equal the minimum dissimilarity between the elements of the set
Cl and the remaining elements of the set X.

Based on the measures as defined above, we can quantify the quality J(m, k)
of the partition of the set of m elements into k disjoint groups with the use of
the indicators given below:

J1(m, k) =
1

k

k∑

i=1

wi

J2(m, k) = max
i=1,...,k

wi

J3(m, k) = min
i=1,...,k

wi

(2.24)

Symbol wi denotes one of the previously defined indicators of homogeneity /
separability, assigned to the i-th group. If w represents homogeneity, then the
indicator J1(n, k) corresponds to the average homogeneity inside groups, J2(n, k)
– the maximum homogeneity, and J3(n, k) – the minimum homogeneity in the
partition produced. A good partition ought to – in the case of homogeneity – be
characterised by the possibly low values of these indicators, while in the case of
separability – by their possibly high values.

2.4.2 The task of cluster analysis in Euclidean space

Conform to the convention adopted, each object xi ∈ X is described by the n-
dimensional vector of features, so that the set X is identified with the set of m
points in the n-dimensional Euclidean space. Let

µ =
1

m

m∑

i=1

xi (2.25)

be the gravity centre of the set of m objects and let

2.4 Partitional clustering 41

µj =
1

|Cj |
∑

xi∈Cj

xi =
1∑m

i=1 uij

m∑

i=1

uijxi =
1

nj

m∑

i=1

uijxi (2.26)

denote the gravity centre of the j-th cluster, where nj = |Cj | =
∑m

i=1 uij is the
cardinality of the j-th cluster.

We define two matrices (see, e.g., [121], [213]):

W =

m∑

i=1

k∑

j=1

uij(xi − µj)(xi − µj)T (2.27)

B =

k∑

j=1

(
m∑

i=1

uij

)
(µj − µ)(µj − µ)T (2.28)

MatrixW is the in-group covariance matrix, while B is the inter-group covari-
ance matrix. Both matrices together constitute a decomposition of the dispersion
matrix, or variance-covariance matrix

T =

m∑

i=1

(xi − µ)(xi − µ)T (2.29)

i.e.: T = W +B.
The typical objective functions, which are used as the criteria of selection of

the proper partition, are [121]:

(a) Minimisation of the trace of matrix W . This criterion is equivalent to minimi-
sation of the sum of squares of the Euclidean distances between the objects
and the centres of clusters, to which these objects belong, that is

J1(m, k) =

k∑

j=1

m∑

i=1

uij‖xi − µj‖2

=
k∑

j=1

1

nj

∑

xi,xl∈Cj

‖xi − xl‖2
(2.30)

In other words, minimisation of the indicator J1 is equivalent to minimisation
of the criterion of homogeneity, h1(Cj)/nj . Such approach favours spherical
clusters.

(b) Minimisation of the determinant of matrix W . This criterion is useful in the
situations, when the natural clusters are not spherical.

(c) Maximisation of the trace of matrix BW−1. This is a generalisation of the
Mahalanobis distance (2.7) for the case of more than two objects. The short-
coming of this criterion is its sensitivity to scale. Grouping obtained from
the raw data may drastically differ from the one obtained after the data are
rescaled (e.g. through standardisation or normalisation).

42 2 Cluster Analysis

2.4.2.1 Minimising the trace of in-group covariance

Despite the limitations, mentioned before, the criterion (2.30) is among the most
willingly and most frequently used in practice. We shall soon see that this is not
so much the effect of its simplicity, as – surprisingly – its relatively high degree
of universality.

Minimisation of the quality index (2.30) leads to the mathematical program-
ming problem of the form

min
uij∈{0,1}

m∑

i=1

k∑

j=1

∥∥∥xi −
∑m

l=1 uljxl∑m
l=1 ulj

∥∥∥
2

subject to

m∑

i=1

uij > 1, j = 1, . . . , k

k∑

j=1

uij = 1, i = 1, . . . ,m

(2.31)

It is a 0/1 (binary) programming problem with a nonlinear objective func-
tion, [162], [8]. The integer constraints, along with the nonlinear and non-convex
objective function make the problem (2.31) NP-hard. For this reason the deter-
mination of the minimum of the function J1 is usually performed with the use
of the heuristic methods. Yet, attempts have been and are being made, aiming
at a satisfactory solution to the problem (2.31). A survey of these attempts can
be found, for instance, in [8], [20], [282]. The goal of such studies is not only to
find the optimum solution, but also to gain a deeper insight into the very nature
of the task of grouping the objects. We provide below several equivalent forms
of the problem (2.31), enabling its generalisation in various interesting ways.

Let F ∈ Rm×m be a matrix having the elements

fij =

{
1
nj

if (xi,xj) ∈ Cj

0 otherwise
(2.32)

where, as before, nj denotes the number of objects in the group Cj .
If we number the objects from the set X in such a manner that the first n1

objects belong to group C1, the successive n2 of objects belong to group C2,
etc., then F is a block-diagonal matrix, F = diag(F1, . . . , Fk). Each block Fj is
an nj × nj matrix having elements 1/nj, i.e. Fj = (1/nj)ee

T, j = 1, . . . , k.

Lemma 2.4.1 Matrix F of dimensions m ×m, having elements defined as in
equation (2.32), displays the following properties:

(a) it is a non-negative symmetric matrix, that is, fij = fji ≥ 0, for i, j =
1, . . . ,m,

(b) it is a doubly stochastic matrix, that is, Fe = F Te = e,
(c) FF = F (idempotency)
(d) tr (F) = k,

2.4 Partitional clustering 43

(e) spectrum of the matrix F , σ(F) = {0, 1}, and there exist exactly k eigenval-
ues equal 1.

Proof: Properties (a) – (d) are obvious. We shall be demonstrating only the
property (e). Since every block has the form Fj = eeT/nj, then exactly one
eigenvalue of this submatrix is equal 1, while the remaining nj−1 eigenvalues

are equal zero. The spectrum of the matrix F , σ(F) =
⋃k

j=1 σ(Fj), hence F has
exactly k eigenvalues equal 1. �

If X = (x1 . . .xm)T is the matrix of observations, then

M = FX

is the matrix, whose i-th row represents the gravity centre of the group, to which
the i-th object belongs.

Given the above notation, the quality index (2.30) can be written down in
the equivalent matrix form

J1(C1, . . . , Ck) =

k∑

j=1

∑

xi∈Cj

‖xi − µj‖2

= tr
(
(X −M)T(X −M)

)

= tr (XTX +M TM − 2XTM)

Taking advantage of the additivity and commutativity of the matrix trace, see
properties (b) and (c) in page 232, as well as symmetry and idempotence of
matrix F , we transform the above expression to the form

J1(C1, . . . , Ck) = tr (XTX +XTF TFX − 2XTFX)
= tr (XTX +XTFX − 2XTFX)
= tr (XTX −XTFX)
= tr (XTX −XTXF)

Let
K = XTX

It is a symmetric and non-negative matrix. The expression tr (XTXF) =
tr (KF) =

∑
ij kijfij is a linear combination of the elements of matrix K, hence,

in case of the nonlinear objective function J1 we obtain a linear function! Fi-
nally, the task of grouping of objects in the Euclidean space reduces to either
minimisation of the indicator

J1(C1, . . . , Ck) = tr
(
K(I− F)

)
(2.33)

or, equivalently, if we ignore the constant component K, to maximisation of the
indicator

J ′
1(C1, . . . , Ck) = tr (KF) (2.34)

44 2 Cluster Analysis

The first of these forms is used, in particular, by Peng and Wei in [282], while
the second, by, for instance, Zass and Shashua in [381]. We concentrate on the
task of maximisation25

maxF∈Rm×m tr (KF)

subject to F ≥ 0, F T = F, Fe = e
F 2 = F, tr (F) = k

(2.35)

The above formulation allows for the generalisation of the task of grouping
in a variety of manners:

(a) Minimisation of the indicator (2.30) assumed that the observations are points
in n-dimensional Euclidean space. In such a case the prototypes are sought,
being the gravity centres of the possibly compact groups. The quality index
of the form of tr (KF) makes it possible to replace the distances between
the points by a more general kernel function26. This shifts our interest in the
direction of the so-called relational grouping, where, instead of the Euclidean
distance between the pairs of points, a more general measure of similarity is
being used, kij = s(xi,xj), e.g. the Gaussian kernel function kij = exp

(
−

γ‖xi−xj‖2
)
, where γ > 0 is a parameter. Thereby we give up the assumption

that the set X has to have the representation X ∈ R
m×n.

(b) The objective function, appearing in the problem (2.35) can be replaced by
the Bregman divergence (see definition 2.2.1 on page 31) Dφ, this leading to
the problem, see [358]

maxF∈Rm×m Dφ(K,F)

subject to F ≥ 0, F T = F, Fe = e
F 2 = F, tr (F) = k

(2.36)

When φ = r2, problem (2.36) is reduced to problem (2.35). The generalised
variant of the k-means algorithm for such a case is considered in the study
[37]. It is shown there that, in particular, the prototypes of groups are
determined as the (weighted) gravity centres of these groups, and, even more
importantly, that such a definition of the prototype is correct only if the
dissimilarity of the objects is measured through some Bregman divergence.

Let us also note here that formulation (2.35) turns our attention towards the
doubly stochastic matrices, that is – such symmetric and non-negative matrices

25 Peng and Wei note in [282] that the idea of representing the objective function
appearing in the problem (2.31) in the form of minimisation of the trace of an
appropriate matrix was forwarded first by A.D. Gordon and J.T. Henderson in
their paper, entitled ,,An algorithm for Euclidean sum of squares”, which appeared
in the 33rd volume of the journal Biometrica (year 1977, pp. 355-362). Gordon
and Henderson, though, wrote that this idea had been suggested to them by the
anonymous referee!

26 See Section 2.5.4.

2.4 Partitional clustering 45

that the sum of every row and every column is equal 1. One can find interesting
remarks on applications of such matrices in, for instance, [208].

In order to enhance the flexibility of the formulation (2.35), let us replace the
matrix F by the product GGT, where G is the matrix of the dimensions m× k,
having the elements

gij =

{
1√
nj

if (xi,xj) ∈ Cj

0 otherwise

Matrix G fulfills the following conditions: (a) it is non-negative, gij ≥ 0, i =
1, . . . ,m, j = 1, . . . , k, (b) GTG = I, (c) GGTe = e. The non-negativity of the
matrix G means that F is a completely positive matrix, and its cp-rank27 equals
k.

By referring to the fact that tr (AB) = tr (BA), provided both products do
exist, we can turn the task of maximisation (2.35) into the one of the form

maxG∈Rm×k tr (GTKG)
subject to G ≥ 0,

GTG = I,
GGTe = e

(2.37)

Taking into account the formulation (2.37) we can treat the problem of
grouping as a search for such a matrix F , for which tr (KF) attains the
maximum in the set of all matrices Rm×m fulfilling two additional conditions:
(a) F is a doubly stochastic matrix, (b) F is a completely positive matrix, and
its cp-rank = k, that is: F = GGT, where G is a non-negative matrix of the
dimensions m× k. Zass and Shashua propose in [381] a two-stage procedure:

(i) The given matrix K is replaced by the doubly stochastic matrix F̃ . In order
to do this, one can use the Sinkhorn-Knopp method, which consists in the
intermittent normalisation of rows and columns of matrix K. Other, more
effective methods of turning a matrix into the doubly stochastic form are
commented upon by Knight in [208].

(ii) In the set of the non-negative matrices of dimensions m × k such a

matrix G is sought, which minimises the error ‖F̃ − GGT‖F , where

‖ A‖F =
√

trATA =
√∑m

i=1

∑m
j=1 a

2
ij denotes the Frobenius norm.

The concepts here barely outlined have been developed into the advanced
methods of cluster analysis. A part of them makes use of the so-called semi-
definite programming; we can mention here the studies, reported in [282], [71],
[218], or in [371]. They concern not only the typical problems of minimising the
trace of an appropriate matrix, but also more advanced methods of grouping,
which are considered in the further parts of this book.

27 See definition B.2.4 in page 232.

46 2 Cluster Analysis

2.4.2.2 Approximating the data matrix

The quality index (2.30) can be transformed to

J1 = ‖X − UM‖2F (2.38)

where M ∈ Rk×n is the matrix with group centroids being its rows, M =
(µ1, . . . ,µk)T, while U ∈ Rm×k is the matrix indicating the assignment of the
i-th object to the j-th group, U = (u1, . . . ,um)T.

Minimisation of the indicator (2.38) allows for taking a different perspective
on the task of grouping: we look for a possibly good approximation of the data
matrix by the product of two matrices, U and M . If uij ∈ {0, 1}, then this task
is being carried out with the help of the following procedure:

(a) If M̂ = (µ̂1, . . . , µ̂k)T is the current approximation of the matrix M , then

the elements ûij of the matrix Û , constituting the approximation of U , have
the form

ûij =

1 if j = arg min
1≤t≤k

‖xi − µ̂t‖2F
0 otherwise

(2.39)

(b) If Û is the current approximation of the matrix U , then determination of the

matrix M̂ minimising the indicator J1 is a classical problem of regression.
From the condition28 ∂J1/∂M̂ = Û T(ÛM̂ −X) = 0 we get

M̂ = (Û TÛ)−1Û TX (2.40)

(c) Steps (a) and (b) are repeated until the terminal condition is fulfilled, this
condition consisting in the performance of a given number of repetitions, or
in stabilisation of the elements of the matrix Û .

The algorithm is initiated by specifying either an approximation Û , or the matrix
M̂ . A better variant, ensuring faster convergence, is to start from the matrix M̂ .
The methods of its initialisation are considered in Section 3.1.3.

Minimisation of the indicator (2.38) constitutes, in its essence, the problem
of the so-called non-negative factorisation, playing an important role in machine
learning, [359], bioinformatics, [95], text analysis, [48], [374], or in recommender
systems [211]. Yet, the problem (2.38) differs somewhat from the classical for-
mulation [228], where it is required to have both matrices non-negative. In the
case of grouping, matrix M does not have to be non-negative, while matrix U
must satisfy certain additional constraints, like, e.g.,

∑k
j=1 uij = 1. The thus

formulated task of factorisation of matrix X is a subject of intensive studies,
e.g. [103], [100], [231], [230], or [184].

By generalising the indicator (2.38) to the form

28 We take advantage here of the fact that ‖A‖2F = tr (A′A).

2.4 Partitional clustering 47

J1 = ‖X − UαM T‖2F (2.41)

where α > 1, we obtain the formulation leading to fuzzy grouping that we con-
sider in Section 3.3. An example of application of this technique in bioinformatics
shall be presented in Section 2.5.5.

2.4.2.3 Iterative algorithm of finding clusters

The algorithms of determination of the partition of objects into k classes are
usually iterative procedures, which converge at a local optimum, [160]. An
instance thereof has been presented in the preceding section. Its weak point is
the necessity of performing operations on matrices in step (b). Note, though,
that due to a special structure of the matrix of assignments U :

(a) Product Û TÛ = Ũ is a diagonal matrix having elements

ũjj =
m∑

i=1

ûij = nj , j = 1, . . . , k

where nj denotes the number of elements of the j-th group. Hence, Ũ−1 is
a diagonal matrix, as well, having elements ũ−1

jj = 1/nj.

(b) Matrix M̃ = Û TX has the dimensions k × n, and its i-th row is the sum of
rows of the matrix X , corresponding to the elements of the i-th cluster. So,
the i-th row of the matrix Ũ−1M̃ is the arithmetic mean of the coordinates
of objects, assigned to the i-th group.

The general form of the iterative procedure of assigning objects to clusters is
shown in the pseudocode 2.2. Here, the weights are additionally used, indicating
the contribution of a given object to the relocation of the gravity centres. This
mechanism was introduced by Zhang [383], and was applied, in particular, by
Hamerly and Elkan, [160]. When all weights are equal 1, the algorithm 2.2 corre-
sponds to the algorithm from the preceding section and represents the classical
Lloyd’s heuristics [238].

The essence of the algorithm is the iterative modification of the assignment
of objects to clusters. It is most common to assign an object to the cluster with
the closest gravity centre, i.e.

uij =

{
1 if j = arg min

1≤t≤k
‖xj − µt‖

0 otherwise
(2.43)

where µt denotes the gravity centre of cluster Ct (this rule was applied in step
(a) of the algorithm from the preceding section). It is the rule the winner takes all
– known also from the theory of competitive supervised learning29. The clusters,

29 See, e.g., J. Hertz, A. Krogh, R.G. Palmer: Introduction to the Theory of Neural
Computation. Santa Fe Institute Series, Addison-Wesley, 1991.

48 2 Cluster Analysis

Algorithm 2.2 Iterative algorithm of cluster analysis (generalised Lloyd’s
heuristics)

Require: Data set X and number of groups k.
Ensure: Gravity centres of classes {µ1, . . . ,µk} along with the assignment of objects

to classes U = [uij]m×k.
1: Initialisation. Select the gravity centres of clusters and assign weights to objects

w(xi).
2: Updating of assignments: for each object determine its assignment to a cluster and,

possibly, also its weight.
3: Updating of the gravity centres of clusters:

µj =

∑m
i=1 uijw(xi)xi∑m
i=1 uijw(xi)

(2.42)

4: Repeat steps 2 and 3 until the stopping condition is fulfilled, usually assumed to
be the lack of changes in the assignment of objects to clusters.

determined in this manner, are called Voronoi clusters30. Formally, if µ1, . . . ,µk

is a set of prototypes, then the Voronoi cluster Wj is the set of points, for which
µj is the closest prototype, that is:

Wj = {x ∈ R
n|j = arg min

1≤l≤k
‖x− µl‖} (2.44)

These clusters are convex sets, i.e.

[(x′ ∈Wj) ∧ (x∗ ∈ Wj)]⇒ [x′ + α(x∗ − x′)] ∈Wj , 0 ≤ α ≤ 1

The division of the space Rn into Voronoi sets is called Voronoi tessellation
(tiling) or Dirichlet tessellation. Their nature is illustrated in Figure 2.6. In the
two-dimensional case the lines, separating the regions, belonging to different
clusters, are the lines of symmetry of the segments, linking the neighbouring
gravity centres. Although effective algorithms for tiling are known for the two-
dimensional case [286], the very notion remains useful also in the n-dimensional
case.

2.4.3 Grouping according to cluster volume

Minimisation of the trace or the determinant of the matrix W leads to clusters
having similar numbers of elements. Besides, minimisation of tr (W) favours
spherical clusters.

30 Georgiy Fedosiyevich Voronoi, whose name appears in the Voronoi diagrams, was a
Russian mathematician of Ukrainian extraction. He lived in the years 1868 – 1908.
Interesting information on this subject can be found in 17th chapter of popular book
by Ian Stewart, entitled Cows in the Maze. And other mathematical explorations,
published in 2010 by OUP Oxford.

2.4 Partitional clustering 49

Fig. 2.6. Voronoi tessellation, that is, the boundaries of clusters determined by the
gravity centres marked by dark dots.

Report [313] presents the MVE algorithm (Minimum Volume Ellipsoids), in
which clusters are represented by the hyper-ellipsoids having minimum volume.
In distinction from the algorithms outlined in the preceding section, the MVE
algorithm is independent of scale and allows for the determination of clusters
having different numbers of elements. The dissimilarity measure, applied in this
algorithm, is related to Mahalanobis distance. A similar issue is also discussed
by Kumar and Orlin in [220].

The quality criterion adopted has the following form:

min
∑k

j=1 vol (Cj)

subject to
∑k

j=1 |Cj | ≥ (1− α)m, 0 ≤ α < 1

Cj ⊂ X
The first limiting condition means that existence of at most αm outliers in the
data set is allowed, while the remaining observations have to be assigned to k
clusters.

The hyper-ellipsoid Ej , containing the objects from the group Cj is defined
by its centre cj and the symmetric and positive definite matrix Qj , e.g. the
covariance matrix, characterising this group of data. So,

Ej = {x ∈ R
n : (x− cj)

TQ−1
j (x− cj) ≤ 1} (2.45)

Its volume is equal
√

det(Qj). Taking advantage of this fact, we can reduce
the task of partitioning the set X into k groups to the problem of semi-definite
programming of the form (see, e.g., [282])

50 2 Cluster Analysis

min

k∑

j=1

√
det(Qj)

subject the (xi − cj)
TQ−1

j (xi − cj), ∀(xi ∈ Cj), j = 1, . . . , k∑k
j=1 |Cj | ≥ (1− α)m, 0 ≤ α < 1

Cj ⊂ X
Cj ≻ 0, j = 1, . . . , k

(2.46)

Symbol Cj ≻ 0 means that Cj is a symmetric and positive definite matrix.
Publication [220] presents two algorithms that solve the problem formulated

above: (1) kVolume, an iterative algorithm, which divides up the set of obser-
vations into the predefined number of groups, and (2) hVolume, that is – a
hierarchical grouping algorithm, which generates a monotonic family of clusters.
In both cases a fast algorithm of calculating volumes is made use of, as presented
in [330].

2.4.4 Generalisations of the task of grouping

In many instances, such as: grouping of documents, social network analysis, or
bioinformatics, particular objects may belong simultaneously to several groups.
In other words, instead of partitioning the data set, we look for the covering of
this set. One of the ways to deal with such situations is to apply the algorithms
of fuzzy clustering, for instance the FCM algorithm from Section 3.3. Yet, in
recent years, emphasis is being placed on the algorithms allowing not only for
an explicit reference to simultaneous assignment of objects to various groups,
but also making it possible to identify the optimum coverings of the given set
of objects. Their detailed consideration exceeds the assumed framework of this
book. We shall only mention a couple of interesting solutions, encouraging the
Reader to an own study of this matter:

– Banerjee et al. presented in [36] MOC – Model based Overlapping Cluster-
ing, which can be seen as the first algorithm, which produces the optimum
covering of the data set. The authors mentioned make use of the probabilis-
tic relational model31, proposed for purposes of analysis of the microarrays.
While the original solution concentrates on the normal distributions, MOC
operates on arbitrary distributions from the exponential family. Besides, by
introducing Bregman divergence, one can apply here any of the distances,
discussed in Section 2.2.1. In the opinion of the respective authors, this new
algorithm can be applied in document analysis, recommender systems, and
in all situations, in which we deal with highly dimensional and sparse data.

31 E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular pro-
cesses. In: Proc. of the 8th Pacific Symp. on Biocomputing (PSB), 2003, pp. 89-100

2.5 Other methods of cluster analysis 51

– Cleuziou32 proposed OKM – Overlapping k-Means, which is a generalisation
of the k-means algorithm. This idea was then broadened to encompass the
generalised k-medoids algorithm.

– In other approaches to the search for the coverings, graph theory and neural
networks are being applied. In the case of the graph theory methods, first the
similarity graph is constructed (analogously as in the spectral data analysis,
considered in Section 5), and then all the cliques contained in it are sought33.

A survey of other algorithms is provided also in [283].
Grouping of objects in highly dimensional spaces on the basis of distances

between these objects gives rise to problems discussed in Section 2.2.1.1. A clas-
sical solution consists in projecting the entire data set on a low dimensional
space (by applying, for instance, multidimensional scaling, random projections,
or principal component analysis) and using some selected algorithm to cluster
the thus obtained transformed data. In practice, though, it often turns out that
various subsets of data (”clusters”) may be located in different subspaces.

That is why the task of grouping is defined somewhat differently. Namely,
such a breakdown C1, . . . , Ck of the data set is sought, along with the correspond-
ing subsets of features, Fi ⊂ {1, . . . , n}, that points assigned to Cj be sufficiently
close one to another in the Fj dimensional space. It can be said that Cj is com-
posed of points which, after projection on the Fj dimensional space, constitute
a separate cluster. A survey of methods meant to solve the thus formulated task
is provided in [279], [214].

2.5 Other methods of cluster analysis

Methods, which have been outlined in the two preceding sections belong to two
essential streams developing within cluster analysis. In both cases a cluster is
understood as a set of objects that are mutually much more similar than any
two objects selected from two different clusters.

2.5.1 Relational methods

It has been assumed till now that each object is represented by a vector of feature
values. An alternative description is constituted by the relation of similarity
or dissimilarity for the pairs of objects. We encounter such situation in social
sciences or in management, [91], [168]. By operating on the relation of similarity
/ dissimilarity we can conceal the values of the attributes, which may be of
significance in such domains as, for instance, banking. It also is simpler to deal

32 G. Cleuziou. A generalization of k-means for overlapping clustering. Université
d’Orléans , LIFO, Rapport No RR-2007-15.

33 See, e.g., W. Didimo, F. Giordano, G. Liotta. Overlapping cluster planarity. In: Proc.
APVIS 2007,2007, p. 73-80, M. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, J.
Uhlmann. Graph-based data clustering with overlaps, COCOON, 2009, p.516-526

52 2 Cluster Analysis

with mixed attribute types (both quantitative and qualitative). The sole problem
to be solved at this level is the choice of the function measuring similarity /
dissimilarity of objects.

The notion of ”relational methods” is sometimes used in a wider context.
Thus, for instance, a set of relations may be given, Si, defined on different subsets
Xi of objects, [18], or relations may have a more complex character. In particular,
when grouping documents, it is worthwhile to consider relations between subject
groups and keywords.

2.5.2 Graph and spectral methods

The set X is often identified with the set of vertices of a certain graph G, whose
edges represent the connections between the objects; e.g. the pair {xi,xj} is an
edge in G, if the two objects are similar in the degree not lower than sτ . In
such a context a cluster becomes equivalent to, for instance, a clique, that is, a
connected subgraph of the graph G, i.e. such a one that every two vertices of
the subgraph are connected by an edge. In another definition it is assumed that
a cluster is such a subgraph Gi, whose vertices communicate exclusively among
themselves, and do not communicate with other vertices, outside this subgraph.
This means that when extracting clusters we take into account their connectivity
and not only their compactness. This is illustrated on Fig. 2.7. Using pairwise
distances between the points from the left panel we construct a graph shown on
the right panel. Here, each node is linking with other five nearest nodes.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b)

Fig. 2.7. Identification of clusters by examining mutual similarity between objects: (a)
a set of points35, (b) a graph obtained by joining five nearest neighbors of each node

The progenitor of graph cut clustering is Zahn’s36 approach, consisting of two
steps. First, using similarity matrix describing relationships among the objects,
a maximum spanning tree is constructed, and then the edges with small weights

36 C.T. Zahn, Graph-theoretic methods for detecting and describing gestalt clusters.
IEEE Trans. Comput., 20(1):68-86, 1971.

2.5 Other methods of cluster analysis 53

are removed from this tree to get a set of connected components. This method
is successful in detecting clearly separated clusters, but if the density of nodes
is changed, its performance will deteriorate. Another disadvantage is that the
cluster structure must be known in advance.

The understanding of clusters, as described above, places the problem of
their extraction in the context of graph cutting. In particular, when we assign
to every edge {vi, vj} in the graph G a similarity degree sij , the problem boils
down to removing the edges with small weights in order to decompose G into
connected components. Such a procedure ensures that the sum of weights of
the edges, connecting vertices from different groups is small in comparison with
the sum of weights linking the vertices, belonging to the same subgraph 37. An
exhaustive survey of techniques, which are applied in the partitioning of graphs,
can be found e.g. in [127] or [305].

A particularly important domain of application of this group of algorithms is
parallel computing. Assume that solving a certain problem requires performing
of m tasks, each of which constitutes a separate process, program or thread, re-
alised by one of c processors. When the processors are identical, and all tasks are
of similar complexity, then we can assign to every processor the same number of
tasks. Usually, though, realisation of a concrete task requires the knowledge of
partial results, produced by other tasks, which implies the necessity of commu-
nication between these tasks. In this manner we obtain a graph, with vertices
corresponding to individual tasks, while edges – correspond to their commu-
nication needs. Communication between the processors, which form a parallel
computing machine is much slower than data movement within one single pro-
cessor. In order to minimise communication to a necessary level, the processes
(vertices of the graph) ought to be partitioned into groups (i.e. assigned to pro-
cessors) in such a way that the number of edges, linking different groups, be
minimal. This is the formulation of a problem, whose solutions are considered,
in particular, in [127].

Another group of problems is constituted by image segmentation. Here, an
image is modelled as an undirected weighted graph, its vertices being pixels, or
groups of pixels, while the weights of edges correspond to the degree of similarity
(or dissimilarity) between the neighbouring pixels. This graph (image) is to be
segmented conform to a certain criterion, defining ”good” clusters.

An interesting offer, allowing for identification of complex cluster structures
is spectral graph theory – its application in clustering is considered in detail in
this book in Chapter 5. Various methods of spectral cluster analysis are reviewed
in [124], [351] and [305]. It is worth noting that spectral methods play nowadays a
significant role in practical tasks of data analysis and mining, such as information
retrieval [49], bioinformatics [174], or recommender systems [1], [221].

37 which means that objects, belonging to the same class are mutually sufficiently sim-
ilar, while objects, belonging to different groups are sufficiently mutually dissimilar.

54 2 Cluster Analysis

2.5.3 Density-based methods

In a different perspective, a cluster is conceived as a dense area in the space of
objects, surrounded by low density areas. This kind of definition is convenient in
situations, when clusters have irregular shapes, and the data set contains outliers
and noisy observations – see Figure 2.8. A typical representative of this group
of algorithms is DBSCAN [120] and its later modifications [299], [119] and [17].

856 858 860 862 864 866 868 870
4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

Fig. 2.8. An example of clusters with irregular shapes and various densities. The data
set contains also outliers.

Before presenting the essential idea of this algorithm, we shall introduce the
necessary definitions.

(a) Let d(x,y) denote distance between any two points x,y ∈ X and let ǫ > 0
be a parameter. The ǫ-neighbourhood of the object x is the set

Nǫ(x) = {x′ ∈ X : d(x,x′) ≤ ǫ}

(b) An object x ∈ X is called the internal point of a cluster, if its ǫ-
neighbourhood contains at least minPts objects, i.e. when |Nǫ(x)| ≥
minPts, where minPts is a parameter.

(c) An object x ∈ X is called a border point, if |Nǫ(x)| < minPts, but this
neighbourhood contains at least one internal point.

(d) If x ∈ X is neither an internal point, nor a border point, then it is treated
as a disturbance (outlier).

In construction of the particular clusters use is made of the notion of density-
reachability . Namely, a point y ∈ X is directly density-reachable from the point
x ∈ X if y ∈ Nǫ(x), and, besides, x is an internal point, that is, it is surrounded
by a sufficiently high number of other points. Note that the relationship of direct
density-reachability is assymetric. Then, y is called density-reachable from the
point x if there exists a sequence x1, . . . ,xn of points such that x1 = x, xn = y,
and each point xi+1 is directly density-reachable from xi, i = 1, . . . , n−1. Note
that the thus defined relation of reachability is asymmetric (y may be a border
point). That is why the notion of density-connectedness is introduced : points

2.5 Other methods of cluster analysis 55

x,y ∈ X are density-connected, if there exists such a point z ∈ X that both
x and y are density-reachable from z. Clusters, generated by the DBSCAN
algorithm have the following properties:

(i) All points, belonging to a cluster are mutually density-connected.
(ii) If an internal point is density-connected with another point of a cluster,

then it is also an element of this cluster.

Generation of clusters, having such properties, is outlined here through the
pseudocode 2.3. Note that we make use here only of the internal and border
points. Each two internal points, whose mutual distance does not exceed the
value of ǫ are put in the same cluster. On the other hand, the border points are
classified in any cluster, provided a neighbour of this point is an internal point
of the cluster.

Algorithm 2.3 DBSCAN algorithm

1: Initialisation. Mark the points from the set X as internal, border or noisy points.
2: Remove the noisy points.
3: Connect with an edge the neighbouring internal points (i.e. the internal points

situated at a distance not bigger than ǫ).
4: Form a cluster out of the neighbouring internal points.
5: Assign the border points to one of the clusters, upon which they neighbour.

Choice of the appropriate value of the radius ǫ influences significantly the
results of the algorithm. If ǫ is too big – density of each point is identical and
equal m (that is – the cardinality of the set X). If, however, the value of the
radius is too small, then |Nǫ(x) = 1| for any x ∈ X . The value of the parameter
ǫ is often assumed as the so-called k-distance, k-dist(x), namely the distance
between the point x and its k-th nearest neighbour. In the case of the two-
dimensional sets the value of k = 4 is often assumed, although there is also a
suggestion of taking k = n+ 1.

In order to select the proper value of ǫ a diagram is developed of the in-
creasingly ordered values of k-dist(x) for all x ∈ X . It is characterised by the
appearance of a value, following which an abrupt increase of distance takes place.
This is the value, which is chosen as ǫ. The procedure is illustrated in Figure
2.9. Its left part shows the data set 38, while the right part shows the diagram of
k-dist(x) for k = 4. It is usually assumed that minPts = k. One can also read
out of the diagram that ǫ ≈ 1.0.

In a general case, instead of k-distance, one can use a certain function g(x),
characterising density at point x. In the case of the DENCLUE algorithm [175]
this is the sum of the components of the function

38 It arose from adding 14 randomly generated points to the set, described in Chapter
6, namely data3 2.

56 2 Cluster Analysis

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) (b)

Fig. 2.9. Diagram of k-distances between the points of an exemplary data set X: (a)
An exemplary data set composed of 90 points, (b) increasingly ordered values of the
average distance between each of the 90 points of the data set X and their k = 4 nearest
neighbours.

g(x) =
∑

x′∈X

f(x,x′)

where f(x,x′) is, in principle, an arbitrary function, which describes the influence
exerted by the object x′ on the object x, e.g.

f(x,x′) = exp
(
− d(x,x′)

2σ2

)

with σ > 0 being a parameter. In this context, clusters are described as local
maxima of the function g(x).

The fundamental qualities of the DBSCAN algorithm are as follows:

1. Knowledge of the number of clusters existing in the set X is not required.
2. Clusters may have arbitrary shapes. Owing to the parameter minPts the

effect of a single connection is reduced, as manifested by the appearance of
thin lines, composed of points, belonging to different clusters.

3. Data are allowed to contain noise and outliers.
4. The algorithm requires specification of just two parameters: the radius ǫ,

and the number minPts, used in classification of points.
5. The algorithm is only slightly sensitive to the order, in which the individual

objects from the set X are considered.

Yet, there is a significant requirement that clusters have similar densities.
This shortcoming is done with in the variants of the algorithm – GDBSCAN
[299] and LDBSCAN [111]. Another essential weak point is the fact that the
quality of the algorithm strongly depends upon the definition of distance d(x,y).
We already know that, for instance, Euclidean distance loses on its usefulness in
the case of analysis of highly dimensional data.

2.5 Other methods of cluster analysis 57

Moore [262] proposed the so-called anchor algorithm to analyse highly di-
mensional data – see the pseudocode 2.4. This algorithm belongs to the class of
algorithms grouping on the basis of the minimum class diameter.

Algorithm 2.4 Anchor grouping algorithm, [262]

Require: Data set X, number of clusters K, minimum number of objects in a cluster
nmin.

1: Select randomly a point. Initiate k = 1, k′ = 0. Take as the anchor a1 the point
from the set X which is most distant from the initial point.

2: Assign to the group Ck, initiated by the anchor ak, these objects, which are closer
to ak than to other anchors. The objects form a list, ordered decreasingly with
respect to their distance from the anchor.

3: Check, whether the anchor ak has the sufficient number of objects assigned to it.
If |Ck| < nmin, then k′ = k′ + 1.

4: Substitute k = k + 1. For ak substitute the point that is most distant from the
remaining anchors.

5: If k − k′ < K, then go to step 2.
6: return partition of the set X into disjoint groups.

It should be noted that the algorithm may produce more than K groups. It
may also happen that the algorithm shall not produce sets containing more than
nmin elements.

2.5.4 Potential (kernel) function methods

These methods originate from the work of Ajzerman, Braverman and Rozonoer
[6], where these authors used the term of potential function. A short introduction
to this approach can be found in Section 5.6 of the monograph [337]. Along
with the development of the theory of support vector machines (SVM) [347] the
term ”kernel function” replaced the earlier term of the ”potential function”. We
present below, following [124], the fundamental assumptions of cluster analysis
methods using the notion of kernel function.

We assume (for simplicity and in view of practical applications), that we
deal with n-dimensional vectors having real-valued components (and not the
complex numbers, as this is assumed in the general theory). Hence, as until now,
X = {x1, . . . ,xm} denotes the non-empty set of objects, with xi ∈ Rn.

Definition 2.5.1 A function K : X×X → R is called the positive definite kernel
function (Mercer kernel or simply kernel) if: (i) K(xi,xj) is a symmetric func-
tion, and (ii) for any vectors xi,xj ∈ X and any real-valued constants c1, . . . , cm
the following inequality holds:

m∑

i=1

m∑

j=1

cicjK(xi,xj) ≥ 0

�

58 2 Cluster Analysis

If K1(x,y), K2(x,y) are kernel functions, then their sum, product, and
aK(x,y), where a > 0, are also kernel functions. The typical kernel functions,
which are used in machine learning are:

(a) Linear kernel Kl(x,y) = xTy + c. In the majority of cases, the algorithms,
which use linear kernel functions, are close to equivalence with their ”non-
kernel” counterparts (thus, e.g., the kernel-based variant of the principal
component analysis with the linear kernel is equivalent to the classical PCA
algorithm).

(b) Polynomial kernel K(x,y) = (αxTy + c)d, where α, c and the degree of the
polynomial, d, are parameters. The polynomial kernel functions are applied,
first of all, in the situations, in which normalised data are used.

(c) Gaussian kernel K(x,y) = exp
(
− ‖x − y‖2/(2σ2)

)
, where σ > 0 is a pa-

rameter, whose choice requires special care. If its value is overestimated, the
exponent will behave almost linearly, and the very nonlinear projection will
lose its properties. In the case of underestimation, function K loses the reg-
ularisation capacities and the borders of the decision area become sensitive
to the noisy data. The Gaussian kernel functions belong among the so-called
radial basis functions of the form

K(x,y) = exp

(
−
∑n

j=1 |xaj − yaj |b
2σ2

)
, b ≤ 2

The strong point of the Gaussian kernel is that (for a correctly chosen value
of the parameter σ) it filters out effectively the noisy data and the outliers.

Every Mercer kernel function can be represented as a scalar product

K(xi,xj) = Φ(xi)
TΦ(xj) (2.47)

where Φ : X → F is a nonlinear mapping of the space of objects into a highly
dimensional space of features F . An important consequence of this representation
is the possibility of calculating the Euclidean distance in the space F without
knowledge of the explicit form of the function Φ. In fact,

‖Φ(xi)− Φ(xj)‖2 =
(
Φ(xi)− Φ(xj)

)
T
(
Φ(xi)− Φ(xj)

)

= Φ(xi)
TΦ(xi) + Φ(xj)

TΦ(xj)− 2Φ(xi)
TΦ(xj)

= K(xi,xi) + K(xj ,xj)− 2K(xi,xj)

(2.48)

In view of the finiteness of the set X it is convenient to form a matrix K
having elements kij = K(xi,xj). Since kij = Φ(xi)

TΦ(xj), then, from the formal
point of view, K is a Gram matrix, see the definition B.2.3. Given this notation,
we can write down the last equality in the form

‖Φ(xi)− Φ(xj)‖2 = kii + kjj − 2kij (2.49)

2.5 Other methods of cluster analysis 59

The kernel functions are being used in cluster analysis in three ways, referred
to through the following terms, see [124], [373]):

(a) kernelisation of the metrics,
(b) clustering in feature space F ,
(c) description via support vectors.

In the first case we look for the prototypes in the space X , but the distance
between objects and prototypes is calculated in the space of features, with the
use of equation (2.48). The counterpart to the criterion function (2.30) is now
constituted by

JΦ
1 =

k∑

j=1

m∑

i=1

uij‖Φ(xi)− Φ(µj)‖2

=

k∑

j=1

m∑

i=1

uij

(
K(xi,xi) + K(µj ,µj)− 2K(xi,µj)

)
(2.50)

If, in addition, K(xi,xi) = 1, e.g. K is a Gaussian kernel, the above function
simplifies to the form

JΦ
1 = 2

k∑

j=1

m∑

i=1

uij

(
1− K(xi,µj)

)
(2.51)

In effect, in this case the function d(x,y) =
√

1− K(x,y) is a distance, and if,
in addition, K is a Gaussian kernel, then d(x,y)→ ‖x− y)‖ when σ →∞.

An example of such an algorithm is considered in deeper details in Section
3.3.5.6. The idea of calculating distances in the space of features was also made
use of in the kernelised and effective algorithm of hierarchical grouping, as well
as in the kernelised version of the mountain algorithm39, see also [203].

In the second case we operate with the images Φ(xi) of the objects and we
look for the prototypes µΦ

j in the space of features. The criterion function (2.30)
takes now on the form

JΦ
2 =

k∑

j=1

m∑

i=1

uij‖Φ(xi)− µΦ
j ‖2 (2.52)

where µΦ
j ∈ F . In Section 3.1.5.5 we show how this concept is applied to the

classical k-means algorithm, and in Section 3.3.5.6.2 – to the k-fuzzy-means
algorithm (FCM).

Finally, the description based on the support vectors refers to the single-class
variant of the support vector machine (SVM), making it possible to find in the

39 The mountain algorithm is a fast algorithm for determining approximate locations
of centroids. See R.R. Yager & D.P. Filev. Approximate clustering via the mountain
method. IEEE Trans. on Systems, Man and Cybernetics, 24(1994),1279-1284.

60 2 Cluster Analysis

space of features the sphere of minimum radius, containing almost all data, that
is – the data with exclusion of the outliers [44]. By denoting the centre of the
sphere with the symbol v, and its radius with the symbol R, we obtain the
constraint of the form

‖Φ(xi)− v‖2 ≤ R2 + ξi, i = 1, . . . ,m (2.53)

where ξi are artificial variables. More extensive treatment of this subject is pre-
sented in Section 3.5 of the book [124].

The basic characteristics of the kernel-based clustering algorithms are as
follows:

(a) They enable formation and description of clusters having shapes different
from spherical or ellipsoidal.

(b) They are well adapted to analysing the incomplete data and the data con-
taining outliers as well as disturbances (noise).

(c) Their shortcoming consists in the necessity of estimating additional param-
eters, e.g. the value of σ in the case of the Gaussian kernel.

Even though the characteristic (a) sounds highly encouraging, it turns out that
the classical partitional algorithms from Section 2.4 may also be applied in such
situations. We deal with this subject at greater length below.

2.5.5 Cluster ensembles

Similarly as in machine learning, where the so-called families of classifiers are
used in classification (see Sections 4.5 and 4.6 in [213]), in data grouping attempts
are made to enhance the effectiveness of grouping by applying the families of
groupings (cluster ensembles [179]). This kind of approach is also referred to as
aggregation of clusterings or consensus partitioning, [140]. The data set X is
analysed from various points of view, and the conclusions, resulting therefrom,
are used in the construction of the final partition. As noted by Strehl and Ghosh
[327] it is, in a way, the problem of the so-called knowledge reuse, with which
we deal in, for instance, marketing or banking. Thus, for instance, a company
disposes of various profiles, describing the behaviour of customers in terms of
demographic and geographical aspects, the history of purchases done, etc. Aggre-
gation of such descriptions allows for formulating of composite judgments, which
support the design of effective trade strategies, addressed at well selected groups
of customers. It is essential that in formulation of such judgments the entire
analysis does not have to be repeated from scratch, but knowledge, originating
from various sources is used and creatively processed.

Example 2.5.1 Consider a simple problem, represented by the data set40, which
is shown in Figure 2.10(a). Data points are here located along two spirals, of
which one is situated inside the other one. The classical k-means algorithm pro-
duces the output, which is shown in Figure 2.10(b).

40 Information on this data set is provided in Chapter 6.

2.5 Other methods of cluster analysis 61

(a) (b)

Fig. 2.10. (a): The set 2spirals is composed of two spirals, situated one inside the
other. (b): grouping produced by the k-means algorithm.

In order to obtain the correct partition, Fred and Jain [132] ran N times the
k-means algorithm, assuming a different number of classes at each time. They
aggregated the partial results, establishing the so-called co-association matrix,
composed of the elements wij = rij/N , where rij is the number of cases, in which
the pair of objects (i, j) was assigned to the same class. In order to determine
the ultimate partition on the basis of this new matrix, the single link hierarchical
algorithm was used, i.e. variant (a) from Section 2.3. �

The above way of proceeding can be formalised as follows: Let
C = {C1, . . . , CN} be a family of partitions of the data set X , with
Ci = {Ci

1, . . . , C
i
ki
}, i = 1, . . . , N , where ki is the number of groups, pro-

posed in the i-th partition. The problem consists in finding such a partition C∗
of the set X , which has the following properties [133]

(i) Conformity with the family of partitions C, i.e. the partition C∗ ought to
reflect the essential features of each partition Ci ∈ C.

(ii) Robustness with respect to small disturbances in C, namely the number
of clusters and their content ought not undergo drastic changes under the
influence of slight disturbances of the partitions, forming the family C.

(iii) Conformity with the additional information on the elements of the set X ,
provided this information is available. Thus, e.g., if the assignment of (all
or some) objects to classes is known, the partition C∗ ought to be to the
maximum degree in agreement with this assignment.

To measure the degree of agreement between the partitions, forming the
family C, Fred and Jain applied in [133], similarly, anyway, as Strehl and Ghosh in
[327], the normalised measure of mutual informationNMI(Cα, Cβ), where Cα, Cβ
denote the partitions compared. The form and the properties of this measure are

62 2 Cluster Analysis

considered in detail in Section 4.4.3. We only note here that NMI(Cα, Cβ) is a
number from the interval [0, 1].

The degree of agreement of the partition C∗ with the partitions from the
family C is calculated as

NMI(C∗,C) =
1

N

N∑

i=1

NMI(C∗, Ci) (2.54)

Let, further on, P(k) = {P1(k), . . . ,Pϑ(m,k)(k)} denote all the possible par-
titions of the set X into k disjoint classes. It should be remembered that ϑ(m, k)
is the number, defined by the equation (2.21), of all the possible partitions of an
m-element set X into k disjoint classes. Hence, as C∗ we can take the partition

C∗ = arg max
1≤and≤ϑ(m,k)

NMI(Pi(k),C) (2.55)

This partition satisfies the first of the postulates, formulated before. In order to
account for the requirements of flexibility, the authors quoted here form with
a bootstrap method an M -element family of partitions B = {B1, . . . ,BM},
randomly assigning objects from the set X , with repetitions, to the appropriate
sets from the family C. A more extensive treatment of the subject, along with a
description of the performed experiments, is provided in [133] and [134].

Alternative methods of aggregating multiple partitions of the data set are
considered by Strehl and Ghosh [327]. Hore, Hall and Goldgof [179] formulate
the procedure that ensures scalability of aggregation of partitions (represented
by the gravity centres of classes), corresponding to a sparse data set. These latter
authors consider two situations: (a) in each portion of data the same number of
classes is distinguished, or (b) the numbers of classes are different. In the first
case these authors obtain the so-called BM (Bipartire Merger) algorithm, and
in the second case – the MM (Metis Merger) algorithm. An additional strong
point of this work is the rich bibliography, concerning the families of partitions.

Then, Thangavel and Visalakshi [333] describe the application of the families
of partitions in the k-harmonic means algorithm41. Finally, Kuncheva and Vetrov
wonder in [222] whether the outputs from cluster ensembles are more stable than
partitions obtained from the a single clustering algorithm. They understand sta-
bility as sensitivity (or, more precisely, lack of sensitivity) with respect to small
disturbances in the data or in the parameters of the grouping algorithm. The
considerations therein allowed for the formulation of certain recommendations,
concerning the selection of the number of clusters, resulting from the analysed
family of partitions.

Let us mention, at the end, one more method of aggregating the partial
groupings, which is used in microarray analysis.

Example 2.5.2 One of the most popular applications of clustering in bioin-
formatics is microarray analysis. Suppose we treat X as a matrix with rows

41 This algorithm is presented in Section 3.1.5.4 of this book.

2.5 Other methods of cluster analysis 63

corresponding to genes, and columns – to experiments or samples. The value of
xij corresponds to the level of expression of the i-th gene in the sample (experi-
ment) j. In typical applications from this domain the matrix X is exceptionally
”slender”: it has thousands of rows and not more than 100 columns.

The study [63] presents the problem of formation of meta-genes, being the
linear combinations of n genes. In solving this problem, the non-negative fac-
torisation of matrices is used, mentioned here in Section 2.4.2.1, i.e. finding of
such matrices W and H, whose product WHT is an approximation of the matrix
X. In this concrete case columns of the matrix W correspond to meta-genes (or
to diagnostic classes), while the number wij defines the value of the coefficient
of contribution from the i-th gene in the j-th meta-gene. Then, the elements hij
of the matrix H indicate the levels of expression of the meta-gene j in sample i.
Matrix H is made use of for grouping of samples: i-th sample is assigned to this
meta-gene j∗, which corresponds to the maximum value of hij .

In the general case, by performing the decomposition of the matrix X many
times over, we obtain the set of matrices (W t, Ht), where t = 1, . . . , tmax denotes
the successive number of the NMF decomposition, while tmax is the total number
of the decompositions performed.

In the study, reported in [63], the following manner of aggregating the par-
tial results was applied. Let Ct denote the concordance matrix, obtained in ex-
periment t, having dimensions m × m. Its element ctij = 1 if genes i and
j belong to the same class, and ctij = 0 in the opposite case. Let, further,

C = (C1 + · · · + Ctmax
)/tmax be the aggregate (averaged) concordance matrix.

The numbers cij can be treated as the degrees of similarity of the gene pairs (i, j).
By turning similarities into distances, that is - by forming the matrix D, having
elements dij = 1 − cij , we construct the dendrogram and calculate the cophe-
netic correlation coefficient (see example 2.3.1 in page 38), indicating the degree
of agreement between the distances, contained in matrix D, and the distances,
resulting from the dendrogram developed. If the results of grouping, obtained in
each run of the algorithm are similar (meaning that the grouping obtained has
a stable character), then the elements of matrix C (and of matrix D) will have
values close to 0 or 1, and the calculated correlation coefficient will be close to 1.
In case, when the data set analysed does not represent a clear k-group structure,
the correlation coefficient shall have value well below 1. In addition, the result-
ing dendrogram serves in the ordering of column and rows of the concordance
matrix. The use is made here of the order, in which the leaves of the dendro-
gram are marked. In the left hand part of Figure 2.11 the unordered matrices of
concordance, C, are shown, as obtained for k = 2, 3, 4, 5, while in the right-had
part – the same matrices with the appropriately ordered rows and columns. Ma-
trix X represents, in this case, the levels of expression of 5000 genes, registered
in 38 samples, taken from the bone marrow 42. Conform to the claim from the
authors of [63], the method here outlined allows for a precise distinction between

42 The data, as well as the MATLAB code, are available at http:

//www.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?mode=
view&paper_id=89.

64 2 Cluster Analysis

two types of leukaemia (myeloid and lymphoblastic leukaemia), this being indi-
cated in the upper matrix in part (b) of Figure 2.11. A Reader, interested in the
interpretation of the remaining figures is kindly referred to the publication [63].

It should be noted that the quality of partitions, as measured by the cophenetic
correlation coefficient, decreases with the number of groups – see Figure 2.12.
This corresponds to the existence of less distinct structures in the data set, so
that the algorithm is not capable of determining them sufficiently precisely. �

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

(a) (b)

Fig. 2.11. Unordered (a) and ordered (b) concordance matrices, generated with the
use of the method, described in the text. Experiments were carried out for k = 2, 3, 4, 5
groups

1 1.5 2 2.5 3 3.5 4
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Fig. 2.12. Values of the cophenetic correlation coefficient for the partitions obtained.
The horizontal axis represents the number of groups, the vertical axis shows the cophe-
netic correlation coefficient.

2.6 Whether and when grouping is difficult? 65

2.6 Whether and when grouping is difficult?

When treated as an optimisation task, grouping is a ”hard” problem, if we
consider it in the context of pessimistic complexity (the worst case analysis).
This means that with the increase of the number of observations there is a
dramatic increase in the pessimistic time complexity, associated with finding
the global optimum of the criterion function. If, however, the data represent
the true clusters, and the number of observations is sufficiently high, then use
can be made of a number of methods of local search, allowing for the correct
identification of groups. This may lead to the conviction that ”grouping is not
difficult; it is either easy or not interesting” [324].

It turns out, in fact, that if the data originate from a (well separable) mix-
ture of normal distributions, and the number of observations is sufficiently high,
then the task of grouping is easy. There exists an algorithm, having polynomial
time complexity, which identifies – with high probability – the correct division
into groups. In particular, this algorithm locates sufficiently precisely (with an
assumed error) the gravity centres of groups. This allows for formulating the
upper bound on the computational conditioning of the grouping algorithm, that
is – the minimum gap between groups and the minimum number of observations
in the sample, ensuring correct classification. So, for instance, for an arbitrary
Gaussian mixture, if only an appropriate number of observations exist, then the
maximum likelihood estimates tend to the true parameters, provided that the
local maxima of the likelihood function are lower than the global maximum [293].

One can, of course – and, in fact, should – ask what the ”sufficiently high”
number of observations means, that is – what is the information limit for the
task of grouping. This issue is discussed also in the already cited work [324].

−15 −10 −5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

−5 0 5 10 15
−30

−20

−10

0

10

20

30

40

50

(a) (b)

Fig. 2.13. Exemplary data having: (a) spherical and (b) non-spherical normal distri-
bution.

Dasgupta and Schulman [87] concentrate on the mixture of n-dimensional
spherical normal distributions N(µ, σIn) – see Figure 2.13. The data, which come
from a spherical normal distribution, can be enclosed inside the hypersphere with

66 2 Cluster Analysis

the radius43 r = σ
√
n. Therefore, it can be assumed that the data, originating

from two distributions, N(µ1, σ1In) and N(µ2, σ2In) are c-separable, if [87]

‖µ1 − µ2‖ ≥ cmax(σ1, σ2)
√
n = cmax(r1, r2) (2.56)

We have endowed, in this manner, the notion of separability of distributions,
with a precise meaning. In particular, when we deal with anisotropic multi-
normal distributions N(µ, Σ), where Σ denotes the covariance matrix, then
r =

√
tr(Σ). In the case of a mixture of k distributions, we denote by cij the

separability of the i-th and j-th distribution, and by c = mini6=j cij the separa-
bility of the mixture. So, e.g., the 2-separable mixture of distributions represents
almost exclusively the disjoint clusters of n dimensional points, and with the in-
creasing n lower and lower value of c is required to secure the disjointness of
clusters, this being due to the specific properties of the Euclidean distance (see
Section 2.2).

If the mixture of k spherical normal distributions is sufficiently separa-
ble (at the order of Ω(n1/4)), and the sample contains O(k) observations,
then it suffices to perform two iterations of the EM algorithm44. Further ad-
vance is achieved by the application of the spectral projection methods (con-
sidered in Chapter 5). Vempala and Wang [348] show that if c is a constant

of the order Ω(n1/4 log1/4 nk) and the dimension of the sample is of the order
Ω(n3k2 log ckn/δ), then the k-dimensional spectral projection allows for identi-
fication of the group centres with probability 1− δ.

Kanungo et al. adopt, as the measure of separation of clusters, in [197], the
quotient

sep =
rmin

σmax
(2.57)

where rmin is half of distance between the closest centres of classes, while σmax

denotes the maximum of the standard deviations, characterising clusters. The
authors quoted show, see Theorem 1 in [197], that if the class centres are suffi-
ciently close to the gravity centres of clusters, then as the value of sep increases,
the time of execution of the appropriately implemented k-means algorithm im-
proves.

A similar conclusion was formulated by Zhang in the report [384]. Call clus-
terability a measure characterising the partition C of the set X . For a given
partition C = {X1, . . . , Xk} it is, for instance, possible to define the within-

group variance, WC(X) =
∑k

j=1 piσ
2(Xi), and the between-group variance,

BC(X) =
∑k

j=1(µj − µ), where pi = |Xi|/m, µj is the gravity centre of the

43 It is, actually, the approximate average length of the random vector, having exactly
this distribution. If x is a vector, having as coordinates random numbers distributed
according to N(0, σ), then its expected length is E(‖x‖) = σ

√
2Γ ((n+1)/2)/Γ (n/2).

In an approximation, E(‖x‖) ≈ σ
√

2[1− 1/(4n) + 1/(21n2)], and so E(‖x‖)→ σ
√

2
when n→∞.

44 This algorithm is commented upon in Section 3.2.

2.6 Whether and when grouping is difficult? 67

j-th group, and µ is the gravity centre of the entire set X . The, the measure of
clusterability is the quotient [384]

C(X) = max
C∈C

BC(X)

WC(X)

The higher the value of C(X), the more separate are individual groups. One
of the results, presented in the report quoted, proposes that the higher the
clusterability (corresponding to the existence of natural clusters), the easier it is
to find the appropriate partition [2].

Let us terminate this section with the following statement. The assessment
of quality of a concrete tool, in this case – an algorithm of grouping – remains,
actually, in the competence of the person, using the tool. Thus, instead of look-
ing for the ”best” tool, one should rather consider the available algorithms in
the categories of their complementarity: the capacity of compensating for the
weak points of one algorithm with the qualities of the other, or the capacity of
strengthening the positive qualities of an algorithm by some other one.

3

Algorithms of combinatorial cluster analysis

Let us have a look at basic algorithms of cluster construction via target function
optimisation.

3.1 k-means algorithm

k-means is considered to be the most typical representative of this group of
algorithms. Early outlines of this algorithm can be found in papers of Steinhaus
[326] (published in 1956), Lloyd [238] (1957), Ball and Hall [35] (1965) and
MacQueena [240] (1967). The authors of [368] place it among the ten most
important data mining algorithms. The 50-years-long history of the algorithm
is exposed by Jain in [190].

As a matter of fact, the modern version on the k-means algorithm is an
adaptation of Lloyd heuristic1, [238]. Originally, the heuristic was proposed for
scalar quantisation in PCM (Pulse Code Modulation) systems. Its essence lies in
alternating assignment of objects to clusters (based on known centroid location)
and prototype updates (based on known cluster membership of objects). It is
assumed that the signal, subject to quantisation, is in general a random vector
X with a probability density function fX . Actually, the density function fX is
not known and only a sample X = {x1, . . . ,xm} is available. An adaptation
of Lloyd algorithm to such conditions is called LBG algorithm [235], which is
nearly identical with the k-means algorithm presented below. Like any other
heuristic, this algorithm does not guarantee finding the optimal solution. Yet, it
was observed that the algorithm behaves very well if the elements of the data set
form natural groups with different properties. The more the properties of these
groups differ, the fewer iterations are needed to discover the internal structure
of the data set2.

In spite of more than half century that passed since invention of the k-means
algorithm, its properties and convergence conditions have not been sufficiently
investigated. A reader interested in these aspects is advised to have a look at

1 Though the algorithm was presented in a report dated July 31st, 1957, it was not of-
ficially published till 1982. A similar algorithm was published earlier in a paper by J.
Max, Quantizing for minimum distortion. IEEE Trans. on Info. Th., 50(5),937-994,
1960. For this reason it is called also Lloyd-Max algorithm, or Max-Lloyd algorithm.

2 We mentioned this property in Section 2.6.

70 3 Algorithms of combinatorial cluster analysis

papers3 [273], [22] and the bibliography contained therein. We recommend also
the paper [21], the authors of which exploit the so-called smoothed analysis4.

In case of k-means algorithm the target is assumed to be the minimisation of
the trace of the matrix W , defined by equation (2.27). Let U denote once more
the assignment matrix , telling which object belongs to which cluster (cluster
assignment to or split/partition into clusters), and M – the matrix with rows
representing gravity centres of the clusters5. Then the optimisation criterion
function, called also the partition cost function, is of the form

J(U,M) =

m∑

i=1

k∑

j=1

uij‖xi − µj‖2 (3.1)

Its minimisation is equivalent to minimisation of the sum of error squares. Here,
an ”error” is understood as the distance of the i-th observation from the centre
of the cluster to which it belongs.

In general, the Euclidean distance ‖xi−µj‖ can be replaced by the Minkowski
distance dp(xi − µj) and the criterion function (3.1) will then have the form

Jp(U,M) =
m∑

i=1

k∑

j=1

uijd
p
p(xi,µj) =

m∑

i=1

k∑

j=1

uij |xi − µj |p (3.2)

The points, at space in which the partial derivatives 6 are equal zero, are good
candidates for minima of the partition cost function:

∂

∂µt

Jp(U,M) =

m∑

i=1

k∑

j=1

uij
∂

∂µt

|xi − µj |p

=
m∑

i=1

uit
∂

∂µt

|xi − µt|p

=
∑

xi∈Ct

p|xi − µt|p−1

3 See also Q. Du, M. Emelianenko, and L. Ju, Convergence of the Lloyd algorithm for
computing centroidal Voronoi tessellations, SIAM J. on Numerical Analysis, 44(1),
102–119, 2006; M. Emelianenko, L. Ju, and A. Rand, Nondegeneracy and weak
global convergence of the Lloyd algorithm in R

d, SIAM J. on Numerical Analysis,
46(3), 1423–1441, 2009

4 It is a mixture (a hybrid) of worst-case and average-case analyses. It allows to
estimate realistically the algorithm complexity in practical settings. The research in
this area was initiated by D. Spielman and S.-H. Teng with the paper ”Smoothed
analysis of algorithms: why the simplex algorithm usually takes polynomial time”,
Proc. of the 33-rd Annual ACM Symposium on Theory of Computing, ACM 2001,
pp. 296–305. We recommend ”Mini course on smoothed analysis” available at the
Web site http://roeglin.org/publications/SmoothedAnalysis.pdf.

5 cluster gravity centres are called also cluster prototypes, or class centres or just
prototypes

6 We treat here Jp as a continuous function of coordinates of cluster centre coordi-
nates.

3.1 k-means algorithm 71

Components of the gradient vector are of the form

∂

∂µtl
|xil − µtl|p = p · sgn(xil − µtl) · |xil − µtl|p−1

In particular, when p = 2, we get

∑

xi∈Ct

2(xil − µtl) = 0⇒ µtl =
1

nt

∑

xi∈Ct

xil (3.3)

where nt means the cardinality of the class Ct.
It must be stressed, however, that, for a fixed set X with cardinality m, the

cost of partitioning this set into k clusters via gravity centres determined by
the above equation is a function which: (a) takes on at most ϑ(m, k) distinct
values7 and (b) possesses many local minima. For example, in Figure 3.1, a
diagram is shown of the partition cost as a function of gravity centre of one of
the clusters.8 The set X consists here of 10 points. Five of them were drawn
randomly according to the rule9 3 + rand, and the remaining five – according to
the rule 8 + rand.

3 4 5 6 7 8 9
0

5

10

15

20

25

5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8
20

20.5

21

21.5

22

22.5

23

Fig. 3.1. Local optima in the problem of partitioning of the (one dimensional) set X,
consisting of 10 points. Figure to the left: values of the indicator J (vertical axis) for the
gravity centre of one cluster placed at locations from the interval [3, 9]. Figure to the
right: a detailed look at these values when the centre belongs to the set [5.4686, 5.7651].

The above remarks indicate that the task of determining an optimal split
is NP-hard. It is that hard even if k = 2, and also even when n = 2 (see
[20, p. 4] and the bibliography cited therein). This fact justifies application of

7 The number ϑ(m,k) is defined in page 39.
8 Note that the gravity centre of the second cluster would make the diagram more

complex
9 rand means a random number generator sampling with uniform distribution from

the interval [0, 1].

72 3 Algorithms of combinatorial cluster analysis

various heuristics 10. However, a common drawback of the heuristics is the lack of
warranties on achieving an optimal solution. For example, in case of the Lloyd
heuristic, that is, the variant of the algorithm 2.2 with weights w(xi) ≡ 1,
i = 1, . . . ,m, the ratio of the cost returned by the algorithm to the optimal
cost can be any large number. It is not hard to encounter such situations, as
illustrated by the example below:

Example 3.1.1 [20, p. 89] Assume that the set X consists of four points with
coordinates: x1 = (−a,−1), x2 = (a,−1), x3 = (−a, 1) and x4 = (a, 1), where
a ≥ 1. If k = 2, and initial cluster centres are located at points x1 and x3,
then the k-means algorithm returns clusters C1 = {x1, x2}, C2 = {x3, x4} with
centres µ1 = (0,−1), µ2 = (0, 1) and with cost J = 4a2. But if the initial
centres were placed at points x1 i x4 then we get the optimal split C′

1 = {x1, x3},
C′

2 = {x2, x4} with cost Jopt = 4 and centres µ′
1 = (−a, 0), µ′

2 = (a, 0). This
means that J/Jopt = a2 →∞ when a→∞.

Let us note, in passing, that for a < 1 the optimal split is of the form C1 =
{x1, x2}, C2 = {x3, x4}. Also in this case the quotient J/Jopt = 1/a2 →∞ when
a→ 0. �

For this reason there emerges a growing interest in approximation algorithms,
that is, algorithms returning a partition with cost J = (1 + ε)Jopt, as mentioned
by Arthur in page 4 of his thesis [20]. Regrettably, in the majority of cases
these algorithms have exponential complexity in the number of clusters and the
amount of data. This fact renders them next to useless in the analysis of big
data sets. An exception here is constituted by the papers [196] and [219].

Subsequently, we describe the base variant of the k-means algorithm and a
number of its modifications.

3.1.1 The batch variant of the k-means algorithm

The control flow of the base algorithm is depicted in pseudo-code 2.2 on page
48. It is assumed that w(xi) = 1, i = 1, . . . ,m. The algorithm starts with deter-
mination of gravity centres of the clusters. The simplest, though least efficient,
initialisation method, namely a random split of the set of objects into k clusters
and computation of the mean value in each cluster, is applied. Then, repeat-
edly, two steps are executed: (a) each object is moved to the cluster with the
closest centre to it, and subsequently (b) in each cluster its centre is updated
given the new object assignment. The procedure is terminated when the cluster
assignment stabilizes 11.

10 See Hruschka, E.R., et al. A survey of evolutionary algorithms for clustering. IEEE
Trans. on Systems Man, and Cybernetics, Part C: Applications and Reviews, 39(2),
2009, 133-155; A. Ajith, S. Das, S. Roy. Swarm intelligence algorithms for data
clustering. Soft Computing for Knowledge Discovery and Data Mining. Springer US,
2008. 279-313.

11 If U t denotes the split matrix obtained in the t-th iteration, then the split corre-
sponding to it is called stabilised one if U t+1 = U t.

3.1 k-means algorithm 73

Such a batch version of the algorithm is called also Forgy algorithm [128] or
H-MEANS heuristic [319]. It resembles the EM algorithm, described in Section 3.2.
Selim and Ismail have shown in [310] that the algorithm converges in a finite
number of steps and have defined conditions for which the obtained solution is
a local minimum of the function (3.1).

3.1.2 The incremental variant of the k-means algorithm

The ”classic version” (from the point of view of code optimisation) of the algo-
rithm passes iteratively through each object and checks if its relocation to some
other cluster would improve the target function. In case such an improvement
is observed, the object changes its cluster membership. Let us assume we want
to move a certain object x∗ from cluster Cj to cluster Cl. Then, the new coor-
dinates of the gravity centre of this latter cluster would be computed from the
formula [112]:

µ∗
l =

nl · µl + x∗

nl + 1
= µl +

x∗ − µl

nl + 1

The coordinates of the gravity centre of the cluster Cj , after removal of the
object x∗ from it, undergo a similar transformation:

µ∗
j = µj −

x∗ − µj

nj − 1

Let us denote by V (Cj) the sum of squares of distances of all objects of the
cluster Cj from its gravity centre. It can be easily verified that (see also [112]):

V (Cj − {x∗}) = V (Cj)−
nj

nj − 1
‖x∗ − µj‖2 = V (Cj)− δj(x∗)

V (Cl ∪ {x∗}) = V (Cl) +
nl

nl + 1
‖x∗ − µl‖2 = V (Cl) + δl(x

∗)

So, we see that the relocation of the object x∗ would be advantageous if the
condition δj(x

∗) > δl(x
∗) holds, that is:

nj

nj − 1
‖x∗ − µj‖2 >

nl

nl + 1
‖x∗ − µl‖2

We obtained in this way an algorithm called in [112] BIMSEC (Basic Iterative
Minimum-Squared-Error Clustering) or K-MEANS (see e.g. [319]). Pseudo-code
3.1 describes the basic steps of the algorithm.

Though the ”classic” incremental version is more expensive than the ”batch”
version (H-MEANS algorithm), it turns out to be more successful [112]. One can say
that while a solution returned by K-MEANS cannot be improved by H-MEANS, it is
nonetheless possible to improve the result of H-MEANS by subsequent application
of K-MEANS – see, e.g., [163]. A compromise between computational efficiency
and accuracy can be achieved via alternating application of both algorithms.
For example, we may repeat in a loop many times the steps (2) and (3) of the

74 3 Algorithms of combinatorial cluster analysis

Algorithm 3.1 Incremental clustering algorithm BIMSEC

1: Determine the initial split of the data set into k non-empty clusters and compute
their gravity centres.

2: Choose a (next) element x∗ from a cluster, say cluster Cj .
3: If nj = 1 – go to step 6. Otherwise compute the increments

δl(x
∗) =

nl

nl + 1
‖x∗ − µl‖2 if l 6= j

nj

nj − 1
‖x∗ − µj‖ if l = j

4: Move object x∗ to the cluster Cj∗ if δj∗ ≤ δl, l = 1, . . . , k.
5: Compute new coordinates of gravity centres µj ,µj∗ and the value of the indicator

J(U,M).
6: If the indicator value did not change after testing m objects – halt. Otherwise go

back to step 2.

algorithm 2.2 and thereafter only several times (due to higher computational
costs) we would carry out object moves according to the K-MEANS heuristic.

3.1.3 Initialisation methods for the k-means algorithm

It is beyond doubt that the big advantage of the k-means algorithm for big data
analysis is its simplicity and linear time complexity with respect to the number
of objects. It has, however, also a number of disadvantages, the most important
of them being the following:

(a) The result depends on the order, in which the data is processed and on the
value range (scale) of individual components of the vector, describing the
objects. Initial normalisation allows to eliminate the impact of value ranges.

(b) It is a greedy algorithm the result of which depends on initial conditions, see
Figure 3.2.

(c) It is sensitive to the presence of abnormal observations (outliers).
(d) The number of clusters must be known in advance.
(e) It can be used only for analysis of numerical data. Simple generalisations

for the case of mixed (qualitative and quantitative) data are discussed in
Section 3.1.5.7.

Furthermore, application of the H-MEANS heuristic leads frequently to obtaining
several empty clusters [319]. In such cases the H-MEANS+ heuristic, introduced
by Hansen and Mladenovic in [163], may prove helpful. If one got k − k1 non-
degenerate (i.e. non-empty) clusters, then k1 objects are selected that are most
distant from the centres of clusters, to which they belong. These objects are
treated as new, additional cluster centres and all the objects are re-classified
according to the rule ”the winner takes all”, (2.43).

3.1 k-means algorithm 75

(a) (b)

Fig. 3.2. The influence of initialisation and scaling on the results of clustering of a
set of 450 observations. Initial location of cluster centres is marked with red squares,
and respective symbols denote the assignment of objects to clusters. In case (a) xi1 ∈
{1, . . . , 450}, and in case (b) xi1 ∈ 2.222185·10−3 + 2.034705·10−10 · {1, . . . , 450}, i =
1, . . . , 450

In order to reduce the impact of initialisation on the final result, a number
of ”clever” initialisation methods were proposed. Let us present a couple of the
most frequently used methods.

(a) k objects randomly selected from the set X are treated as cluster centres.
The remaining objects are assigned to respective clusters according to the
clustering update rule, that is, they are assigned to the closest gravity centre.
This method was proposed by Forgy in [128].

(b) As previously, we start with a random choice of k gravity centres and an
order is imposed on the set of objects. The objects (visited according to the
imposed order) are assigned to the cluster with the closest gravity centre
and after this assignment the coordinates of gravity centre of this cluster are
updated. This method was suggested by MacQueen in 1967.

(c) The next method was proposed by many authors. Among the first ones we
shall mention Goznalez [145] and Hochbaum and Shmoys [176]; it was also
suggested, in particular, by Katsavounidis, Kuo and Zhang [200]. The crucial
idea of the method is to choose from the data set k objects most distant one
from another. In the first step, the µ1 is set to the coordinates of the object
x ∈ X of maximal length, that is µ1 = arg max

1≤i≤m
‖xi‖. It is the seed of the

set of centroids M , that is: M = {µ1}. Subsequently, the object x ∈ X
is identified that is most distant from µ1. This is the second centroid µ2

inserted into the set M . To determine the j-th candidate, for each x ∈ X\M
the distance from all elements from the set M is computed and the smallest
one is assumed to be the distance d(x,M). The object most distant from the

76 3 Algorithms of combinatorial cluster analysis

set M is selected as µj , that is

µj = arg max
xi∈X

(
min
µ∈M

‖xi − µ‖
)

(3.4)

The process of choosing the object most distant from M is terminated, when
we get k candidates. A quick algorithm, implementing this method, is pre-
sented in Section 3.1.4, and its probabilistic variant – in Section 3.1.3.1.

(d) Ng, Jordan and Weiss proposed in [269] to choose the initial centroids in
such a way that the vectors representing them are as orthogonal to one
another as possible. Elements xj of the set M are selected from the set X
in such a way that the vectors representing them obey the above mentioned
condition. The technique to choose them properly is as follows: The element
x1 is picked at random from X . If M is a matrix with dimensions j×n, and X
a matrix with dimension m×n, then the elements of the product cos = XM T

represent the cosine of the angle between the individual objects and the
current set of gravity centres (given, of course, that the respective vectors
are normalized). For each object, the maximal absolute value is selected,
cos∗i = max1≤l≤j | cosil |, and the next centroid is the object for which this
cosine is the lowest. The procedure is repeated for j = 2, . . . , k. As mentioned,
an introductory normalization of the rows of the matrix X (so that each row
vector is of length 1) is necessary to obtain the correct results.

(e) Another, most elaborate method, is co-authored by Kaufman and Rousseeuw,
[201]. The cluster centres are chosen iteratively till we get k of them. The first
centroid µ1 is the most central object of the whole data set. Assume we chose
already s < k gravity centres. For each pair of objects, xi,xj , not selected into
the set of centroids, the value βij = max[Bj−d(xi,xj), 0] is computed, where
Bj = minl=1,...,s d(xj ,µl). Thereafter, the gain from selecting the location xi

equal
∑

j βij , is computed and the location xi, is selected as the next gravity
centre, which maximizes this gain value.

(f) An initial clustering of the set of objects is obtained using some other method,
like the Ward algorithm.

Experiments described in [281] indicate quite good properties of random cluster
initialisation and of Kaufman/Rousseeuw initialisation. Ng et al. claim that their
initialisation method ensures a quick convergence of the clustering algorithm,
[269]. Other initialisation methods were elaborated by Su and Dy in [328], though
their proposals, we think, seem to be quite complex algorithmically. A number
of bibliographic positions devoted to this topic are mentioned by Kuncheva and
Vetrow [222]. A careful comparison of various initialisation methods can be found
in [244].

Figure 3.3 illustrates the qualitative difference between methods (c) and (d).
Note that in both cases each candidate centre belongs to a different cluster.

Still another idea is the random initialisation of the assignment matrix. How-
ever, it is a much worse solution. For example, for the data set data3 2.txt, in
the case of random initialisation of the class centres, we got 72 correct solutions

3.1 k-means algorithm 77

(i) (ii)

Fig. 3.3. The distribution of the gravity centres (denoted with squares) in two methods
of initialisation. (i) – initialisation described in point (c), (ii) – initialisation described
in point (d). In this last case the coordinates were initially normalised in such a way that
xij ∈ [−1, 1], i = 1, . . . ,m, j = 1, . . . , n, and afterwards – as required by the method –
each row of the matrix X was so normalized that ‖xi‖ = 1. The lines connecting the
coordinate system origin (0, 0) with gravity centres play here an explanatory role only
– they allow to imagine the angles between the centres

in 100 runs, while in the case of random initialisation of the U matrix – only 38
correct solutions in 100 runs.

A thorough analysis of the impact of initialisation on the stability of k-
means algorithm was carried out in [64]. An advanced initialisation method
was also proposed there. It is a two-stage procedure. In the first stage, k′ >
k gravity centres are picked randomly, objects are assigned to corresponding
clusters and the centre coordinates are updated. Thereafter, most ”valuable”
centres are selected, and among them, using the variant (c) – k centres most
distant from one another are chosen.

3.1.3.1 k-means++ algorithm

An interesting initialisation method was presented in [22] (compare also [273]).
It is, in fact, a variant of the (c) method from the previous section. Its authors
did notice that if the data set contains at least k outliers, then the choice of the
most distant observations will result in malformed initial centres. Hence, they
propose a probabilistic variant of the selection rule. Let u(x) denote the distance
of the object x from the set C consisting of j < k centres. The next centre is
picked according to the probability distribution12

p(x) =
u2(x)∑

x′∈X u2(x′)
(3.5)

12 If we replace the Euclidean distance with Minkowski dl then the elements of the set
X should be picked with probability p(x) = ul(x)/

∑
x′∈X ul(x′). Consult [20, p.

98].

78 3 Algorithms of combinatorial cluster analysis

The pseudo-code 3.2 describes the steps of the algorithm. The procedure
of probabilistic selection of candidate centres is in fact very quick. One can
apply the method presented in the subsequent section or the method proposed
in [197]. Both methods allow to avoid unnecessary distance computations. In the
first case, the triangle inequality is exploited, and in the second one - a special
data structure, the so-called kd-tree, is used.

Algorithm 3.2 k-means++ algorithm, [22]

1: Pick randomly the object x ∈ X and assume µ1 = x. Let C = {µ1}.
2: for j = 2 to k do

3: For each object x compute the distance to the nearest centre from the set C,
that is u(x) = minµ∈C ‖x− µ‖2.

4: Substitute µj with the object x picked randomly according to the distribution
(3.5).

5: Add µj to the set of centres, C ← C ∪ {µj}.
6: end for

7: Run the k-means algorithm.

Arthur and Vassilvitskii [22] demonstrate that under some conditions the
algorithm converges in super-polynomial time. Beside this, they prove the fol-
lowing property.

Theorem 3.1.1 [22] The expected value of the partition cost, computed accord-
ing to equation (3.1), is delimited in case of k-means++ algorithm by the in-
equality

E(J) ≤ 8(ln k + 2)Jopt (3.6)

where Jopt denotes the optimal value of the partition cost. �

The sequential nature is the main disadvantage of the algorithm. The proper
initiation requires k-fold visiting of each element of the data set in order to
choose the candidate cluster centres. The paper [30] contains a modification
addressing this issue – the k-means|| algorithm , specially designed for very
big data analysis. An additional advantage of the proposal is the possibility of
paralleled implementation under the MapReduce paradigm13.

3.1.4 Enhancing the efficiency of the k-means algorithm

Practical applications of k-means algorithm encounter the obstacle of the com-
putational burden of multiple calculations of the distances ‖xi − µj‖ for i =
1, . . . ,m, j = 1, . . . , k. It turns out to be particularly expensive in case of large
data sets where usually we have also a large number of clusters.

13 A reader interested in this type of solutions is encouraged to consult the tutorial
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

3.1 k-means algorithm 79

The simplest remedy, improving time complexity, is to compute the distance
between a pair of objects by using the following identity

‖xi − µj‖2 = ‖x‖2 + ‖µj‖2 − 2xT

iµj

The first and the second elements of this sum can be computed once for each
i = 1, . . . ,m, j = 1, . . . , k, while all the scalar products can be computed as
XM T, where M stands for the k × n matrix of centroids. The product of two
matrices can be computed using BLAS package14.

The classical approach to reduce the computational burden is to use special
data structures, for example, k-dimensional binary search trees, so-called k-d
trees [197], their variant called BBD-trees [23], metric trees [341], or the so-
called R-trees [151]. An extensive review of methods of identification of the
closest neighbour is contained in chapter [82], and a rich bibliography on the
subject can be found on the Web page [233].

Another method consists in intelligent exploitation of the triangle inequality
to eliminate superfluous computations of the distances [117]. One can achieve
implementationally cheap algorithms with time complexity comparable to the
algorithms of the former group.

The k-means algorithm may be parallelised quite easily. Assume that the
data set has been split into P disjoint subsets Yp ⊂ X , each of which is allocated
to one of the processors. Assume further that global information is available to
each of the processors on the identifiers of cluster centres and their coordinates
and it has the form of a list of <key, value> pairs. Given this information,
each processor performs locally two basic operations:

(a) It assigns elements of the set Yp, allocated to it, to the clusters following the
rule winner takes all (2.43), that is, it partitions Yp into

Yp = Yp,1 ∪ · · · ∪ Yp,k

and thereafter
(b) it computes the sums sp,j =

∑
x∈Yp,j

x and cardinalities of the ”subclusters”

mp,j = |Yp,j |, j = 1, . . . , k, p = 1, . . . , P .

The local lists of the form <j, (sp,j ,mp,j)> are aggregated to the global
list (by one of the processors), whereby the coordinates of the j-th centre are
computed as follows:

µj =
1

mj

P∑

p=1

sp,j (3.7)

where mj =
∑P

p=1mp,j . Both summations can be carried out in common for
the loop, and thereafter the resulting sums can be divided by one another.

14 Its source codes are available e.g. from http://people.sc.fsu.edu/~jburkardt/c_
src/blas3/blas3.html.

80 3 Algorithms of combinatorial cluster analysis

The described steps are easy to implement within the MapReduce framework,
see e.g. [389]. The step (a) fits the specification of the map function, the step (b)
– that of the combine function, whereas the equation (3.7) may be embedded in
the body of the reduce function. Under practical settings, the functions map and
combine are integrated into one function. By extending this function according
to the description provided in Section 3.1.4 one can significantly reduce the
number of calls of the record-group distance by computing the function in step
(a), thereby significantly reducing the execution time.

k-means algorithm possesses also hardware implementations, which are par-
ticularly useful for huge data analysis. A short review of such approaches is
contained in [187].

An interesting attempt to improve the properties of the standard k-means
algorithm was made with the development of ISODATA algorithm (Iterative Self-
Organizing Data Analysis Technique). Its authors, Ball i Hall, enriched the base
algorithm with the possibility of combining similar low cardinality clusters and
with the possibility of splitting high cardinality clusters. Hence, ISODATA, fea-
tures adaptive choice of the number of clusters. The details of the algorithm can
be found in the monograph [337] and in [35].

Bradley, Benett and Bemiriz introduced in [57] the concept of a balanced k-
means algorithm in which they require each cluster to contain at least ñ objects.

Wagstaff et al. proposed in [355] a semi-supervised variant of the classical
k-means algorithm.

3.1.5 Variants of the k-means algorithm

3.1.5.1 On line variant of the k-means algorithm

For big data analysis, the so-called on line version of k-means algorithm has
been developed. Its idea is outlined in the pseudo-code 3.3.

Algorithm 3.3 On line version of the k-means algorithm

1. Initialise (e.g. randomly) k prototypes.
2. Select (according to the assumed probability distribution p(x)) an element x ∈ X.
3. Determine the winner, that is, the prototype µs(x) that is the closest to the con-

sidered object x.
4. Modify the coordinates of the winning prototype, i.e.

µs(x) ← µs(x) + α(x− µs(x)) (3.8)

where α ∈ (0, 1] is called the learning coefficient
5. Go to step (2) if the termination condition is not met

The terminal condition of this algorithm is defined as stabilisation of proto-
types, meaning that when each coordinate of the prototype before and after the
modification does not differ by more than a pre-defined parameter ǫ.

3.1 k-means algorithm 81

The learning coefficient α can be either a constant or a function of (execution)
time. It is known that in the first case the prototype coordinates µj(t) at iteration

t behave like the exponentially falling mean of the signals x(j)(t), for which the
prototype µj(t) was a winner, that is

µj(t) = (1− α)tµj(0) + α

t∑

i=1

(1− α)t−ix(j)(t)

The above equation implies that the current value of the prototype is most
strongly influenced by the current observation, while the impact of the preced-
ing observations decays exponentially with time. This property is the source of
instability of the algorithm. Even after presenting a large number of observa-
tions, the next observation can radically impact the coordinates of the winning
prototype.

MacQueen proposed in [240] to reduce the α coefficient hyperbolically with
time, i.e.

α(t) =
α0

t
, t ≥ 1 (3.9)

In this case, the vector µj(t) is the arithmetic mean of the presented observations,
that is:

µj(t) = µj(t− 1) + α(t)
(
x(t)(t) − µj(t− 1)

)
=

1

t
(x(j)(1) + · · ·+ x(j)(t))

In fact,

µj(1) = µj(0) + α(1)(x(j)(1)− µj(0)) = x(j)(1)

µj(2) = µj(1) + α(2)(x(j)(2)− µj(1)) = 1
2 (x(j)(1) + x(j)(2))

etc.

Another scenario of reducing the learning coefficient was suggested in [136]:

α(t) = αp

(
αk

αp

) t
tmax

(3.10)

where αp, αk mean the initial and the final value of the coefficient with alphap >
αk, and tmax is the maximal number of iterations. Further variants are discussed
by Barbakh and Fyfe in [38].

3.1.5.2 Bisection variant of the k-means algorithm

Practical experience indicates that clusters obtained via agglomerative data anal-
ysis are generally of higher quality that those generated by the k-means algo-
rithm. To increase the quality of the latter, Steinbach, Karypis and Kumar [325]

82 3 Algorithms of combinatorial cluster analysis

proposed the so-called bisection variant of the k-means algorithm. Its idea (see
pseudo-code 3.4) consists in initial division of the data set X into two clus-
ters. Subsequently, one of the clusters is selected to be partitioned (again using
k-means algorithm) into two new clusters. The process is repeated till a satis-
factory number of clusters is obtained. Though diverse criteria may be applied
to choose a cluster for partitioning, but, as the authors claim, [325], good results
are obtained if one takes the largest cardinality cluster.

Algorithm 3.4 Bisectional k-means algorithm

1. Initialisation. Split the set X into two clusters.
2. Choose a cluster C for further partitioning (bisection).
3. Split the set C into two subsets using k-means algorithm.
4. Repeat step (3) a fixed number of times (parameter ITER) till a partition of the

highest quality (homogeneity) is obtained.
5. Repeat steps 2 – 3 till a proper number of clusters is obtained.

It is crucial to update cluster centres sequentially in the algorithm used in
step (3), which leads to better results. Expressing it differently, if the cluster Cj

of cardinality nj and centre vector µj is extended by the element x∗, then the
coordinates of the centre vector are updated according to the equation

µjl =
nj · µjl + x∗

l

nj + 1
, l = 1, . . . , n

Though k-means algorithm guarantees reaching the local minimum of the
function (3.1), it is not more the case in the incremental version where it is ap-
plied ”locally” to a selected cluster. Nonetheless the bisectional variant produces
clusters of similar size and of high quality. Here, the quality is measured as the
averaged entropy

E =
1

m

k∑

j=1

njEj

where nj is the cardinality of the j-th cluster, Ej is the entropy of this cluster

Ej = −
k∑

t=1

ptj log ptj

and ptj denotes the probability that an element of, j-th cluster will be classified
into the cluster Ct.

3.1.5.3 Spherical k-means algorithm

This is a variant of the k-means algorithm, developed for clustering of text docu-
ments, [102], [99], [98]. It is assumed that documents are represented by vectors
with components reflecting the frequencies of word occurrences in respective

3.1 k-means algorithm 83

documents. These vectors are deemed to be normalized, that is ‖x‖ = 1,x ∈ X ,
hence they belong to the surface of a unit sphere – which implies the name of
the algorithm. In such a case, the squared distance between the i-th document
and the j-th prototype is equal

d2(xi,µj) = ‖xi − µj‖2 = ‖x‖2 − 2xT

iµj + ‖µj‖2 = 2(1− xT

iµj) (3.11)

where the product xT

iµj equals to the cosine of the angle between the (nor-
malised) vectors representing both objects. Hence, the minimisation of the error
(3.1) corresponds to maximisation of the expression

Js(U,M) =

m∑

i=1

k∑

j=1

uijx
T

iµj (3.12)

The search for the optimal partition of the set of documents could follow
the k-means algorithm, i.e. the prototype µj components could be determined
according to equation (3.3), and the assignment of objects to clusters could be
governed by the ”winner-takes-all” rule. However, the vector µj , determined in
this way, would not be a unit vector, as required. Therefore, it is replaced with
the direction vector cj , as defined by equation (3.13):

cj =
µj

‖µj‖
=

∑
xi∈Cj

xi

‖∑xi∈Cj
xi‖

(3.13)

The Cauchy -Schwartz -Buniakowski inequality implies for each unit vector z :

∑

x∈Cj

xTz ≤
∑

x∈Cj

xTcj (3.14)

so that cj is the most similar vector (with respect to the cosine similarity mea-
sure) to the vectors forming the cluster Cj . This means that cj represents the
leading topic in the cluster Cj .

Knowing the main (leading) topic of cluster Cj , one can define the consistency
of this cluster, that is, its quality, measured as the sum of similarities of the
collected documents on this topic:

q(Cj) =

∑

xi∈Cj

xT

icj if Cj 6= ∅

0 otherwise

(3.15)

The property µj = 1
nj

∑
x∈Cj

xT, combined with the equation (3.13), implies:

q(Cj) =
∑

xi∈Cj

xT

icj = njµ
Tcj = nj‖µj‖cTjcj = njµj = ‖

∑

x∈Cj

x‖ (3.16)

which points at an additional interpretation of the cluster quality index, [99],
[98].

84 3 Algorithms of combinatorial cluster analysis

The quality of the partitioning C = {C1, . . . , Ck} is now defined by the
formula:

Q({C1, . . . , Ck}) =

k∑

j=1

q(Cj) =

k∑

j=1

∑

xi∈Cj

xT

icj (3.17)

constituting an analogue of quality index (3.1), but with the amendment that
we seek now such a partition {C1, . . . , Ck} that maximises the indicator (3.17).
An efficient heuristic has been proposed to solve this problem. It is presented as
the pseudo-code 3.5.

Algorithm 3.5 Spherical k-means algorithm

1: Initialisation. Create any partition of the set of documents C0 = {C0
1 , . . . , C

0
k} and

determine the topics c0j , j = 1, . . . , k. Set the iteration counter t = 0.
2: For each document xi find the closest topic (with respect to the cosine measure).

Create the new partition

Ct+1
j = {x ∈ X : xT

c
t
j ≥ x

T
c
t
l , l = 1, . . . ,m}, j = 1, . . . , k

i.e. Ct+1
j contains the documents that are most similar to the topic cj . If a document

happens to be equally similar to several topics, assign it to any of them randomly.
3: Update the characteristics of the topics ct+1

j as indicated by the equation (3.13),

substituting Cj with Ct+1
j .

4: If the stop condition does not hold, set the counter t to t+ 1 and return to step 2.

It has been demonstrated in [102] that for each t ≥ 0, the algorithm 3.5
preserves the following property

Q
(
{Ct+1

j }kj=1

)
≥ Q

(
{Ct

j}kj=1

)
(3.18)

The paper [97] presents several algorithms for improving the performance for
big document collections.

The spherical algorithm exhibits the properties similar to those of the previ-
ously discussed k-means algorithm. In particular, it is sensitive to initialisation
and the optimisation process can get stuck at a local optimum.

The significant difference between the spherical and non-spherical k-means
algorithms is related to the shape of the clusters [102]. In case of spherical
algorithm, the border between the clusters Cj and Cl, represented by topics cj ,
cl, is described by the equation

xT(cj − cl) = 0

This is an equation of a hyperplane, passing through the origin of the coordinate
system. Such a hyperplane cuts the unit sphere at the equator. In case of standard
k-means algorithm, the distance between i-th point and j-th cluster is equal

‖xi−µj‖2 = (xi−µj)
T(xi−µj) = xT

ixi−2xT

iµj+µT

jµj = xT

ixi−2(xT

iµj−
1

2
µT

jµj)

3.1 k-means algorithm 85

Hence, we have the final form of the border equation:

‖xi − µj‖2 − ‖xi − µl‖2 = 0 ≡ xT(µj − µl) =
1

2
(µT

jµj − µT

lµl)

It is also an equation of a hyperplane, but it intersects the sphere at any place.
More remarks about the algorithm and its various implementations (batch

and incremental ones) can be found in the fourth chapter of the book [209]. The
paper [390] presents an adaptation of the algorithm for the processing of large
data collections.

3.1.5.4 KHM: the harmonic k-means algorithm

Let us rewrite the equation (3.1) in the equivalent form

J(U,M) =

m∑

i=1

min
j=1,...,k

, ‖xi − µj‖2 (3.19)

Zhang [383] found that the properties of the function min(a1, . . . , ak), where
aj, j = 1, . . . , k are positive real numbers can be quite faithfully represented by
the harmonic mean of these numbers

mh(a1, . . . , ak) =
k

∑k
j=1

1
aj

Contour diagrams of both functions are presented in Figure 3.4.

50 100 150 200 250 300 350

50

100

150

200

250

300

350

50 100 150 200 250 300 350

50

100

150

200

250

300

350

(a) (b)

Fig. 3.4. Contour diagrams of the function: (a) min(a1, a2), and (b) mh(a1, a2). It was
assumed in both cases that a1, a2 ∈ (0, 400]. Horizontal axis: a1 value, vertical axis: a2

value, the contour lines were drawn for equidistant values.

Similarities between both functions can be strengthened or weakened by in-
troduction of an additional parameter – the power exponent, to which the argu-
ments of harmonic mean are raised. Finally, by replacing in equation (3.19) the

86 3 Algorithms of combinatorial cluster analysis

minimum operator by the harmonic mean operator, we obtain a new criterion
function of the form

Jh(U,M) =

m∑

i=1

k
∑k

j=1 ‖xi,µj‖−p
(3.20)

where p ≥ 2 is a parameter. It is suggested to set p = 3.5, [383].
So far, we have been dealing with a sharp (crisp) partition. But the function

(3.20) induces a fuzzy partition, in which the membership of i-th object in j-th
cluster is a number uij ∈ [0, 1]. It is determined from the equation, [383]

uij =
‖xi − µj‖−2−p

∑k
j=1 ‖xi − µj‖−2−p

(3.21)

To compute the coordinates of the cluster centres, the weight w(xi), occur-
ring in the third step of the algorithm 2.2, presented on page 48, needs to be
determined first.15:

w(xi) =

∑k
j=1 ‖xi − µj |−2−p

(∑k
j=1 ‖xi − µj‖−p

)2 (3.22)

This weight promotes the points that are distant from all the centres, which
enforces relocation of these centres in such a way as to cover all data.

If xi ≈ µj , then the original distance is replaced by the value max{‖xi −
µj‖, ǫ}, where ǫ is a ”sufficiently small number”, as suggested by [383].

Fuzzy cluster membership of objects and weights of these objects allow for
the computation of the centre coordinates – see the third step of the algorithm
2.2

µj =

∑m
i=1 uijw(xi)xi∑m
i=1 uijw(xi)

(3.23)

This algorithm is less sensitive to initialisation [383]. However, it can still con-
verge to a local minimum.

Hamerly and Elkan proposed in [160] two modifications, called Hybrid-1 i
Hybrid-2. The first hybrid is a combination of the k-means algorithm with KHM.
The split into clusters is crisp (an object belongs to the cluster with the closest
centre), but each object is assigned a weight according to the formula (3.22). The
membership degree of an object to a cluster in the second hybrid is determined by
the equation (3.21), but the weights are constant, w(xi) = 1, i = 1, . . . ,m. None
of these hybrids considered has a quality superior to KHM algorithm. However,
their analysis indicates that the most important factor is the fuzzy member-
ship uij . Hence, Hybrid-2 proved to be only a little bit inferior to the original
KHM algorithm. The introduction of weights, on the other hand, improves the
properties of the k-means algorithm.

15 The plain k-means algorithm assumes w(xi) = 1

3.1 k-means algorithm 87

Experiments presented in papers [160], [383], show that KHM provides with
higher quality results than not only the k-means algorithm but also the fuzzy
k-means algorithm, presented in Section 3.3. Further improvements of the al-
gorithm, based on meta-heuristics, are presented in [375] and in the literature
cited therein.

3.1.5.5 Kernel based k-means algorithm

The idea of the algorithm is to switch to a multidimensional feature space F
and to search therein for prototypes µΦ

j minimizing the error

JΦ
2 (U) =

m∑

i=1

min
1≤j≤k

‖Φ(xi)− µΦ
j ‖2 (3.24)

where Φ : Rn → F is a non-linear mapping of the space X into the feature space.
This is the second variant of application of the kernel functions in cluster anal-
ysis, according to classification from the Section 2.5.4. In many cases, switching
to the space F allows to reveal clusters that are not linearly separable in the
original space.

In analogy to the classical k-means algorithm, the prototype vectors are
updated according to the equation

µΦ
j =

1

nj

∑

xi∈Cj

Φ(xi) =
1

nj

m∑

i=1

uijΦ(xi) (3.25)

where nj =
∑m

i=1 uij is the cardinality of the j-th cluster, and uij is the function,
allocating objects to clusters, i.e. uij = 1 when xi is an element of the j-th cluster
and uij = 0 otherwise. A direct application of this equation is not possible,
because the function Φ is not known. In spite of this, it is possible to compute
the distances between the object images and prototypes in the feature space,
making use of equation (2.48). The reasoning runs as follows:

‖Φ(xi)− µΦ
j ‖2 =

(
Φ(xi)− µΦ

j

)T(
Φ(xi)− µΦ

j

)

= Φ(xi)
TΦ(xi)− 2Φ(xi)

TµΦ
j + (µΦ

j)TµΦ
j

= Φ(xi)
TΦ(xi)−

2

nj

m∑

h=1

uhjΦ(xi)
TΦ(xh)+

+
1

n2
j

m∑

r=1

m∑

s=1

urjusjΦ(xr)TΦ(xs)

= kii −
2

nj

m∑

h=1

uhjkhi +
1

n2
j

m∑

r=1

m∑

s=1

urjusjkrs

(3.26)

88 3 Algorithms of combinatorial cluster analysis

where, like in Section 2.5.4, kij = Φ(xi)
TΦ(xj) = K(xi,xj). If we denote with uj

the j-th column of the matrix U and substitute ũj = uj/‖uj‖1, then the above
equation can be rewritten in a closed form:

‖Φ(xi)− µj‖2 = kii − 2(ũT

jK)i + ũT

jKũj (3.27)

where K is a Gram matrix with elements kij , and the scalar (ũT

jK)i denotes the
i-th component of the vector (ũT

jK).
In this way, one can update the elements of the matrix U without determining

the prototypes explicitly. This is possible, because xi is assigned to the cluster
minimising the above-mentioned distance, i.e.

uij =

{
1 if ‖Φ(xi)− µΦ

j ‖2 = min1≤t≤k ‖Φ(xi)− µΦ
t ‖2

0 otherwise
(3.28)

Though it is not possible to use the equation (3.25) directly, one can deter-
mine (in the original feature space X) the approximate cluster prototypes by
assuming µj to be the object xj matching the condition [386]

xj
i = arg min

xi∈Cj

‖Φ(xi)− µΦ
j ‖2 (3.29)

Prototypes, defined in this way, are in fact medoids (see the next section). An-
other method of determining the prototypes is presented in Section 3.3.5.6.2.

The algorithm is summarized in the form of the pseudo-code 3.6. It needs
to be stressed that, like the k-means algorithm, its kernel based variant is also
sensitive to initialisation, meaning the 2nd step of the algorithm. The simplest
way to initialise it is to assign k − 1 (randomly selected) objects to k − 1 differ-
ent clusters and to allocate the remaining m−k+1 objects to the k-th cluster.
Another method is to assume the partition returned by the classical k-means
algorithm. It guarantees that at least a part of the objects will belong to proper
clusters and the algorithm 3.6 will only modify erroneous assignments.

Algorithm 3.6 Kernel-based k-means algorithm

1: Choose a kernel function K and compute the elements of the Gram matrix kij =
K(xi,xj) for the set of objects {x1, . . . ,xm}.

2: Compute the initial allocation of elements among clusters.
3: For each object xi ∈ X compute its distance from each cluster by applying equation

(3.26), and assign xi to the closest cluster
4: Repeat step (3) till none of uij values changes.
5: Determine the approximate prototypes according to equation (3.29).

The presented algorithm clusters correctly the data similar to the ones in
Figure 3.5, and, as reported by authors of [203], even in case of such sets as iris
one gets better clustering performance (compared to k-means algorithm). An on
line version of this algorithm was presented by Schölkopf, Smola and Müller in
[306], and its modifications are presented in [138].

3.1 k-means algorithm 89

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Fig. 3.5. Results of application of the kernel-based variant of the k-means algorithm.
Object-to-cluster allocation is indicated by different colours. σ = 1 was assumed.

3.1.5.6 k-medoids algorithm

The k-means algorithm is formally applicable only if the dissimilarity between
pairs of objects is equal to the square of their Euclidean distance. This means that
the features describing the object properties must be measured on quantitative
scale, e.g. on the ratio scale. In such a case, the objects can be represented as
n-dimensional vectors with real-valued components. Beside this, the partition
cost,given by equation (3.1) depends on the maximal distances between the
prototype µi and the object of the cluster represented by this prototype. Hence,
the k-means algorithm is not resistant to the presence of outliers. Furthermore,
the centres µi are abstract objects not belonging to the set X. To avoid these
disadvantages, one may measure the partition cost as follows:

Jmed(p1, . . . , pk) = min
1≤j≤k

∑

i∈Cj

d(xi, pj) (3.30)

where p1, . . . , pk ∈ X are cluster centres, called also prototypes, examples, ex-
emplars, medoids or just centres, and d : X× X→ R is a dissimilarity measure.
There is no need for this measure to be symmetric or even metric (as required
for Euclidean distance or its generalisations).

The k-medoids (or k-centres) algorithm aims at such a choice of centres
{p1, . . . , pk} ⊂ X for which the index Jmed reaches its minimum. By introducing
the dissimilarity measure dij = d(xi, pj) we broaden the applicability of the algo-
rithm requiring only that for each pair of objects from the set X it is possible to
compute their dissimilarity. Working with dissimilarity matrix has an additional
advantage: its dimension depends on the number of objects only.

As the object representation stops playing any role here, the practical imple-
mentations of the algorithm makes use only of the vector c having the elements
ci, indicating to which example (and in this way to which cluster) the i-th object
belongs. More precisely:

90 3 Algorithms of combinatorial cluster analysis

ci =

{
j if xi ∈ Cj

i if xi is an exemplar
(3.31)

An elementary implementation of the k-medoids algorithm is demonstrated
by the pseudo-code 3.7, see e.g. [164, sec. 14.3.10].

Algorithm 3.7 k-medoids algorithm

Require: Dissimilarity matrix D = [dij]m×m, number of clusters k
1: Select the subset K ⊂ {1, . . . ,m}. Its elements are pointers to examples (proto-

types)
2: while (not termination condition) do

3: Assign objects to clusters using the rule

ci =

{
arg min

j∈K
dij if i /∈ K

i otherwise
, i = 1, . . . ,m (3.32)

4: Update the examples, that is

j∗r = arg min
t : ct=r

∑

t′ : ct′=r

dtt′ , r = 1, . . . , k (3.33)

5: end while

6: If the index value remained unchanged after testing m objects – Stop. Otherwise
return to step 2.

In the simplest case the examples are picked at random, but very good results
can be achieved by adapting the methods from Section 3.1.3. In particular, one
can start with selection of k most dissimilar objects.

The equation (3.32) tells us that the object i is assigned to the least dissimilar
example from the set K. On the other hand, the equation (3.33) states that for
a set of objects sharing a common example we select as the new example such
an object for which the sum of dissimilarities to other objects of the cluster is
the lowest. Like the k-means algorithm, the k-medoids algorithm stops when the
new examples are identical with those of the previous iteration.

In spite of its superficial simplicity, the algorithm is much more time-
consuming than k-means algorithm: determining a new example requires O(|Cr |)
operations, and the cluster allocation updates – O(mk) comparisons.

Kaufman and Rousseeuw initiated research on elaboration of efficient method
of determination of examples. In [201] they proposed two algorithms: PAM
(Partitioning Around Medoids) and CLARA (Clustering LARge Applications).
PAM follows the just described principle, that is- it seeks in X such medoid ob-
jects which minimise the index (3.1). This approach is quite expensive. The big
data analysis algorithm CLARA uses several (usually five) samples consisting of
40 + 2k objects and applies the PAM algorithm to each of the samples to obtain
a set of proposed sets of medoids. Each proposal is evaluated using the index
(3.1); the set yielding the lowest value of the criterion function is chosen.

3.1 k-means algorithm 91

The next improvement was the CLARANS (Clustering Large Applications
based upon RANdomized Search), [270] – an algorithm with quadratic complexity
in the number of objects m. The algorithm construes a graph of sets of k medoids ;
two graph nodes are connected by an edge if the assigned sets differ by exactly
one element. The neighbours are generated using random search techniques.
Another variant of the k-centres algorithm was proposed in [278].

In Figure 3.6 allocations of objects to examples for the data sets data3 2

and data6 2 are presented.

1 2 3 4 5 6 7 8
2.5

3

3.5

4

4.5

5

5.5

6

2 4 6 8 10 12 14 16 18 20 22
2

4

6

8

10

12

14

16

18

20

22

(a) (b)

Fig. 3.6. Clustering of separable data sets with the k-medoids algorithm: (a) the set
data3 2, (b) the set data6 2. Cluster examples are marked with red dots.

Remark 3.1.1 The k-medoids algorithm should not be confused with the k-
medians algorithm, proposed to make the k-means algorithm resistant against
outliers. In the k-medians algorithm the Euclidean distance is replaced with the
Manhattan distance, assuming p = 1 in the equation (3.2), [57], [191]. In such
a case the cluster centres are determined from the equation

∑

xi∈Cj

∂

∂µjl
|xil − µjl| = 0⇒

∑

xi∈Cj

sqn(xil − µjl) = 0

i.e. µj l are the medians of the respective components of the vectors xi assigned
to the cluster Cj.

This algorithm plays an important role in operations research, in particular
in the choice of location of service centres16. �

3.1.5.7 k-modes algorithm

Huang presented in [183] an adaptation of the k-means algorithm for cases where
the features describing the objects are measured on nominal scale. Examples of

16 See e.g. N. Mladenović, J. Brimberg, P. Hansen, J.A. Moreno-Pérez. The p-median
problem: A survey of meta-heuristic approaches. European J. of Op. Res., 179(3),
2007, 927–939.

92 3 Algorithms of combinatorial cluster analysis

such features are: sex, eye colour, hair colour, nationality etc. Each feature takes
usually a value from a small value set; for example the value of the feature ”eye
colour” can be: ”blue”, ”brown”, ”black” etc. By replacing these values with
consecutive integers we can assign each real object xi a concise representation in
terms of a vector xi, elements of which xil are integers pointing at the proper
value of the i-th feature. Now the dissimilarity of the pair of objects i and j is
defined as (see Section 2.2.2):

dij = d(xi,xj) =

n∑

l=1

δ(xil, xjl) (3.34)

where

δ(xil, xjl) =

{
1 if xil = xjl
0 otherwise

hence d(xi,xj) counts the number of differences between the compared objects.
The mode of the set C is defined as an object m (not necessarily from the

set X) minimizing the rating:

d(C,m) =
∑

x∈C

d(x,m) (3.35)

Huang noted in [183] the following property that allows to identify the mode
of the set C quickly:

Lemma 3.1.1 Let Dom(Al) denote the set of values of the feature Al and let cls
denote the number of objects in the set C in which the feature l takes on the
value s. Vector m with components matching the condition

ml = arg max
s∈Dom(Al)

cls, l = 1, . . . , n (3.36)

is the mode of the set C. �

Let mj denote the mode of the j-th cluster. The problem of k-modes consists
in finding such modes m1, . . . ,mk that the index

Jmod(m1, . . . ,mk) =

k∑

j=1

d(Cj ,mj) =

k∑

j=1

∑

xi∈Ci

d(xi,mj) (3.37)

is minimised. A method to solve this problem is presented in the form of the
pseudo-code 3.8.

The subsequent theorem points at the difference between the k-medoids and
the k-modes algorithms

Theorem 3.1.2 Let p1, . . . , pk be a set of medoids and let m1, . . . ,mk be the
set of modes. Let both be computed using respective algorithms. Then

Jmed(p1, . . . , pk) ≤ 2Jmod(m1, . . . ,mk) (3.38)

�

3.1 k-means algorithm 93

Algorithm 3.8 k-modes algorithm, [183]

Require: Matrix X representing the set of objects, number of clusters k.
1: Determine the dissimilarities dij for each pair of objects.
2: determine in any way k modes.
3: while (not termination condition) do

4: Using the dissimilarity measure 3.34 assign objects to the closest clusters
5: Update mode of each cluster applying the Lemma 3.1.1.
6: end while

7: Return a partition into k clusters.

Let us note however that the execution of the k-medoids algorithm requires only
the dissimilarity matrix D = [dij] while the k-modes algorithm insists on access
to the matrix X with rows of which containing the characteristics of individual
objects.

Huang considers in [183] the general case when the features describing objects
are measured both on ratio scale and on nominal scale. Let us impose such an
order on the features that the first n1 features are measured on ratio scale while
the remaining ones – on nominal scale. In such a case the cost of partition
represented by the matrix U = [uij] can be determined as follows:

Jp(U,M) =

k∑

j=1

m∑

i=1

[
uij

n1∑

l=1

(xil −mjl)
2 + γuij

n∑

l=n1+1

δ(xil,mjl)
]

(3.39)

where γ > 0 is a coefficient balancing both types of dissimilarities.
By substituting

P r
j =

m∑

i=1

uij

n1∑

l=1

(xil −mjl)
2, Pn

j = γ
m∑

i=1

uij

n∑

l=n1+1

δ(xil,mjl)

we rewrite the equation (3.39) in the form

Jp(U,M) =
k∑

j=1

(P r
j + Pn

j) (3.40)

Optimisation of this index is performed iteratively, namely, starting with the
initial centroid matrix M objects are assigned to clusters with the least differing
centroids. The dissimilarity measure of the object xi with respect to centroid
mi equals to

d(xi,mi) =

n1∑

l=1

(xil −mjl)
2 + γ

n∑

l=N1+1

δ(xij ,mjl) (3.41)

Subsequently new cluster centres are determined. Their components being real
numbers are computed as in the classic k-means algorithm, see equation (3.3),
while for the nominal valued components the Lemma 3.1.1 is applied.

94 3 Algorithms of combinatorial cluster analysis

Huang commented in [183] on the difference between this algorithm (called by
the author k-prototypes) and the algorithm CLARA, mentioned in the previous
section :

The major differences between CLARA and the k-prototypes algo-
rithm are as follows: (1) CLARA clusters a large data set based on
samples, whereas k-prototypes directly works on the whole data set. (2)
CLARA optimises its clustering result at the sample level. A good clus-
tering based on samples will not necessarily represent a good clustering
of the whole data set if the sample is biased. The k-prototypes algorithm
optimises the cost function on the whole data set. It guarantees at least
a locally optimal clustering. (3) The efficiency of CLARA depends on
the sample size. The larger and more complex the whole data set is, the
larger the sample is required. CLARA will no longer be efficient when
the sample size exceeds a certain range, say thousands of objects. The
k-prototypes algorithm has no such limitations.

It is worth mentioning that the dissimilarity measure used here fulfils the tri-
angle inequality, which implies that accelerations mentioned in Section 3.1.4 are
applicable here.

3.2 EM algorithm

Instead of concentrating on a given set of objects, a clustering process may target
a population from which the actually obtained set has been sampled. In this case
one assumes that the population can be described as a sum of statistical models,
where each of the models describes a cluster of objects. A statistical model may
be a probability density function of occurrence of objects of the given cluster in
the feature space.

Frequently, as a matter of convenience, it is assumed that the probability
density distribution function that describes the set of observationsX is a mixture
of Gaussian distributions,

p(x) =

k∑

j=1

p(Cj)p(x|Cj ;µj , Σj) (3.42)

where p(Cj) denotes the a priori probability of the object to belong to the j-
th cluster, while p(x|Cj ;µj , Σj) is the probability density of the n-dimensional
Gaussian distribution with the vector of expected values µj and covariance ma-
trix Σj according to which the observations belonging to the j-th cluster are
generated. Let us recall the formula for the probability density function of mul-
tidimensional (multivariate) Gaussian distribution:

p(x|Cj ;µj , Σj) =
1

(2π)n/n
√
|Σj |

exp
[
− 1

2
(x− µj)

TΣ−1(x− µj)
]

(3.43)

3.2 EM algorithm 95

The assumption of Gaussian (or normal) distributions of elements in a cluster
is a ”classical” variant of the discussed approach but it is nonetheless sufficiently
general. It is possible to demonstrate that every continuous and constrained
probability density distribution can be approximated with any required precision
by a mixture of Gaussian distributions [213]. Sample sets that were generated
from a mixture of two normal distributions were presented already in Figure 2.13
on page 65. But, in general, mixtures of any type of distributions can be consid-
ered. A rich bibliography on this subject can be found on the Web page of David
Dowe http://www.csse.monash.edu.au/~dld/mixture.modelling.page.html.

Let us reformulate the task of clustering as follows: We will treat the vectors
of expected values as cluster centres (rows of the M matrix). Instead of the
cluster membership matrix U , we will consider the matrix P = [pij]m×k, where
pij = p(Cj |xi) means the probability that the i-th object belongs to the j-th
cluster. Now let us define the target function for clustering as follows:

JEM (P,M) = −
n∑

i=1

log
(k∑

j=1

p(xi|Cj)p(Cj)
)

(3.44)

The function log(·) was introduced to simplify the computations. The minus sign
allows to treat the problem of parameter estimation as the task of minimization
of the expression (3.44).

Assuming that the set of observations consists really of k clusters we can
imagine that each observation xi, i = 1, . . . ,m was generated by exactly one of
the k distributions, though we do not know by which. Hence, the feature that
we shall subsequently call ”class” is a feature with unknown values 17. We can
say that we have incomplete data of the form y = (x, class). Further, we do
not know the parameters of the constituent distributions of the mixture (3.42).
In order to estimate them, we can use the EM (Expectation Maximization)
method, elaborated by Dempster, Laird and Rubin [94], which is, in fact, a
maximum likelihood method, adapted to the situation when data is incom-
plete. The method consists in repeating the sequence of two steps (see [247], [55]):

– Step E (Expectation): known feature values of objects, together with es-
timated parameters of models are used to compute for these objects the
expected values of the unknown ones.

– Step M (Maximization): both known (observed) and estimated (unob-
served) feature values of objects are used to estimate the model parameters
using the model likelihood maximisation given the data.

The EM algorithm is one more example of the broad class of hill-climbing algo-
rithms. Its execution starts with a choice of mixture parameters and proceeds
by stepwise parameter re-estimation until the function (3.44) reaches a local
optimum.

17 More precisely, it is a so called ”hidden feature” or ”hidden variable”.

96 3 Algorithms of combinatorial cluster analysis

Step E consists in estimation of the probability that the i-th object belongs to
the class j. If we assume that we know the parameters of distributions belonging
to the mixture (3.42) then we can estimate this probability using the Bayes
theorem:

p(Cj |xi) =
p(xi|Cj)p(Cj)

p(xi)
=

p(xi|Cj)p(Cj)∑k
l=1 p(xi|Cl)p(Cl)

(3.45)

p(xi|Cj) is the value of the density function φ(xi;µ, Σ), having mean vector
µ and covariance matrix Σ, at the point xi, i.e. p(xi|Cj) = φ(xi;µj , Σj). The
value p(xi) is computed according to the total probability theorem.

To execute step M, we assume that we know the class membership of all ob-
jects, which is described by the aposteriorical distribution p(Cj |xi). Under these
circumstances the method of likelihood maximisation can be used to estimate
the distribution parameters. The estimator of the vector of expected values of
the j-th cluster is of the form:

µj =
1

mp(Ci)

m∑

i=1

p(Cj |xi)xi (3.46)

Note that this equation has the same form as the equation (2.42) given that
the weights w(xi) are constant, e.g. w(xi) = 1. If we assume, additionally, the
preferential class membership (i.e. p(Cj |xi) ∈ {0, 1}) then we will discover that
the formula (3.46) can be reduced to the classical formula of computation of
gravity centre of a class.

Similarly, we compute the covariance matrix from the formula:

Σj =
1

mnp(Cj)

m∑

i=1

(xi − µj)(xi − µj)
T (3.47)

and the apriorical class membership probability from the equation:

p(Cj) =
1

m

m∑

i=1

p(Cj |xi) (3.48)

We can summarize these remarks with the algorithm 3.9.
If we speak in the language of the k-means algorithm, then we will say that

the step E is equivalent to an update of the assignment of points to clusters, and
the step M can be deemed as determining characteristics of the new partition
of the set X . A convenient approach (see e.g. [87]) to implement the above-
mentioned pseudo-code consists in updating apriorical probabilities right after
step E, thereafter determining centres µt+1

i , and lastly computing the matrix
Σt+1

j .
System WEKA [363] implements the EM algorithm for cluster analysis. Many

other systems exploit mixtures of distributions, e.g. Snob [357], AutoClass [70]
and MClust [131].

3.2 EM algorithm 97

Algorithm 3.9 EM algorithm for cluster analysis

1: Initialisation. Set the iteration counter to t = 0. Give the initial estimates of the pa-
rameters of the distributions µ

t
j , Σ

t
j and of apriorical values of probabilities p(Cj),

j = 1, . . . , k.
2: (Step E): Using Bayes Theorem compute the membership of i-th object in j-th

class, pt+1(Cj |xi), i = 1, . . . ,m, j = 1, . . . , k – compare equation (3.45).
3: (Step M): Knowing class memberships of objects update the distribution param-

eters µ
t+1
i , Σt+1

j , and apriorical probabilities pt+1(Cj), j = 1, . . . , k – equations
(3.46) – (3.48).

4: t = t + 1
5: Repeat steps 2 – 4 till the estimate values stabilise.

Experiments presented in [159] show that the EM algorithm is, with respect
to quality, comparable to k-means algorithm. Just like in the case of the latter,
also performance of the EM algorithm depends on initialisation18. However, as
noticed in [7], the EM algorithm is not suitable for processing of high-dimensional
data due to losses in computational precision. Let us remember, too, that deter-
mining the covariance matrix requires computation of 1

2 (n2 +n) elements, which
becomes quite expensive with the growth of the number of dimensions. Finally,
the disadvantage of the EM algorithm formulated in the here presented matter
is its slow convergence, [94]. But, on the other hand, it is much more universal
than the k-means algorithm: it can be applied in the analysis of non-numerical
data. The quick algorithm developed by Moore in [261] allows to reduce, at least
partially, the deficiencies listed.

Structural similarity between the EM and k-means algorithms permits to
state that if the distribution p(Cj |x) is approximated by the rule ”the winner
takes all”, then the EM algorithm with a mixture of Gaussian distributions with
covariance matrix Σj = ǫI, j = 1, . . . , k, where I means a unit matrix, becomes
the k-means algorithm when ǫ→ 0 [202].

Dasgupta and Schulman [87] analyse deeply the case of a mixture of spherical
normal distributions, that is- those with Σj = σjI. They prove that if the clusters
are sufficiently well separable, see equation (2.56), then the estimation of mixture
parameters requires only two iterations of a slightly modified algorithm 3.9.
This is particularly important in case of high-dimensional data (n>> ln k). They
developed also a simple procedure, applicable in the cases when the exact value
of k is not known in advance. They propose an initialisation method, which is a
variant of the method (c) from Section 3.1.3.

In recent years, we heve been witnessing a significant advancement of the-
oretical description and understanding of the problems related to learning of
parameters of a mixture of distributions. A Reader interested in these aspects
is recommended to study the paper [194]. We will return to this topic in Sec-
tion 5.2.5.4.

18 One of initialisation methods for the EM algorithm, estimating mixture parameters,
consists in applying the k-means algorithm.

98 3 Algorithms of combinatorial cluster analysis

Slow convergence of the standard version of the EM algorithm urged the
development of its various modifications, such as greedy EM19, stochastic EM20,
or random swap EM. Their brief review can be found in sections 4.4. i 4.5 of the
PhD thesis [388] and in paper [284], where a genetic variant of the EM algorithm
has been proposed. It allows not only to discover the mixture parameters but
also the number of constituent components.

3.3 FCM: fuzzy c-means algorithm

3.3.1 Basic formulation

Ruspini [297] was the first to propose to represent clusters as fuzzy sets. If
χ̃j denotes the membership function representing j-th cluster then the fuzzy

partition is the set of fuzzy subsets F̃1, . . . , F̃k. Their membership functions are
defined as follows:

k∑

j=1

χ̃j(xi) = 1, i = 1, . . . ,m (3.49)

This definition is intended to take into account outliers and other irregular-
ities in the induced partition. Additionally, to be able to determine representa-
tives of individual clusters (called prototypes or – as in the case of crisp sets –
gravity centres), Dunn [114] introduced the concept of compact and well sepa-
rated (CWS) clusters. Let C = {C1, . . . , Ck} mean a crisp partition of a set of
objects. Let (x,y) ∈ X be two such points that x ∈ Ci, y ∈ conv(Ci) where
conv(Ci) is a convex hull Ci, and let i, j, k, j 6= k be any indexes. The set Ci is a
CWS-cluster if (x,y) are much closer to one another in the sense of some assumed
distance d than any two points (u,v) ∈ X such that u ∈ Cj ,v ∈ conv(Ck). This
property is described by the index

β(k, C) =
(

min
j=1,...,k

min
l=1,...,m,l 6=j

d(Cj , conv(Cl))
)
/ max
j=1,...,k

diam(Cj) (3.50)

where diam(Cj) is the diameter of the set Cj , and d(A,B) is the distance between
the sets A and B. It turns out that the set X can be divided into k CWS-clusters
(when the distance d is known), if [114]

β(k) = max
C

β(k, C) > 1 (3.51)

The problem of finding a partition, for which the index β(k, C) = β(k), is
very difficult. In particular, Dunn [114] has shown that the algorithm ISODATA,

19 See J.J. Verbeek, N. Vlassis, B. Kröse: ”Efficient greedy learning of Gaussian mixture
models”, Neural computation, 15(2), 2003, pp. 469-485.

20 G. Celeux, D. Chauveau, J. Diebolt: Stochastic versions of the EM algorithm: an
experimental study in the mixture case. J. of Stat. Computation and Simulation,
55(4), 1996, pp. 287-314.

3.3 FCM: fuzzy c-means algorithm 99

introduced in Section 3.1.4, finds the CWS-partition also in cases when it does
not exist. For this reason the criterion (3.1) was weakened allowing for fuzzy
partitions of the set of objects. Let U = [uij]m×k be a matrix fulfilling the
following conditions

(a) 0 ≤ uij ≤ 1, i = 1, . . . ,m, j = 1, . . . , k

(b)

k∑

j=1

uij = 1, i = 1, . . . ,m

(c) 0 <

m∑

i=1

uij < m, j = 1, . . . , k

(3.52)

Element uij determines the membership degree of the object xi in the class
Cj . The condition (a) means a partial membership of objects the classes, and
condition (b) enforces the full membership of objects in a distinguished set of
classes21. Finally, the condition (c) does not permit to create empty classes.
The set of all matrices fulfilling the conditions (3.52) is called the set of fuzzy
partitions and we denote it with the symbol Ufk. Let us make the remark that the
dimension of the space of fuzzy clusterings significantly exceeds the dimension
of the space of crisp partitions [54].

Prototypes of classes are represented by the rows of the matrix M =
(µ1, . . . ,µk)T having the dimensions k × n.

The search for a fuzzy partition fulfilling the conditions mentioned is carried
out via minimisation of the quality index of the form:

Jα(U,M) =

m∑

i=1

k∑

j=1

uαij‖xi − µj‖2 (3.53)

where α > 1 is a parameter (so-called fuzziness exponent). It has been shown
[54] that when α → 1 then the algorithm generates clusters identical with ones
obtained from the algorithm ISODATA (which justifies the name Fuzzy ISODATA
for the algorithm described here), and when α→∞ then the values uij → 1/k,
i.e. we obtain a completely fuzzy partition. Typical values of the parameter α
are 1.25 and 2.

Introduction of partial object membership allows to distinguish between the
”typical” group representatives and the objects that are less likely characterised
as belonging to a given group. The idea has been illustrated in Figure 3.7.

Remark 3.3.1 Due to similarity of the function (3.53) to (3.1), the subse-
quently discussed algorithm could be called fuzzy k-means algorithm. Its authors
denoted the number of clusters with the letter c, hence they coined the name Fuzzy
c-Means. We will, however, continue to denote the number of clusters with the
letter k, while keeping the abbreviation FCM when referring to this algorithm. �

21 In other words, we do not allow for the existence of other (unknown) classes, to
which objects could partially or completely belong

100 3 Algorithms of combinatorial cluster analysis

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(a) (b)

4 6 8 10 12 14 16
4

6

8

10

12

14

16

4 6 8 10 12 14 16
4

6

8

10

12

14

16

(c) (d)

Fig. 3.7. Clustering of data with the use of the FCM algorithm: (a) Set data3 2 (blue
points) with added noise (black points). (b) Assignments to groups generated by the
FCM algorithm. The bigger squares denote typical objects, smaller circles – the other
objects; the colour indicates the class membership. Same convention applies to Figure
(d) representing the results obtained for the set data5 2 from Figure (c). α = 2 was
assumed in computations. Object xi is treated as typical if maxj uij ≥ 0.9.

Remark 3.3.2 The Euclidean distance occurring in the equation (3.53) can be
replaced with any norm ‖x‖W = (xTWx)1/2, where W is a positive definite
matrix of dimension n×n. This more general formulation has been used, e.g., in
the book [51]. Subsequent formulas for the membership degrees uij remain valid
if the Euclidean distance used therein is replaced by the norm ‖ · ‖W . �

3.3.2 Basic FCM algorithm

The indicator (3.53), depending on the partition U and the prototypes M , is not
a convex function of its arguments. Nonetheless, the problem of its minimisation
can be simplified by fixing the values of either matrix U or M , that is, by
assuming U = Ũ , M = M̃ , respectively. In such a case the simplified functions
J̃m(U) = Jm(U, M̂) and J̃m(M) = Jm(Û ,M) are convex functions of their
arguments – consult [50], [189]. Hence, the classical optimisation methods are

3.3 FCM: fuzzy c-means algorithm 101

applicable, i.e. to determine the vector of prototypes, the equation system of k
equations of the form given below, is solved

∂

∂µj

Jα(U,M) = 0, j = 1, . . . , k (3.54)

and solving for the matrix U relies on creating the Lagrange function

L(Jα, λ) =
m∑

i=1

k∑

j=1

uαij‖xi,µj‖2 −
m∑

i=1

λi(
k∑

j=1

uij − 1) (3.55)

and computing values uij from the equation system

∂

∂uij
L(Jα, λ) = 0

∂

∂λi
L(Jα, λ) = 0

i = 1, . . . ,m, j = 1, . . . , k (3.56)

Solution of the task of minimisation of function (3.53) in the set of fuzzy
partitions Ufk is obtained iteratively by computing, for a fixed partition U , the
prototypes (see appendix A)

µjl =

∑m
i=1 u

α
ijxil∑m

l=1 u
α
lj

, j = 1, . . . , k, l = 1, . . . , n (3.57)

and then new assignments to clusters

uij =

[
k∑

l=1

(
‖xi − µj‖
‖xi − µl‖

) 2
α−1
]−1

if Zi = ∅

ǫij if j ∈ Zi 6= ∅
0 if j /∈ Zi 6= ∅

(3.58)

where Zi = {j : 1 ≤ j ≤ k, ‖xi − µj‖ = 0}, and values ǫij are chosen in such
a way that

∑
j∈Zi

ǫij = 1. Usually, the non-empty set Zi contains one element,
hence ǫij = 1. if we substitute d(xi,µj) = ‖xi − µj‖ + ε, where ε is a number
close to zero, e.g. ε = 10−10, then the above equation can be simplified to

uij =

[
k∑

l=1

(
d(xi,µj)

d(xi,µl)

) 2
α−1
]−1

(3.59)

This last equation can be rewritten in an equivalent form that requires a
lower number of divisions

uij =
d

2
1−α (xi,µj)∑k

l=1 d
2

1−α (xi,µl)
(3.60)

Note that the membership degree uij depends not only on the distances of the
i-th object from the centre of the j-th cluster but also on its distance to centres

102 3 Algorithms of combinatorial cluster analysis

of other clusters. Furthermore, when α = 2, the denominator of the expression
(3.60) is the harmonic average of the squares of distance of the object from the
cluster centres. In this case, the FCM resembles a little bit the KHM algorithm
from Section 3.1.5.4.

The FCM algorithm termination condition is usually defined as stabilisation
of the partition matrix. If U t, U t+1 denote the matrices obtained in subsequent
iterations, then the computations are terminated as soon as maxi,j |ut+1

ij −utij| ≤
ǫ, where ǫ is a predefined precision, e.g. ǫ = 0.0001. Of course, one can change
the order of steps, i.e. first initiate the prototype matrix M and determine the
corresponding cluster assignments uij , and subsequently update the prototypes.
The last two steps are repeated till the vectors stabilise µj , i.e. till |µt+1

jl −µt
jl| < ǫ,

where j = 1, . . . , k, l = 1, . . . , n. Note that the number of comparisons required
in deciding on computation termination is in the second case usually lower than
in the first one: matrix M contains kn elements, while matrix U has only mk
elements.

The fuzziness coefficient α is an important parameter of the algorithm, be-
cause its properties heavily depend on the value od this coefficient. If this value is
close to one, the algorithm behaves like the classic k-means algorithm. If α grows
without bounds, then prototypes converge to the gravity centre of the object set
X . Several heuristic methods for selection of this coefficient have been proposed
in the literature [45], [275]. The best recommendation is to choose it from the
interval [1.5, 2.5]. One has, however, to remember that the mentioned heuristics
result from empirical investigations and may not reflect all the issues present in
real world data. The paper [377] suggests some rules for the choice of the value
of α, pointing at the fact that coefficient choice depends on the data themselves.
The impact of parameter choice on the behaviour of the FCM algorithm was
investigated by Choe and Jordan in [74]. The influence of parameter α on the
number of iterations untill stabilisation of the matrix U and on the distance of
returned prototypes µj from the intrinsic ones µ∗

j is depicted in Figure 3.8. The
average distance has been computed as

davg =
1

k

k∑

j=1

‖µ∗
j − µj‖ (3.61)

We chose the set iris.data stemming from the repository [25] to illustrate
the comparison. Intrinsic centres of the groups are presented in the table below.

M∗ =

5.00 3.42 1.46 0.24
5.93 2.77 4.26 1.32
6.58 2.97 5.55 2.02

 (3.62)

We can deduce from the figure that the increase of the value of the coefficient
α causes the increase in the number of iterations. Interestingly, for α values close
to 1 the error measured with the quantity davg initially decreases and then, after
exceeding the optimal value (here α∗ = 1.5), it grows. The standard deviation
is close to zero for low α values, which means a high repeatability of the results.

3.3 FCM: fuzzy c-means algorithm 103

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
20

25

30

35

40

45

50

55

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 3.8. Influence of the value of fuzziness exponent α on the number of iterations
(picture to the left) and the quality of prototypes (picture to the right), expressed in
terms of the average distance davg according to the equation (3.61). Solid line indicates
the mean value m of the respective quantity (averaged over 100 runs), and the dotted
lines mark the values m±s, with s being the standard deviation. ǫ = 10−8 was assumed.
Experiments were performed for the data set iris.txt.

Remark 3.3.3 Schwämmle and Jensen [308] investigated randomly generated
data sets and concluded that the best value of the α parameter is a function of
the dimension n and the amount of data m. Based on their experiments, they
proposed the following analytical form of this function

α(m,n) = 1 +
(

1418
m + 22.05

)
n−2

+
(

12.33
m + 0.243

)
n−0.0406 ln(m)−0.1134

(3.63)

This result contradicts the common practice to choose α = 2.
It has been also observed that investigation of the minimal distance between

the cluster centres, VMCD, is a good hint for choice of the proper number of
clusters k. It is recommended to choose as a potential candidate such a value k∗

for which an abrupt decrease of the value of VMCD occurs.
One should, however, keep in mind that these results were obtained mainly

for the Gaussian type of clusters. Both authors suggest great care when applying
the derived conclusions to the real data. �

The FCM algorithm converges usually quickly to a stationary point. Slow
convergence should be rather treated as an indication of a poor starting point.
Hathaway and Bezdek cite in [165, p. 243] experimental results on splitting a
mixture of normal distributions into constituent sets. An FCM algorithm with
parameter α = 2 needed 10-20 iterations to complete the task, while the EM
algorithm required hundreds, and in some cases thousands of iterations.

Encouraged by this discovery, the authors posed the question: Let
p(y;α0, α1) = α0p0(y) + α1p1(y), where p0 i p1 are symmetric density func-
tions with mean values 0 and 1, respectively, and the expected values (with
respect to components) of the variable |Y |2 being finite. Can these clusters be
identified? Regrettably, it turns out that (for α = 2) there exist such values of

104 3 Algorithms of combinatorial cluster analysis

α0, α1 that the FCM algorithm erroneously identifies the means of both sub-
populations. This implies that even if one could observe an infinite number of
objects the algorithm possesses only finite precision (with respect to estimation
of prototype location). This result is far from being a surprise. FCM is an exam-
ple of non-parametric algorithm and the quality index Jα does not refer to any
statistical properties of the population. Hathaway and Bezdek conclude, [165]:
if population components (components of a mixture of distributions) are suf-
ficiently separable, i.e. each sub-population is related to a clear ”peak” in the
density function, then the FCM algorithm can be expected to identify the char-
acteristic prototypes at least as well as the maximum likelihood method (and
for sure much quicker than this).

An initial analysis of the convergence of the FCM algorithm was presented in
the paper [50], and a correct version of the proof of convergence was presented
6 years later in the paper [169]. A careful analysis of the properties of this
algorithm was initialised by Ismail and Selim [189]. This research direction was
pursued, among others, by Kim, Bezdek and Hathaway [204], Wei and Mendel
[361], and also Yu and Yang [378].

3.3.3 Measures of quality of fuzzy partition

Though the FCM algorithm requires only a small number of iteration till a sta-
ble partition of objects is obtained, the partition quality assessment requires the
introduction of appropriate quality measures that would depend on the param-
eters k and α. The reader will find a thorough discussion of clustering quality
evaluation methods in chapter 4. Nonetheless, we will present here a couple of
measures that play a special role in the evaluation of fuzzy clustering algorithms.

If the intrinsic group membership of objects is known, Pt = {Ct
1, . . . , C

t
k},

then the so-called purity index is applied. It reflects the agreement between
the intrinsic partition and the one found by the algorithm. First, the fuzzy
assignment matrix is transformed to a Boolean group membership matrix U b

with entries

ubij =

{
1 if j = arg min

1≤t≤k
uit

0 otherwise
(3.64)

A partition Pf = {Cf
1 , . . . , C

f
k } is obtained in this way, with Cf

j = {i : ubij = 1}.
Subsequently, we construct the contingency table with entries mij = |Ct

i ∩ Cf
j |.

Finally, the agreement of the two partitions is calculated as

P(P1,P2) =
1

m

k1∑

i=1

max
1≤j≤k2

mij (3.65)

While the purity is a general purpose measure, the so called reconstruction
error is a measure designed exclusively for algorithms producing fuzzy partitions
[280]. It is defined as the average distance between the original object and the
reconstructed one, i.e.

3.3 FCM: fuzzy c-means algorithm 105

er =
1

m

m∑

i=1

‖xi − x̃i‖2 (3.66)

where the reconstruction x̃i is performed according to the formula

x̃i =

∑k
j=1 u

α
ijµj∑k

j=1 u
α
ij

, i = 1, . . . ,m (3.67)

The lower the reconstruction error the better the algorithm performance. One
should, however, remember that low values of the k parameter induce rather
high error values (er → 0 when k → m). The purity index evaluates, therefore,
the algorithm precision, while the reconstruction error describes the quality of
encoding/decoding of objects by the prototypes and the assignment matrix. One
can say that er is a measure of dispersion of prototypes in the feature space.
In particular, the reconstruction error decreases when the prototypes are moved
towards the centres of dense areas of feature space [147]. Hence, er measures the
capability of prototypes to represent individual clusters. The dependence of the
reconstruction error on the fuzziness exponent α is illustrated in Figure 3.3.3.

1 2 3 4 5 6 7 8 9 10
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

Fig. 3.9. Influence of the α exponent (abscissa axis) on the reconstruction error (or-
dinate axis). Test data: file iris.txt.

Other measures of quality of fuzzy partitions are partition coefficient Fk(U)
and fuzzy partition entropy Hk(U). They are defined as follows, see e.g. [51]:

Fk(U) = tr(UU T)/m =
1

m

m∑

i=1

k∑

j=1

u2ij (3.68)

Hk(U) = − 1

m

m∑

i=1

k∑

j=1

uij loga uij , a > 1 (3.69)

They exhibit the following properties

106 3 Algorithms of combinatorial cluster analysis

Fk(u) = 1⇔ Hk(U) = 0⇔ U is a crisp partition

Fk(U) = 1
k ⇔ Hk(U) = loga(k)⇔ U = [1k]

1
k ≤ Fk(U) ≤ 1; 0 ≤ Hk(U) ≤ loga(k)

(3.70)

The entropy Hk is more sensitive to local changes in partition quality than the
coefficient F .

When data tend to concentrate into a low number of well separable groups,
then these indicators constitute a good hint for the proper selection of the num-
ber of clusters.

Remark 3.3.4 The quantity Hk(U) is a measure indicating the degree of fuzzi-
ness of a partition. If U is a crisp partition, then Hk(U) = 0 for any matrix U
with elements uij ∈ {0, 1}. The entropy H(U), defined later in equation (4.29)
in Section 4.4.2, allows to explore deeper the nature of a crisp partition. One
should not confuse these two measures. �

Example 3.3.1 To illustrate the above-mentioned thesis, consider two sets pre-
sented in Figure 3.10. The first set data 6 2 contains two dimensional data
forming six clear-cut clusters. The second set data 4 2 was obtained by ran-
domly picking same number of points from a two dimensional normal distribu-
tion N(mi, I), i = 1, . . . , 4, where m1 = (3, 0)T, m2 = (0, 3)T, m3 = (3, 3)T,
m4 = (0, 6)T, and I means a unit covariance matrix. In both cases Fk(U) and
Hk(U) for various values of k were computed, see Figure 3.11. In the first case
of a clear structure, we observe clear cut optima reached by both indexes. In the
second case both indices behave monotonically. �

2 4 6 8 10 12 14 16 18 20 22
2

4

6

8

10

12

14

16

18

20

22

−3 −2 −1 0 1 2 3 4 5 6 7
−4

−2

0

2

4

6

8

10

Fig. 3.10. Test sets data 6 2 (Figure to the left) and data 4 2 (Figure to the right)

3.3.4 An alternative formulation

The method of determining the membership degree via equation (3.59) does not
depend on the definition of distance, [51]. By replacing the Euclidean distance
‖xi − µj‖ used there with some distance d(xi,µj), we can state that

3.3 FCM: fuzzy c-means algorithm 107

2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
k
(U)

H
k
(U)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

F
k
(U)

H
k
(U)

Fig. 3.11. Dependence of the values of quality criteria for the sets data 6 2 (to the
left) and data 4 2 (to the right) on the assumed number of classes

uα−1
ij d2(xi,µj) =

(
1

∑k
l=1 d

2
1−α (xi,µl)

)α−1

=

(
k∑

l=1

d
2

1−α (xi,µl)

)1−α

Hence

J̃α(M) =

m∑

i=1

k∑

j=1

uiju
α−1
ij d2(xi,µj)

=
m∑

i=1

k∑

j=1

uij

(
k∑

l=1

d
2

1−α (xi,µl)

)1−α

=

m∑

i=1

(
k∑

l=1

d
2

1−α (xi,µl)

)α−1

·
k∑

j=1

uij

The above equation allows to replace the criterion function (3.53) with an
equivalent function (see e.g. [166], [361])

J̃α(M) =

m∑

i=1

(k∑

j=1

d
2

1−α (xi,µj)
)1−α

(3.71)

More precisely, if the distances d(xi,µj) are continuous functions of param-
eters M ∈ M, which describe the group prototypes, and M is an open subset
R

kn, and for M∗ ∈ M all distances d(xi,µj) > 0, i = 1, . . . ,m, j = 1, . . . , k,
then, [166]

(a) If (U∗,M∗) is a global (resp. local) minimum of the index Jα(U,M) in

Ukc × M then M∗ is a global (resp. local) minimum of index J̃α(M) in the
set M.

(b) If M∗ is a global (resp. local) minimum of the index J̃α in the set M then
the pair (Φ(M∗),M∗) is a global (resp. local) minimum of the index Jα in

108 3 Algorithms of combinatorial cluster analysis

the set Ufk × M, where Φ(M) is a mapping assigning the given matrix M
a respective assignment matrix U .

The difference between the formulations (3.53) and (3.71) is not only formal.
Let us notice that in the first case the number of parameters to be identified is
k(m+ n), and in the second case there are kn of them.

More importantly, in the first case we deal with an optimisation task with
constraints (3.60). The solution of the problem stated in this way is the alter-
nating algorithm from Section 3.3.2.

In the second case, the determination of the allocations from the family
Ufk is ignored, with concentration on finding such prototypes that minimise
the indicator (3.71). Here we deal with a much simpler task of unconditional
optimisation. Class allocations for objects are computed from equation (3.60)
only if needed.

To illustrate more convincingly the difference between these approaches, let
us assume that we replace the Euclidean distance used so far with a distance
induced by Minkowski metric 22. This requires a modification of the iterative
algorithm in the formulation (3.53). Such changes are unnecessary in the op-

timisation driven formulation (3.71). Only the value of the indicator J̃α(M) is
computed in a slightly different manner.

An obvious requirement is to dispose of an efficient optimisation procedure.
If the number of features is not big, then the simplex algorithm (called also
creeping amoeba) can be applied. The algorithm is authored by Nelder and Mead
– compare chapter 10 w [287]. Application of a genetic algorithm to optimise the
indicator (3.71) was presented in [158].

More details about the equivalence of solutions obtained in both cases are
presented in paper [166].

3.3.5 Modifications of the FCM algorithm

The base FCM algorithm assumes that the distance between an object and a
prototype is an Euclidean one. But this is not the best way of measuring the
similarity of the multidimensional objects to distinguished prototypes (see Sec-
tion 2.2). Below we present several different modifications of the target function
having the general form

Jα(U,M) =

k∑

j=1

m∑

i=1

umijd
2(xi,µj) (3.72)

In Section 3.3.5.1 in place of d(xi,µj) we consider Minkowski distance. The
cluster allocation applied in FCM is sufficient if the clusters are Voronoi-shaped.
Therefore, in Section 3.3.5.2 in place of d(xi,µj) we assume Mahalanobis dis-
tance. It enables the discovery of clusters with varying shapes and densities.
Another modification, adopted for such a situation was proposed by Gath and

22 This problem is discussed in depth in Section 3.3.5.1.

3.3 FCM: fuzzy c-means algorithm 109

Geva in [139]. If the shape of the clusters is known in advance (e.g. line segments,
circles, ellipsoids), the algorithms presented in Sections 3.3.5.3 and 3.3.5.4 may
prove useful. In Section 3.3.5.5 we present a generalisation of the spherical algo-
rithm from Section 3.1.5.3. We will present also two kernel variants of the base
FCM algorithm (Section 3.3.5.6).

Constraints imposed on matrix U (see equation (3.52) from page 99) cause
that the algorithm is sensitive to the presence of non-typical data (outliers). Wu
and Yang [366] attempted to overcome this shortcoming by suggesting the exten-
sion of the set of k groups with an additional cluster containing all non-typical
data. Another idea is to give up the requirement that the sum of membership
degrees to all groups be equal 1. This leads to so-called possibilistic clustering
algorithm that we discuss in Section 3.3.5.7.

Finally, in Section 3.3.5.8 an algorithm is presented in which instead of dis-
tance, the matrix of dissimilarities R is used, in which entries quantify the dis-
similarity between pairs of objects.

An exhaustive review of all FMC algorithm modifications is beyond the scope
of this book. An interested reader is kindly advised to consult, e.g., the books
[51], [54], [93], [177]. A systemat review of other modifications of the FCM algo-
rithms, including the ones for observations stemming from a mixture of various
probability distributions, is presented in [376].

The basic version of FCM requires storing the allocation matrix U , which
increases its memory complexity and, in consequence, also time complexity. But
with knowledge of the prototype vectors, elements of this matrix can be restored
quite efficiently, if needed. Such a solution was presented by Kolen and Hutcheson
in the paper [210]. Hore, Hall and Goldgof present in [178] the so-called weighted
FCM algorithm, developed for very big data sets. Another big data analysis
variant of the algorithm was proposed in paper [73].

Let us note at the end the interesting attempts to merge self-organising
networks of Kohonen23 with FCM algorithm. First attempts were presented in
[186], and their refinement is the FKCN algorithm (Fuzzy Kohonen Clustering
Network), described in papers [276] and [340].

3.3.5.1 FCM algorithm with Minkowski metric

As announced in Section 2.2, let us start with the most natural modification
of the algorithm, consisting in replacement of the Euclidean distance d2 with
its generalisation, that is, with Minkowski distance dp, p > 0, defined by the
formula (2.3), in particular - the Manhattan distance d1. This modification was
deemed to make the algorithm resistant against outliers. So, in the general case,
the function (3.72) can have the form (see also [167])

23 T. Kohonen. Self-Organization and Associative Memory, Springer-Verlag, Berlin,
Heidelberg, 1898.

110 3 Algorithms of combinatorial cluster analysis

Jα,p(U,M) =

m∑

i=1

k∑

j=1

uαij‖xi − µj‖pp

=

m∑

i=1

k∑

j=1

n∑

l=1

uαij |xil − µjl|p
(3.73)

We will seek here a solution by alternating computation of the elements of
the U and M matrices just like in the case of the base FCM algorithm. Elements
of the U matrix are determined according to equation (3.58) except that the
Euclidean distance used there is substituted with Minkowski distance ‖xi−µj‖.

Determining components of prototypes is, however, more expensive than in
the classical case of p = 2, because one has to find kn minima of one-dimensional
functions of the form

fjl(µjl) =

m∑

i=1

uαij |xil − µjl|p, j = 1, . . . , k, l = 1, . . . , n (3.74)

A function defined in this way is not convex for 0 < p < 1; its diagram
has ”spikes” at points µjl = xil, compare Figure 3.12(a). Determining the value
µ∗
jl minimising the function f consists, therefore, in computing its values for all

arguments xil, i = 1, . . . ,m and choosing the proper one among them, that is

µ∗
jl = arg min

1≤i≤m
fjl(µjl) (3.75)

We obtain a piece-wise linear function in case of p = 1, compare Figure
3.12(b), but the solution is found by the same procedure. Finally, in case of
p > 1 we have to do with a convex function with a single minimum, Figure
3.12(c).

−10 −8 −6 −4 −2 0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

−10 −8 −6 −4 −2 0 2 4 6 8 10
2

4

6

8

10

12

14

16

18

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

(a) p = 0.4 (b) p = 1.0 (c) p = 3.5

Fig. 3.12. Diagrams of the function (3.74) for three values of the parameter p. Function
is of the form f(x) = 0.6α|−4−x|p + 0.5α|−1−x|p + 0.8α|3−x|p + 0.7m|6−x|p, where
x means µjl, and α = 2.5.

3.3 FCM: fuzzy c-means algorithm 111

Jajuga24 presented an effective method of minimising function (3.73) for
p = 1. By changing the summation order and by introducing weight

wijl =
uαij

|xil − µjl|
(3.76)

the target function (3.73) can be represented in an equivalent form

Jα,1(W,M) =
k∑

j=1

n∑

l=1

m∑

i=1

wijl(xil − µjl)
2 (3.77)

resembling the original target function (3.53) with parameter α = 1. Cluster
membership degrees can be determined in the following (already known) way

uij =

(
k∑

l=1

d
1/(1−α)
ij

d
1/(1−α)
il

)−1

, dij =

n∑

l=1

|xil − µjl| (3.78)

But determining prototypes requires solving kn equations of the form

min

m∑

i=1

wijl(xil − µjl)
2, j = 1, . . . , k, l = 1, . . . , n

i.e. knowing the actual values of uij , the weights are computed according to
equation (3.76), and then prototype coordinates are calculated

µjl =

∑m
i=1 wijlxil∑m

i=1 wij
(3.79)

A review of other methods of fuzzy clustering for various values of the pa-
rameter p is contained in the paper [167]).

3.3.5.2 Gustafson-Kessel (GK) algorithm

Both FCM algorithm and its crisp counterpart prefer Voronoi (”spherical”) clus-
ters of balanced cardinality. If we have to deal with ellipsoid shaped clusters, then
the algorithm proposed by Gustafson and Kessel [149] would be helpful. This
algorithm exploits adaptively modified Mahalanobis distance, defined in Section
2.2.1.2. The target function (3.72) has now the form

Jα,A1,...,Ak
(U,M) =

k∑

j=1

m∑

i=1

uαij‖xi − µj‖2Aj
(3.80)

where Aj ∈ Rn×n is a positive definite matrix defining the distances between
the elements of the j-th cluster:

24 K. Jajuga, L1-norm based fuzzy clustering. Fuzzy Sets and System 39, 43-50, 1991.
See also P.J.F. Groenen, U. Kaymak and J. van Rosmalen: Fuzzy clustering with
Minkowski distance functions, chapter 3 in [93].

112 3 Algorithms of combinatorial cluster analysis

‖xi − µj‖2Aj
= (xi − µj)

TAj(xi − µj)

MatrixAj is determined from the covariance matrixΣj, computed for objects
of j-th cluster

A−1
j = |ρjΣj |1/(r+1)Σ−1

j (3.81)

where r is a user-defined parameter25, ρj is the volume of the j-th cluster (usually
ρ = 1), and Σj is the covariance matrix of the j-th cluster:

Σj =

∑m
i=1 u

α
ij(xi − µj)(xi − µj)

T

∑m
i=1 u

α
ij

(3.82)

and |Σj | is the determinant of this matrix.
The algorithm consists of the following steps

1. Compute the prototypes of clusters µj by applying the formula (3.57).
2. For each cluster compute the covariance matrix Σj from equation (3.82).
3. Calculate distances d2Aj

(xi,µj) = (xi − µj)
T|Σj |1/nΣ−1

j (xi − µj)
4. Update the assignment matrix U by assuming

uij =

[k∑

l=1

(dAj
(xi,µj)

dAl
(xi,µl)

) 2
α−1

]−1

This algorithm has been widely applied, in particular in digital image anal-
ysis26 and in engineering tasks, [27]. However, if the coordinates of some of
the observations constituting one group are strongly correlated then the covari-
ance matrix suffers from singularities, which results in incorrectness of cluster
assignments. A method immunising the algorithm against such situations was
presented in [28].

Example 3.3.2 Let us consider a synthetic data set consisting of three differ-
ently shaped clusters, presented in Figure 3.13. Samples representing the indi-
vidual groups stem from two-dimensional normal distributions with parameters
presented in Table 3.1.

group µX µY σX σY

1 -0.5 0.5 0.35 0.15
2 0.7 0.7 0.05 0.25
3 0.5 -0.5 0.20 0.05

F3(U) H3(U)

FCM 0.8602 0.2865
GK 0.9133 0.1923

Table 3.1. Table to the left: Parameters of Gaussian distributions used to generate
samples belonging to the three groups. Table to the right: Quality indicators of the
partitions generated by the algorithms FCM and GK (Gustafson-Kessel)

25 Its role is similar to that of the fuzziness exponent α. Usually we assume r = n− 1.
26 R.N. Dave. Boundary detection through fuzzy clustering. In IEEE International

Conf. on Fuzzy Systems, pp. 127–134, San Diego, USA, 1992

3.3 FCM: fuzzy c-means algorithm 113

The table to the right presents the quality indicators for partitions generated
by the FCM and GK (Gustafson-Kessel) algorithms. Both the partition coeffi-
cient and the partition entropy are better for the partition obtained from GK
algorithm. Figure 3.13 shows silhouette diagrams of the membership functions
generated by both algorithms. �

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) (b)

Fig. 3.13. Comparison of partitions generated by the (a) FCM algorithm and (b) GK
algorithm for a synthetic data set consisting of three clusters with different shapes.

3.3.5.3 FCV algorithm: Fuzzy c-varietes

The FCM algorithm identifies spherical clusters by computing the centre and
radius of each of them. The resultant spheres constitute manifolds describing
data subsets. A natural research direction was to extend this idea to manifolds
of other shapes. An extension to hyper-ellipsoids was presented in the preceding
section. Bezdek introduced in [53] linear manifolds of dimension r ∈ {0, . . . , s},
spanned over vectors {b1, . . . ,br} and passing through a given point a ∈ R

s.
The subsequent equation describes the general form of such a manifold

Vr(a;b1, . . . ,br) =
{
y ∈ R

s : y = a +

r∑

l=1

ξlbl, ξl ∈ R
}

(3.83)

If r = 0 then V0(a) is a point in s-dimensional Euclidean space; if r = 1 then
V1(a;b) is a straight line in this space, and if r = 2 then V2(a;b1,b2) is a plane
passing through the point a ∈ Rs.

Like in Section 3.3.5.2, one defines the distance dA(x,Vr) of the point x ∈ R
s

to the manifold Vr:

dA(x,Vr) = min
y∈Rs

dA(x,y) =

(
‖x− a‖2A −

r∑

l=1

(
(x− a)TAbl

)2
)1/2

(3.84)

114 3 Algorithms of combinatorial cluster analysis

If we have now k manifolds Vr
1 , . . . ,Vr

k described by vectors a = (a1, . . . , ak),
bj = (b1j , . . . ,bkj), j = 1, . . . , r, i.e.

Vr
j =

{
y ∈ R

s : aj +

r∑

l=1

ξlbjl, ξl ∈ R

}
, j = 1, . . . , k

then the generalised target function (3.72) has the form

Jα(U, a; b1, . . . , br) =

k∑

j=1

m∑

i=1

umijD
2
ij (3.85)

where Dij = dA(xi,Vr
j).

Once again the minimisation of this indicator is achieved via a variant of
the alternating algorithm from Section 3.3.2. Vectors aj and bjl, l = 1, . . . , r,
spanning the j-th manifold are determined from the equation 27

aj =

∑m
i=1 u

α
ijxi∑m

i=1 u
α
ij

, bjl = A−1/2sjl (3.86)

where sjl is the l-th eigenvector of the scatter matrix

Sj = A1/2

(
m∑

i=1

uαij(xi − aj)(xi − aj)
T

)
A1/2

corresponding to the l-th maximal eigenvalue28 of this matrix. Membership de-
gree of i-th object in j-th manifold is determined using an analogue of the
equation (3.60), i.e.

uij =
D

2
1−α

ij

∑k
l=1D

2
1−α

il

(3.87)

The algorithm presented here is very sensitive to initialisation, particularly for
bigger values of the parameter k. This topic has been investigated more deeply
in e.g. [217] and [373].

The reader may pay attention to the fact that the FCV algorithm can be
viewed as a precursor of approaches like k-planes algorithm presented in [58],
projective clustering [107], or manifold learning [304]. It is also worth mentioning
that a simple clustering algorithm for straight-line-segment shaped clusters was
presented in [126].

27 See J.C. Bezdek, C. Coray, R. Gunderson and J. Watson. Detection and characteriza-
tion of cluster substructure: I. Linear structure: Fuzzy c-lines. SIAM J. Appl. Math.
40(2), 339-357, 1981; Part II Fuzzy c-varieties and convex combinations thereof,
SIAM J. Appl. Math. 40(2), 358-372, 1981.

28 Note that Sj is a symmetric matrix of dimension n×n. Hence it has n (not necessarily
distinct) real-valued eigenvalues. See Section B.3.

3.3 FCM: fuzzy c-means algorithm 115

3.3.5.4 FCS algorithm: Fuzzy c-shells

Still another generalisation of the basic FCM algorithm was proposed by Dave
[88], [90]. His algorithm was devoted to detection of spherical and elliptical edges
in digital images, as an alternative approach to Circle Hough Transform for circle
detection. Though Hough transform, [144], is a useful edge detection technique,
it has the drawback of high memory and time complexity.

The FCS algorithm seeks a fuzzy partition into k circular groups. Each group
is determined by the circle centre a = {a1, . . . , ak} and radius r = {r1, . . . , rk}.
The algorithm strives to minimize the indicator

Jα(U, a, r) =
k∑

j=1

m∑

i=1

uαik

(
‖xi − aj‖Aj

− rj
)2

(3.88)

We assume here that aj ∈ Rs, rj > 0, j = 1, . . . , k.
Under these circumstances, the FCS algorithm consists of the following steps:

(i) Fix the algorithm parameters α, k and the precision ǫ.
(ii) Initialise the partition matrix U (t)

(iii) Determine circle centres aj and radiuses rj by solving the equation system

m∑

i=1

uαij

(
1− rj
‖xi − aj‖Aj

)
(xi − aj) = 0 (3.89)

and
m∑

i=1

uαij
(
‖xi − aj‖Aj

− rj
)

= 0 (3.90)

(iv) Determine the new membership degrees uij by applying equation (3.87) with
Dij =

(
‖xi − aj‖Aj

− rj
)
.

(v) if ‖Uold − Unew‖ < ǫ then STOP, else return to step (iii).

If Aj = I, j = 1, . . . , k, then the above algorithm detects clusters, in which ob-
jects are located on or in close vicinity to circles, representing individual groups.
By assigning each group a unique matrix Aj one obtains a generalised (adaptive)
FCS algorithm. In such a case, when new values aj , rj are determined, one needs
to update the matrix Aj using e.g. the equation (3.81).

A careful convergence analysis performed for the FCS algorithm in [52] sug-
gests that a single iteration of the Newton method should be used to determine
subsequent approximations of the vector aj and the radius rj . On the other
hand, Dave finds in [90] that already three iterations of the Newton method are
sufficient to reach precise results.

One can approach manifolds of other shapes in a way analogous to the one
presented above29.

29 See e.g. F. Klawonn, R. Kruse, and H. Timm. Fuzzy shell cluster anal-
ysis. Courses and Lectures – International Centre for Mechanical Sciences,

116 3 Algorithms of combinatorial cluster analysis

3.3.5.5 SFCM: spherical FCM algorithm

If both xi and µj are unit vectors, we can recall the observation (3.11) and define
the target function as follows

Js(U,M) =

m∑

i=1

k∑

j=1

uαij

(
1−

n∑

l=1

xilµjl

)
(3.91)

We seek such a pair (U∗,M∗), for which the above function attains the
minimum. This time, we require not only that U ∈ Ufk but also that ‖µj‖ = 1.
The latter condition means that

n∑

l=1

µ2
jl = 1, j = 1, . . . , k (3.92)

Here, the Lagrange function has the form

L(Js, λ, Λ) =

m∑

i=1

k∑

j=1

uαij

(
1−

n∑

l=1

xil

)
−

m∑

i=1

λi

(k∑

j=1

uij−1
)
−

k∑

j=1

Λj

(n∑

l=1

µ2
jl−1

)

(3.93)
By applying a procedure analogous to the one from Appendix A we can state

that the entries of the matrix U are of the form

uij =
D

1
1−α (xi,µj)∑k

l=1D
1

1−α (xi,µl)
=

(
1−∑n

t=1 xitµjt

) 1
1−α

∑k
l=1

(
1−∑n

t=1 xitµlt

) 1
1−α

(3.94)

The above formula holds only if D(xi,µj) = (1 − xT

iµj) 6= 0. Otherwise, if the
constraint does not hold, one applies a variant of the equation (3.58).

By solving the equation system

∂

∂µjl

L(Js, λ, Λ) = 0

∂

∂Λj,
L(Jα, λ, Λ) = 0

j = 1, . . . , k, l = 1, . . . , n (3.95)

one determines the prototype components, see [254], as

µjl =
m∑

i=1

uαijxil

√√√√
n∑

r=1

(m∑

t=1

uαjtxtr

)−2

(3.96)

Springer 1997, pp. 105-120; http://public.fh-wolfenbuettel.de/~klawonn/
Papers/klawonnetaludine97.pdf.

3.3 FCM: fuzzy c-means algorithm 117

3.3.5.6 Kernel-based variants of the FCM algorithm

Like classical k-means algorithm, also FCM algorithm can be kernelised. Two
variants of the kernel-based fuzzy c-means algorithm are distinguished. The
KFCM-X variant constructs the class prototypes in the original feature space.
The other variant, called KFCM-F , assumes that the prototypes are defined
in the kernel feature space, in analogy to the KHCM algorithm from Section
3.1.5.5.

3.3.5.6.1 KFCM-X algorithm

The algorithm seeks the minimum of the target function defined as

JK
α (U,M) =

m∑

i=1

k∑

j=1

uαij‖Φ(xi)− Φ(µj)‖2 (3.97)

We know already that

‖Φ(xi)− Φ(µj)‖2 = K(xi,xi)− 2K(xi,µj) + K(µj ,µj) (3.98)

where K(x,y) = ΦT(x)Φ(y) is a kernel function. The most frequently applied
function is in practice the Gaussian kernel, i.e. K(x,y) = exp

(
‖x − y‖2/σ2

)
,

where σ > 0 is a parameter. In such a case K(x,x) = 1, hence30

‖Φ(xi)− Φ(µj)‖2 = 2
(
1− K(xi,µj

)
)

which means that the quality index (3.97) is of the form

JK
α (U,M) = 2

m∑

i=1

k∑

j=1

uαij(1− K(xi,µj) (3.99)

The resulting algorithm resembles the original FCM algorithm where one
alternates between updating the membership degrees uij and the prototype co-
ordinates according to the equations below31, see e.g. [147], [385]:

uij =

(
1− K(xi,µj)

) 1
1−α

∑k
l=1

(
1− K(xi,µl)

) 1
1−α

(3.100)

µj =

∑m
i=1 u

α
ijK(xi,µj)xi∑m

i=1 u
α
ijK(xi,µj)

(3.101)

If K is a Gaussian kernel and σ →∞, then K(xi,µj)→ 1− ‖xi −µj)‖2/σ2 and
the algorithm resembles the performance of the classical FCM algorithm.

30 In fact the formulas below remain valid for any kernel function matching the condi-
tion K(x,x) = 1.

31 If K(xi,µl) = 1 for some index l then, upon determining uil, we proceed analogously
as when applying equation (3.58)

118 3 Algorithms of combinatorial cluster analysis

The procedure was applied in [385] to cluster incomplete data. Under such
scenario the algorithm consists of the following steps

(a) Initialise prototypes µj , j = 1, . . . , k.
(b) Substitute xib = 0, if b-th component of i-th observation is not known.
(c) As long as prototypes are not stable, execute:

(c1) update membership degrees according to equation (3.100),
(c2) update prototypes according to equation (3.101),
(c3) reconstruct values of unknown features by applying a variant of equation

(3.67):

xib =

∑k
j=1 u

α
ijK(xi,µj)µjb

∑k
j=1 u

α
ijK(xi,µj)

3.3.5.6.2 KFCM-F algorithm

In this case the target function is of the form

JF
α (U) =

m∑

i=1

k∑

j=1

uαij‖Φ(xi)− µΦ
j ‖2 (3.102)

Following the guidelines of Section 3.1.5.5 and [147] and the references cited
therein, the membership degrees uij are determined from the equation

uij =
‖Φ(xi)− µΦ

j ‖
2

1−α

∑k
l=1 ‖Φ(xi)− µΦ

l ‖
2

1−α

(3.103)

Because of

‖Φ(xi)− µΦ
j ‖2 = Φ(xi)

TΦ(xi)− 2Φ(xi)µ
Φ
j + (µΦ

j)Tµj

and

µΦ
j =

∑m
i=1 u

α
ijΦ(xi)∑m

i=1 u
α
ij

(3.104)

we obtain

‖Φ(xi)− µΦ
j ‖2 = K(xi,xi)− 2

∑m
l=1 u

α
ljK(xi,xl)∑m
l=1 u

α
lj

+

∑m
l=1

∑m
t=1 u

α
lju

α
tjK(xi,xt)

(∑m
l=1 u

α
lj

)2

(3.105)
Like in the case of the kernel-based variant of the k-means algorithm, there

exists also the possibility to construct the matrixK with elements kij = K(xi,xj)
in advance. Therefore the above-mentioned equation can be simplified to

‖Φ(xi)− µj‖2 = kii − 2

∑m
l=1 u

α
ljkil∑m

l=1 u
α
lj

+

∑m
l=1

∑m
t=1 u

α
lju

α
tjklt

(m∑

l=1

uαlj

)2 (3.106)

3.3 FCM: fuzzy c-means algorithm 119

or in vector form (consult equation (3.27) from Section 3.1.5.5):

‖Φ(xi)− µj‖2 = kii − 2(ũT

jK)i + ũT

jKũj (3.107)

where uj is the j-th column of matrix U , and ũj = uα
j /‖uα

j ‖1.
So, the kernel-based analogue of the FCM algorithm, similar to the algorithm

3.6 from page 88 runs as follows: squares of distances of objects to prototypes,
computed from the above formula, are substituted into the equation (3.103) and
the computations are repeated until stability is reached of all values of uij .

Zhou and Gan proposed in [394] an interesting idea of determining group
prototypes. µΦ

j in (kernel) feature space has the counterimage mj in the original

feature space in which the expression ‖Φ(mj) − µΦ
j ‖ arrives at its minimum.

By substituting (3.104) into this equation and setting to zero the gradient (with
respect to mj) of an equation modified in this way one gets the formula

mj

m∑

i=1

uαijK(xi,mj) =

m∑

i=1

uαijK(xi,mj)xi (3.108)

If K is a Gaussian kernel, we get the expression

mj =

∑m
i=1 u

α
ijK(xi,mj)xi∑m

i=1 u
α
ijK(xi,mj)

(3.109)

After initiating the vector mj ∈ Rn, the computations are repeated following
the above equation until the solution is stable.

The paper [171] proposes modifications of the kernel-based fuzzy algorithms,
meant to adapt them to processing big data sets.

Application of the algorithms described above should be cautious. An ex-
haustive study [147] compares the algorithms FCM, GK (Gustafson and Kessel)
with KFCM-X and KFCM-F for a large set of test datasets. The authors of that
paper draw quite an important conclusion:

The kernel-based clustering algorithms – especially KFCM-F – can
cluster specific non-spherical clusters such as the ring cluster quite well
outperforming FCM and GK for the same number of clusters; however,
overall the performance of the kernel-based methods is not very impres-
sive due to similar or only slight increases in clustering classification
rates compared to FCM. From the perspective of the reconstruction er-
ror, KFCM-F often performed similar to that of FCM and KFCM-X.
The major disadvantages of kernel-based algorithms are:

– selection of the kernel function and
– optimisation of kernel parameters.

(...) Generally there is no statistically significant difference between the
kernel-based algorithms and the FCM and GK algorithms except in a
few instances.

120 3 Algorithms of combinatorial cluster analysis

3.3.5.7 PCM: possibilistic clustering algorithm

Much attention has been paid to methods strengthening the resistance of FCM
algorithm to noise and outliers. One of such approaches was presented in [89],
where the set of k groups was extended by one additional cluster that is intended
to contain all non-typical data. This approach redefines the quality indicator as
follows:

Jα(U, V) =

m∑

i=1

k∑

j=1

uαijd
2(xi, vj) +

m∑

i=1

uαi,k+1δ
2 (3.110)

where δ represents the distance of an object from the ”noisy” cluster. Note that
this distance is identical for all objects.

Wu and Yang, on the other hand, introduced in [366] the target function of
the form

Jα(U,M ;β) =
k∑

j=1

m∑

i=1

uαij

(
1− exp(−β‖x− y)‖2

)
(3.111)

where

β =
m∑m

i=1 ‖xi − x‖2 , x =
1

m

m∑

i=1

xi

The authors claim that not only the resulting algorithm is resistant to the
presence of noise and outliers but also it tolerates groups with diverse cardinal-
ities.

Another interesting proposal is to resign from the requirement that the total
membership degree of an objects to all k clusters be equal 1,

∑k
j=1 uij = 1, as

this requirement forces each outlier to be assigned to one or more clusters.
We say that the matrix U represents a possibilistic partition of an object set

if the following three conditions are met:

(a) 0 ≤ uij ≤ 1, i = 1, . . . ,m, j = 1, . . . , c

(b)

m∑

i=1

uij > 0, j = 1, . . . , k

(c)
c∑

j=1

uij > 0, i = 1, . . . ,m

In order to obtain such a non-trivial partition, Krishnapuram and Keller,
[216] introduced a target function of the form:

JP (U,M) =

k∑

j=1

m∑

i=1

uαij‖xi − µj‖2 +

k∑

j=1

ηj

m∑

i=1

(1− uij)α (3.112)

3.3 FCM: fuzzy c-means algorithm 121

where ηj > 0, j = 1, . . . , k. The role of the second summand is to enforce a large
value of the element uij . Elements uij are now treated as degrees of typicality and
each column of the matrix U represents the so called distribution of possibilities
over the set of objects.

Parameter ηj controls the ”typicality” of objects: it indicates the distance
from the prototype below which it is permissible to assign high membership
values uij . The value uij is obtained from the formula

uij =

(
1 +
‖xi − µj‖2

ηj

) 1
α−1

(3.113)

The membership degree of the object xi in the class j in the standard FCM
depends on the distance from each prototype . But this is different in the PCM
algorithm. Now, uij depends on the distance from the prototype µj alone, with
this distance being additionally modified by the parameter ηj . If ηj = ‖xi−µj‖2
then uij = 1/2. Hence ηj points at the distance from the prototype µj , for
which uij reaches the value 1/2. When uij > 1/2, then xi is treated as a typical
representative of the cluster Cj . Krishnapuram and Keller propose in [216] to
compute ηj from the equation

ηj =

∑m
i=1 u

α
ij‖xi − µj‖2∑m
i=1 u

α
ij

(3.114)

This value can be updated in each iteration or fixed during initialisation. The first
variant may be the source of instability of the algorithm, therefore the second
variant is suggested in [216] with uij being substituted with values returned by
the FCM algorithm. After initialising the matrix U and determining the value
ηj , the prototype coordinates are computed as prescribed by equation (3.57) and
new values of assignments are computed from equation (3.113). These last two
steps are repeated till the values of the matrix U are stable.

The PCM algorithm has two important drawbacks: it is sensitive to initial-
isation and the function (3.112) reaches minimum when the coordinates of all
prototypes are identical32, which is a consequence of the fact that the degree uij
depends only on the distance of the i-th object from the j-th cluster. Authors
cited in the footnote proposed to enrich the function (3.112) with a summand
preventing collapsing of prototypes:

JRP (U,M) =
k∑

j=1

m∑

i=1

uαij‖xi−µj‖2+
k∑

j=1

ηj

m∑

i=1

(1−uij)α+
k∑

i=1

γi

k∑

j=1,j 6=i

‖µi−µj‖−2

(3.115)
In this case the coordinates of the prototypes are updated as follows:

32 This problem has been analysed in the paper by H. Timm, C. Borgelt, C. Doring,
and R. Kruse, “An extension to possibilistic fuzzy cluster analysis”, Fuzzy Sets Syst.,
147(1), 2004, pp. 3–16.

122 3 Algorithms of combinatorial cluster analysis

µj =

∑m
i=1 u

α
ijxi − γj

∑k
l=1,l 6=j µlrjl∑m

i=1 u
α
ij − γj

∑k
l=1,l 6=j rjl

(3.116)

where rjl = ‖µj − µl‖−4 means the repulsion force between respective proto-
types. Values uij are determined according to equation (3.113). If the repulsion
force exceeds the attraction force, i.e.

∑m
i=1 uij < γj

∑
l 6=j ril of one (or more)

prototype µj , then such a prototype should be initialised anew.
Pal et al. proposed in [277] to combine the FCM algorithm with the PCM

algorithm in such a way that at the same time the membership degrees uij and
the typicality degrees tij are computed and the target function is formalised as
follows:

JRP (U,M) =

k∑

j=1

m∑

i=1

(auαij + btβij‖xi − µj‖2 +

k∑

j=1

ηj

m∑

i=1

(1− tij)β (3.117)

where the parameter a > 0 characterises the importance of the membership
degrees, and the parameter b > 0 stresses the importance of typicality degrees.
If b = 0 then the algorithm behaves like FCM. It is required that the exponents
respect the constraint α, β > 0. It is recommended that they be equal α = β =
2.0.

More information on possibilistic clustering algorithms can be found in [277]
and in the bibliography cited therein33. Kernel based variants of such algorithms
are discussed in [125].

3.3.5.8 Relational variant of the FCM algorithm

Let us consider now the task of clustering objects in a situation where their
description in terms of a feature vector is not available and, instead, we can access
only their dissimilarity matrix R. Its elements rij are interpreted as dissimilarity
degrees of the i-th object from the j-th object. We assume that r is a symmetric
matrix with non-negative elements, and additionally rii = 0 for all i = 1, . . . ,m.

This problem was investigated, among others, by Roubens [295] and Wind-
ham [362]. The algorithms they propose suffer, however, from a strong depen-
dence on initialisation, which influences the stability of the algorithms and the
quality of the generated clusters which is usually poor.

Hathaway, Davenport and Bezdek [170] developed a more satisfactory algo-
rithm, but at the expense of additional constraints on the matrix R. They require
that the dissimilarity matrix be Euclidean, meaning that in some n′-dimensional
space there exists such a set of points {x1, . . . ,xm} that rij = ‖xi − xj‖2. Let
also U be an (arbitrarily initialised) matrix of dimension m×k, representing the

33 We recommend also the paper X. Wu, B. Wu, J. Sun and H. Fu, “Unsupervised
possibilistic fuzzy clustering”, J. of Information & Computational Science, 7(5),
2010, pp. 1075-1080.

3.3 FCM: fuzzy c-means algorithm 123

group membership of objects, i.e. a matrix fulfilling the conditions (3.52). Un-
der these assumptions the prototype (”centre”) of the j-th cluster is determined
from the equation

µj =
(uα1j , . . . , u

α
mj)

T

∑m
i=1 u

α
ij

, j = 1, . . . , k (3.118)

and the distance 34 dij between the i-th object and the j-th prototype is calcu-
lated from the equation

dij = (Rµj)i −
1

2
µT

jRµj , i = 1, . . . ,m, j = 1, . . . , k (3.119)

where the symbol (v)i denotes the i-th element of the vector v.
New values uij of the membership of i-th object in the j-th group are obtained

from equation (3.58), i.e.

uij =

[
k∑

l=1

(
dij
dil

) 1
α−1
]−1

if Zi = ∅

1 if j ∈ Zi 6= ∅
0 if j /∈ Zi 6= ∅

(3.120)

where Zi = {j : 1 ≤ j ≤ k, dij = 0}, as before.
If rij = ‖xi − xj‖2 then the partition returned by the above algorithm is

identical with the partition returned by the classical FCM algorithm. If, however,
R is not a Euclidean dissimilarity relation then the values d2ij , obtained from
equation (3.119) may be negative. Non-Euclidean relation R can be transformed
to a Euclidean one using a simple mapping, [168]

rβij =

{
rij + β if i 6= j

0 if i = j

where β ≥ β0, and β0 is some positive number. In section 3 of the paper [168] an
adaptive procedure was presented, enabling to estimate the appropriate value of
the parameter β.

Another, simpler solution of this problem was proposed in [84]. The respective
authors suggested that information about relations between the objects allows
to describe the i-th object with the vector xi = (ri,1, . . . , ri,m)T expressing the
dissimilarity of this object with respect to the other ones. Also, the prototype
µj of the j-th class can be represented in the same way. Hence, one can define
the gap between the dissimilarity of the i-th object with respect to the other
objects and the profile of the j-th class, that is

δ2(xi,µj) =

m∑

l=1

(ril − µjl)
2 (3.121)

34 Formally it is the squared distance.

124 3 Algorithms of combinatorial cluster analysis

and then try to minimise the indicator

Jα(U,C) =

m∑

i=1

k∑

j=1

uαijδ
2(xi,µj) (3.122)

where, as previously, elements uij of the assignment matrix U fulfil the conditions

uij ∈ [0, 1],
∑k

j=1 uij = 1, and
∑m

i=1 uij > 0.
Equation (3.122) has the same shape as equation (3.53), which means that

equations (3.57) and (3.58) can be applied to determine the prototypes and the
assignment (allocation) matrix. Under the assumed representation of prototypes,
the first of these equations will have the form

µj,l =

∑m
s=1 u

α
lj · rls∑m

s=1 usj
, j = 1, . . . , k, l = 1, . . . ,m (3.123)

Iterative repetitions of computations, prescribed by equations (3.123) and
(3.58) constitute the ARCA algorithm (Any Relation Clustering Algorithm).
Like FCM, it requires initialisation of the matrix U . Authors of the paper [84]
assumed, following Windham in [362], that ui,1 = 0.5(1 + 1/k) for the first m/k
objects, ui,2 = 0.5(1 + 1/k) for the next m/k objects, . . . , ui,k = 0.5(1 + 1/k)
for the remaining m/k objects, and membership of all objects in other classes is
equal uij = 0.5/k.

More information on the relational variant of the FCM algorithm can be
found in chapter 3 of the book [53]. Its applications in data mining, in particular
in personalisation of search results, are discussed, among others, in [215], [266].

3.4 Affinity propagation

We now deal with another example of a relational algorithm returning a set
of prototypes35. Input data consist of similarities between pairs of objects, sij .
Authors of [135] assume that the number sij , i 6= j indicates how well the point j
is suitable to represent the point i. In the simplest case sij = ‖xi−xj‖2, though
one can apply other similarity measures (see examples in the paper [135]). The
numbers sii describe so called preferences, the bigger is sii, the greater is the
chance that the object i will become a prototype. sii can be equal e.g. to the
median of the set of values sij , i 6= j over all j (resulting in a larger number of
clusters) or the minimal value from this set (whereby a smaller number of clusters
is induced). Neither symmetry nor metricity of the similarities is required (i.e.
the condition sik < sij + sjk is not imposed).

The essence of the algorithm is to maximise the function

E(c) = −
m∑

i=1

si,ci (3.124)

35 Its authors call those prototypes exemplars (of data groups) [135].

3.4 Affinity propagation 125

where c = (c1, . . . , cm) is a set of labels. Label ci points at the representative of
the object i. A task formulated in this way is NP-hard, therefore it is formulated
as maximisation of the pure similarity of the form

E(c) = −
m∑

i=1

si,ci +

m∑

j=1

δj(c) (3.125)

where

δj(c) =

{
−∞ if cj 6= j and ∃i : ci = j

0 otherwise
(3.126)

is the penalty imposed in case object i chooses object j = ci as its prototype
and object j does not consider itself as its own prototype, that is cj 6= j. It
is an essential condition that a prototype has to fulfil: not only several objects
should choose j as their representative, but also j must choose itself as its own
prototype, i.e. the following condition must hold: cj = j.

The problem (3.125) is solved in a process of message passing, hence its name
affinity propagation. Message rij sent by the object i to the object j reflects
responsibility of being the prototype for object i. Availability, aij , is a message
sent by the object j to the object i informing about the readiness to take over
the task of being the prototype for the object i.

If we disregard technicalities, related to the message exchange36, then the
algorithm has the form shown as pseudo-code 3.10. Most important operations
therein are the updates of responsibility and availability, described by equations
(3.127) and (3.129). In the first iteration, the new values of responsibility are
equal

r′ij =

{
sij − si,j1(i) if j 6= j1(i)

sij − si,j2(i) otherwise
, i, j = 1, . . . ,m

where j1(i) is the id of the object most similar to object i, while j2(i) is the id
of the object second most similar to object i.

A ”smoothing” operation, described by equations (3.128) and (3.130), was
introduced in order to avoid numerical oscillations of the values of both messages.

The algorithm terminates when either a predefined number of while loop
iterations was performed or when the object assignments to the prototypes do
not change over t consecutive iterations (in [135] t = 10 was assumed). Values ci,
defined by the equation (3.131), indicate the prototypes (if ci = i) or membership
of the object i in the class represented by the appropriate prototype (if ci 6= i).

Please note that the number of classes does not need to be specified in ad-
vance, contrary to the algorithms discussed previously. The affinity propagation
algorithm determines it automatically.

36 Interested reader is recommended to get acquainted with the PhD Thesis [113].

126 3 Algorithms of combinatorial cluster analysis

Algorithm 3.10 Affinity propagation, [135]

Require: Similarity matrix S = [sij]m×m.
Ensure: Set of prototypes together with the objects represented by them.
1: aij = 0 for i, j = 1, . . . ,m
2: while (not termination condition) do

3: update responsibilities

r′ij = sij −max
v 6=j

(
aiv + siv

)
, i, j = 1, . . . ,m (3.127)

4: determine the final values of responsibilities

rij = λrij + (1− λ)r′ij , i, j = 1, . . . , m (3.128)

5: update availabilities

a′
ij =

∑

u 6=j

max
(
0, ru,j

)
if i = j

min
[
0, rjj +

∑

u/∈{i,j}

max(0, ruj)
]

otherwise
, i, j = 1, . . . ,m (3.129)

6: determine the final availability values

aij = λaij + (1− λ)a′
ij , i, j = 1, . . . , m (3.130)

7: end while

8: determine indexes

ci = arg max
1≤j≤m

(
rij + aij

)
, i = 1, . . . ,m (3.131)

4

Cluster quality versus choice of parameters

In previous chapters we presented various algorithms designed for data cluster-
ing. In order to use them efficiently though, we have to solve some basic issues
namely:

(a) preparing the data,
(b) establishing the proper number of clusters,
(c) estimating the quality of the applied algorithm,
(d) comparing the results obtained by using alternative algorithms.

In this chapter these issues will be considered.

4.1 Preparing the data

When preparing the data for the analysis it is essential to decide on the set of
features used to characterise the data and to apply their transformations, if nec-
essary. Sufficient description of these issues exceeds the book’s scope. However,
we would like to draw the reader’s attention to the importance of this stage of
data analysis.

The possibility of using specified algorithms and the quality of results ob-
tained highly depend on the set of features used for describing the real objects.
Usually, we would like to operate on an efficient representation, which is a small
set of features well distinguishing objects coming from different groups. The
majority of the measures of similarity discussed in the paragraph 2.2 lose their
discriminant abilities as the dimension of the vectors describing the analysed
objects increases. On the other hand, the so called predictive analytics1 sets the
requirement of using the biggest possible set of features in order to make proper
predictions. A careful choice of features influences not only the algorithm quality
and performance, but also allows for better understanding of the data generat-
ing process. A range of various methods applied to choose features is the area
of interest for statisticians2 and for machine learning researchers. A wide range
of remarks on this topic can be found in monographs [153], [236], in the paper

1 cf. e.g. E. Siegel, Predictive Analytics: The power to predict who will click, buy, lie,
or die. Wiley 2013

2 we recommend the procedure VARCLUST described abundantly in chapter 104 of
SAS/STATR© 13.1 User’s Guide. Cary, NC: SAS Institute Inc.

128 4 Cluster quality versus choice of parameters

[152] and in the 18-th chapter of the monograph [164]. A classical reference in
this area is [112].

There is a distinction in the literature between feature selection and feature
extraction. The former consists in selecting a small subset from a feature set
and the latter – in establishing a small subset of new (artificial) features. In
case of k-means algorithm there are two proven methods of feature extraction:
one using random projection3 and another consisting in SVD. A brief overview
of important feature selection methods is presented in the work [182]. In the
same a simple feature weighing methodthere was suggested consisting in the
generalisation of the objective function, applied in k-means algorithm, of the
form

Jβ(U,M,w) =

m∑

i=1

k∑

j=1

n∑

l=1

uijw
β
l (xil − µjl)

2 (4.1)

where w is a vector whose components represent the weights of particular fea-
tures, with

n∑

l=1

wl = 1, 0 ≤ wj ≤ 1

and β being parameter. When β = 0, the above function is identical with to
function (3.1). The authors suggest assuming β < 0 or β > 1.

An attempt to combine feature selection with feature extraction is presented
in the work [56].

Having a set of measurements, we often apply normalisation, that is, we
transform the data so that the values of the j-th feature belong either to the set
[0, 1], or to the set [−1, 1]. In turn, standardisation consists in transforming

xj ←
xj − xj
σj

, j = 1, . . . , n

where xj is the mean value of j-th feature and σj represents its standard devia-
tion.

4.2 Setting the number of clusters

It has been assumed up till now that the number of clusters k is known, which,
in fact, is not always the case. The most common method of establishing the
proper value of k is using certain partition quality measure, m(k) and establish-
ing such a value of k parameter, which optimises the measure. Nonetheless, it
must be emphasized that in the majority of cases the values of quality indicators

3 cf. A. Blum, “Random projection, margins, kernels, and feature-selection”. In: C.
Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor, eds. Subspace, Latent Struc-
ture and Feature Selection. LNCS 3940. Springer Berlin Heidelberg, 2006, 52-68.

4.2 Setting the number of clusters 129

depend on concrete data. The fact that for particular data certain indicator
allows for establishing the proper number of clusters does not mean that in
case of different data it will also indicate the proper value of k. For this reason,
various methods are applied, which can be divided into following groups, [373]

(a) Data visualisation. In this approach multidimensional data projection on bi-
or tridimensional space is applied. Typical representatives of this direction
are principal component analysis (PCA) and multidimensional scaling4.

(b) Optimisation of some criterion function characterising the properties of mix-
tures of the probability distributions. E.g. the algorithm EM, discussed in
Section 3.2, optimises the parameters θ of the mixture for a given value of
k. The value of k for which the quality index attains the optimum value is
supposed to be the probable number of clusters. The typical indicators i this
domain are

– Akaike information criterion

AIC(k) =
1

m

(
− 2(m− 1)− nk −

k

2
l(θ)

)
+ 3np

where nk denotes the number of cluster parameters, np – total number
of parameters being optimised and l(θ) – likelihood function logarithm.

– Bayesian criterion

BIC(k) = l(θ)− np

2
ln(n)

(c) Heuristic methods.

The spectral methods, which are discussed in the next chapter, also provide tools
allowing to decide on the number of clusters.

Generally, it must be said that, according to many researchers, determining
the proper number of clusters is the basic issue concerning the credibility of
cluster analysis results. Excessive number of clusters leads to results which are
non-intuitive and difficult to interpret, while too small value of k results in
information loss and wrong decisions.

4.2.1 Simple heuristics

One of the simplest rules says that5

k ≈
√
m/2 (4.2)

4 Cf. e.g. I. Borg, and Patrick JF Groenen. Modern multidimensional scaling: Theory
and applications. Springer, 2005.

5 Cf. K. Mardia et al. Multivariate Analysis. Academic Press 1979, p. 365.

130 4 Cluster quality versus choice of parameters

Another, so called Elbow Method6, consists in examining the fraction of the
explained variance in the function of the number of clusters. According to this
heuristics we take for k such a number of clusters, that adding yet another cluster
increases the fraction only slightly. The decision is based on the diagram: on the
coordinate axis one puts subsequent values of k, and on the ordinate axis – the
percentage of the explained variance corresponding to them. The point where
the curvature flexes is the candidate k value. The percentage of the explained
variance is conceived as the ratio of the respective within-group variance to
the total of the whole data set. However, one should remember that setting
the inflection point is not always unambiguous. Another variant of this method
consists in examining the variability of an average cluster radius depending on
the number of classes k. The radius rj of the cluster Cj is defined as the maximum
distance of a point from Cj to the prototype µj . The mean value of the radii
of all clusters is indeed the length of an average radius r. A typical diagram of
dependence of r on the number of clusters k is presented in Figure 4.1. Usually,
this kind of diagram is plotted for multiples of the value of k, e.g. as indicated in
figures below, for k = 2, 4, 8, If a given value changes slightly in the interval
{k, 2k}, then as the number of clusters we select the value of k∗ from this interval
[289, section 7.3.3].

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

5

Fig. 4.1. Relation between an average cluster radius (left figure) and the total distance
of objects from the prototypes depending on the number of clusters (right figure).

A more formal approach to this problem, together with a survey of other
methods can be found in [334]. The authors propose there the so called gap
statistics, measuring the change of the within-group variance W (k,m), deter-
mined after partition of m-elements set into k clusters (using a chosen clustering
algorithm) in relation to the expected variance obtained from an m dimensional
sample coming from an exemplary distribution. It is assumed that the value of

6 The basic work of reference, usually cited while this method is discussed, is the
following: R.L. Thorndike ”Who Belong in the Family?”. Psychometrika 18 (4) 1953.
Some modification of this method was applied in the paper C. Goutte, P. Toft, E.
Rostrup, F.A. Nielsen, L.K. Hansen. ”On clustering fMRI time series”. NeuroImage
9 (3): 298–310 (March 1999).

4.2 Setting the number of clusters 131

k, for which the range is maximal, is the probable estimation of the number of
clusters.

4.2.2 Methods consisting in the use of information criteria

For determining the value of k, one applies Bayesian information criterion (BIC),
already mentioned, Akaike information criterion (AIC), or, finally, the so called
deviance information criterion (DIC), which is a generalisation of both previous
criteria.

Reference [329] proposes yet another method. For a given partition of the
set X into k clusters (knowing their dimensions) one determines an averaged
Mahalanobis distance (cf. Section 2.2)

d̂(k) =
1

n
min

j=1,...,k
dΣ(X,µj) (4.3)

where dΣ(X,µj) denotes Mahalanobis distance between the elements of the set
X and the j-th centre obtained e.g. by using the k-means algorithm.

Subsequently, we determine the range

Jk = d̂−α(k)− d̂−α(k − 1) (4.4)

where d̂−α(0) = 0 and α = n/2. The value

k∗ = arg max
j
Jj (4.5)

is assumed to be the proper number of clusters.
In particular, when X is a set without any internal structure, then k∗ = 1.
In practice, the value of d̂(k) is approximated by the minimum sum of error

squares (3.1), computed by running the k-means algorithm.

4.2.3 Clustergrams

By clustergrams we understand the diagrams in the parallel coordinate system,
where a vector was assigned to each observation, [307]. The components of a
vector correspond to the cluster membership of the observation for a given
number of clusters. The diagrams thus obtained allow for observing the changes
in the assignment of objects into clusters in line with the increase of the
number of clusters. The author of the idea claims that clustergrams are useful
not only in the partitioning methods of cluster analysis but also in hierar-
chical grouping, when the number of observations increases. At the address
http://www.r-statistics.com/2010/06/clustergram-visualization-and-
diagnostics-for-cluster-analysis-r-code/ the code (in the R language)
of a programme generating clustergrams is available.

Internal indexes such as the Bayesian information criterion (BIC) and the
sum-of-squares encounter the difficulties regarding finding the inflection point of
the respective curves and so, detection methods through BIC in partition-based

132 4 Cluster quality versus choice of parameters

clustering are proposed in the mentioned study. A new sum-of-squares based
index is also proposed, where the minimal value is considered to correspond to
the optimal number of clusters. External indexes, on the other hand, need a
reference clustering or ground-truth information on data and therefore cannot
be used in cluster validity. Consequently, an external index was extended into
an internal index in order to determine the number of clusters by introducing a
re-sampling method.

4.3 Partition quality indexes

It is expected that a clustering algorithm would assign objects which are similar
one to another to a common group and those that differ from one another –
to different groups. We would like the partition returned by the algorithm, at
least for a definite matrix of observations X , to be optimal in the sense of
the adopted quality index. If the actual assignment of objects into groups is
known, the so called external quality indexes are constructed. They quantify
conformity of the partition returned by an algorithm with the actual assignment
of objects into groups. In the opposite case, one attempts to characterise the
immanent features of clusters proposed by the algorithm. The basic criteria,
applied in constructing internal quality indexes belonging to this category, are
[156]: compactness (groups should be well clustered in the feature space, which
means that they should have, e.g., a possibly small diameter) and separability
(clusters should be easily discernible from each other).

While external indexes allow for selecting the algorithm attaining the highest
conformity of the partition with the given partition, internal indexes are used
additionally for estimating the number of clusters. A survey of different criteria,
to be taken into account during the construction of the external and internal
indexes is presented in [161]. Although the work concerns postgenomic research,
the notes presented there have general character. In [257], Milligan and Cooper
presented a comparison of 30 internal indexes, which are used in hierarchical
grouping, while Wu et al. outlined in [365] 16 external indexes, which are used for
describing k-means algorithm properties. A survey of various quality indexes can
be found in [69], [104], [115], [191], [192], [155], [156] and [370]. We recommend
also the 3rd chapter of the thesis [388]. Conform to the claim of Kannan, Vempala
and Vetta [195], all these indexes, although – because of their simplicity – highly
attractive, may lead to wrong conclusions. That is the case mainly when the
clusters concerned are not Voronoi clusters (cf. p. 48). This is why the authors
quoted, proposed a certain graph-theoretic index of partition quality.

At this point we limit ourselves to measures evaluating the quality of the
partition returned by combinatorial algorithms. Milligan and Cooper, already
mentioned, compared in [257] 30 different indicators. For this purpose, they
constructed testing sets consisting of 2 - 5 clusters containing 50 elements each,
described using 4 - 8 features. In their opinion, the best properties are exhibited
by the indicator proposed by Caliński and Harabasz, having the form

4.3 Partition quality indexes 133

qCH(k) =
tr(B)

k − 1

m− k
tr(W)

(4.6)

where W and B are matrices of inter- and within-group correlations, defined by
the equations (2.27) and (2.28). The optimal number of clusters corresponds to
the value of k for which gCH attains the maximum value.

We present below some other often used measures.7

It is assumed that the most natural cluster compactness measure is the quan-
tisation error, defined as

q(k) =
1

k

k∑

j=1

1

nj

∑

x∈Cj

d(x,µj) (4.7)

where µj denotes the cluster centre Cj , nj denotes its cardinality, while d(x,µj)
denotes the distance of the point x from the center µj .

Then, a simple and very popular measure of cluster separation is, [201], the
coefficient sKR introduced by Kaufmann and Rousseeuw (called by its authors
the silhouette coefficient). Let us, namely, denote by a(x) the average distance
between some object x from the class Cj and the rest of objects from this class,
and by b(x) – the distance between this point x and elements of the closest
cluster different from Cj :

a(x) =
1

nj − 1

∑

y∈Cj

d(x,y) b(x) = min
l=1,...,k,l 6=j

1

nl

∑

y∈Cl

d(x,y)

Then

s(x) = [b(x)− a(x)]/max[a(x), b(x)] (4.8)

indicates whether the given partition is good (the value of s(x) is close to 1) or
bad (negative values of s(x)). This indicator is not suitable for large data set
analysis; its computational complexity is O(m2).

The Dunn index, D(k), mentioned in page 98, is used to measure the com-
pactness and the separability of clusters and is defined as

D(k) = min
j=1,...,k

{
min

l=j+1,...,k

d(Cj , Cl)

maxv=1,...,k diam(Cv)

}
(4.9)

It is, in effect, a variant of the equation (3.50), where d(Cj , Cl) represents the
distance between two clusters, calculated according to the nearest neighbour
scheme (in page 35), and diam(Cv) denotes the diameter of the cluster Cv. Its
disadvantages are: high computational complexity and sensitivity to outliers.
The ”optimal” value of k is the one which maximises the index value.

7 The interested reader should visit the website http://cran.r-project.org/web/
packages/clusterCrit/ which continues to be maintained by Bernard Desgraupes.
Description of 42 quality indexes can be found there, as well as clusterCrit package
in R, providing their implementation.

134 4 Cluster quality versus choice of parameters

Another popular measure is the Davies-Bouldin index, DB(k), defined as
follows:

DB(k) =
1

k

k∑

j=1

max
l=1,...,k,l 6=j

ρ(Cj) + ρ(Cl)

d(Cj , Cl)
(4.10)

where ρ(Cj) denotes the average distance between points from the cluster Cj

and the gravity centre of the cluster, that is

ρ(Cj) =
1

|Cj |
∑

x∈Cj

‖x− µj‖

while d(Cj , Cl) denotes the distance between the gravity centres of clusters Cj

and Cl. The value of k, for which DB(k) takes on the minimum value, indicates
the optimal number of clusters.

Another frequently used quality index, introduced by Xie and Beni [370] has
the following form

χ =

∑m
i=1

∑k
j=1 u

α
ijd

2(xi,µj)

m ·minj 6=l d2(µj ,µl)
=

Jα(U,M)

m ·minj 6=l d2(µj ,µl)
(4.11)

Here, aspects of both compactness and separability are taken into account.
Yet another measure was proposed by Fukuyama and Sugeno [137]:

wFS =

m∑

i=1

k∑

j=1

(uαij)[d
2(xi,µj)− d2(µj ,µ)] (4.12)

where µ is the gravity centre of the data set, i.e. µl = (1/m)
∑m

i=1 xil,
l = 1, . . . , n. The first minimum that the index attains indicates the number
of clusters.

Finally, the indicators authored by Gath and Geva [139] are worth men-
tioning. They suggested two criteria of comparing and selecting the optimal
partitioning, assuming that a good partition is characterised by clear separation
of clusters, and clustering results contain as many as possible of points cen-
tred around the prototype, which means that their volume is minimal. These
indicators apply to fuzzy partitions. The first of them, ,,fuzzy volume”, has the
form

FHV =

c∑

j=1

[det(Fj)]
1/2

where

Fj =

∑N
i=1 uij(xi − vj)(xi − vj)T∑N

i=1 uij

in the situation when the defuzzification parameter is equal to 2. The second
indicator, describing the mean density of partition, has the form

4.4 Comparing partitions 135

DPA =
1

k

k∑

j=1

Sj

[det(Fj)]
1/2

where Sj =
∑N

i=1 uij . Finally, the density of partition is defined as: PD = S
FHV

,

where S =
∑k

j=1

∑N
i=1 uij .

4.4 Comparing partitions

Estimating the quality of partition is just one side of the exploratory procedure.
As we dispose of many algorithms, we would like to know [354]:

– Is a given algorithm sensitive to outliers (noise)?
– Is the result of algorithm operation dependent on the order in which it

processes the data?
– Are the solutions returned by alternative algorithms similar, and if yes, then

to what extent?
– Does, for a given task, an optimal solution exist, and if yes, then how close

to it are the solutions returned by different algorithms?

The majority of methods of comparing partitions use the contingency table,
called also the cross tabulation, the frequency distribution table, or the two way
contingency table (in case of comparing two partitions). Let P i = {Ci

1, . . . , C
i
k},

i = 1, 2, . . . denote the partition of the set X into k classes returned by i-th
algorithm. In particular, it can be assumed that we compare two partitions and
each of them divides the set X into different number of groups. Without loss of
generality, we assume, however, that we are interested in comparing the results
of the operation of two algorithms, so i ∈ {1, 2}, while each of them divides the
set of objects X into an established number of classes k. Let

X11 – set of pairs of objects assigned in both partitions to the same cluster
X00 – set of pairs of objects assigned in both partitions to different clusters
X01 – set of pairs of objects assigned in partition P1 to different clusters

and in partition P2 to the same cluster
X10 – set of pairs of objects assigned in partition P1 to the same cluster

and in partition P2 to different clusters
(4.13)

Let, further on, nαβ = |Xαβ|. Of course

n00 + n11 + n10 + n01 = m(m− 1)/2

and

mi
j = |Ci

j |, mij = |C1
i ∩ C2

j | (4.14)

136 4 Cluster quality versus choice of parameters

The measure

proj(P1,P2) =
∑

C1∈P1

max
C2∈P2

|C1 ∩C2| (4.15)

is called the value of projection of the partition P1 on P2 [344]. Note that
proj(P1,P2) 6= proj(P2,P1). The distance d(P1,P2) between partitions is now
defined as

d(P1,P2) = m− proj(P1,P2)− proj(P2,P1) (4.16)

More remarks on this topic are presented in van Dongen’s work [344].
Classical reference here is the work [185]. Referring to [354] and [249], we

present a short survey of approaches applied in comparing partitionings. The
reader interested in a more thorough discussion should refer to these works and
to the bibliographical references 8 quoted there.

4.4.1 Simple methods of comparing partitions

The oldest and the simplest method consists in using the chi-square statistics

χ(P1,P2) =

k∑

i=1

k∑

j=1

(mij −m1
im

2
j)2

m1
im

2
j

(4.17)

Another method lies in the use of the Rand coefficient

R(P1,P2) =
2(n00 + n11)

m(m− 1)
(4.18)

which varies from 0 (completely different partitions) to 1 (identical partitions).
It is, thus, an equivalent of the recall, i.e. the measure applied in evaluating
binary classifiers. The R coefficient depends on the number of elements and on
the number of classes. In particular, if both partitions are independent, then with
the increase of k the value of R tends to 1, which disqualifies this coefficient as
a measure of similarity. This is why the so called Adjusted Rand coefficient is
introduced, though even that modification is not perfect, [249].

The subsequent indicator is the modified Fowlkes-Mallows coefficient

FM(P1,P2) =
n11√

(n11 + n10)(n11 + n01)
(4.19)

Fowlkes and Mallows introduced their measure in order to compare the re-
sults of hierarchical grouping,but its modification, presented above, is used for

8 Another work of reference is G. Saporta, G. Youness, Comparing two par-
titions: Some proposals and experiments. Compstat 2002, pp. 243-248. It is
also worth becoming familiar with the website http://darwin.phyloviz.net/
ComparingPartitions/.

4.4 Comparing partitions 137

comparing partitions. As observed in [354], in the context of information re-
trieval this indicator corresponds to the geometric mean of precision and recall.
The measure FM(P1,P2) represents a divergence of the ,,empty” model where
both partitions are independent. However, a disadvantage of FM is that for
small k it takes on very high values.

The Mirkin metric

M(P1,P2) =

k∑

i=1

(n1
i)2 +

k∑

j=1

(n2
j)2 − 2

k∑

i=1

k∑

j=1

m2
ij (4.20)

denotes (the non-normalised) Hamming distance between vectors representing
the partitions being compared. The particular elements of vectors correspond to
pairs of objects being compared (i, j) and if both objects belong to the same
cluster, then we assign 1 to the proper position, and in the opposite case we
assign 0,[344]. Furthermore, the following relation exists

M(P1,P2) = m(m− 1)[1−R(P1,P2)] (4.21)

4.4.2 Methods measuring common parts of partitions

One of the simplest and the most commonly used measures from this category
is the purity (purity)

P(P1,P2) =
1

m

k1∑

i=1

max
1≤j≤k2

mij (4.22)

where k1 (resp. k2) denotes the number of groups in the partition P1 (resp. P2),
and mij = |C1

i ∩ C2
j |. We introduced this measure in section 3.3.3.

A subsequent measure, commonly used in information retrieval, is the so
called F -measure, that is, the weighted harmonic mean of the precision and
recall [246, p. 156]. Suppose we treat the clusters of the partition P1 as predefined
classes of documents and clusters of the partition P2 as the results of queries.
Then the F -measure of the dependance between cluster C2

j and another cluster

C1
i indicates how well C2

j describes the class C1
i

F (C1
i , C

2
j) =

2reijpeij
reij + prij

=
2m1

im
2
j

m1
i +m2

j

(4.23)

where reij = mij/m
1
i denotes the recall (recall) and prij = mij/m

2
j the precision

(precision). The complete F -measure is defined as weighted sum of

F (P1,P2) =
1

m

k∑

i=1

m1
i max
j=1,...,k

F (C1
i , C

2
j) (4.24)

This is an asymmetric measure, so it is appropriate e.g. for comparing how
well the obtained partition P2 approximates the actual partition P1. The only

138 4 Cluster quality versus choice of parameters

problem is that usually the actual partition is not known. Meilă [249] mentions
a modification, introduced by Larsen

FL(P1,P2) =
1

k

k∑

i=1

max
j=1,...,k

F (C1
i , C

2
j) (4.25)

Yet, the authors of [354] note that Larsen did not apply such modification.
Another asymmetric measure

MH(P1,P2) =
1

m

k∑

j=1

max
i=1,...,k

mij (4.26)

was proposed by Meilă and Heckerman in [250]. Again, P1 is an exemplary
partition. In order to adapt this measure for comparing arbitrary partitions the
authors introduced a symmetric measure having the form

MHm(P1,P2) =
1

m

k∑

j=1

mij∗ (4.27)

where mij∗ is determined as follows. Let M1 denote the original contingency
table with entries mij as defined above. In a matrix Mj let mij∗ be a cell with
coordinates (i(j∗), j∗) holding a maximum entry of Mj , that means these co-
ordinates mean that the cluster C2

j∗ matches the best the cluster C1
i(j∗). Mj+1

is obtained them by ”deleting” the corresponding line (i(j∗)) and column (j∗)
from the contingency table Mj (e.g. by setting them to -1). While in previous
definitions the partitions could have different number of clusters, in this one they
should have the identical numbers of clusters.

Then, Wallace [356] postulated introducing an index, representing the proba-
bility that a pair of objects taken from a certain cluster C1

i ∈ P1, in the partition
P2 also belongs to the same cluster

WI(P1,P2) =
M

∑k
i=1m

1
i (m1

i − 1)/2
(4.28)

Here m1
i = |C1

i | and M denotes the number of all the pairs of objects which
belong to the same cluster in both partitions. If both partitions are identical,
then WI(P1,P2) = 1, and if they are completely different, i.e. C1

i ∩ C2
j = ∅ for

all (i, j), then WI(P1,P2) = 0.

4.4.3 Methods using mutual information

Let mj denote the cardinality of the j-th cluster Cj ∈ P and let pj = mj/m
denote the probability that a randomly selected element x ∈ X belongs to that
cluster. The entropy of the partition P is calculated as

4.4 Comparing partitions 139

H(P) = −
k∑

j=1

pj log pj (4.29)

In case of two partitions, mutual information between the partitions equals

I(P1,P2) =

k∑

i=1

k∑

j=1

pij log
pij
p1i p

2
j

(4.30)

where pij = mij/m and mij denotes the number of objects belonging to the
class Ci ∈ P1 and to the class Cj ∈ P2. Thus, I can be calculated as

I(P1,P2) = H(P1)−H(P1|P2) (4.31)

where the conditional entropy is defined as

H(P1|P2) = −
k∑

i=1

k∑

j=1

pij log
pij
p2j

(4.32)

Even though the mutual information is a metric in the space of all partitions,
it is not limited, which gives rise to problems of comparing different partitions.
However, the following estimation is true

0 ≤ I(P1,P2) ≤ min
[
H(P1), H(P2)

]
(4.33)

Strehl and Ghosh proposed in [327] the normalised mutual information

NMISG(P1,P2) = I(P1,P2)√
H(P1)H(P2)

=

|P1∑

i=1

|P2∑

j=1

mij log
(mmij

mi
mj

)

√

√

√

√

√

(∑

i

mi log
mi

m

)(∑

j

mj log
mj

m

)
(4.34)

The thus defined measure satisfies the conditions NMISG(P1,P2) = 1 if P1 =
P2 and NMISG(P1,P2) = 0 if mij = m1

im
2
j or if mij = 0 for all the pairs (i, j).

Then, Fred and Jain [133] normalised the mutual information via the trans-
formation

NMIFJ(P1,P2) =
2I(P1,P2)

H(P1) +H(P2)
(4.35)

Like before, 0 ≤ NMIFJ(P1,P2) ≤ 1. Furthermore, NMIFJ (P1,P2) = 0 ⇔
NMISG(P1,P2) = 0 and NMIFJ(P1,P2) = 1⇔ NMISG(P1,P2) = 1.

On the other hand, in the work [225], the following normalisation is used

NMILFK(P1,P2) =
H(P1) +H(P2)−H(P1,P2)

H(P1) +H(P2)
(4.36)

140 4 Cluster quality versus choice of parameters

where H(P1,P2) = −∑ij pij log pij denotes the joint entropy.
A measure, which was the subject of detailed analysis, is the disturbance of

information, introduced by Meilă [249]

V I(P1,P2) = H(P1) +H(P2)− I(P1,P2)
= H(P1|P2) +H(P2|P1)

(4.37)

It is a metric in the space of all partitions of the X set, and if we consider only
the partitions into k ≤ √m classes, then

2

m
≤ V I(P1,P2) ≤ 2 log k (4.38)

When the number of objects m is a multiplication of k2, then V I(P1,P2) =
2 log k, while in general, if k > log k then V I(P1,P2) ≤ logm. The value of
V I(P1,P2) can be calculated in time O(m + k2), which includes: setting the
value of contingency table (in time O(m)) and setting of the proper values of
V I in time O(k2).

In the work [198] the following normalisation of the index V I was proposed:

V IKLN (P1,P2) =
1

2

[H(P1|P2)

H(P1)
+
H(P2|P1)

H(P2)

]
(4.39)

It represents the averaged defect of information if we reason about P1 knowing
P2 and vice versa.

4.5 Cover quality measures

Studies concerning this topic are very rare, although we face the problem of cover
while generating fuzzy partitions and while analysing the ensembles in empirical
graphs (cf. e.g. [129]). Below we present the preliminary results obtained by
Lancichinetti, Fortunato and Kertész [225].

Let us remind that by cover C of the set X with k subsets we understand a
family of sets {C1, . . . , Ck} such that

(a) Ci 6= ∅, i = 1, . . . , k

(b)

k⋃

i=1

Ci = X

(c) Ci ∩ Cj 6= ∅

(4.40)

The (c) condition means that the sets forming the cover are not disjoint.
Assignment of objects into classes is now represented by the table T 1 =

[t1ij]m×k, where t1ij = 1 if i-th object belongs to j-th class, and t1ij = 0 in the

opposite case. Let t1j denote j-th column of the matrix T 1 representing the cover

C1. It can be treated as a realisation of dichotomous random variable Xj having
probability distribution

4.5 Cover quality measures 141

P (Xj = 1) = m1
j/m, P (Xj = 0) = 1−m1

j/m (4.41)

The random variable Yj , representing the assignment of objects to the j-th
class in the cover C2 is defined analogously.

Let us determine, after [225], four probability distributions

P (Xi = 1, Yj = 1) = 1
m |C1

i ∩ C2
j |

P (Xi = 1, Yj = 0) = 1
m (|C1

i | − |C1
i ∩C2

j |)
P (Xi = 0, Yj = 1) = 1

m (|C2
j | − |C1

i ∩C2
j |)

P (Xi = 0, Yj = 0) = 1
m (m− |C1

i | − |C2
j |+ |C1

i ∩ C2
j |)

(4.42)

Let further

H(Xi|Yj) = H(Xi, Yj)−H(Yj) (4.43)

denote the quantity of information, crucial to conclude about Xi, knowing the
distribution of the variable Yj . In particular, if C1

1 = C2
j∗ then H(Xi|Yj∗) = 0 and

one can say that Yj∗ is the best candidate for concluding about the distribution
Xi. Thus, it is assumed that

H(Xi|C2) = H(Xi|{Y1, . . . , Yk}) = min
j=1,...,k

H(Xi|Yj) (4.44)

This measure can be normalised

Hnorm(Xi|C2) =
H(Xi|C2)

H(Xi)
(4.45)

and we get the final formula

Hnorm(C1|C2) =
1

k

k∑

i=1

H(Xi|C2)

H(Xi)
(4.46)

For comparing the covers of C1 and C2, the arithmetic mean of conditional en-
tropies is applied

N(C1|C2) = 1− 1

2
[Hnorm(C1|C2) +Hnorm(C2|C1)] (4.47)

Further information concerning the application and the implementation of the
above formula can be found in the appendix to the work [225].

5

Spectral methods in clustering and
dimensionality reduction

The classical clustering algorithms, like the k-means, or its fuzzy variant FCM,
are computationally efficient because they require comparison of the objects
(characterized by feature vectors) with a small set of prototypes (represented by
centroids in case of these two algorithms). Their disadvantage is a tacit assump-
tion that the observations were derived from a multivariate normal distribution
with sufficiently differentiated mean values and similar covariance matrices. Such
an assumption justifies the use of Euclidean (or in general, Minkowski) distance
to compare feature vectors. On the other hand, this assumption limits the ap-
plicability of such algorithms to cases where the groups are linearly separated,
that is the data are located within regions of the space bounded by the “shells”.

When such an assumption is no longer valid, relational methods can be more
efficient. In these methods we use the notion of similarity or dissimilarity between
pairs of objects. A short review of such methods is given in Section 3.3.5.8, and
some similarity measures are described in Section 2.2. It is important to note
that we can operate with (dis-)similarity also in these cases when the feature
space is not a vector space1.

By propagating transitively similarities from a neighbor to another neighbor
we relax the assumption of the distance-based definition of a cluster, and thus
the requirement that each cluster must be described by a single prototype2. This
enables discovering clusters of much richer structure.

However, a disadvantage of relational methods is that we must determine
similarity between all pairs of objects. As similarity is usually symmetric mea-
sure, a sample consisting of m observations requires determination of m(m−1)/2
similarities. It is a big challenge, because in many practical problems we need not
only storage space, but we must also process similarity matrices of huge size. A
solution for the reduction of the number of neighbors is to use a threshold value.
If sij denotes similarity of the objects xi and xj , then Nτ (xi) = {xj ∈ X : sij ≥ τ}
is the set of objects which are similar to the object xi in degree not lower than a
user specified τ threshold. Thereby the similarity matrix becomes sparse. More-
over, by restricting the “neighborhood” of each node, we highlight the fact that
the similarity measure has only local meaning, and the size of the neighborhood
shows the range in which such a measure is applicable. In particular, when the
similarity is (inversely) proportional to Euclidean distance, then the small value

1 See e.g. H. Lodhi, C. Saunders, J. Shwe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. J. Mach. Learning and Res., 2:419–444, February
2002.

2 An example is the Affinity Propagation algorithm from chapter 3.

144 5 Spectral methods in clustering and dimensionality reduction

of this distance implies high similarity. But if the distance is large – it says noth-
ing about the similarity, what shows that in practice the Euclidean distance has
only local character, [83].

An important tool, allowing analysis of the data characterized by a similarity
matrix is offered by spectral analysis. Like in Sect. 2.5.2, a symmetric matrix S =
[sij] is treated as a generalized adjacency matrix of undirected graph G = (V,E),
called similarity graph. The set of nodes V is equivalent to the set of objects, and
two nodes are linked together if sij ≥ τ . The weights sij quantify the strength
of a relationships between the two corresponding objects. With such a trick,
we can expand the applicability of spectral clustering methods: they allow to
extract clusters, which are not only compact, but mainly connected – cf. Fig.
2.7 on p. 52.

Analogously as in case of the graph methods, the problem of partitioning of
the set of objects into k groups reduces to the problem of cutting the graph into
k connected components. There is a number of methods dedicated to this task
– consult e.g. [127] or [305]. In general, the optimal cutting is determined by
minimizing or maximizing an objective function. A review of such functions is
given in Sect. 5.2.2. However, these optimization tasks areNP-complete. To find
an approximate solution we use a relaxation of original task, and these relax-
ations can be easily solved by using spectral methods (discussed in Sect. 5.2.1).
Namely, a similarity graph is embedded into k dimensional Euclidean space,
where k stands for the number of clusters, in such a way that the coordinates
of its nodes are determined by the entries of eigenvectors of the so-called Lapla-
cian3, which is nothing but a transformed similarity matrix. Although spectral
methods provide approximate solution to the cutting problem, its quality hardly
depends on the choice of “appropriate” eigenvectors – we discuss this problem
is Sect. 5.2.5.4. Further, it must be stressed that while in the classical tasks the
number of connected components to be extracted from a given graph is generally
known in advance, in cluster analysis this number must be “discovered”. Another
problem is that of binarization (or rounding) of the real-valued approximate so-
lution obtained by spectral optimization. In brief, the task of binarization is to
allocate the nodes (objects) to corresponding subgraphs (groups).

It must be stressed that the so-called spectral data analysis exploits the
methods of spectral graph theory, but is not limited solely to the study of graphs.

Spectral methods provide tools to constructively aggregate local information
in order to penetrate the global structure of a set of observations. Moreover,
the use of terminology from the spectral graph theory allows for giving a clear
interpretation of the introduced concepts. But – what is more important it offers
new possibilities of defining clusters.

The empirical graphs, i.e. the graphs used in practical applications, are rather
huge. Spectral methods allow to describe important properties of such graphs
by analyzing a small number of eigenvectors of a matrix characterizing a given
graph. Of course, spectral graph theory is concerned primarily with its own
problems, e.g. how to associate a graph to a specific matrix, or which prop-

3 We introduce this notion in Section 5.2.1, and define it in Appendix C.2.

5 Spectral methods in clustering and dimensionality reduction 145

erties of a graph are precisely covered by such a matrix – see the monograph
[75] for a review of theoretical results. But these results can be translated in a
straightforward manner into meaningful concepts for data analysis, [78].

Spectral clustering has relatively long tradition – see [346] and the bibli-
ography cited there. In 1973 Donath and Hoffman suggested in their paper
[108] to use eigenvectors of adjacency matrix to partition the nodes of a
graph. In the same year, Fiedler noted in [122, 123], that the second minimal
eigenvalue λ2 ≥ 0 of the Laplacian L of a graph inform not only about the
graph connectivity, but also about the intensity of the connections between the
nodes of this graph. Namely:

(a) The number of times 0 appears as an eigenvalue in the Laplacian is the
number of connected components in the graph. Thus, the second minimal
eigenvalue is positive if and only if G is a connected graph.

(b) The more links between the nodes the grater the value of λ2. In other words
if G is a connected graph spanned over the set of m nodes, then 0 < λ2 ≤ m.
In particular λ2 = m if G is complete graph (clique).

In general the λ2 value dependends on the number of vertices, as well as the way
in which vertices are connected. For instance, in Erdös-Rényi random graphs,
it decreases with the number of vertices, and increases with the average de-
gree. In free-scale networks (generated by so-called preferential attachment4 this
value scales logarithmically with average degree. See [259] for other properties
of spectra of the graph Laplacian.

The value λ2 is called Fiedler value, and the corresponding eigenvector –
Fiedler vector. The elements of this vector can be treated as the degrees of
membership in appropriate groups5 – see Appendix C.2.1.1. Further, the differ-
ence between these elements represents a “distance” between appropriate nodes
of the graph. This property can be used in graph drawing, and – what is more
important – in graphical analysis of the structure of the dataset, represented by
a similarity graph, [39]. It suffices to sort the entries of the Fiedler vector and
to use the resulting ordering to rearrange rows and columns of the similarity
(i.e. generalized adjacency) matrix. Thus, the Fiedler vector seems to be quite
useful tool for rearranging rows and columns of similarity matrix, as suggested
by Czekanowski in [86] (see p. 22 for this idea). An effect of such a reordering of
rows and columns is shown in Fig. 5.1.

Spectral clustering relies upon the use of eigenvectors of a matrix representing
a set of observations to partition this set into an appropriate number of groups.
The computation of these eigenvectors is not a trivial task, and therefore the
spectral clustering is a computationally complex method, although there are ef-

4 See e.g. A.L. Barabási and R. Albert, Emergence of scaling in random networks,
Science, 286(5439): 509-512, 1999.

5 The values of Fiedler vector, as real numbers, may be positive, negative, or zeros.
Hence it is assumed that the nodes of the graph are partitioned into two groups:
positive and negative.

146 5 Spectral methods in clustering and dimensionality reduction

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1454
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1454

Fig. 5.1. An application of Fiedler vector to visualization of the structure of a dataset.
Left panel shows nonzero values of similarity. Horizontal axis: column identifiers of
similarity matrix, vertical axis: row identifiers. Black dots: non-zero values of similarity
between objects identified by the respective row and columns. Right panel shows the
same similarity matrix after the rows and columns have been reordered according to
the sorted values of the Fiedler vector, computed for the laplacian L = diag(Se)− S.

fective methods of calculating the Fiedler vector [245]. One of the first papers,
devoted to the use of eigenvectors of the Laplacian of undirected graph was pub-
lished in 1970 by Hall [157]. An important paper describing practical application
of such an approach is that of Pothen, Simon and Liou, [285]. At present, one
of most popular papers is the study by Shi and Malik [311], in which an appli-
cation of spectral clustering to image segmentation is described. The algorithm
proposed by Yu and Shi w [379] is considered to be the best (although it is
slightly complicated), and the algorithm described in [101] is very efficient in
terms of time and memory usage (although it generates rather rough clusters).
It should be stressed that

This is typical of the problems to which spectral partitioning is usu-
ally applied: in most circumstances the network in question does not
divide up easily into groups of the desired sizes, but one must do the
best one can. For these types of tasks, spectral partitioning is an effec-
tive and appropriate tool. ([268])

A reader should note that there is no any canonical spectral clustering
algorithm. The algorithms belonging to this groups act according to a general
3-stage procedure:

(a) Compute a similarity matrix S describing the relationships among the ob-
jects belonging to a given dataset.

(b) Compute a number, say k, of eigenvectors of the matrix S or its transfor-
mation (usually a variant of the combinatorial Laplacian derived from this

5.1 Notation 147

S). Form a matrix Y ∈ Rm×k by stacking the eigenvectors in columns. Rows
of this matrix represent “spectral coordinates” of the nodes of the graph
corresponding to the matrix S.

(c) Apply a cheap clustering algorithms, e.g. k-means, to cluster the objects
described by these new coordinates.

Let us note that even if there does not exist metric representation of the elements
of the set X, after step (b) each element of this set is transformed into a point in
k dimensional Euclidean space. Hence, this step may be called “determination
of a spectral mapping” Φ : X→ Rk.

The main differences about various instantiations of this procedure are con-
cerned with the ways of transforming similarity matrix S. A review of different
approaches to spectral clustering can be found in [193], [265] or in Section 5.4.3 of
[305], and application of this idea in data analysis is discussed in [248]. Applica-
tions of spectral methods in documents clustering and information retrieval are
presented in [172] and [173], while applications in bioinformatics can be found
in [174]. The tutorial [351] provides an exhaustive review of various methods
developed within spectral clustering.

The spectral mapping constructed in step (b) of the general procedure high-
lights another fascinating feature of spectral approach. It can be used for dimen-
sionality reduction: regardless of the size of the space from which feature vectors
originate, after step (b) each such vector is replaced by the k dimensional vec-
tor yi. As noted by Belkin and Niyogi in [43], clustering and dimensionality
reduction are two sides of the same coin6.

Lastly, let us note that spectral methods are resistant to the presence of noise
and outliers in data.

5.1 Notation

Spectral graph theory operates with specific notions, see e.g. [75], [351], [320].
That is why we start our presentation from some specific definitions.

Let X be a set consisting of m objects. We assume that an information
concerning relationships among these objects is given in the form of a similarity
matrix S of size m. If the objects can be identified with the vectors xi ∈ Rn,
i = 1, . . . ,m, and each each vector xi represents feature values characterizing
object xi, then the similarity between each pair of objects is usually computed
as follows7

sij = exp
(
− ‖xi − xj‖2

2ω2

)
= exp

(
− γ‖xi − xj‖2

)
(5.1)

where ω > 0 is a parameter.

6 This is only general remark. One can imagine a 2-dimensional set of observations that
contain, say 100 clusters. In this case we are faced with ”dimensionality explosion”!.

7 Consult e.g. the paper [43] where a rationale for such a procedure is given.

148 5 Spectral methods in clustering and dimensionality reduction

Referring to the well-known relationship between random walking and diffu-
sion equation, Belkin and Niyogi provide in [43] a justification for such a proce-
dure. On the other hand, Martin says on his blog8 that the graph laplacian is a
low order approximation of the kernel (5.1). This approximation is quite good if
i-th and j-th objects are in the same group.

In general, the use of an appropriate formula for evaluating similarity values
depends significantly on the data we have at our disposal. A review of various
approaches to constructing similarity matrix can be found in Section 3.1 of [193].
Also, one should be conscious, that the choice of a specific formula affects the
results of the analysis, see e.g. [243] for a deeper discussion on this subject.

A commonly applied requirement concerning S is that it be a symmetric, and
nonnegative matrix. Without loss of generality, we will assume that sij ∈ [0, 1]
for all pairs i, j = 1, . . . ,m.

The symmetric similarity matrix S induces undirected, connected9 and
weighted graph G = (V,E, S) consisting of m vertices. The vertices correspond
to the objects, i.e. the symbols xi and vi refer to the same i-th object from
the dataset. A pair of nodes {vi, vj} is connected by an edge if sij 6= 0. If
nnz(S) stands for number of nonzero matrix S elements, then the graph G has
m = nnz(S)/2 edges. Each edge {vi, vj} ∈ E is equipped with the weight sij
determining similarity, or affinity, of the (connected) objects. We will say that
such a graph G is associated with the matrix S, or that G is a similarity graph
representing the matrix S.

If the elements of matrix S are computed according to the formula (5.1), we
obtain a complete graph consisting of m = m(m − 1)/2 edges. To reduce the
number of edges, we usually assume that

sij =

{
sij if sij ≥ τ
0 otherwise

(5.2)

where τ ≥ 0 is a user-defined threshold value. In such a case two nodes are
connected only if they are sufficiently similar each to other. Another, commonly
used, method relies upon assigning positive wights to k closest neighbors of each
vertex. Denoting by Nk(vi) the set of k closest neighbors10 of the vertex vi, we
write

sij =

{
sij if vj ∈ Nk(vi)
0 otherwise

(5.3)

More remarks on how to construct similarity graphs can be found in the tutorial
[351] or in Appendix E of [229].

When the strength of the similarity is unimportant, we can reduce the simi-
larity matrix to the adjacency matrix A with the elements

8 https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/
9 If the graph is disconnected, i.e. it consists of few independent components, we use

the procedures described in this chapter for each component independently.
10 Equivalently, Nk(vi) consists of k objects which are most similar to the object vi.

5.1 Notation 149

aij =

{
1 if the nodes vi, vj are similar
0 otherwise

(5.4)

It is an extremely simplified similarity matrix (5.2), as it informs only if two
objects are similar or not.

Remark 5.1.1 Formally, adjacency matrix A is a specific kind of similarity
matrix. The matrix A characterizes unweighted graph, while the matrix S speci-
fies a graph with weighted edges. The material presented in Section 5.2 concerns
both weighted and unweighted graphs. Thus, we will use the similarity matrix S
assuming that in some specific situations its elements take the values from the
set {0, 1}. In sections 5.3 and 5.4 we will be concerned, though, with uweighted
graphs only. In such cases the symbol A will be used. �

Definition 5.1.1 The degree of a vertex vi ∈ V is defined as

di =

m∑

j=1

sij (5.5)

A diagonal matrix D with elements

dij = diδij =

{
di if i = j
0 otherwise

(5.6)

is referred to as the degree matrix . Usually, this matrix is denoted as D =
diag(d1, . . . , dm), as only diagonal elements are of importance. �

The degree matrix can be defined also as follows

D = diag(S·e)

where e stands for the unit vector.
The value dii = di characterizes total degree of similarity, or affinity, of i-the

node (object) to all remaining nodes in a given graph. In fact, if vi belongs to
some cluster, or community, C, we can expect that sij ≈ 0 for all nodes vj outside
this cluster. If so, we can suppose that dii expresses the degree of similarity of
the i-th node to all the nodes constituting the cluster C. In other words, di = dii
represents the degree of “typicality”, or the degree of “importance” (in the whole
set V) of the node vi. It is natural to assume that each node is similar to at least
one11 other node in V ; thus dii > 0, i = 1, . . . ,m, what implies that the degree
matrix is nonsingular.

Definition 5.1.2 The sum of the weights of all edges attached to vertices be-
longing to a subset in Z ⊆ V is referred to as the volume of the set Z; it is
denoted as volZ, i.e.

volZ =
∑

vi∈Z
vj∈V

sij =
∑

vi∈Z

di (5.7)

11 Otherwise such a node will be isolated, or extremely outstanding.

150 5 Spectral methods in clustering and dimensionality reduction

�

In particular

vol {vi} =
∑

vj∈V

sij = di (5.8)

is the volume of the node vi identical to its degree di, and

volV =
∑

vi∈V
vj∈V

sij =

m∑

i=1

di (5.9)

If S is the adjacency matrix, then

volV = 2m (5.10)

where m stands for the number of edges in the graph G.

Definition 5.1.3 The pair {C,C}, where C ⊂ V and C = V \C is said to be
the graph cut. The cost of this cut is

cut(C,C) = R(C,C) =
∑

vi∈C
vj∈C

sij (5.11)

�

A subset of edges whose removal splits the graph is denoted ∂C, i.e.

∂C = {{i, j} ∈ E| vi ∈ C ∧ vj ∈ C} (5.12)

Since S is symmetric, then

∂C = ∂C (5.13)

The set ∂C is said to be edge separator: removing the edges from ∂C we cut
the graph G into two subgraphs: GC = (C,EC) and GC = (C,EC), where for
instance, EC = E ∩ (C × C). This fact suggests another definition of a cluster
(community): we are looking for such a subset of vertices C which only rarely
communicate with the vertices belonging to the complement C. In other words,
the majority of neighbors of any node from C also belongs to this set. Such an
interpretation is especially meaningful when the clusters differ in their density.

5.2 Spectral data analysis

5.2.1 Spectral optimization

To make the rest of this chapter easy accessible, we start from presenting the
basic idea of spectral optimization oriented towards dividing the set of nodes of

5.2 Spectral data analysis 151

undirected graph G = (V,E) into k ≥ 2 disjoint subsets12, C1, . . . , Ck, in such a
way that the number of links among these subsets is minimal.

5.2.1.1 The case of two classes

Let us start from the simplest case, when k = 2, i.e. we are looking for an
optimal partition {C,C}. Let S be a similarity matrix, and G = (V,E) be
the graph associated to this matrix. Denote D = diag(Se) the degree matrix
corresponding to S. Further, assume that the vector χ = (χ1, . . . , χm)T specifies
the membership of the nodes in the sets C and C, i.e.

χi =

{
+1 if vi ∈ C
−1 if vi ∈ C i = 1, . . . ,m (5.14)

It is easy to verify that:

(a) χ2
i = 1,

(b) χTχ = m, and
(c) the expression 1

4 (χi − χj)
2 takes the value 1 only when the two nodes

belong to different groups; otherwise it is equal zero. In other words,
1
4 (1−χiχj)

2 = 1− δ(ci, cj), where ci denotes the index of the set containing
the node vi, and δ is Kronecker’s symbol.

Let us note that

χTDχ =

m∑

i=1

diiχ
2
i =

∑

vi∈C
vj∈V

sij +
∑

vi∈C
vj∈V

sij

=

(∑

vi∈C
vj∈C

sij +
∑

vi∈C
vj∈C

sij

)
+

(∑

vi∈C
vj∈C

sij +
∑

vi∈C
vj∈C

sij

)

= assoc(C) + assoc(C) + 2cut(C,C) = volV

where

assoc(Z) =
∑

vi,vj∈Z

sij = volZ − cut(Z,Z) (5.15)

measures the strength of association between the elements belonging to the set
Z.

Similarly

12 This problem is frequently referred to as the k-way partitioning.

152 5 Spectral methods in clustering and dimensionality reduction

χTSχ =
m∑

i=1

m∑

j=1

sijχiχj

=
∑

vi∈C
vj∈C

sij +
∑

vi∈C
vj∈C

sij − 2
∑

vi∈C
vj∈C

sij

= assoc(C) + assoc(C)− 2cut(C,C)

Therefore

χT(D − S)χ = 4cut(C,C)

=
1

2

m∑

i=1

m∑

j=1

sij(χi − χj)
2

(5.16)

The matrix

L = D − S (5.17)

is so-called combinatorial (or unnormalized) Laplacian of the graph G = (V,E)
with the weights matrix S. It is a symmetric matrix with the elements

lij =

di − sii if i = j
−sij if i 6= j and (vi, vj) ∈ E

0 otherwise
(5.18)

Basic properties of the Laplacian matrix are given in Appendix C.2.1.1.
If χTχ = m, we can rewrite the equation (5.16) in equivalent form

χTLχ

χTχ
=

4

m
cut(C,C) (5.19)

The left hand side of this equation defines so called Rayleigh quotient of the
Laplacian L. We will denote it R(L,χ).

In fact, the problem of graph cut minimization reduces to the problem of
minimization of the Rayleigh quotient, see e.g. [311] or [96]. The corresponding
optimization problem takes the form

min
χTLχ

χTχ

s.t. χi = ±1, i = 1, . . . ,m,χTχ = m
|χTe| = 0 or 1

(5.20)

The condition |χTe| = 0 or 1 forces the division into groups of similar cardinality.
The problem (5.20) is an NP-complete optimization problem. A naive

method of solving such problems relies upon relaxing their assumptions; the
resulting solution is later fitted to the original requirements, defined in the as-
sumptions. In our case, this idea can be implemented as follows: minimization

5.2 Spectral data analysis 153

of the quadratic form χTLχ with the constraint χi = ±1, i = 1, . . . ,m is relaxed
to the problem

minxTLx
s.t. xTx = 1,x ∈ [−1, 1]m

(5.21)

Using the identity (5.16) and ignoring other constraints we immediately find
a trivial solution of (5.21). It is a constant vector y = const, as in this case
yTLy = 0. That is why we search for a unit vector with components in the
interval [−1, 1]. Such a formulation was given by Hall in [157].

Minimization of the function f(x) = xTLx with the constraint xTx = 1 is a
standard optimization problem: first we construct the Lagrangian

l(x) = xTLx− λ(xTx− 1) (5.22)

where λ denotes the Lagrange multiplier. The critical values of l occur where its
partial derivative ∂l(x)/∂x equals zero

Lx− λx = 0⇒ Lx = λx

which implies that the solution to the problem (5.21) is an eigenvector of the
Laplacian13. Indeed, if wi is an eigenvector corresponding to the eigenvalue λi
of the Laplacian, then

wT

iLwi = wT

i (Lwi) = λiw
T

iwi = λi‖wi‖2

If, according to the constraint of the problem (5.21), we normalize the eigenvec-
tors, then wT

iLwi = λi.

Remark 5.2.1 If w is an eigenvector of L, then αw, α 6= 0, is also an eigen-
vector of L. Thus, in the sequel, we will not distinguish between normalized and
unnormalized eigenvectors. If required, an eigenvector can always be normalized.
Such a convention is used in many papers, see e.g. [351]. �

The sum of elements of each row of the Laplacian is always equal zero. Hence,
if w1 is a normalized constant vector, then ‖w1‖ = 1, and Lw1 = 0. Thus, from
the equation Lw1 = 0 = λ1w1 it follows that the minimal eigenvalue of the
Laplacian14 is λ1 = 0, and – in consequence – the minimum of the quadratic
form xTLx is 0. Surely, such a solution is meaningless as it does not provide any
guidance as where to perform cutting. In the sequel, the pair (λ1,w1) will be
called the trivial eigenpair of the Laplacian. This explains the second requirement
for the components of the solution.

13 If the vector x 6= 0 satisfies the equation Lx = λx, where L is a square matrix, then
x is said to be an eigenvector of L, and the scalar λ – eigenvalue of the matrix L. The
eigenvector x is nontrivial if it is different from a constant vector. If L is a real and
symmetric matrix, then all its eigenvalues are real numbers, and the eigenvectors
corresponding to different eigenvalues are orthogonal. More properties of eigenvalues
and eigenvectors are given in Appendix B.3.

14 Laplacian is positive semi-definite – see Section C.2.1.1 for details.

154 5 Spectral methods in clustering and dimensionality reduction

Let us order increasingly15 the eigenvalues of the Laplacian: 0 = λ1 ≤ λ2 ≤
· · · ≤ λm. Since the normalized eigenvectors corresponding to different eigenval-
ues are orthonormal, thus

wT

1w2 =
1√
m
eTw2 =

1√
m

m∑

j=1

w2,j = 0

hence the eigenvector w2, corresponding to a positive eigenvalue, contains both
positive and negative elements. Let us recall that λ2 is referred to as the Fiedler
value, and the corresponding eigenvector – Fiedler vector. Thus we obtain the
next

Theorem 5.2.1 A nontrivial solution to the problem (5.21) is the Fiedler vector
w2, and the Fiedler value is the minimal positive value of the quadratic form
xTLx. �

Similar reasoning can be applied to a relaxation of the problem (5.20), relying
upon replacing the vector χ by a unit vector x with real-valued entries. This
time one should apply Courant-Fisher theorem (presented as Theorem B.3.1 on
page 234). A review of different methods of Rayleigh quotient minimization can
be found in [19].

Discretization of a solution of the problem (5.21) can be performed as follows

χi =

{
+1 if w2,i ≥ 0
−1 if w2,i < 0

(5.23)

Fiedler proved in [123] that when G is a connected and undirected graph, and
the set C (resp. C) contains the nodes, for which χi ≥ 0 (resp. χi < 0), then the
subgraph (C,EC), spanned on the nodes belonging to the set C, is connected.
Similarly, the subgraph spanned on the nodes from the set C is connected if
w2,i > 0 for all the nodes from the set C. It should be noted that a small Fiedler
value implies small value of the cut(C,C), [9]. This is quite reasonable, as lower
Fiedler value testifies to the “weak” graph connectivity, i.e. the graph is easy to
cut.

From this presentation we know that the minimal nontrivial (i.e. positive)
value of the Rayleigh quotient (also minimal value of the quadratic form xTLx)
is the Fiedler value of the Laplacian of a connected graph. But the Fiedler vector
corresponding to this value is an approximation of the correct solution! Thus,
the rule (5.23) does not guarantee optimality of the solution to the problem
(5.20). That is why, instead of the “mechanical” strategy (5.23), a thresholded
discretization is frequently used. The cut is performed as follows

χi(τ) =

{
+1 if w2,i ≥ τ
−1 if w2,i < τ

(5.24)

The greedy variant of this strategy relies upon the decreasing ordering of values
of the Fiedler vector, and choosing as τ subsequent unique values from this

15 As already mentioned, these eigenvalues are non-negative real numbers.

5.2 Spectral data analysis 155

ordering. The threshold providing minimal value of the Rayleigh quotient is
taken as optimal. Pseudocode 5.1 illustrates a näıve implementation of such a
recipe.

Fig. 5.2. An exemplary graph

Example 5.2.1 Consider the graph, presented in Fig. 5.2. Assuming that S is
identical with the adjacency matrix A of this graph we compute Laplacian L =
diag(Ae) − A. Since G is connected, the second minimal eigenvalue is positive,
and the Fiedler vector has the form

w2 =

x y

1 0.3147
2 0.3147
3 0.3147
4 0.2766
5 0.2766
6 0.0951
7 −0.0979
8 −0.0979
9 −0.2672

10 −0.2672
11 −0.3717
12 −0.4906

When τ = 0, we obtain balanced partition C0 = {x1, . . . , x6}, C0 = {x7, . . . , x12}
with Raileigh quotient value 8/12. But its minimal value 4/12 will be ob-
tained if we assume τ = −0.3717, what leads to the unbalanced partition
C = {x1, . . . , x11}, C = {x12}. Please note, that by multiplying these values
by the factor 4/12 we obtain, in accordance with the equation (5.19), the cut
cost equal 2 in the first case and 1 in the second. �

156 5 Spectral methods in clustering and dimensionality reduction

Algorithm 5.1 Algorithm of thresholded discretization of the Fiedler vector

1: Compute the Fiedler vector w2 for Laplacian L
2: Determine unique threshold values {τ1, . . . , τM}, M ≤ m
3: for i = 1 to M do

4: for j = 1 to m do

5: if (w2,j ≥ τi) then

6: χj = +1
7: else

8: χj = −1
9: end if

10: end for

11: Compute the value Ri = χ
TLχ/(χT

χ)
12: end for

13: return cut {C,C} corresponding to vector χi guaranteeing minimal value of Ri

The idea of thresholded discretization was used e.g. by Wu and Leahy [369],
and by Hagen and Kahng in [154] (in this case the authors used slightly modified
quality measure). A more elaborated approach to this problem has been proposed
by Tolliver and Miller in [336]. Barnard and Simon described in [40] an inter-
esting approach designed for the analysis of large data. To cut the graph into
k components these authors bisect iteratively the subsequent subgraphs. They
noted that the algorithm 5.1 favors cutting small subsets of isolated nodes. The
methods of avoiding such problems are discussed in Section 5.2.3.

5.2.1.2 Further applications of the Fiedler vector

Fiedler vector and Fiedler value play important role in spectral graph theory16.
Here below only two potential applications of these notions are presented. The
first one provides yet another interpretation of the Fiedler vector. Also, it is
a basis for a method of drawing graphs. The second, more important for us,
provides a method for assessing the number of clusters in a given dataset.

Hall, in his paper [157] formulates the following problem:

Given n points (or nodes) and an n×n symmetric connection matrix,
C = (cij), where cii = 0, and cij ≥ 0, i 6= j, i = 1, 2, . . . , n, is the
“connection” between point i and point j, find locations for the n points
which minimizes the weighted sum of squared distances between the
points (i.e., weighted by cij).

In our setting we have m points and instead of the square matrix C we use
the similarity matrix S. Hall considers the one-dimensional problem, that is –
he searches for a vector y = (y1, . . . , ym) that minimizes the weighted sum of
squared distances between the points. This weighted sum is defined as follows

16 See e.g. J. Demmel: ”CS 267: Notes for Lecture 23, April 9, 1999. Graph
Partitioning, Part 2.”, http://www.cs.berkeley.edu/~demmel/cs267/lecture20/
lecture20.html..

5.2 Spectral data analysis 157

f(y) =
1

2

m∑

i=1

m∑

j=1

sij(yi − yj)2 (5.25)

where yi denotes the 1-dimensional coordinate of point i, and sij is the connec-
tion strength of the pair i and j. It is obvious that if y is a constant vector, in
particular yi = 0 for all i, then f(y) = 0. To avoid such a trivial situation, Hall
introduces the constraint yTy = 1.

By applying the reasoning from the previous section (and inspired by Hall’s
paper) we state that the solution to the problem (5.25) is the eigenvector w2

corresponding to the Fiedler value of the Laplacian L = D − S. It determines
the “spectral coordinates” of the nodes projected on the real axis. A result of
such a projection, applied to the graph from Fig. 5.2, is presented in Fig. 5.3(a).
The node numbers are on the abscissa, and the values of the Fiedler vector are
placed on the ordinate17. More remarks on graph drawing and spectral graph
theory can be found e.g. in [320].

0 2 4 6 8 10 12
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 2

3 4

5

6
7

8 9

10 11

12

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5
6

78

910

11

12

(a) (b)

Fig. 5.3. Graph from Fig. 5.2 in spectral coordinates: (a) one-dimensional projection,
(b) two-dimensional projection determined by the eigenvectors y2 (abscissa) and y3

(ordinate)

Now, let us briefly describe second application. If there are k well defined
clusters in the dataset, then the similarity matrix will have (after appropriate
rearrangement of rows and columns) the block diagonal structure, i.e. sij > 0
if the objects i and j belong to the same cluster, and sij ≈ 0 otherwise. The
Laplacian L = diag(Se) − S, corresponding to this matrix, will also be block
diagonal. In such a case the set of eigenvalues of this Laplacian is the union of

the eigenvalues of the blocks. The minimal eigenvalue of each block is λ
(j)
1 ≈ 0,

j = 1, . . . , k, hence the first k minimal eigenvalues of the Laplacian will be close

17 For the nodes v1, v2, v3 the values of this vector are identical. Similar situation occurs
in case of the nodes v4, v5. For clearer visualization we added small random numbers
from the interval [−0.3, 0.1] to the components of this vector.

158 5 Spectral methods in clustering and dimensionality reduction

to zero, and the next, (k+ 1)-th eigenvalue will be λk+1 = min1≤j≤k λ
(j)
2 . When

L has a well-defined block-diagonal structure, λk+1 must be definitely greater
than λk. This phenomenon is illustrated in Fig. 5.4. On the left panel 20 first (i.e.
smallest) eigenvalues of the Laplacian of the set data6 2 are depicted. The clear
difference between the 6-th and 7-th eigenvalues pretty well corresponds with
our supposition. On the right panel the eigenvalues of Laplacian corresponding
to the set 2moons18 are shown. Two clusters constituting this dataset are not
linearly separable, but also in this case two first eigenvalues are smaller than the
remaining eigenvalues.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

25

30

35

(a) (b)

Fig. 5.4. First 20 Laplacian eigenvalues obtained for the sets: (a) data6 2 and (b)
2moons. In case (a) σ = 2 was assumed, and in case (b) σ = 0.6 was assumed.

5.2.1.3 The multiclass problem

Hall [157] generalizes his reasoning to the case of k-dimensional Euclidean space
by introducing the objective function of the form

f(y1, . . . ,yk) =

k∑

j=1

yT

jLyj (5.26)

and determining its minimum in the presence of additional constraints yT

jyj = 1,
j = 1, . . . , k. In this case the Lagrangian takes the form

l(y1, . . . ,yk) =

k∑

j=1

yT

jLyj −
k∑

j=1

αj(y
T

jyj − 1)

where αj stands for j-th Lagrange multiplier.

18 Both these datasets are characterized in Chapter 6.

5.2 Spectral data analysis 159

Again, the solution to the so stated problem is constituted by the eigenvectors
corresponding to the minimal eigenvalues of the Laplacian. Let us arrange in-
creasingly these eigenvalues: 0 = λ1 ≤ λ2 ≤ · · · ≤ λm. Assuming that yj cannot
be constant vectors, we take as yj , j = 1, . . . , k, the eigenvector corresponding
to the (j + 1)-th smallest eigenvalue of L.

When k = 2, this solution can be interpreted as stabilized location of the
nodes placed on an elastic band19. In case of cluster analysis, such reasoning
leads to the idea of spectral mapping

s : X ∋ xi 7→ (yi1, . . . , yik) ∈ R
k (5.27)

which assigns to each object xi ∈ X a point in k-dimensional coordinates, deter-
mined by the i-th entries of k eigenvectors of the Laplacian. Belkin and Niyogi
term this mapping as Laplacian eigenmap. If k = 2 or k = 3, such an approach
relies upon visualization of the graph (described by the matrix S) in spectral
coordinates determined by the eigenvectors. Fig. 5.3(b) presents the graph from
Fig. 5.2 in spectral coordinates, determined by the pair of eigenvectors y2,y3,
corresponding to the smallest positive eigenvalues λ2 = 0.2424, λ3 = 0.8602. A
reader interested in this last topic is advised to consult [320].

The equation (5.26) can be rewritten as

f(Y) = tr (Y TLY) (5.28)

where Y = (y1, . . . ,yk) is an m×k matrix, such that Y TY = I. The rows of this
matrix determine the location of the vertices of graph G in k-dimensional space.

Please note that if the columns of the matrix Ỹ = (y1, . . . ,ym) are eigen-
vectors of the Laplacian L, and Λ = diag(λ1, . . . , λm) is the diagonal matrix,

containing eigenvalues of L, then LỸ = Ỹ Λ. Additionally, if the eigenvectors are
normalized, i.e. Ỹ TỸ = I, then

Ỹ TLỸ = Ỹ T(LỸ) = Ỹ TỸ Λ = Λ

Thus, tr (Ỹ TLỸ) = tr (Λ) =
∑m

j=1 λj . As the matrix Y consists of k < m
columns, and Λk = diag(λ(1), . . . , λ(k)) contains the corresponding eigenvalues,
then tr (Y TLY) = tr (Λk). Again, λ(1) ≤, . . . ,≤ λ(k) are the minimal positive
eigenvalues of L.

These considerations can be summarized as follows:

Theorem 5.2.2 Suppose that the graph corresponding to a similarity matrix
S is connected. Then, the matrix Y ∗ ∈ Rm×k minimizing the quadratic form
tr (Y TLY) under the constraint Y TY = I is a matrix, whose columns are k
eigenvectors corresponding to the smallest positive eigenvalues of the Laplacian
L = diag(Se)− S. �

19 A similar idea is the inspiration for the so-called elastic nets. See e.g. R. Durbin and
D. Willshaw: An analogue approach to the traveling salesman problem using elastic
net method. Nature, 326: 689–691, 1987; H. Ghaziri and I.H. Osman: A neural
network algorithm for the traveling salesman problem with backhauls. Computers
& Industrial Engineering, 44: 267–281, 2003.

160 5 Spectral methods in clustering and dimensionality reduction

A proof that there does no exist a matrix Z 6= Y ∗ such that ZTZ = I and
tr (ZTLZ) < tr (Λk), can be found e.g. in [67]. Thus, it follows that for any
orthogonal matrix Z ∈ R

m×k the following inequality holds20:

tr (ZTLZ) ≥ tr (Λk) (5.29)

Until now we have been concerned with eigenvectors corresponding to small-
est positive eigenvalues of the Laplacian L. Hall notes in [157] that the eigenvec-
tor corresponding to the maximal eigenvalue of L is a solution to the problem of
maximization of the function f(y). Such an approach can be used if the elements
of the matrix S represent dissimilarities (instead of similarities). An idea of this
kind was used by Aspvall and Gilbert [24] to find a heuristic solution to the graph
coloring problem. Seary and Richards, [309], call the eigenvectors corresponding
to the minimal eigenvalues grouping vectors, and the eigenvectors corresponding
to the maximal eigenvalues – coloringvectors. Figure 5.5 illustrates the difference
between grouping and coloring vectors.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 5.5. Minimization vs. maximization of the function (5.25). G is the cyclic graph
consisting of 9 nodes. Left panel presents the connections between the nodes in the
coordinates determined by the grouping vectors (i.e. the eigenvectors corresponding to
minimal positive eigenvalues). Right panel illustrates the connections between these
nodes in the coordinates determined by the coloring vectors (i.e. the eigenvectors cor-
responding to largest eigenvalues of the Laplacian L).

5.2.2 Other cutting criteria

Minimization of the cut cost is only one among the possible criteria of grouping
nodes of a graph. The use of this criterion, results frequently in unbalanced clus-
ters, one of which consists of only a few nodes. This phenomenon was illustrated
in Example 5.2.1. Other criteria used in spectral clustering are presented below.

20 Another short proof can be found in M.L. Overton, R.S. Womersley, On the sum
of largest eigenvalues of a symmetric matrix. SIAM J. Matrix Analysis and Appl.
13(1), 1992, 41-45.

5.2 Spectral data analysis 161

A reader interested in a more detailed discussion of this subject may wish to
consult [105], [237], [351], and [311, Sect. 6.1].

Assume that the data set (or set of nodes) should be split into k disjoint
subsets C1, . . . , Ck. The cost of such a split can be measured in terms of the
following objective functions:

(a) Mcut(C1, . . . , Ck)) =

k∑

i=1

cut(Ci, Ci)

(b) Ncut(C1, . . . , Ck)) =

k∑

i=1

cut(Ci, Ci)

volCi

(c) Rcut(C1, . . . , Ck)) =
k∑

i=1

cut(Ci, Ci)

|Ci|

(d) MinMaxcut(C1, . . . , Ck) =

k∑

i=1

cut(Ci, Ci)

assoc(Ci)

(5.30)

where assoc is the association measure, defined in the equation (5.15). Mcut
is the already defined cut function extended to k ≥ 2 subsets. Ncut, Rcut and
MinMaxcut stand for, respectively, normalized, ratio, and min-max cost of the
cut. These criteria were proposed, respectively, in [311], [154], and [105].

Ding et al. state in [105] that if there are well separated clusters in the
data, then all these criteria behave equally well. But if clusters are “fuzzy” or
they are poorly separated, then the Ncut and MinMaxcut should be preferred.
Particularly, this last criterion provides better results when the clusters overlap.

So-called Cheeger cut, [65], has many interesting properties. We distinguish
between ratio Cheeger cut

RCC(C,C) =
cut(C,C)

min
(
|C|, |C|) (5.31)

and normalized Cheeger cut

NCC(C,C) =
cut(C,C)

min
(
volC, volC

) (5.32)

In particular, the following inequalities are true

RCC(C,C) ≤ RCut(C,C) ≤ 2RCC(C,C)NCC(C,C) ≤ NCut(C,C) ≤ 2(C,C)
(5.33)

A clustering algorithm, which uses the NCC criterion is described in [331].
Similarly, it is possible to define a normalized variant of the association mea-

sure:

162 5 Spectral methods in clustering and dimensionality reduction

Nassoc(C,C) =
assoc(C)

vol (C)
+
assoc(C)

vol (C)
(5.34)

As far as the normalized variants of the cut cost emphasize the connections
among the elements from different clusters, the normalized variants of association
inform about connections among the elements belonging to the same clusters.
Thus, the indices from the first group are useful when data are split into clusters,
and these from the second group are useful when a group is created. It can be
shown, that, see [311],

Ncut(C,C) = 2−Nassoc(C,C)

This means that minimization of the normalized cut is equivalent to maximiza-
tion of the normalized association measure. We discuss this problem in Section
5.2.6.

In the sequel we will focus on most popular indices, Ncut and Rcut. The Rcut
criterion balances the number of elements in the clusters, while Ncut balances
the volume of the clusters by seeking a compromise between cut and association,
[288].

Finally, let us mention conductance, called also isoperimetric number of the
cut C; it is defined as

Φ(C) =
|{{vi, vj} ∈ E|vi ∈ C & vj ∈ C}|

min
(
volC, volC)

) =
|∂(C)|

min
(
volC, volC

) (5.35)

More remarks on this notion are given in Appendix C.2.1.1. The number Φ(C)
can be interpreted as another version of normalization of the cut, or it can be
considered in the probabilistic context as presented in Lemma 5.3.1 on page 192.

As ∂(C) = ∂(C), we can focus on the sets such that volC ≤ 1
2volV . In such

a case

Φ(C) =
∂(C)

volC
(5.36)

The minimal value of the conductance, denoted ΦG,

ΦG = min
C⊂V

Φ(C) (5.37)

is referred to as graph conductance, Cheeger constant or isoperimetric constant.
We mention only two of its properties (for other properties consult e.g. [75]:

(a) G is a connected graph only if ΦG > 0.
(b) If G is an unweighted complete graph, then ΦG = m/(2(m−1)), if m is even

and ΦG = (m+ 1)/(2(m− 1)) if m is an odd number.

Remark 5.2.2 Some authors call the right hand side of the equation (5.35)
“isoperimetric number”, and they use the term “conductance” only if the cardi-
nality of a set is replaced by the total weight of elements from this set, i.e.

5.2 Spectral data analysis 163

Φ(C) =
s(∂(C))

min
(
s(C), s(C)

) (5.38)

where s(C) stands for the sum of weighted degrees of the nodes belonging to the
set C, and s(∂(C)) is the sum of weights of the links joining nodes belonging
to different groups. In particular, if s(∂C) = cut(C,C), and s(C) = volC, we
obtain the normalized Cheeger cut NCC(C,C). �

5.2.3 The problem of cutting a graph as a generalized eigenproblem

Grouping the nodes of a graph can be imagined as a process of dividing the
set of nodes into k disjoint clusters (groups) C1, . . . , Ck in such a way, that the
total weight of the links joining the nodes belonging to the same group is high,
while the total weight of the links joining the nodes from different groups is low.
This corresponds relatively well to the natural intuition according to which the
elements from different groups are less similar than the elements assigned to the
same group. If all the links have identical weights, the above criterion states that
the nodes belonging to the same group communicate with each other more often
than the nodes belonging to different groups.

Assume, first that the set of nodes is divided into two groups: C and
C = V \C. The näıve criterion cut(C,C), defined in (5.11), leads to the groups
containing single nodes (see example 5.2.1), and, further, it is sensitive to the
noise usually present in analyzed data. To overcome these drawbacks, the nor-
malized criteria (b) – (d) from equation (5.30) are used. In particular, using
normalization by the volume, as optimal we take the partition (C,C) for which
the index

Ncut(C,C) =
cut(C,C)

volC
+
cut(C,C)

volC
(5.39)

takes its minimum. The expression (1
volC + 1

volC
) attains the minimal value when

volC = volC; thus the partition obtained by minimization of the Ncut leads to
the groups with similar volumes.

Let ψC be a vector representing the membership of the nodes in the set C,
i.e.

ψC(i) =

{
1 if vi ∈ C
0 otherwise

i = 1, . . . ,m (5.40)

If the membership is described by the vector χ with entries defined in equation
(5.14), then φC = (1 + χ)/2 and φC = 1 − φC = (1 − χ)/2. Applying the
reasoning from Section 5.2.1.1 we conclude that:

164 5 Spectral methods in clustering and dimensionality reduction

ψT

CDψC =
m∑

j=1

djψ
2
C(j) = volC,

ψT

CSψC =
m∑

i=1

m∑

j=1

sijψC(i)ψC(j) =
∑

i,j∈C

sij = assoc(C)

From this, it follows that cut(C,C) = ψ
T

C(D − S)ψC , so

Ncut(C,C) =
ψT

CLψC

ψT

CDψC

+
ψT

C
LψC

ψT

C
DψC

(5.41)

Determining the partition which minimizes this cost is an NP-hard problem.
Like in Section 5.2.1.1 we relax this problem by seeking a solution in the set
[−1, 1]|V |. Shi i Malik, after a number of transformations described in [311, Sect.
2.1], bring the equation (5.41) to an equivalent form

Ncut(C,C) =
yTLy

yTDy
(5.42)

where y = ψC − b(1−ψC), and b = (volC)/(volC). The entries of the vector y
take the form

yi =

{
1 if vi ∈ C
−b if vi ∈ C i = 1, . . . ,m (5.43)

The so defined vector satisfies the additional constraint

yTDe =

m∑

j=1

djyj =
∑

vj∈C

dj − b
∑

j∈C

dj = 0

Thus, an approximate solution to the problem of minimizing the quotient (5.41)
is the vector

ỹ = arg min
y 6=0

yTDe=0

yTLy

yTDy
(5.44)

The right hand side of the equation (5.42) represents the generalized Rayleigh
quotient. To solve the problem (5.44) we must determine an eigenvector y in the
generalized eigenproblem (see next Section)

Ly = λDy (5.45)

The entries of the vector ỹ, solving (5.44), are numbers from the set [−1, 1] and
in general they do not satisfy the condition (5.43). Thus the entries must be
rounded or binarized, i.e. converted to 0 or 1.

5.2 Spectral data analysis 165

Remark 5.2.3 A similar reasoning can be applied to the Rcut criterion:

Rcut(C,C) =
cut(C,C)

|C| +
cut(C,C)

|C|
This equation can be rewritten in the form

Rcut(C,C) =
xTLx

xTx
(5.46)

where x = ψC − βψC , and β = |C|/|C|. Now, the entries of the vector x have
the form: xi = 1 if vi ∈ C, and xi = −β if vi ∈ C, which implies that

eTx =
m∑

i=1

xi = |C| − β|C| = 0

Thus, an approximate solution to the problem of minimization of the quotient
(5.46) is the vector

z̃ = arg min
x 6=0

xTe=0

xTLx

xTx
(5.47)

By the Corollary B.7(b) to the minimax Courant-Fisher Theorem (p. 234),
we state, that the approximate cost Rcut is equal to the Fiedler value computed
for the Laplacian L. The Fiedler vector x2 = x̃ satisfies both the constraints, but
its entries belong to the interval [−1, 1], and not to the interval {−β, 1}. Thus
we must round this vector again. �

These considerations can be generalized to the case of k > 2 as follows
(consult e.g. [351]). Let ψ̃j be the vector indicating the objects belonging to the
group Cj , j = 1, . . . , k; it is defined like in equation (5.40). Further, let ψj be
the vector of the form

ψj =
1

volCj
ψ̃j

and let Ψ be the matrix whose columns are the vectors ψj , i.e. Ψ = (ψ1, . . . ,ψk).

Since ψT

iDψj = δij , the matrix Ψ admits the property ΨTDΨ = I. Thus, we state
that

cut(Cj , Cj)

volCj
= ψT

jLψj =
(
ΨTLΨ

)
jj

and finally

NCut(C1, . . . , Ck) =
k∑

j=1

cut(Cj , Cj)

volCj
=

k∑

j=1

(
ΨTLΨ

)
jj

= tr (ΨTLΨ)

166 5 Spectral methods in clustering and dimensionality reduction

In other words, the problem of minimization of the normalized cut, Ncut, takes
the form

min
C1,...,Ck

tr (ΨTLΨ)

subject to
ΨTDΨ = I

ψij =

{
1/volCj if vi ∈ Cj

0 otherwise

(5.48)

Replacing Ψ by the matrix Y = D1/2Ψ and relaxing the second constraint, i.e.
assuming that ψij is a real number we transform the above problem into a much
easier form

min
Y ∈R

m×k

Y TY=I

tr (Y TD−1/2LD−1/2Y) (5.49)

Similarly, if Z = (z1, . . . , zk) is the matrix, whose columns are the vectors of

the form zj = ψ̃j/|Cj |, then – as can be easily verified: zTz = 1, i.e. ZTZ = I,
and

cut(Cj , Cj)

|Cj |
= zTjLzj =

(
ZTLZ)jj

Assuming that zij can take any real value, we reduce the problem of
RCut(C1, . . . , Ck) minimization to much simpler optimization problem

min
Z∈R

m×k

ZTZ=I

tr (ZTLY) (5.50)

The main difference between the problems (5.49) and (5.50) consists in the
use different form of the Laplacian. In the last case the standard (combinato-
rial) Laplacian has been used. But in the problem (5.49) so-called normalized
Laplacian is used; it is defined as

L = D−1/2LD−1/2 (5.51)

Like the combinatorial Laplacian, it is a symmetric matrix with the entries

li,j =

1− sii
di

if i = j

− sij√
didj

if i, j are neighboring nodes

0 otherwise

(5.52)

It can be verified, consult e.g. [351, Prop. 2.3], that for any real vector w 6= 0
the following inequality holds

5.2 Spectral data analysis 167

wTLw =
1

2

m∑

i=1

m∑

j=1

sij

(wi√
di

− wj√
dj

)2
(5.53)

which means that L is a semi-definite matrix, i.e. its eigenvalues are nonnegative
real numbers. In fact, these eigenvalues belong to the interval [0, 2].

Wit the notation L for the normalized or combinatorial Laplacian, both the
problems can be rewritten in a unified (generalized) form

min
T∈R

m×k

T TT=I

tr (T T
LT) (5.54)

The reader should note that such a problem was alredy considered in Section
2.4.2.1. Minimization of the mean-square error has led to the structurally equiv-
alent problem (2.37) from page 45, where – instead of the Laplacian – another
semi-definite matrix was used: the Mercer kernel. This intriguing fact inspires
investigation of the equivalence between k-means clustering, kernel clustering
and spectral clustering, see e.g. [106], [231], [230] for details.

The entries of the matrix T ∗, being the solution to the problem (5.54), are real
numbers. To translate them into assignments of objects to the groups, we treat
the rows of this matrix as spectral coordinates of the objects. If so, we can use,
e.g., the k-means algorithm and we should search for the matrices U∗ ∈ Um×k

and M∗ ∈ Rk×n, which minimize the function (see equation (2.38) from page
46)

J1 = ‖T ∗ − UM‖2F
Huang, Nie & Huang21 proposed another modification of the index J1, namely

J ′
1 = ‖T ∗ − UR‖2F

Here, R is an orthonormal matrix (i.e. such that RTR = I). The experiments
conducted by the authors mentioned show that their method is competitive with
the k-means algorithm both with respect to time complexity and precision of
final results. Another way of rounding the solution can be based on the method
proposed by Tolliver, [336].

5.2.4 Methods of solving the generalized eigenproblem

Let us focus on solving the problem (5.54). As usual, assume that the set of
nodes is divided into two groups. The generalized Rayleigh quotient, i.e. the
right hand side of the equation (5.42), can be rewritten as

21 J. Huang, F. Nie, and H. Huang: Spectral rotation versus k-means in spectral cluster-
ing, Proc. 27-th AAAI Conf. on Artif. Intell., pp. 431-437, AAAI Press 2013. MAT-
LAB code implementing this algorithm can be found at https://sites.google.com/
site/feipingnie/publications.

168 5 Spectral methods in clustering and dimensionality reduction

yTLy

yTDy
=

yTD1/2
(
D−1/2LD−1/2

)
D1/2y

(yTD1/2)(D1/2y)
=

zTLz

zTz
(5.55)

where z = D1/2y.
An eigenvector corresponding to the eigenvalue λ1 = 0 of the normalized

Laplacian L is z1 = D1/2e. Indeed

Lz1 =
(
D−1/2LD−1/2

)
(D1/2e) = D−1/2(Le) = 0

Thus, y1 = D−1/2z1 = e is the eigenvector corresponding to the minimal eigen-
value in the generalized problem (5.45).

The identity (5.55) implies that instead of minimization of the general-
ized Rayleigh quotient (5.42), it suffices to consider the quotient R(L, z) =
(zTLz)/(zTz). It is known – by Courant-Fisher Theorem – that the next mini-
mal value of the Rayleigh quotient over the set of all vectors z ∈ Rm which are
orthogonal to the already defined vector z1, is R(L, z2) = λ2, where z2 is the
Fiedler vector, and λ2 is the Fiedler value of the matrix L. Moreover, as the
eigenvectors of this matrix are orthogonal, then

zT2z1 = (D1/2y2)T(D1/2e) = yT

2De = 0

where y2 is the eigenvector corresponding to the second minimal eigenvalue in
the generalized problem (5.45).

The following theorem summarizes our considerations:

Theorem 5.2.3 [311] The solution to the problem (5.44) is the vector y2 =
D−1/2z2, where z2 is the Fiedler vector of the normalized Laplacian L. �

When k > 2, the solution to the problem (5.54) is the matrix T , whose
columns are the eigenvectors corresponding to k minimal eigenvalues of the
Laplacian L.

Please, note that the eigenproblem (5.45) can be reduced to a standard eigen-
problem if we multiply both sides of the equation (5.45) by the matrix D−1:

D−1Ly = λy (5.56)

D is a nonsingular matrix (see p. 149 for a rationale), hence the above equa-
tion is well defined. Unfortunately, D−1L is an asymmetric matrix what causes
problems in the computation of its eigenvalues and eigenvectors.

Alternatively, normalized Laplacian can be represented in equivalent form
as L = I−D−1/2SD−1/2. The matrix

Ld = I− L = D−1/2SD−1/2 (5.57)

is referred to as the complement of the normalized Laplacian. Its application in
clustering is discussed in Section 5.2.5.3. Other interesting interpretations of the

5.2 Spectral data analysis 169

matrix Ld are discussed in [309] and in [41]. Here we only note one important
fact22:

Lemma 5.2.1 If (µ,w) is a solution to the eigenproblem D−1/2SD−1/2w =
µw, then (1 − µ,D−1/2w) is a solution to the generalized eigenproblem (5.45).
�

Numerical methods designed to compute the eigenvectors, and discussed in Ap-
pendix B.3.3, are oriented towards finding the eigenvectors corresponding to the
largest eigenvalues. Thus, the above property allows easy computation of the
requested quantities.

In Section C.2.1.1 the Cheeger inequality

1

2
Φ2
G ≤ λF ≤ 2ΦG (5.58)

was mentioned. Here λF stands for the Fiedler value of the normalized Laplacian.
This inequality implies that in order to find a set of small conductance, we must
analyse eigenvectors and eigenvalues of the normalized Laplacian. Low Fiedler
value implies low conductance.

Another interesting inequality was proposed by Tolliver in his dissertation
[335, p. 32]. Let wF be the Fiedler vector in the generalized eigenproblem (5.45)
and let

ncmin(G) = min
−1<τ<1

Ncut(Cτ , Cτ) (5.59)

stand for the minimal value of Ncut obtained by thresholded rounding of the
vector wF (i.e. a node i belongs to the set Cτ if wF,i ≥ τ). Then

1

2
λ1 ≤ ncmin(G) ≤

√
2λ1 (5.60)

Example 5.2.2 Consider again the graph from Fig. 5.2. The entries of the
Fiedler vector of the normalized Laplacian are:

x y

1 0.2898
2 0.2898
3 0.2898
4 0.2718
5 0.2718
6 0.0053
7 −0.2022
8 −0.2022
9 −0.3601

10 −0.3601
11 −0.4310
12 −0.2707

22 It follows immediately from Lemma B.3.1.

170 5 Spectral methods in clustering and dimensionality reduction

and the Fiedler value is λF = 0.0805.
Thresholded rounding results in six vectors yi with the entries in {−1, 1}.

These vectors represent six sets together with their complements: C1 =
{1, . . . , 3}, C2 = {1, . . . , 5}, C3 = {1, . . . , 6}, C4 = {1, . . . , 8}, C5 = {1, . . . , 10}
and C6 = {1, . . . , 11}. The values of Rayleigh quotient (yT

iLyi)/(y
T
iyi) computed

for these vectors are: 0.4650, 0.1668, 0.2102, 0.2400, 0.2400 i 0.2102. Thus, the
minimal value of the quotient is attained for the vector y2, which represents the
partition {C2, C2}. In this manner we avoid the drawback mentioned in Example
5.2.1. �

Ending this section let us mention few remarks concerning the approach
discussed above.

Fig. 5.6. General structure of the graphs analyzed by Guattery and Miller in [148]

Remark 5.2.4 Guattery and Miller studied in [148] graphs of the form shown
in Fig. 5.6. These graphs look like a ladder, with half of rungs removed. Obvi-
ously, the best normalized cut (with cost 2) is obtained by removing the initial
k nodes from each arm of the ladder. But the entries of the Fiedler vector (of
both normalized and unnormalized Laplacian) are positive for the nodes num-
bered from 1 to 2k and negative for the remaining nodes. This means that the
cut should be parallel to the arms of the ladder! Unnormalized cost of such a cut
is equal to k.

A more valuable result can be obtained when we search for the set of lowest
conductance. In the graph from Fig. 5.6 we find that the conductance of the set
C1 = {x1, . . .xk,x2k+1, . . . ,x3k} is Φ(C1) = 1/(2k − 1). If we add to this set
two nodes being the ends of the first “rung”, i.e. C2 = C1 ∪ {xk+1,x3k+1}, then
Φ(C2) = 1/(3k− 4) < Φ(C1) for k > 3. The subgraph spanned over the set C1 of
nodes is disconnected (without “rungs”). In the second case the subgaphs spanned
over the sets C2 and C2 are connected, and cut(C2, C2) = 2. �

Remark 5.2.5 In practice, the algorithms based on the unnormalized and
normalized Laplacian seem to be very similar to each other. But a careful
analysis, performed by von Luxburg, Belkin and Bousquet, and presented in
[352] shows that in fact these are two different approaches. Particularly, these

5.2 Spectral data analysis 171

authors state:

Consistency is a key property of statistical algorithms, when the data
is drawn from some underlying probability distribution. Surprisingly, de-
spite decades of work, little is known about consistency of most clustering
algorithms. In this paper we investigate consistency of a popular family
of spectral clustering algorithms, which cluster the data with the help
of eigenvectors of graph Laplacian matrices. We show that one of the
two of major classes of spectral clustering (normalized clustering) con-
verges under some very general conditions, while the other (unnormal-
ized), is only consistent under strong additional assumptions, which, as
we demonstrate, are not always satisfied in real data. We conclude that
our analysis provides strong evidence for the superiority of normalized
spectral clustering in practical applications. We believe that methods used
in our analysis will provide a basis for future exploration of Laplacian-
based methods in a statistical setting.

This leads to two main practical conclusions about spectral clustering.
First, from a statistical point of view it is clear that normalized rather
than unnormalized spectral clustering should be used whenever possible.
Second, if for some reason one wants to use unnormalized spectral clus-
tering, one should try to check whether the eigenvalues corresponding to
the eigenvectors used by the algorithm lie significantly below the continu-
ous part of the spectrum. If that is not the case, those eigenvectors need
to be discarded as they do not provide information about the clustering.

5.2.5 Algorithms for spectral data clustering

The algorithms belonging to this group exploit the information provided by the
eigenvalues and eigenvectors of the similarity matrix or its transformations (i.e.
various variants of a Laplacian derived from this matrix).

While the partitional algorithms for cluster analysis, like k-means algorithm,
are designed for convex datasets (typically they return the Voronoi decomposi-
tion of the entire space), the spectral methods are oriented towards the sets with
less rigorous structure. A review of various variants of such algorithms can be
found e.g. in [351], [350], or [349].

In spectral clustering either a single eigenvector is used (i.e. a standard
bipartition philosophy is applied, see [387] for theoretical foundations of this
approach) or a set of k eigenvectors is treated as the set of spectral coordinates,
describing location of the data points in the new space. In the first case we
speak about the recurrent algorithm, as it is repeated until satisfactory number
of groups is obtained. In the second case we speak about spectral mapping.
Regardless of the choice of a particular method, the following procedure
summarizes the basic steps of spectral clustering:

172 5 Spectral methods in clustering and dimensionality reduction

(a) Determine a similarity matrix S. Its elements describe either a strength
of relationship between pairs of objects (usually sij ∈ [0, 1]), or they only
indicate whether such a relationship exists (in this case sij ∈ {0, 1}). Then,
the matrix S is transformed to another matrixM; it usually it corresponds
to the normalized or unnormalized Laplacian of the graph associated to S.

(b) Compute eigendecomposition of the matrix M, i.e. M = WΛW−1, where
W is the square m×m matrix whose i-th column is the eigenvector wi ofM
and λ is the diagonal matrix whose diagonal elements are the corresponding
eigenvalues of M.

(c) Determine the so-called spectral mapping X ∋ xi 7→ (wi1, . . . , wil), i.e. the l-
dimensional representation of the n-dimensional dataset. Typically, l equals
to the number of groups k (but see also Sect. 5.2.5.4 for an other approach).

(d) Use the low dimensional representation to partition the data.

If l = 1, then in step (c) the Fiedler vector is used, and if l ≥ 2 then to parti-
tion the data into k groups the k-means algorithm is frequently used. Different
instances of such a procedure, including the most popular ones, are described
below. For reader’s convenience, in Table 5.1 we briefly characterize these algo-
rithms.

Authors Matrix Eigenvectors

Perona & Freeman (1989) S Dominating eigenvectors

Scott & Longuet-Higgins (1990) S Normalized rows of the matrix
W = (w1, . . . ,wm) and analysis

of the matrix Q = V V T.

Shi & Malik (2000) D−1(D − S) Minimal vectors w2, . . . ,wk

Meilă & Shi D−1S Rows of the matrix built of k
dominating eigenvectors

Ng et al. (2004) D−1/2SD−1/2 Normalized rows of the matrix
built of k dominating eigenvectors

Shi, Belkin & Yu (2009) S k dominating eigenvectors with
no sign change, up to precision ǫ.

Table 5.1. Brief characteristics of various algorithms of spectral clustering

The first and second algorithm23, mentioned in this table were devised for
image segmentation. The similarity matrix was computed there by using the
Gaussian kernel. Shi and Malik have dealt in [311] with image segmentation, as
well. The algorithm proposed in [312] by Shi, Belkin and Yu was designed for
clustering of data coming from a Gaussian mixture model. In this last case the

23 P. Perona and W.T. Freeman: A factorization approach to grouping. In H. Burkardt
and B. Neumann (eds.), Proc ECCV, LNCS 1407, pp. 655-670, Springer 1998. G.L.
Scott and H. C. Longuet-Higgins: Feature grouping by ’relocalisation’ of eigenvectors
of the proxmity matrix. In: Proc. British Machine Vision Conference, University of
Oxford, 24-27 Sep. 1990, pp. 103-108.

5.2 Spectral data analysis 173

number of groups is determined by finding the dominating eigenvectors with no
sign change (see Sect. 5.2.5.4 for details and explanation).

One should also mention GRACLUS algorithm24, described in [101]. This al-
gorithm is designed for large graphs (constructed e.g. from massive datasets).
At the beginning, the entire graph G is reduced (by using appropriate heuris-
tics) to a graph Gt of reasonable size, so that a nested sequence of graphs
G = G0 ⊃ G1 · · · ⊃ Gt is constructed. Next, the algorithm described in [379]
is used to find the minimal cut in Gt. This result is propagated backward via
intermediate graphs Gt−1, Gt−2, . . . to the original graph G.

In the majority of algorithms a symmetric similarity matrix is used. Only
Meilă and Pentney described in [251] an algorithm operating with asymmetric
matrix S. Kleinberg’s HITS algorithm, [205], belongs to this group too.

All these algorithms try to minimize the indices MCut or NCut. Hagen and
Kahn considered in [154] the problem of minimization of RCut index; see also
the paper by Chan, Schlag and Zien, [67].

From the technical point of view we can use, in some circumstances, the
Singular Value Decomposition, instead of spectral decomposition, as described
in [271] and [96].

5.2.5.1 SM – The algorithm of normalized cuts

It is one of most popular algorithms, designed for image segmentation and pro-
posed by Shi and Malik in [311]; in the literature it is frequently referred to as
the SM algorithm. A characteristic feature of this algorithm is that it does not
focus on the external connections between clusters only, but considers, as well,
the internal connections within a cluster. So it can produce balanced clustering
results.

The authors use the bisection method: at each step they divide the dataset
into two subsets until sufficient number of groups is obtained. In a single step the
Fiedler vector w2 of the matrix L = D−1/2(D−S)D−1/2 is computed, and next
the vector y2 = D−1/2w2 is determined. According to our earlier considerations,
y2 is the Fiedler vector of the generalized eigenproblem Ly = λDy. To cut the
current piece of data, the rule (5.23) can be applied. But Shi and Malik suggest
in [311] that a node vj is assigned to one group if y2,j ≤ τ , and to the other
group, otherwise. As the threshold value we can use the median value, following
the suggestion from Pothen, Simon and Liou in [285] or τ = 0.

Another method of rounding the vector y2 relies upon the tentative partition
of the dataset and determination of the NCut value for this partition. Next,
an increase ∆NCuti, implied by moving i-th node to the opposite group, is
computed. Finally, we choose an element with the number

i∗ = arg min
1≤i≤m

(NCut+∆NCuti) (5.61)

24 Detailed description of this algorithm and source code are available from http:

//www.cs.utexas.edu/users/dml/Software/graclus.html.

174 5 Spectral methods in clustering and dimensionality reduction

This procedure is repeated until it is impossible to improve the value of NCut.
It is important to note that at each iteration only single “untouched” node is
moved to the opposite group.

After cutting the graph into two subgraphs, one of them can be re-cut. As
the new candidate for re-cutting we choose a subgraph with the smallest Fiedler
value25. Such a commonsense criterion was used by Meilă and Verma in [349].

If a given dataset must be divided into predefined number k of groups, we
can construct a matrix U , with columns being k eigenvectors corresponding to
the k smallest eigenvalues of the generalized eigenproblem problem Ly = λDy.
The rows of this matrix determine spectral coordinates of the nodes (objects).
In such a case the k-means algorithm can be used to obtain final partition.

Algorithm 5.2 SM algorithm of normalized cuts, [311]

1: Compute similarity matrix S; its entries sij can be computed by using the equation
(5.1). Compute the degree matrix D = diag(S·e).

2: Let w2 be the Fiedler vector of the matrix L = D−1/2(D−S)D−1/2. Compute the
vector y2 = D−1/2w2 and use it to partition the set of nodes V into two disjoint
subsets.

3: If you are not satisfied with the partition, use subsequent eigenvectors to partition
subgraphs.

4: return Partition of the set V into k ≥ 2 disjoint subsets.

5.2.5.2 VM – another algorithm of normalized cuts

Multiplication of both sides of the equation (5.45) by the matrix D−1 leads to the
equality Iy −D−1Sy = λy, which – after introducing P = D−1S and ordering
its components – takes the form

Py = µy (5.62)

In this manner the generalized eigenproblem was reduced to the standard eigen-
problem with µ = 1 − λ. P is a row-stochastic matrix, and so its dominating
eigenvalue is µ1 = 1. By sorting decreasingly the eigenvalues of the matrix P we
obtain 1 = µ1 ≥ µ2 ≥ · · · ≥ µm, i.e. the Fiedler value corresponds to the second
maximal eigenvalue µ2 (that is λ2 = 1 − µ2). The reader can verify that the
right eigenvectors of the matrix P are identical to the eigenvectors computed
in the generalized eigenproblem (5.45). In this way we obtain the algorithm 5.3
equivalent to the SM algorithm 5.2. This new algorithm was proposed by Verma
and Meilă in [349]. A reader should note, that while the SM algorithm operates
on symmetric similarity matrix S, the VM algorithm uses asymmetric stochastic
matrix P . This may cause some computational problems when determining the

25 Remember that a smaller Fiedler value indicates a less intensive communication
between the nodes.

5.2 Spectral data analysis 175

eigenvectors of P . Simple methods for finding second dominating eigenvector are
discussed in Appendix B.3.3.

Verma and Meilă introduced in [349] an additional criterion preventing fur-
ther partitioning of too small subsets. Thereby, only clusters of “reasonable” size
are returned by their algorithm.

Algorithm 5.3 Algorithm SM-VM for the determination of minimal normalized
cuts, [349]

1: Compute the similarity matrix S; its entries sij can be calculated by using the
equation (5.1). Compute the degree matrix D = diag(S·e).

2: Let µ2 denotes the second dominating eigenvalue of he matrix P = D−1S and let
y2 be the corresponding eigenvector.

3: Let V denotes a list of subsets of the set V , which are potential candidates for
further analysis. Analogously, M and Y are the lists containing the eigenvalues
and eigenvectors computed for the subsets from V. Initially V = {V }, M = {µ2},
Y = {y2}. The lists are ordered in such a way that the first element in V is
characterized by the minimal eigenvalue µ2.

4: j = 1
5: while j < k do

6: Let A be the first element in V, and let v2 ∈ M, u2 ∈ Y denote the eigenvalue
and the eigenvector corresponding to this set.

7: Partition the set A into two subset A1, A2 applying a rounding strategy to the
vector u2.

8: For each subset Ai compute the eigenpair (µi,2,yi,2), i = 1, 2.
9: Modify the list, i.e. V = V\{A} ∪ {A1, A2}, M = M\{v2} ∪ {µ1,2, µ2,2}, Y =

Y\{u2} ∪ {y1,2,y2,2}.
10: end while

11: return partition of the set V into k disjoint groups.

It has been noted in [311], [253] and [349] that if the entries of the Fiedler
vector w are of the form

wj =

{
α if vj ∈ C
β if vj ∈ C (5.63)

then the pair (C,C) is optimal normalized cut, and Ncut(C,C) = λ2, where λ2
is the Fiedler value. The eigenvector satisfying the equation (5.63) is said to be
piecewise linear, or constant vector – see Fig. 5.10 on page 184.

If k > 2, we can alternatively construct the matrix W , whose columns are
the dominating eigenvectors w2, . . . ,wk. Treating the rows of this matrix as new
coordinates of the objects (nodes), we use a clustering algorithm to partition the
set V , [252].

5.2.5.3 NJW – spectral algorithm of Ng, Jordan & Weiss

When analysing the SM algorithm, [311], Ng, Jordan and Weiss applied in [269]
the second representation of the generalized eigenproblem, i.e they used the

176 5 Spectral methods in clustering and dimensionality reduction

equation (5.57) from Section 5.2.4. In this manner they obtained the algorithm
described in pseudocode 5.4. Two features distinguish this new procedure from
the SM algorithm:

(a) Instead of the Laplacian L its complement Ld = I − L is used. As a con-
sequence, the eigenvectors corresponding to the dominating (largest) eigen-
vectors of Ld are used. According to the authors, this simplifies and clarifies
theoretical analysis without changing the entries of these vectors. But it is
not a cosmetic difference only. Computing the dominating eigenpairs is eas-
ier than computing eigenpairs with lowest eigenvectors – see the methods
mentioned in Appendix B.3.3.1.

(b) More important difference concerns the way, in which the final results are
obtained. In many cases, particularly when S is a block-diagonal matrix, its
dominating eigenvectors are almost parallel to straight lines with different
slopes – see Fig. 5.7. Thus, the authors mentioned suggest that the spectral
coordinates determined in Step 3 of the algorithm should be projected
onto the unit k-dimensional unit sphere – see Step 4. These new points
are clustered next by a fast clustering algorithm, like k-means, FCM or
any of its variants described in Section 3.3.5. The k-means algorithm is
initialized26 according to the method (d) described in Sect. 3.1.3.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 2388 −0.115
−0.11

−0.105
−0.1

−0.095
−0.09

−0.085
−0.08

−0.2

−0.1

0

0.1

0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) (b)

Fig. 5.7. Spectral representation of three clusters: (a) matrix S representing the data,
(b): three dominating eigenvectors of the laplacian Ld.

Ng, Jordan and Weiss justify their algorithm as follows, [269]. Suppose that
the dataset consists of k = 3 clusters C1, C2, C3, and the objects are indexed
in such a way that the first |C1| elements belong to the group C1, the objects
numbered |C1|+1, . . . , |C2| belong to the second group, and remaining objects

26 Alternatively a method described by Fisher and Poland in [126] can be used.

5.2 Spectral data analysis 177

Algorithm 5.4 NJW – the algorithm designed by Ng, Jordan and Weiss, [269]

1: Compute the similarity matrix S using Gaussian kernel (5.1) and set sii = 0,
i = 1, . . . ,m.

2: Compute the degree matrix D = diag(S·e) and the complement Ld =
D−1/2SD−1/2.

3: Determine k largest eigenvalues of the matrix Ld. The corresponding eigenvectors
are the columns of the matrix W ∈ R

m×k

4: Create the matrix U by normalizing rows of the matrix W , i.e.

uij ← wij ·
(k∑

t=1

w2
it

)−1/2

(5.64)

5: Taking the rows of the matrix U as k-dimensional coordinates divide the set of
objects into k disjoint groups.

6: return partition of the set V into k groups.

belong to the third cluster. Let Ŝ be a block diagonal similarity matrix such
that ŝij > 0, if the objects i and j belong to the same group, and ŝij = 0,
if they belong to different groups. Such a matrix can be obtained when the
groups are sufficiently far away from each other. In this case the Laplacian Ld

is block-diagonal, i.e.

Ŝ =

Ŝ(1) 0 0

0 Ŝ(2) 0

0 0 Ŝ(3)

 , Ld =

Ld(1) 0 0
0 Ld(2) 0

0 0 Ld(3)

where Ld(i) = [D̂(i)]−1/2Ŝ(i)[D̂(i)]−1/2, Ŝ(i) is a positive submatrix (block) of

size |Ci| × |Ci|, and D̂(i) is the degree matrix of i-th block.
The spectrum of the matrix Ld is the union of the spectra of the blocks Ld(i).

Hence, the k = 3 dominating eigenvalues of the matrix Ld are the dominating

eigenvectors of each block λ
(i)
1 , i = 1, . . . , k. Let w(i) denote the dominating

eigenvector of the block Ld(i), i = 1, . . . , k. The columns of the matrix

W =

w(1) 0 0

0 w(2) 0
0 0 w(3)

 (5.65)

are eigenvectors of the Laplacian Ld. Moreover, if R ∈ Rk×k is an orthogonal
matrix (i.e. RRT = RTR = I), the columns of the matrix V = WR are also
eigenvectors of the Laplacian Ld. Hence, the matrix W computed in step 3 of
the NJW algorithm, can be written down as follows

W =

W (1)

W (2)

W (3)

 =

e|C1| 0 0
0 e|C2| 0
0 0 e|C3|

R

178 5 Spectral methods in clustering and dimensionality reduction

where W (i) ∈ R|Ci|×k, and e|Ci| stands for the unit vector of length |Ci|, i =
1, . . . , k. As a consequence we obtain the following lemma:

Lemma 5.2.2 Let S be a block-diagonal matrix consisting of k positive blocks
S(1), . . . , S(k). Then there exists k orthogonal vectors r1, . . . , rk such that the

rows w
(i)
j ∈W (i) of matrix W satisfy the condition

w
(i)
j = ri, j = 1, . . . ,m, i = 1, . . . , k (5.66)

�

In other words, there are k orthogonal vectors r1, . . . , rk, located on k-
dimensional unit sphere. The entries of these vectors determine spectral coordi-
nates of the data points – see step 4 of the NJW algorithm. Figure 5.8 illustrates
this property.

0.04
0.06

0.08
0.1

0.12
0.14

0.16

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2

−0.1

0

0.1

0.2

0.3

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 5.8. NJW algorithm applied to the data3 2 dataset: (a) Spectral coordinates of
the data, and (b) their projection onto the unit sphere

This property remains true if some regularity constraints are satisfied.
Namely:

(a) λk+1 < 1,
(b) there are no outliers in the clusters, and
(c) the clusters are compact, i.e. they cannot be split into meaningful sub-

clusters.

More rigorous description of these constraints, together with a justification for
their introduction, can be found in [269].

It is interesting that the similar observations with respect to the adjacency
matrix derived from a similarity matrix were forwarded by Wu et al., [367].
These authors noted that the nodes projected onto the adjacency eigenspace
exhibit an orthogonal line pattern and nodes from the same cluster are situated

5.2 Spectral data analysis 179

along the same line. This phenomenon was explained by referring to the graph
perturbation theory. As a result, the authors propose an even simpler clustering
algorithm.

5.2.5.4 DaSpec algorithm

The algorithms already described are based on a silent assumption that the
dominating eigenvectors of similarity matrix S (or a Laplacian derived from S)
contain the information allowing for the partition of the data. But this assump-
tion is not always true, particularly when the clusters are of different size and
shape. In such situations the eigenvectors suggested by these algorithms can
provide redundant information which results in wrong partitions.

In the previous section we noted, after the paper [269], that if a similarity
matrix is block-diagonal, then the optimal partition can be extracted from k
dominating eigenvectors of the matrix D−1/2SD−1/2. This statement remains
valid as long as the spectral gap λk − λk+1 is sufficiently large. The property
was analyzed in depth by Rebagliati and Verri in [292]. These authors suggest
that when the spectral gap is rather low, then m1 > k eigenvectors must be
computed. Here, m1 is a parameter chosen by a user in such a way that extended
spectral gap, λk−λm1+1 is sufficiently large. The final partition is obtained from
a k-dimensional subspace of the space spanned by these m1 eigenvectors. Other
methods oriented towards selecting important eigenvectors are described in [193,
Sect. 3.3].

An interesting solution to this problem was proposed by Shi, Belkin and
Yu in [312], where the algorithm DaSpec (Data Spectroscopic Clustering) is de-
scribed27. The number of chosen eigenvectors estimates the (unknown) number
of clusters in the data. This number depends on the value of the parameter ω,
and the authors suggest to choose this value as

ω =
95% quantile {q1, . . . , qm}√

95% quantile χ2
n

(5.67)

where qi denotes 5% quantile of the set of the values {‖xi − xj‖, j = 1, . . . ,m},
and χ2

n is the χ2 distribution with n degrees of freedom. Such a choice allows for
selecting ω as the smallest value that covers most data points (i.e. 95% of them)
having a certain number (5% of sample size) of neighbors within the “range” of
the kernel. Further, the authors state, [312, p. 3973], that

(. . .) this particular choice of ω works well in low-dimensional case.
For high-dimensional data generated from a lower-dimensional structure,
such as an n-manifold, the procedure usually leads to an ω that is too
small. We suggest starting with ω defined in (5.67) and trying some
neighboring values to see if the results are improved, maybe based on

27 A number of interesting remarks associating this approach with quantum mechanics
can be found in Martin’s note “Data Spectroscopy: Gaussian Kernels and Harmonic
Oscillators” available at https://charlesmartin14.wordpress.com/2012/10/.

180 5 Spectral methods in clustering and dimensionality reduction

some labeled data, expert opinions, data visualization or trade-off of the
between and within cluster distances.

The reasoning used in [312] generalizes the argumentation presented in Sect.
5.2.5.3. When the clusters are sufficiently separable, i.e. the distance between
any pair of the centroids is sufficiently large, then the representation (5.65) can
be applied. The authors of [312] assume that the dataset comes from a mixture

P =

k∑

j=1

πjPj

where Pj is the probability distribution according to which the elements of j-th
cluster were generated. If πj ≈ 1/k, and the sample is sufficiently large, the
clusters are well balanced. In such a situation cluster separability depends on
the parameters of the distributions Pj only, cf. Property 1 in [312]. On the other
hand, if some weights πj are significantly different from the other ones, then
the dominating eigenvalues of the blocks representing “small” groups are much
lower than the eigenvalues of the remaining blocks. Consequently, these small
eigenvalues are outside the set of k dominating eigenvectors of the similarity
matrix. But a characteristic feature of the dominating eigenvector of a single
block is that all its elements have the same sign. Because of some disturbances,
caused by the remaining components of the mixture, we assume that the elements
of an eigenvector w = (w1, . . . , wm)T are approximately (with precision ǫ) of fixed
sign if

min
1≤l≤m

wl > −ǫ, or max
1≤l≤m

wl < ǫ (5.68)

where ǫ =
(

max1≤l≤m |wl|
)
/m.

The eigenvectors that have no sign changes up to precision ǫ can be treated
as a generalization of the representation (5.65). In this situation we do not need
to use any clustering algorithm. If w(1), . . . ,w(k) are the vectors satisfying the
above condition, we can use the rule

(xi ∈ Cj)⇔ j = arg max
1≤l≤k

w
(l)
i (5.69)

In summary, DaSpec algorithm consists of few steps presented in pseudocode
5.5.

Such a reasoning can also be used in estimation of the parameters of the
mixture (3.42), see [312] for details.

5.2.6 Maximization of group connectivity

Minimization of the indices (5.11) or (5.39) is only one possible approach used
in spectral clustering. A cluster can also be viewed as a group of highly similar
objects, or – in terms of the similarity graph representing the data – as the set
of nodes with a high number of interconnections. Let

5.2 Spectral data analysis 181

Algorithm 5.5 Data spectroscopic clustering (DaSpec) algorithm, [312]

1: input data: The data X = {x1, . . . ,xm}, ω > 0 and the thresholds ǫj > 0.

2: Compute the elements of the similarity matrix, (Km)ij = 1
m

exp
(
− ‖xi−xj‖

2

2ω2

)
.

3: Determine the eigenvalues λ1, . . . , λm1 and eigenvectors w1, . . . ,wm1 , j =
1, . . . ,m1 < m of the matrix Km.

4: Among the set of eigenvectors obtained in previous step identify those that have
no sign changes up to precision ǫj (in terms of the definition (5.68)). Let k be the
number of the identified eigenvectors.

5: Assign the objects to appropriate groups by using the rule (5.69).

assoc(C) =
∑

xi,xj∈C

sij (5.70)

stand for the total weight of the connections among the objects from the set C.
Now, we are interested in the partition {C,C}, that maximizes the index

Massoc(C,C) = assoc(C) + assoc(C) (5.71)

By analogy to the minimization problem (5.16), we are looking now for a
matrix M satisfying the condition

χTMχ =
∑

(vi,vj)∈E

sij(χi + χj)
2 (5.72)

Here, we sum the weights of the links joining the nodes belonging to the same
group. A matrix M will satisfy the above condition if its elements are of the
form28

mij =

di if i = j
sij if i 6= j and (i, j) ∈ E

0 otherwise
(5.73)

By analogy to the combinatorial Laplacian with the elements lij , defined in
the equation (5.18), we will call the matrix M signless Laplacian of the graph G.
Indeed, for any indices i, j = 1, . . . ,m there holds mij = |lij |. Many properties
of the matrix M are studied in [85].

The matrix M can be written as

M = D + S = 2D − L (5.74)

and

max
χTMχ

χTχ

s.t. χi = ±1, i = 1, . . . ,m, χTχ = m

(5.75)

28 We assume thet G is a simple graph, i.e. sii = 0 for all i = 1, . . . ,m.

182 5 Spectral methods in clustering and dimensionality reduction

is a counterpart to the problem (5.20).
Liu [237] proves that all the entries of the eigenvector corresponding to the

maximal eigenvalue of the matrix M , are positive. This results from the following
facts: (a) all eigenvalues of M ∈ Rm×m are real numbers since M is symmetric,
and (b) since G is a connected graph, then M is an irreducible matrix, i.e. by
Perron-Frobenius theorem there exists exactly one eigenpair (λmax,w1), such
that λmax is the dominating eigenvalue and all the elements of w have the same
sign. Thus, the solution to the problem (5.75) is the eigenvector corresponding
to the second maximal eigenvalue of the matrix M .

Let λ2 be the Fiedler value of the Laplacian L, and let µ2 denote the second
maximal eigenvalue of the signless Laplacian M = 2D−L. Then, see [237, Sect.
3.3])

λ2
µ2
≈ cut(C,C)

Massoc(C,C)
(5.76)

Although the corresponding eigenvectors of the matrices L and M induce similar
partitions, the above observation offers additional information about the quality
of final partition.

Consider again the generalized eigenproblem (5.45). By substituting L =
2D −M we can state that if its solution is the pair (λ,w), then

(2D −M)w = λDw⇒Mw = (2− λ)Dw ⇒Mw = µDw (5.77)

where µ = 2 − λ. Thus, if the pair (λ,w) solves the generalized eigenproblem
(5.45), then the pair (2 − λ,w) is the solution to the generalized eigenproblem
Mw = µDw, [96, Sect. 3.2].

Analogously to the normalized Laplacian, we can define normalized signless
Laplacian

M = D−1/2MD−1/2 = I +D−1/2SD−1/2 (5.78)

Let (λ,w) be an eigenpair of the normalized Laplacian L = I −D−1/2SD−1/2.
As (I − D−1/2SD−1/2)w = λw, it follows that (1 − λ,w) is an eigenpair of
the matrix D−1/2SD−1/2. Similarly, if (µ,w) is an eigenpair of the normalized
signless Laplacian M, then the eigenpair of the matrix D−1/2SD−1/2 has the
form (µ − 1,w). In other words, knowing the eigenpair (α,w) of the matrix
D−1/2SD−1/2 we can determine the eigenpair (1−α,w) of normalized Laplacian
and the eigenpair (1 + α,w) of the normalized signless Laplacian.

In particular the following theorem is of interest

Theorem 5.2.4 [237] The cost of minimal normalized (balanced) cut can be
computed by solving the eigenproblem

Mw = µw (5.79)

If w2 is the eigenvector corresponding to the second maximal eigenvalue µ2 of
the matrix M , then the vector D−1/2w2 is the solution to the problem of mini-
mization of the normalized cut. �

5.2 Spectral data analysis 183

5.2.7 Some examples

Let us start with 2rings dataset. The similarity matrix, representing this set,
is shown in Fig. 5.9. We thresholded the values of this matrix setting sij = 0 if
sij < 0.02. As we see from the left panel, upon setting ω = 0.3 we obtain almost
block diagonal matrix. In this situation, the Fiedler vector of the Laqplacian L

is piecewise linear – see Fig. 5.10(a). Similarly, the points with the coordinates
determined by the entries of two dominating eigenvectors of the matrix Ld lie on
the straight lines each of which corresponds to appropriate group – Fig. 5.11(a).
Projection of these points onto the unit sphere (circle in this case) are shown in
Fig. 5.12(a).

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

nz = 7742
0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

nz = 14060

(a) (b)

Fig. 5.9. Similarity matrix representing the dataset 2rings for two different values of
the ω parameter: (a) ω = 0.3, (b) ω = 1.

When the parameter ω increases from 0.3 to 1.0, the block diagonal structure
of matrix S becomes less apparent. The Fiedler vector, computed for the new
version of the Laplacian L loses its previous linear nature, but still allows for
the correct classification of the objects. The nonlinear fragment depicted in Fig.
5.10(b) corresponds to the less dense group of objects located in the outer ring.
In effect, the points with the coordinates determined by two dominating eigen-
vectors of the matrix Ld form a richer geometric structure, shown in Fig. 5.11
(b). The lower right corner is occupied by the patterns of objects from the dense
cluster, while the cloud in the upper part of the figure represents the points from
the outer ring. Fig. 5.12(b) shows projection of these points onto the unit sphere.
Despite the loss of clear property, mentioned in section 5.2.5.3, it is still possible
to reconstruct faithfully group membership.

It is important to note, that the DaSpec algorithm from the previous section
deals pretty well with the subsets generated from a mixture of probability dis-

184 5 Spectral methods in clustering and dimensionality reduction

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) (b)

Fig. 5.10. Fiedler vector of the normalized Laplacian derived from the similarity
matrix: (a) ω = 0.3, (b) ω = 1.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

(a) (b)

Fig. 5.11. The points with the coordinates determined by two dominating eigenvectors
of the matrix Ld: (a) ω = 0.3, (b) ω = 1.

tributions, but it fails in the case of data displaying more complicated geometric
structure.

Consider now the iris dataset. Taking ω = 0.35 and using the NJW algorithm
we obtain the results shown in Fig. 5.13. For k = 3 we obtain the 3-dimensional
patterns of the 4-dimensional original set if objects – see left panel. Here the Iris
setosa group is denoted by red points, Iris Versicolor – as blue dots, and Iris
Virginica – as green dots. The resulting representation confirms the well known
fact that the flowers from Iris Setosa species form a group well separated from
two remaining groups. Projection of these 3-dimensional points onto the unit
sphere is depicted in Fig. 5.13(b). Again, Iris Setosa flowers occupy a separated
area of the sphere, while the remaining objects are arranged along a common
meridian.

By applying the k-means algorithm to the points located on the unit sphere
(see Step 5 of the NJW algorithm) we obtain the following confusion matrix

5.2 Spectral data analysis 185

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 5.12. Projection of the points from Figure 5.11 onto the unit sphere: (a) ω = 0.3,
(b) ω = 1.

−0.2

−0.15

−0.1

−0.05

0

−0.15
−0.1

−0.05
0

0.05
0.1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1

0

1

−1−0.8−0.6−0.4−0.200.20.40.60.81
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 5.13. Results obtained from the NJW algorithm applied to iris dataset: (a) spec-
tral coordinates determined for the original data, and (b) their projection onto the unit
sphere

Prediction True classification
Setosa Vericolour Virginica

Setosa 50 0 0
Vericolour 0 50 0
Virginica 0 14 36

Hence the accuracy of this grouping is 90.67%. On the other hand, by running
100 times the k-means algorithm on the original data we obtain the average
accuracy equal to 89.16%.

Various variants of the spectral clustering algorithm are discussed by von
Luxburg in [351]. She suggest the following instantiation of the algorithm:

186 5 Spectral methods in clustering and dimensionality reduction

(a) When the similarity matrix is computed by using the equation (5.1), we
obtain a densely connected graph. According to von Luxburg, at least at
the initial stage of the analysis, we should construct the so-called t-nearest
neighbor graph29. That is, a node vi is connected with node vj if vj is among
the t-nearest neighbors of vi. The value of t should be of the order of ln(m),
which ensures the connectivity of the resulting graph. Such a procedure
is specially useful when the groups are of different density. Further, the
resulting similarity matrix is a sparse matrix.

(b) The parameter ω used in the equation (5.1) should be approximately equal
to the average t-distance. This is illustrated for the 2spirals datasets. The
average distance among the elements of this set, computed for different values
of t, is depicted in Fig. 5.14(a). As the set consists of 190 objects, the best
value of t is topt = ⌈ln(190)⌉ = 6. This implies that ω ≈ 0.05. By choosing
this value we obtain spectral coordinates depicted on Fig. 5.14(b). As we
see, the groups represented in these coordinates are perfectly separated.

(c) Lastly, according to von Luxbrug, instead of symmetric Laplacian, (5.51)
the nonsymmetric matrix L = I−D−1S should be used.

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a) (b)

Fig. 5.14. Spectral analysis of the dataset 2spirals: (a) The average values of the
t-distance among the elements from this set computed for t ∈ {1, . . . , 9}. (b) Spectral
representation of the original objects obtained for ω = 0.05

5.2.8 Tuning the algorithm

Spectral clustering is successful if the similarity matrix is block-diagonal, [269].
In most cases this matrix is computed by using the Gaussian kernel (5.1) with
the parameter γ = 1/(2ω2). Unfortunately, there are no hints on how to choose
the proper value of this parameter. Worse, with a fixed value of ω, the similarity
between any pair of data points depends on their Euclidean distance mainly.

29 In general such a graph is a directed graph, as the neighborhood relationship is not
symmetric. See [351] for recipes of making this graph undirected.

5.2 Spectral data analysis 187

This means that in case of data with more complicated structure, it is hard to
model the data distribution adequately, what results in turn, in poor quality of
spectral clustering. Even if it is possible to use a single value of ω, in many cases
of real data its proper value must be chosen from a rather narrow range. Jia et
al. provide in [193, Sect. 3.1] a review of various approaches to the construction
of similarity measure.

In this section we discuss some simple methods allowing for adapting the
algorithm to these requirements, that is: how to choose the proper value of ω
and how to amplify the block-diagonal structure of the similarity matrix.

5.2.8.1 Choosing ω parameter

The effectiveness of spectral clustering algorithm heavily depends on the pa-
rameter ω, appearing in the equation (5.1). Ng, Jordan and Weiss proposed in
[269] an iterative approach relying upon choosing as ω a value from an inter-
val [ωmin, ωmax], such that the dispersion of a resulting partition – measured in
terms of the index (3.1) – is minimal. However, this approach requires multiple
runs of the algorithm with different values of ω. Moreover, we must compute the
eigenvectors of the Laplacian obtained for each value of ω.

A slightly more efficient method of choosing proper value of ω has been
proposed in [315]. It consists of four steps:

1. Compute, using the equation (5.1), the matrix S(ω) for several different
values of the parameter ω.

2. For each value of ω compute the sum Σ(ω) =
∑m

i=1

∑m
j=1 sij(ω).

3. Plot Σ(ω) against the values of ω in doubly logarithmic scale. The plot
should have two asymptotes: for ω → 0 and ω →∞.

4. Choose the value ω∗ from the middle of the linear part of the plot.

In case of the dataset rings30, depicted in Fig. 5.15(a), we obtain the plot
shown in Fig. 5.15(b). An approximated value of ω∗ lying in the middle of the
linear segment of the plot is ω∗ ≈ 0.2.

Another, rather expensive, method relies upon drawing a histogram of dis-
tances between pairs of objects from the set X . The presence of cluster structure
can be observed by noting local maxima on the plot – see Fig. 5.16. The first
maximum corresponds to the average intra-cluster distance and the other ones to
between-cluster distances. By choosing ω close to the first maximum, we assign
high values of similarity to the pairs of objects located within a common cluster.
Thus, the S matrix should have the block-diagonal structure. This method works
very well for clearly separable clusters, as illustrated in Fig. 5.16(a). The plot
represents pairwise distances between the objects from data6 2 dataset. In case
of data from figure 5.15(a), the histogram has a less clear structure. However,

30 It is available from the Web page http://www.dr-fischer.org/pub/blockamp/
index.html associated to the paper [126].

188 5 Spectral methods in clustering and dimensionality reduction

−2

−1

0

1

2

−1.5−1−0.500.511.522.5
−1.5

−1

−0.5

0

0.5

1

1.5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

(a) (b)

Fig. 5.15. (a): The set rings containing 600 points inside two interlocked rings. (b):
Doubly logarithmic plot of the values of Σ(ω) values obtained for different values of ω.
The blue dot denotes approximated value of the parameter ω.

even here one can see that the first maximum occurs in the vicinity of the point
ω = 0.2. A disadvantage of this method is that it cannot be automated.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

1400

1600

1800

(a) (b)

Fig. 5.16. Histogram of distances between the elements of two datasets: data6 2, and
(b): rings

In the local (contextual) method suggested, e.g., in [382] an individual ω
value is assigned to each datapoint. These authors assume that ωi is equal to
the distance between i-th datapoint and its t-th nearest neighbor; the suggested
value for this t is ⌊ln(m)⌋. This corresponds to our earlier suggestion, mentioned
in the point (b) in the previous section. In this case the equation (5.1) takes the
form

sij = exp

(
− ‖xi − xj‖2

ωiωj

)
(5.80)

5.2 Spectral data analysis 189

Fischer and Poland suggest in [126] another method: ωi is the value solving
the equation

m∑

j=1

exp

(
− ‖xi − xj‖2

2ωi

)
= τ (5.81)

where τ > 0 is a “neighborhood size” parameter; its suggested value is 2n+ 1.
According to these authors there should be two neighbors for each dimension,
plus one because a point is a neighbor of itself.

Let s̃ij stands for the similarity between a pair of objects. The similarity
matrix with such values is asymmetric. It can be symmetrized using the trans-
formation sij = min(s̃ij , s̃ji). Such a procedure is especially useful when the
clusters are of different densities. Another method is discussed in Section 5.2.5.4.

5.2.8.2 Amplifying the block-diagonal structure of a matrix

The choice of the “proper” value of ω is only one side of designing an efficient
clustering algorithm. Consider again the rings data from Fig. 5.15(a). By taking
ω = 0.2 we obtain the similarity matrix shown in Fig. 5.17(a). It is a band ma-
trix31. More precisely, it is a block-band matrix consisting of two band matrices
each of which represents a unique cluster. Fisher and Poland propose in [126] a
method of “expanding” the bands, i.e. the method of transforming a block-band
matrix to a block-diagonal form shown in Fig. 5.17(b).

Although the empirical results show the correctness of the clustering resulting
from the spectral decomposition of the block-band matrix, the structure of such
a matrix is usually observable only in a very narrow range of small values of the
parameter ω. For instance, in case of the rings data ω ∈ [0.13, 0.24].

Treating the graph as a resistive circuit, cf. Appendix D, the similarity be-
tween the nodes of the graph can be replaced by the conductivity (not to be
confused with a specific conductance equation (5.35) on p.162), i.e. the inverse
of resistance. Let, as before, L = [lij] be a combinatorial Laplacian. Let us define
the matrix G = [gij] as follows:

gij =

1 if i = 1, j = 1
0 if i = 1, j > 1
lij if i > 1

(5.82)

Except for its first row, this matrix is identical to the Laplacian L derived from
a similarity matrix S. However, while the Laplacian is singular, the matrix G is
invertible. Thus, the approximate value of conductivity between nodes i and j
is determined from the equation32

cij =
(
g−1
ii + g−1

jj − g−1
ij − g−1

ji

)−1
(5.83)

31 A ∈ R
m×m is called a band matrix if aij = 0 whenever |i− j| > w for some positive

integer w, called the bandwidth.
32 See [126] for details and full justification of this equation.

190 5 Spectral methods in clustering and dimensionality reduction

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 7786
0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 144852

(a) (b)

Fig. 5.17. (a): Block-band similarity matrix representing the data from Fig. 5.15(a)
The first blok consists of the band assigned to the data points numbered from 1 to 300.
The remaining data points are represented by the second band. (b): Block-diagonal
conductivity matrix C corresponding to the matrix S

Although the matrix C with the elements as above was derived from the original
Laplacian its block-diagonal nature is substantially amplified. This phenomenon
is illustrated in Fig. 5.17(b), where the conductance matrix, corresponding to
the similarity matrix from Fig. 5.17(a), has been shown.

5.3 Random walks on graphs

Spectral clustering has few important disadvantages. First, there is no precise
guidance on how to calculate the similarity between pairs of objects. Even the
simple recipe (5.1) requires careful choice of the parameter ω. Further, simi-
larity measures ignore almost completely the geometrical structure of the entire
dataset. Other disadvantages are pointed out by Nadler and Galun in [263]. They
note that the algorithms used for spectral clustering typically translate the local
information (expressed by the numbers sij describing the strength of relationship
between pairs of objects) into global information (expressed by the eigenvectors)
used as the basis for grouping. Using only local information does not allow, these
authors write, to treat the normalized cost NCut as a reliable measure of the
quality of partition. Moreover, even if a proper measure of similarity is used, the
first few eigenvectors of an appropriate matrix are not sufficient for the adequate
separation of groups in situations, in which these groups differ in size, density
and volume33.

Hence, we need another perspective. The generalized eigenproblem Ly =
λDy, introduced in Section 5.2.3, is equivalent to the problem D−1Ly = λy.

33 But see Section 5.2.5.4 for at least a partial remedy.

5.3 Random walks on graphs 191

But D−1L = D−1(D − S) = I−D−1S, where

P = D−1S (5.84)

is a row-stochastic matrix34, which can be treated as a transition matrix describ-
ing random walk on a graph associated to the similarity matrix S. Moreover, if
(λ,v) is an eigenpair of the matrix P , then (1−λ,v) is an eigenpair correspond-
ing to the matrix D−1L, i.e. it is a solution to the generalized eigenproblem.
Thus, a strictly technical modification of the Laplacian (used up to this moment
as a main vehicle for clustering) moves the problem of clustering into the do-
main of random walk. The parameters of this walk (see Section D.1.2), governed
by a reversible Markov chain with transition matrix (5.84), allow to assign new
meanings to the notion of cluster. In this section we discuss subsequently these
meanings. A review of various similarity measures, derived from the character-
istics of the random walk can be found, e.g., in [130] and [291]. An important
feature of this new approach is the ability to take into account a variety of con-
textual information, what is important e.g. in recommender systems [59], [130].

5.3.1 Random walk on undirected graph

The vast majority of the results obtained in this area concerns the undirected
graphs. The basic notions of random walk on graphs are given in Appendix D.

5.3.1.1 Simple interpretations

The row-stochastic matrix P from equation (5.84) characterizes a Markov chain.
Its elements pij represent the probability of moving from node i to node j.
Roughly speaking, the larger the transition probability between two nodes, the
greater the possibility that these two nodes belong to the same cluster. Below,
a more rigorous formalization of this observation is given.

The stationary (or equilibrium) distribution π of the Markov chain deter-
mined by the similarity matrix S has the elements

πi =
di∑m
j=1 dj

=
di

volV
(5.85)

This distribution admits two simple and important properties:

(a) πTP = πT,
(b) πipij = πjpji.

First property states that the distribution π does not change after one step (and
in consequence: after any number of steps). The second property states that the
random walk corresponds to a reversible Markov chain.

34 i.e.
∑m

j=1 pij = 1 for each row i = 1, . . . ,m.

192 5 Spectral methods in clustering and dimensionality reduction

Let PAB denote the probability of moving, in one step, from a state i ∈ A ⊂ V
to any state in the set B. Since the walker starts from a state i ∈ A, the initial
probability distribution has the form

pA(i) =

di∑
j∈A dj

if i ∈ A

0 otherwise

and the requested probability equals to35

PAB =
∑

j∈B

∑

i∈A

dipij
volA

=

∑
i∈A,j∈B sij

volA
=
cut(A,B)

volA
(5.86)

As a consequence, we obtain the following lemma:

Lemma 5.3.1 Let G be be an undirected and connected graph. Let {C,C} be a
partition of the set of nodes, and let PCC denotes the probability of leaving the
set of states C (and moving to the set C) defined in equation (5.86). Then:

(i) NCut(C,C) = PCC + PCC

(b) If G is an unweighted graph, i.e. S = A and volC ≤ 1
2volV , then

PCC = Φ(C) (5.87)

where Φ(C) denotes the conductance36 of the set C. �

This lemma offers a probabilistic interpretation of the quantities used to
measure the quality of a partition. Part (i) of this Lemma has been proved in
[252]. It states that if {C,C} is a partition with low normalized cut, then the two
probabilities PCC and PCC are also small. In other words, if the walker goes to a
state belonging to cluster C or C, then the probability of leaving this cluster is
small. To be more illustrative, imagine that the undirected graph is a city map:
the links of the graph represents streets and the nodes of this graph correspond
to the streets intersections. If the walker went to the quarter covered by many
local streets and only a few of them lead to other districts37, he will spend a lot
of time there before he gets out of there.

The second part of the Lemma, used e.g. in [323], provides a probabilistic
interpretation for the conductance of a “small” set (i.e. a set with small volume).

Let us note, that minimization of normalized cut must not lead to the re-
sult obtained by minimization of conductance. This fact is illustrated in Fig.
5.18, reproduced from [335]. Here, C1 = {1, 2, 3} is the cluster yielding the

35 Here we use the fact that pij = sij/di, and in the last equation we make use of the
definition (5.11).

36 We introduced this notion in Section 5.2.2, see eqn. (5.35). See also Appendix C.2.1.1.
37 An excellent example of this situation is the old town (medina) of Fez in Morocco.

There is almost nine thousand streets!

5.3 Random walks on graphs 193

Fig. 5.18. The cluster corresponding to low normalized cut (squares) vs. the one
corresponding to low conductance (triangles).

minimal normalized cut, while C2 = {4, . . . , 8}) is the set with minimal con-
ductance. One can check that Ncut(C1, C1) = 1/3 and Φ(C2) = 3/13. The
conductance Φ(C1) = 1/4, is slightly greater that Φ(C2). And the normalized
cut Ncut(C2, C2) = (3/13+3/19) exceeds by nearly 17% the cost Ncut(C1, C1).

The next lemma, presented in [252], characterizes another important and
interesting property of the spectral grouping algorithm.

Lemma 5.3.2 Let P = D−1S be a row stochastic matrix of size m and let
∆ = {C1, . . . , Ck} be a partition of the set of indices I = {1, . . . ,m}. The matrix
P has k piecewise constant (different from zero) eigenvectors if and only if the
sums

σis =
∑

j∈Cs

pij (5.88)

are fixed for each i ∈ Cs, and the matrix R with elements

rss′ =
∑

i∈Cs

σis′ =
∑

i∈Cs

∑

j∈Cs′

pij (5.89)

is nonsingular. �

The matrix P , satisfying conditions of this Lemma, is said to be a block-
stochastic matrix. This lemma is an elegant generalization of the results pre-
sented in [311] and [195]. The authors of these papers pointed out that if G
consists of k connected components, then minimization of the normalized cuts
leads to correct results. As can be seen, this condition can be generalized. Fur-
ther, this lemma establishes a connection to the so-called lumpability38, what
allows for the efficient reduction of the size of states of the Markov chain. This
idea is yet extended by E, Li and Vanden-Eijnden [116], as well as by Lafon and
Lee [224].

38 See e.g. J.G. Kemeny, J.L. Snell, Finite Markov Chains (Second ed.). Springer-
Verlag, 1976.

194 5 Spectral methods in clustering and dimensionality reduction

But the lumpability is only one side of the coin. It is important that the
eigenvalues of the matrix R corresponding to piecewise linear eigenvectors must
be greater than the remaining m-k eigenvalues of the original matrix P . Meilă
and Shi [252] call these remaining eigenvalues spurious eigenvalues. If these
spurious eigenvalues are much smaller than the first k eigenvalues – we can
automatically determine the number of clusters39. Unfortunately, it is hard to
define in advance the gap between the “real” and the spurious eigenvalues. We
can only say that [252]:

(a) If the matrix R is close to the unit matrix, then its eigenvalues are close to 1.
(b) If the rows of the matrix P are sufficiently mutually similar, then the

spurious eigenvalues are close to zero.

In fact, the situation is not so clear. In Fig. 5.19, the distribution of eigenvalues
of the normalized Laplacian D−1/2AD−1/2, computed for the sets 2rings and
2spirals are depicted (these values are sorted in ascending order). As we see,
it is hard to distinguish between the subsequent values. Further, the eigenvalues
usually depend on the ω parameter, and this, in turn, significantly affects the
quality of the induced partition.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

Fig. 5.19. Eigenvalues of the symmetric Laplacian computed for the sets 2rings and
2spirals. Left panel corresponds to the set 2rings and value σ2 = 1, while the right
– to the set 2spirals and the value σ2 = 0.007.

5.3.1.2 Clustering according to the nodes potential

We shall now refer to the metaphor, based on the theory of electric networks. By
a resistive circuit we understand a connected and undirected graph G = (V,E),
in which we assign to each edge {u, v} a resistance Ruv > 0; equivalently, the
conductance of an edge {u, v} is Cuv = 1/Ruv. If Vu denotes the voltage at node
u, then according to Ohm’s Law the current Iuv that flows from u to v is equal
to
39 A similar idea was suggested by Shi, Belkin and Yu in [312] – see Sect. 5.2.5.4.

5.3 Random walks on graphs 195

Iuv =
Vu − Vv
Ruv

= (Vu − Vv)Cuv

By Kirchhoff’s First Law, the total current flowing out of any node is equal to
the sum of currents flowing into this node. If N(u) stands for the set of neighbors
of the node u un graph G, then this law can be written as

∑

v∈N(u)

Iv =
∑

v∈N(u)

(Vv − Vu)Cvu

or, equivalently

Vu =
∑

v∈N(u)

puvVv (5.90)

where

puv =
Cuv∑

w∈N(u)Cuw
(5.91)

Assuming that puv = 0 if {u, v} /∈ E, we build a stochastic matrix with the
elements puv. This shows, that the resistive circuit is equivalent to a Markov
chain, described by the transition matrix P , or to the random walk on the graph
G with the probability puv of moving from node u to node v. A nice description
of this idea can be found in [110].

To force the current flow in such a network we must connect the battery
to two nodes. Let us number the nodes of the graph in such a way that the
battery poles are connected to the nodes numbered 1 and 2, and assume that
V1 = 1, V2 = 0. Under such a setting we obtain the system of equations

V1 = 1

V2 = 0

Vi =

m∑

j=1

pijVj

(5.92)

By denoting

V =

V3
...
Vm

 , T =

p33 . . . p3m
...

...
pm3 . . . pmm

 , C =

p31
...

pm1

 (5.93)

we rewrite this system in the matrix form

V = TV + C

The unique solution to this equation is

V = (I− T)−1C (5.94)

196 5 Spectral methods in clustering and dimensionality reduction

A reader should note that (I−T)−1 is nothing else but the so-called fundamental
matrix of an absorbing Markov chain, see e.g. [188].

The earlier equation can be written in another, equivalent, form by using the
notations introduced in Section 5.1. Remembering that pij = sij/di and noting
that pii = 0 for any i = 1, . . . ,m, we obtain

L̃ = I− T =

d3 −s34 . . . −s3m
−s43 d4 . . . −s4m

...
...

−sm3 −sm4 . . . dm

 , C̃ =

s31
...
sm1

 (5.95)

The matrix L̃ is the Laplacian of the graph, from which the rows and columns
corresponding to the absorbing states, i.e. the states numbered 1 and 2, are
deleted. Similarly, C̃ is the weight vector describing connections between the
node numbered 1 and the remaining nodes, numbered 3, 4, . . . ,m. Under such a
setting the Kirchhoff equation takes the form L̃V = C̃. Thus

V = L̃−1C̃ (5.96)

Wu and Huberman noted in [364] that – since the connections among the
nodes belonging to the same cluster are more intense than the connections among
the nodes belonging to different clusters – the voltages assigned to the nodes
from a single cluster are close to each other. This way we obtain new definition
of cluster: it is a set of nodes with similar voltages. The only problem is how to
attach properly the battery to the circuit, since the poles of the battery must be
attached to nodes from separated clusters.

Although the time needed to solve the system (5.96) is of the order O(m3),
Wu and Huberman propose a method of the order O(m+m). We present it in the
pseudocode 5.6. The summing operation from line 4 refers to the last equation
in (5.92), which has the form

Vi =
1

di

∑

j∈N(i)

sijVj

This algorithm radically simplifies when G is an unweighted graph, since then
sij = 1 for all j ∈ N(i). Then

Vi =
1

di

∑

j∈N(i)

Vj

Figure 5.20 illustrates the effect of the algorithm applied to the karate social
network. The poles of the battery are attached to the nodes numbered 12 and 30.
To partition the values of Vj , j ∈ {1, . . . , 34}\{12, 30}, the k-means algorithm
with k = 2 was used.

5.3 Random walks on graphs 197

Algorithm 5.6 An algorithm for solving the system of equations (5.96)

1: Initialization. k = 0, V
(0)
1 = 1, V

(0)
j = 0, j = 2, . . . ,m. Compute nodes degree di,

i = 1, . . . ,m
2: for k = 1 to kmax do

3: for i = 3 to m do

4: V
(k)
i =

1

di

∑

j∈N(i)

sijV
(k−1)
j

5: end for

6: end for

0 5 10 15 20 25 30 35
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5
6 7

8

9

10

11

13 14 15

16

17

18
19

20

21

22

23

24

25 26

27

28
29

31

32

33

34
30

12

(a) (b)

Fig. 5.20. Clustering the nodes of karate network by using Wu and Huberman algo-
rithm [364]. (a): Voltages of the nodes in ascending order. For better visualization the
values 0 and 1 are removed. (b): Partition of the nodes obtained by k-means algorithm
applied to these voltages. The poles of the battery were attached to the nodes marked
by large markers.

5.3.1.3 Resistance distance

One of important parameters, describing random walk, is the so-called hitting
time hij defined as the expected number of steps before, starting from node i,
the walker will visit the node j. The expected time for the random walk to travel
from node i to node j and then back is called the commute time, cij = hij +hji.
Various methods allowing for the efficient computation of these parameters are
discussed in Appendix D.1.2.2, while the application of these notions in clustering
is presented – for instance – in the papers [130] and [288].

It is important to note that the commute time corresponds to the so-called
resistance distance rij , [68]. This last notion refers to the efficient resistance40

between nodes i and j of the graph representing electric circuit. More precisely,

cij = 2mrij

This means that both cij and
√
cij are distances. It should be noted that the

commute distance cij decreases when the number of paths joining the nodes i

40 Consult Section 1.3.4 of [110] for precise definition of efficient resistance.

198 5 Spectral methods in clustering and dimensionality reduction

and j increases and when the length of these paths decreases. This is an impor-
tant property that distinguishes resistance distance from geodesic distance41.
Knowing the matrix C = [cij] we can design a counterpart of the k-means algo-
rithm.

A careful analysis of the properties of the resistance distance was carried
out by von Luxburg, Radl and Hein in [353]. These authors proved that when
the size of the graph increases, the resistance distance loses its discriminative
properties, since for large graphs cij ≈ 1/di+1/dj. A review of different heuristics
meant to rectify this defect is given in Section 4 of [353]. Another simple and
quite efficient solution was proposed by Brand in [59] who proposed a cosine
similarity measure42.

An interesting application of the resistance distance in the analysis of empiri-
cal graphs is described in [59] and [130]. In these papers a method of constructing
the graph G, representing a relational database is proposed. This can be of use
in designing recommender systems and in analysis of text documents.

5.3.1.4 Grouping according to absorption time

Grouping according to the nodes potential, discussed in Sect. 5.3.1.2, is a simple
method, but it has one important drawback: we must attach the battery to the
right nodes. An interesting and more effective method relies upon treating a node
s as the absorbing state of the Markov chain, corresponding to a given graph.
Next, we assign to its neighborhood all the nodes that are absorbed by this state
in shortest time. This method is an example of local clustering, discussed later.
Yet we mention it here, as it uses one more parameter characterizing random
walk on undirected graph.

Let P be a transition matrix, characterizing random walk on the graph G,
and let s stands for the node, to which we want to assign its natural neighbors.
According to the convention mentioned above, we treat the node s as the ab-
sorbing state. To simplify the notation, we re-number the nodes of the graph in
such a way that the node s is number 1. Next, the matrix P is replaced by the
matrix P̂ with the elements

p̃ij =

1 if i = j = 1

0 if i = 1, j = 2, . . . ,m

pij for i = 2, . . . ,m, j = 1, . . . , n

(5.97)

In other words, this matrix has the canonical form

P̃ =

[
1 0
r Q

]
(5.98)

where r = (p21 . . . pm1)T, Q is the matrix obtained by removing first row and
first column from the matrix P , and 0 is the row vector consisting of m−1 zeros.

41 i.e. the shortest path joining the nodes i and j.
42 Recall that a similar measure is used in information retrieval to quantify similarity

between a pair of documents.

5.3 Random walks on graphs 199

The average number of steps, before the walker starting from any node i ∈
{2, . . . , n} will end up in the state s, equals to the appropriate element of the
vector 43

t = (I−Q)−1e =

∞∑

k=0

Qke (5.99)

Direct application of this formula is expensive for large graphs. An approx-
imate algorithm for determining the components of the vector t is described in
the paper [272]. We sketch below the details of this method.

Let us refer to the spectral decomposition of the matrix Qk

Qk =

m−1∑

i=1

λki viw
T

i

where λi is i-th eigenvalue of the matrix Q, and vi (resp. wi) is the corresponding
right (resp. left) eigenvector of this matrix.
Next, let

Q̃ = D̃1/2QD̃−1/2

be a symmetric matrix similar to the matrix Q, and D̃ be the generalized degree
matrix from which s-th row and column were deleted. The matrices Q and Q̃
have identical eigenvalues and the left and right eigenvectors of matrix Q can be
computed from the eigenvectors ui of matrix Q̃, cf. Lemma B.3.3 on p. 235, as
follows

vi = D̃−1/2ui, wi = D̃1/2ui

Using these observations we rearrange the equation (5.99) to the form

t =

∞∑

k=0

Qke

= e +
∞∑

k=1

n−1∑

i=1

λki viw
T

ie

= e +

∞∑

k=1

(n−1∑

i=1

λki civi

)

(5.100)

where ci =
∑

j wij =
∑

j

√
djuij .

If the spectral gap is sufficiently large, that is, the quotients |λi/λ1| are small
numbers, the above equation can be approximated by the following expression

43 The matrix N = I − Q is so-called fundamental matrix of an absorbing Markov
chain. Its element nij is the expected number of times that the walker will be in
state sj before absorption when it starts in si. More details concerning this problem
can be found e.g. in [110] or [188].

200 5 Spectral methods in clustering and dimensionality reduction

t̂ = e +

∞∑

k=1

λk1

(
c1v1 +

n−1∑

i=2

(
ci
λi
λ1

)k
vi

)

≈ e + c1v1

∞∑

k=1

λk1

= e + c1
λ1

1− λ1
v1

(5.101)

The authors of the paper [272] noted that the vectors t and t̂ are highly
correlated even if the spectral gap is close to 1. Thus, we can use t̂ instead of the
original vector t. This phenomenon is illustrated on Fig. 5.21. Here we computed,
for the karate network, the mean-square between the difference of the vectors
t̂ and t. It was assumed that the walker starts from subsequent nodes – Fig.
5.21(a). On panel (b) the specific values of the vector t̂ are compared with the
theoretical values; it was assumed there that the walker starts from the node 34.
Note high correlation between these values.

0 5 10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

(a) (b)

Fig. 5.21. Agreement between theoretical and approximate values of the absorption
times. (a): Mean-square error obtained for the cases when the walker starts his walk
from different nodes in karate network. (b) The absorption times computed for 33
nodes for the case when the walker starts from the node #32; theoretical values are
denoted by ◦, and approximated values by ∗.

The vector v1 from the equation (5.101) is referred to as the local Fiedler
vector, or Dirichlet-Fiedler vector. It is the eigenvector corresponding to the
maximal eigenvalue of the matrix Q, obtained by removing from P̃ the rows and
columns, corresponding to the absorbing states. Equivalently, it is the vector of
the form v1 = D̃−1/2u1, where u1 is the dominating eigenvector of the symmetric
matrix Q̃ = D̃1/2QD̃−1/2, and D̃ is the degree matrix spanned over the set of
non-absorbing states. The eigenvalues of Q̃ are called Dirichlet eigenvalues. They
satisfy the condition, see [75, Sect. 8.4], −1 < λi ≤ 1. More observations on the
role of Dirichlet eigenvalues and eigenvectors can be found in [78]

5.3 Random walks on graphs 201

5.3.2 Application of the random walk idea: the MCL algorithm

The MCL, Markov CLustering algorithm, was proposed by van Dongen, who
described the main idea of the algorithm in his Ph. D. thesis [343]. A short
description of the algorithm can be found in [345], and its application in bioin-
formatics is presented in [118].

The readers interested in source code (in C++ and Pearl) can find
many interesting remarks on author’s webpage http://micans.org/mcl/.
Other implementations, in Java and MATLAB, are available from http://

www.arbylon.net/projects/. We should also mention the mailing list http:

//listserver.ebi.ac.uk/pipermail/mcl-users/, where the users of the pro-
gram exchange their suggestions and observations.

Since the algorithm is extremely simple and scalable, it has found many ap-
plications in bioinformatics [118], [303], social network analysis [301], linguistics
[109], and so on.

5.3.2.1 Basic version of the algorithm

The essence of the MCL algorithm is the following observation: if a random
walker is placed in a node located in a dense area of a sparse graph G then
she/he is able to leave that area after visiting the majority of nodes from this
area (see Lemma 5.3.1 from p. 192). Obviously, the random walking idea as
such, does not allow for extracting the clusters. After having walked sufficiently
long, the walker will visit all the nodes of a (connected) graph. Thus, in the MCL

algorithm, after few steps, the most important (probable) paths are identified,
and later on the walker considers only these paths. The entire algorithm consists
of three steps:

(i) We add the unit matrix to the adjacency matrix; such an operation corre-
sponds to adding self-loops to each of the nodes. Next, we normalize each
column of the resulting matrix. In this way a column stochastic matrix M
is obtained. The element mij of this matrix corresponds to the probability
of moving from the state (node) j to i in one time step.

(ii) Next, the walker makes k steps, which results in replacing the matrix M
by the new matrix Mk; here k is a small integer, typically k = 2. The
replacement M ←Mk is called expansion.

(iii) The second important operator is that of inflation, Γr, where r > 0 is the
so-called inflation coefficient; usually r ≈ 1.5− 2. The inflation relies upon:
(a) powering each element of the matrix M , and (b) normalization of the
resulting column of the matrix M , i.e.

(ΓrM)ij =
mr

ij∑n
i=1m

r
ij

(5.102)

Here (ΓrM)ij stands for the element belonging to the i-th row and j-th col-
umn of the matrix ΓrM . In effect, the matrix ΓrM is also column-stochastic.

202 5 Spectral methods in clustering and dimensionality reduction

(iv) The steps (ii) and (iii) are repeated until M becomes idempotent, i.e.
M = M ·M .

It is important that the above procedure converges very fast (after 10 − 20
repetitions) to the idempotent matrix M . The resulting matrix is sparse: only
few of its rows contain non-zero elements; these elements are used to reconstruct
clusters in the graph. Granularity of the clusters depends on the parameter r.
For small values of r we obtain a small number of large clusters, while for large
values of r – a much larger number of smaller clusters is obtained. More of
technical details can be found in [343, Sect. 10.4].

The convergence of the algorithm can be improved by introducing “pruning”
of the small probabilities. That is, if mr

ij < ǫ, where ǫ is a small number, then
we set mr

ij = 0. Such a method works well if the diameters of the clusters are
rather small. Other variants of pruning are discussed in [343, p. 136].

Below, we summarize the MCL algorithm in the form of the pseudocode 5.7.

Algorithm 5.7 MCL algorithm

Require: A – adjacency matrix, r > 0 – inflation coefficient
1: A← A + I // add self-loops
2: M ← AD−1 // prepare column-stochastic matrix
3: while (M is not idempotent) do

4: M ← expand(M)
5: M ← inflate(M, r)
6: M ← prune(M)
7: end while

8: return Matrix M

The functions expand, inflate and prune mentioned in lines 4-6 of the pseu-
docode realize the corresponding operations, described before.

The matrix M , constructed in step 2 of the algorithm, defines a stochastic
flow. Each column mj describes the outflow of the probability from the j-th
node, and the j-th row defines inflow to the node j. Thus, the MCL process can
be considered in terms of expansion and reduction of the flow. During expan-
sion, flows from a given node to other nodes occur: these nodes are attainable in
various ways from the given node. Multiple repetitions of expansion only result
in that the columns of matrix M will tend to the dominant eigenvector of matrix
M = (M+I)D−1. The introduction of inflation prevents this process by increas-
ing the flow between nodes belonging to a common cluster and reducing the
flow between nodes from different clusters. Finally, at the end of the iterations,
nodes that belong to a single cluster will direct the flow to one of the nodes,
called attractor of this cluster. If vj is such an attractor, the elements of j-th
row occupying positions corresponding to the nodes from this cluster are close
to 1. An important property of the algorithm is that it does not require prior
knowledge about the number of clusters.

5.3 Random walks on graphs 203

5.3.2.2 Disadvantages of the algorithm

The MCL algorithm – as all other algorithms – is not perfect. In case of large
graphs the iterations become time consuming, and even worse – many small
clusters are produced.

As noted by Satuluri and Parthasarathy in [301], at the initial iterations the
matrix M is rather dense and the expansion requires O(

∑m
j=1 d

2
j) operations

(recall that m is the number of nodes in the graph). In later iterations, when
pruning comes into play, this number decreases to O(mη2), where η stands for
the average number of non-zero elements in the columns of M . At the initial
iterations, η is of order 103, which entails difficulties. Figure 5.22 illustrates the
changes in the density of matrix M in subsequent steps (here the network karate

was used).

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Fig. 5.22. The density of matrix M (expressed in percent) of the karate network
in subsequent iterations of the MCL algorithm. Initially the matrix has 156 non-zero
elements, i.e. 13.4948% of its total elements. Matrix density grows rapidly to 100%,
and after 9 iterations it drops sharply

Satuluri and Parthasarathy note another disadvantage, called results frag-
mentation. For instance, in the case of a protein-protein network consisting of
4,741 nodes, they obtained 1416 clusters! Varying the inflation coefficient r only
slightly improved the granulation of clusters.

To overcome these disadvantages, Satuluri presents in [301], [303], and [302]
some modifications. In the first two papers a “compactification” is proposed. It
relies upon “gluing” together nodes of the graph, applying MCL to the reduced
graph, and next applying the inverse transformation to get the final results. A
similar approach has been used in the GRACLUS, [101], and METIS, [199], algo-
rithms. In the third paper, [302], a sparsification of the entire graph was pro-
posed; it is performed by identifying and removing redundant edges. A reader
interested in details is referred to the original papers.

204 5 Spectral methods in clustering and dimensionality reduction

Another feature of the MCL algorithm was observed and posted by Lars Juhl
Jensen44. Namely, the algorithm may produce clusters, containing the nodes,
which do not communicate with each other in a given graph. To illustrate this
phenomenon, he constructed a small graph depicted in Fig. 5.23. The algorithm
generates (for a wide range of values of the inflation coefficient) five clusters
including the so-called unnatural cluster {X,Y }. Suprisingly, if we remove some
the nodes, e.g. J and K, correct clustering is obtained.

Fig. 5.23. Unnatural clusters produced by the MCL algorithm. If the inflation coefficient
r ∈ [1.734, 3.418], the algorithm returns five clusters: {A,B}, {C,D}, {E,F}, {G,H}
and {X, Y }. The last cluster is factitious (unnatural).

A serious consequence of this phenomenon is described in the paper pub-
lished in Nature45 in which an analysis of a protein-protein network consisting
of 2,708 nodes was reported. Using the MCL algorithm, the authors extracted
547 clusters (protein complexes). Jensen and his Ph.D. student observed that
9 clusters among these obtained represent disjoint subgraphs46. It seems that
Dongen noted this problem: his program is equipped with an option allowing to
delete such clusters47.

5.4 Local methods

The algorithms discussed in this chapter can be used for extraction of clusters
in datasets as well as for cutting graphs into appropriate number of subgraphs.
In this last case, apart from high computational complexity, the algorithms in
question have at least two disadvantages, [226]. First, the spectral mapping not
always produces the best cut. Second, in the case of large empirical graphs, un-
balanced clusters are frequently returned. For this reason, especially in the case

44 See “Analysis: Markov clustering and the case of the unnatural clusters”, http:

//larsjuhljensen.wordpress.com/2010/03/01/.
45 . N.J. Krogan et al. Global landscape of protein complexes in the yeast Saccha-

romyces cerevisiae. Nature, Vol 440—30 March 2006—DOI:10.1038/nature04670.
46 See “Analysis: Markov clustering and the case of the unsupported protein com-

plexes”, http://larsjuhljensen.wordpress.com/2010/03/03/
47 See his post http://listserver.ebi.ac.uk/pipermail/mcl-users/2010-January/

000072.html.

5.4 Local methods 205

of large graphs, a different approach has been proposed: starting with a small
but consistent set of nodes, called seed , we search for the “natural neighbors”
forming a “community” (or a collection of such communities), [16]. Here, by the
community we understand a set of nodes C ⊂ V of low conductance (computed
as in the equation (5.35)). All the nodes forming such a community communicate
with the seed (or its subset) also included in this community. Low conductance
means that only a small fraction of edges with one end in the community have
the second end outside this community. In other words, the nodes belonging to
the community C communicate with each other more often than with nodes
outside C. A review of alternative methods of community identification can be
found e.g. in [129], [141], [267] and [268]. Interestingly, the low value of the con-
ductance Φ(C) does not imply high intensity of connections between the nodes
from C. Hence, the local methods can be used, first of all in graph clustering,
but we can also try to apply such methods in the search for a set of objects
sufficiently similar to a given object xi ∈ X.

The first formal solution to the problem defined above was given by Spielnan
and Teng in [321] and [323]. Their algorithm, called Nibble, allows to identify a
set C together with the node v ∈ V in time proportional to the size of this set.

The algorithms allowing to extract local communities are important for at
least two reasons. First, they appear to be very effective, as they search only the
“interesting” part of the graph (and the remaining subgraph, spanned over the
nodes from the set C is ignored). Second, these algorithms allow for identifying
small subsets existing inside very large graphs. Andersen, Lang and Chung in a
series of papers [13]-[16] proposed an interesting modification of Nibble, called
PageRank-Nibble.

One of characteristic features of empirical graphs is small average distance
between any two nodes48, which means a rapid increase (with distance) in the
number of neighbors of the nodes forming a seed. This does not preclude the
existence of communities that communicate with members of other communities
only through a small number of connections (and therefore the cost of cutting
such a community is small). It is usually assumed that the nodes forming a
seed represents a unique community. Lang and Andersen proved in [16], that if
there exists in a graph G, for a given seed, a well defined community, then their
algorithm allows for extracting it. Let us repeat once again: the advantage of
the local approach is that the time complexity of executing these procedures is
proportional to the size of the generated clusters, and not – as in the case in
conventional methods – to the size of the input graph, [14].

Below we present only a brief outline of the local clustering method; an in-
terested reader is referred to the literature cited above. Important applications
of this approach in bioinformatics are presented in the paper [241]. It is worth
noting that the approach outlined here is not the only possible way to deter-
mine the natural neighborhood of some nodes of an empirical network. Methods
developed in the context of social networks provide alternative solutions.

48 See e.g. Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks.
Nature 393(6684), 1998, 409-10. DOI:10.1038/30918

206 5 Spectral methods in clustering and dimensionality reduction

Remark 5.4.1 The following considerations apply to unweighted graphs. Thus
we will use in this section the adjacency matrix A instead of the similarity matrix
S. The off-diagonal elements of A take the values of 0 or 1. �

5.4.1 The Nibble algorithm

The essence of the algorithm is to propose an order in which a walker will visit
the nodes of an undirected graph G = (V,E). At a first glance, it would seem
that we should consider the nodes closest to the starting node u∗ ∈ V . But
most of empirical graphs, like social networks, or protein-protein networks, have
small diameter49, and such a solution becomes ineffective. Spielman and Tang
proposed in [323] to order the nodes according to the probability of visiting the
nodes during a short random walk starting from the node u∗.

Let A be the adjacency matrix of the graph G. If the graph contains self-
loops, then aii = zi if there are zi such loops in node i. Let D be the degree
matrix and let

P̂ = (AD−1 + I)/2 (5.103)

be the column stochastic matrix, representing lazy random walk. In other words,
if there are no self-loops and a random walker is in node u, then in the next
time steps she/he will stay, with the probability 1/2, in this node or with the
probability 1/(2 · |N(u)|) she/he will move to a neighbor node from the set N(u).
Such a construction of the matrix P guarantees that the random walk has the
stationary distribution π (consult Section 5.3.1.1). Moreover, P is diagonally
dominant, i.e. p̂ii ≥

∑
j 6=i |p̂ij | for each row i.

The Nibble algorithm refers to the property mentioned in Lemma 5.3.1
on p. 192, which states that if S is a set with small conductance, then the
probability of leaving it by the random walker is also small. Careful analysis, pre-
sented in [323], leads to a simple algorithm, which can be summarized as follows:

(a) Suppose that a random walk starts from a node u∗ ∈ V . This implies the
following starting probability distribution, defined on the set of states (nodes
of the graph)

p(0)(v) = χu∗(v) =

{
1 if v = u∗

0 otherwise
(5.104)

(b) If, after the k-th step of random walk, the probability distribution over the

set of states is p(k), then in the next step it has the form p(k+1) = P̂p(k).
(c) To improve the convergence of the algorithm, Spielman and Teng introduced

censored walk, in which the original probability vector p(k+1) is approxi-
mated by

49 A reader is referred to the Appendix C where basic notions from graph theory are
summarized.

5.4 Local methods 207

[p(k+1)]ǫ(v) =

{
p(k+1)(v) if p(k+1)(v) ≥ ǫdv
0 otherwise

(5.105)

where ǫ is a small number.
From the formal standpoint, [p(k+1)]ǫ is no longer a stochastic vector, but it
was proved in [323], that such an approximation provides a correct cut, as
well (and, what is important: reduces the time of the computations).

(d) For a given vector p we define the ordering function q : V → R of the form

q(v) =
pv
dv

(5.106)

Let o stands for the ordering of the nodes {1, . . . ,m} such that

q(vo(1)) ≥ q(vo(2)) ≥ · · · ≥ q(vo(m))

and let Sp
j denotes the set of nodes of the form

Sp
j = {vo(1), . . . , vo(j)} (5.107)

Algorithm 5.8 Nibble – algorithm for local identification of clusters, [323]

1: Input data: Undirected graph G = (V,E), starting node u∗, maximum value of
conductance, φ, integer b.

2: declare maximal number of steps, kmax and compute the value ǫ.
3: set r0 = χu∗

4: for k = 1, . . . , kmax do

5: p(k) = P̂ r(k−1)

6: r(k) = [p(k)]ǫ

7: if (∃j ∈ V) :
(
Φ(Sp(k)

j) ≤ φ
)
∧
(

2b ≤ vol (Sp(k)

j) ≤ 5
6
vol (V)

)
then

8: return the set C = Sp(k)

j and STOP
9: end if

10: end for

11: return C = ∅

The essence of the algorithm is to determine the sequence of vectors

p(k)) =

{
χu∗ if k = 0

Pr(k−1) otherwise

r(k) = [p(k)]ǫ

(5.108)

while for every k ∈ {1, . . . , kmax} we check whether among the collection of the

sets Sp(k)

j , there is one for which the conductance Φ(Sp(k)

j) does not exceed the

value φ, and its volume is not too small and not too big50.

50 Spielman i Teng add one more condition, but, to save simplicity of presentation, we
omit it.

208 5 Spectral methods in clustering and dimensionality reduction

The Nibble algorithm with the parameters G, u∗, φ, b has the following
properties, [323]:

(a) If it returns a nonempty set C ⊂ V , then: (a1) Φ(C) ≤ φ, hence C is a set
with small conductance, and (a2) volC ≤ 5

6vol (V), i.e. C is not “too big”
(its volume is only a fraction of the total volume of the graph). Moreover,
volC ≥ 2b, i.e. C is not to small (nor too isolated) as the nodes in this set
have not fewer than 2b neighbors.

(b) If Z is a set of nodes satisfying the constraints

vol (Z) ≤ 2

3
vol (V), Φ(S) ≤ f1(φ)

then there exists its subset Z ′, such that vol (Z ′) ≥ 1
2vol (S). Further,

if Nibble(G, v, φ, b) returns a nonempty set C, where v ∈ Z ′, then
vol (Z ∩ Z ′) ≥ 2b−1.

A reader interested in implementational details is referred to the original
report [323]. We should mention that, in agreement with its name, the algorithm
can be used for clustering the nodes of the graph: after we obtain a nonempty set
C ⊂ V , we delete it from V , together with the corresponding edges and repeat
the whole procedure on the resulting diminished graph.

Although simple, the algorithm requires specification of many parameters.
Moreover, the starting node u∗ may lie outside the set C. The modification
described in next section has no such disadvantages.

5.4.2 The PageRank-Nibble algorithm

The PageRank-Nibble algorithm uses the so-called personalized PageRank vec-
tor instead of the stochastic vector p from the previous section. We will denote
PageRank as p(s, α), where α ∈ (0, 1), called dumping factor, is a parameter,
and s is the vector of the form (5.104), or, more generally,

s(v) =

{
1/|S| if v ∈ S
0 otherwise

(5.109)

where S is a subset of nodes. More information on PageRank is provided in
Appendix E.

Instead of making kmax steps during a random walk, and verifying the stoping
conditions at each step, in this algorithm the vector p(s, α), is computed first,

and next a family of sets S
p(s,α)
j , j = 1, 2, . . . is searched in order to identify the

set with minimal conductance. This set represents a natural cluster, containing
the nodes specified in the vector s.

PageRank vector is nothing but a stationary distribution of a Markov chain
characterized by the transition matrix

5.4 Local methods 209

P = (1− α)P ′ + αseT (5.110)

where P ′ is the column-stochastic matrix defined in (5.103), s is the initial
distribution of states, and α ∈ (0, 1) is the dumping factor: P → P ′ if α→ 0. The
matrix P describes a random walk, in which the walker decides, with probability
(1 − α), on standard random walk, and with probability α she/he returns to a
node specified in the set S (and thereafter continues the random walk). Thus, α
is a probability of discouragement or irritation: the irritated walker starts a new
random walk from a node randomly chosen from the set S.

In the standard definition, [274], the vector s is the uniform probability distri-
bution over the set of nodes V . Otherwise, we talk about personalized PageRank
vector, since the distribution s favors certain nodes with respect to the others.
In the sequel, we will consider personalized distributions (5.109); in particular, S
may contain only one node. The vector p represents the stationary distribution.
Hence, if P has the form (5.110), then it follows from the equation p = Pp that
this vector satisfies the condition (see Remark E.1.1)

p(s, α) = αs + (1− α)Pp(s, α) (5.111)

whence

p(s, α) = α
(
I− (1− α)P

)−1

s (5.112)

Using the approximation (I − X)−1 =
∑∞

j=0X
j, the above equation can be

rewritten in the form51

p(s, α) = αs + α

∞∑

j=0

(1− α)jP js (5.113)

Other methods of computing personalized PageRank p(s, α) are mentioned in
Appendix E.2.

Having the vector p(s, α) we determine – like in the Nibble algorithm – the

sets S
p(s,α)
j , and we search for the set of minimal conductance. If the graph

contains a well defined structure, the algorithm will find it – see [13, Sect. 6],
where the full version of the algorithm, together with its properties, is described.

Example 5.4.1 Consider the graph karate, representing social relationships
among members of a karate club, [380] – see Fig. 5.24. Black square shows the
starting node #7. Grey squares denote members of the set Sp

15 with minimal con-
ductance. Left panel of Fig. 5.25 shows the values of the vector q (corresponding
to the ordering function q from the previous section) for the original numbering
of the nodes, and right panel – the values of conductance Φ(Sj). Note that the

51 Note that P j can be computed iteratively as P j−1P , j = 2, 3, Since P is a
sparse matrix, such a multiplication can be organized efficiently even in case of large
graphs.

210 5 Spectral methods in clustering and dimensionality reduction

support of the vector q is whole set of nodes V . Note also the first local mini-
mum on the right panel; it represents the set {5, 6, 7, 11, 17}, constituting a well
defined micro-community. �

Fig. 5.24. Partition of the set of nodes of karate network into two groups. Black
square denotes the starting node used to compute the personalized PageRank. Grey
squares denote natural neighbors of the black square.

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.25. The values of the ordering function q (left panel), and the values of con-
ductance (right panel) computed for the karate network

The local methods presented in this section may be of use in many situations.
Some applications of this idea are mentioned below:

5.5 Semisupervised learning 211

– Data provenance52. Systems for tracking the origin and transformation of
historical data, which create and process huge graphs. There is no need,
however, to examine the entire graph; it is important to select a subset of
relevant nodes only53.

– Macropol, Can and Singh showed in [241] a modification of the
PageRank-Nibble algorithm. It allows for the detection of natural neigh-
bors as well as for partition of the set of nodes into (possibly overlapping)
groups.

– Determination of influential pages, i.e. an indication of the webpages affect-
ing the rank of other pages, along with an indication of the intensity of the
impact, [11].

– The authors of [79] proposed a distance measure based on the order induced
by the function q(v). This allows for designing the advanced clustering algo-
rithms.

– In [15] a method of identification of the densest part of a given graph is
described. This idea can be used e.g. in bioinformatics to identify complex
patterns in massive graphs54.

– Adaptation of the local approach to the analysis of directed graphs is pro-
posed in [14]. This can be used e.g. in topic mining55. Discovering themati-
cally related document groups in massive document collections can be viewed
as identifying a subgraph of a huge graph. The subgraph represents a well
defined topic. Local methods allow to solve the scalability problem success-
fully.

5.5 Semisupervised learning

The formalism from the previous section has found interesting application is
semisupervised learning. We now present two algorithms, suggested by Dengyong
Zhou, [392].

The problem of semisupervised learning is as follows: let X = {x1, . . . ,xm}
be a set of n-dimensional observations and L = {−1, 0,+1} be the set of labels.
We assume that each observation belongs to one of the two classes, and the
knowledge about observations’ membership is represented by the vector y, that
is yi = −1 if it is known that the observation xi belongs to class C−1, yi = 1 if xi

52 See e.g. P. Buneman, S. Khanna, W.-C. Tan: Data provenance: Some basic issues.
Proc. of 20th Conf. Foundations of Software Technology and Theoretical Computer
Science, FST TCS 2000, New Delhi, India. Springer 2000, pp. 87-93.

53 Por. P. Macko, D. Margo, M. Seltzer: Local clustering in provenance graphs. Proc. of
the 22nd ACM Int. Conf. on Information & Knowledge Management. ACM, 2013,
pp. 835-840.

54 B. Saha, et al. Dense subgraphs with restrictions and applications to gene annotation
graphs. In Research in Computational Molecular Biology, Springer 2010, pp. 456-472

55 S.E.G. Villarreal, R.F. Brena: Topic mining based on graph local clustering. In: I.
Batyrshin, G. Sidorov, eds. Advances in Soft Computing. LNCS 7095, Springer 2011,
pp 201-212.

212 5 Spectral methods in clustering and dimensionality reduction

belongs to class C+1, and yi = 0 denotes lack of knowledge about membership of
xi in a particular group. Suppose the objects (observations) are numbered such
that we know correct membership for the first l objects, i.e. yi ∈ {−1,+1} for
i = 1, . . . , l and yj = 0 for j = l+1, . . . ,m. The problem consists in assigning
labels to the objects numbered j = l+1, . . . ,m.

When the relationships among the objects are symmetric, we can use the
algorithm described in pseudocode 5.9. Elements of the similarity matrix S can
be computed by using formula (5.1). We can also use the k nearest neighbors
rule and set sij = 1 if xj belongs to the neighborhood and sij = 0 otherwise. It
is important that – like in the NJW algorithm from Section 5.2.5.3 – sii = 0 for
i = 1, . . . ,m.

The matrix M = I−αLd from step 3 of the algorithm is diagonally dominant,
what means that: (a) it is invertible, and (b) there is a fast procedure allowing
to find a vector f satisfying the equation M ·f = y, [322].

Algorithm 5.9 Spectral algorithm for semisupervised learning in undirected
graphs, [392]

Require: Undirected graph G = (X,E), set of L = {−1, 0, 1}, the vector y with
elements yi ∈ L, i = 1, . . . ,m.

1: Create similarity matrix S with entries sij , computed, e.g. by using equation (5.1)
if i 6= j and sii = 0. Let D = diag(S·e) be the degree matrix, corresponding to S.

2: Determine the complement of symmetric Laplacian, Ld = D−1/2SD1/2.
3: Compute the vector f = (I− αLd)−1y, where α ∈ (0, 1) is a parameter.
4: return labels yi = sgn(fi).

Example 5.5.1 To illustrate the effectiveness of the algorithm, three hundred
two-dimensional objects were randomly generated. It was assumed that the first
120 objects belong to the class C−1. Their coordinates are random values obtained
from the normal distribution: xi,1 ∼ 2 ·N(0, 1), xi,2 = 3 ·N(0, 1). The remaining
180 objects belong to the class C+1; their coordinates are Gaussian deviates:
xi,1 ∼ 11+3.5·N(0, 1), xi,2 = 10+3.5·N(0, 1). The elements of similarity matrix
were computed according to the equation (5.1), and σ2 = 2. It was assumed that
in each group 10% of objects have known label. The results of the algorithm are
shown in Fig. 5.5. Circles denote objects with wrong labels. Only two such cases
were noted. �

The second algorithm, 5.10, was introduced to classify the Web pages. The
pages refer to other pages, hence such a collection is modeled by a directed
graph. Construction of a Markov chain with carefully chosen transition matrix
allows to model the random walk in such a graph. Replacing Laplacian from the
algorithm 5.9 by its directed counterpart makes it possible to design an efficient
classifier. Numerical experiments described in [391] show that the entries of the
vector y are estimated more successfully than those obtained by using a näıve
symmetrization of the entire graph.

5.5 Semisupervised learning 213

−5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

Fig. 5.26. Results of the algorithm 5.9. The members of C−1 group are marked by
blue dots, and the members of C+1 – by green squares. Larger squares/circles denote
the objects with labels known in advance, while red triangles – objects with wrong
labels.

Algorithm 5.10 Spectral algorithm for semisupervised learning in directed
graphs, [391]

Require: Directed graph G = (X,E), set of labels L = {−1, 0, 1}, vector y with
entries yi ∈ L, i = 1, . . . , m.

1: Determine the transition matrix P characterizing random walk having unique sta-
tionary distribution π. Such a matrix can be computed by using the formula (D.16).

2: Compute the complement of the normalized directed Laplacian Θ =
(Π1/2PΠ−1/2 + Π−1/2P TΠ1/2)/2, where Π = diag(π).

3: Determine the vector f = (I− αΘ)−1y, where α ∈ (0, 1) is a parameter.
4: return labels yi = sgn(fi).

Let us note that both algorithms can be used for hierarchical bisection of the
set X if its elements are classified into more than two groups.

Another simple and efficient algorithm for semisupervised learning was pro-
posed by Xu, Li and Schuurmans in [372]. Their algorithm solves the problems
formulated as follows

max vTAv
s.t. ‖v‖ = 1, Bv = c

(5.114)

where A is a positively semi-defined matrix, and B is a matrix representing some
constraints, e.g. known memberships of some objects. If

A = D−1/2(D − S)D−1/2

then, using the algorithm 5.11, it is possible to minimize the Rayleigh quotient
with additional constraints.

The ideas described above were used in [393] to design a simple and (rather)
universal clustering algorithm, which can be used if the objects are characterized
by the feature vectors. The essence of the algorithm relies upon the ordering of
objects as the inner structure of the set is discovered through the analysis of

214 5 Spectral methods in clustering and dimensionality reduction

Algorithm 5.11 Minimization of the product vTAv under the constraints ‖v‖ =
1, Bv = c, [372]

Require: ǫ – precision
1: t = 0
2: P = I−BT(BBT)−1B
3: n0 = BT(BBT)−1c, γ =

√
1− ‖n0‖2, v0 = γPAn0/‖PAn0‖+ n0

4: repeat

5: ut+1 = γPAvt/‖PAvt‖
6: vt+1 = ut+1 + n0

7: t = t + 1;
8: until ‖vt − vt−1‖ ≤ ǫ
9: return vector v.

its representatives. More precisely, let X = {x1, . . . ,xm} be the set of objects
ordered in such a way that the first l objects have known membership in the
classes, i.e.

yij =

{
1 if xi belongs to j-th class

0 otherwise
(5.115)

Y is a matrix of size m × k with the entries yij . Let S be a similarity
matrix with the elements computed according to the equation (5.1) and let
S = D−1/2SD−1/2 be its symmetric counterpart. Further, let

F (t+1) = αSF (t) + (1 − α)Y , t = 0, 1, . . . (5.116)

where F (0) = Y . It was shown in [393] that limt→∞ F (t) = F ∗ = (I − αS)−1Y .
The objects xl+1, . . . ,xm are assigned to the class, for which fij is maximal, i.e.
xi belongs to the class j∗, if j∗ = arg max1≤j≤k fij .

Complete analysis of this algorithm is available in [395], and its further
extensions and modifications can be found in [61]. These modifications allow for:

(a) identification of the most representative elements in each cluster,
(b) identification of unusual objects in the whole collection, and
(c) identification of outstanding elements in each group.

5.6 Some improvements and other methods

In what follows, we discuss selected alternative approaches to spectral clustering.

5.6.1 Stochastic clustering

Meyer and Wessell proposed in [256] an intriguing algorithm, exploiting the
properties of doubly stochastic matrices, see Lemma 2.4.1(e).

5.6 Some improvements and other methods 215

Consider an ideal situation, where the matrix K = XTX , introduced in Sect.
2.4.2.1, is block diagonal and consists of k blocks. Normalizing its rows and
columns we obtain a doubly stochastic matrix P of the form

P =

P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . Pk

All of its blocks Pj , j = 1, . . . , k, are doubly stochastic matrices of size nj × nj

with positive entries. The eigenvalues of these blocks are positive real numbers,
and exactly one, maximal eigenvalue, equals to 1. Since the spectrum of the
matrix P is the union of the spectra of individual blocks, σ(P) = σ(P1) ∪ · · · ∪
σ(Pk), then it contains exactly k eigenvalues which are equal to 1.

In practice, though, the kernel matrix K is not block diagonal. Yet we can
expect, that after reordering its rows and columns, it will take the form

K =

K11 ǫ12 . . . ǫ1k
ǫ21 K22 . . . ǫ2k
...

...
. . .

...
ǫk1 ǫk2 . . . Kkk

 (5.117)

Here, Kjj is a square matrix of size nj×nj, with rather high similarities, and ǫij
is a matrix of size ni ×nj , whose elements do not exceed the minimal similarity
value contained in the matrix Kii. In other words, maxk,l(ǫij)kl ≤ mins,t(Kii)st.
We call such a matrix K almost block-diagonal.

The doubly stochastic matrix P , derived from the matrix K, is also almost
block-diagonal56. We can expect, that among the eigenvalues 1 = λ1 ≥ λ2 ≥
· · · ≥ λm, of the matrix P , the k largest eigenvalues are much greater than the
remaining eigenvalues. Deuflhard and Weber57 introduced the notion of Perron
gap, defined as

∆P = max
j=1,...,m−1

(λj − λj+1) (5.118)

It is the maximum gap between two successive eigenvalues. If the maximum
difference occurs between the values λj∗ and λj∗+1, then the set {λ1, . . . , λj∗}
is said to be Perron cluster in matrix P , and the number j∗ is treated as an
estimate of the true number of clusters in the set X. The bigger the value ∆P ,
the more clearer structure in the dataset exists. If the same value of ∆P was
noted for several pairs of eigenvalues, then as j∗ we take the lowest value of the
index j.

These notions are are illustrated in Fig. 5.27. Here, matrix K consists of 3
blocks. In case (b) zeros were replaced by the the random values 0.1 · rand(), and
then the similarity matrix was transformed into a doubly stochastic matrix. In
both cases ∆P = λ3 − λ4, so the Perron cluster is {λ1, λ2, λ3}.
56 In the Markov chain nomenclature such a matrix is referred to as nearly uncoupled.
57 See papers [11] and [12], mentioned in [256].

216 5 Spectral methods in clustering and dimensionality reduction

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b)

Fig. 5.27. Distribution of eigenvalues of: (a) block diagonal, and (b) almost block-
diagonal doubly stochastic matrix. In case (a) λ1 = λ2 = λ3 = 1, while in case (b)
λ1 = 1, λ2, λ3 > 0.7, λ4 < 0.2.

Inspired by these facts, Meyer and Wessell proposed in [256] a simple algo-
rithm presented below as pseudocode 5.12.

Algorithm 5.12 Stochastic clustering algorithm, [256]

Require: A set of data X; τ – a user defined parameter (integer)
Ensure: Assignment of the objects from X to disjoint groups
1: Create matrix K representing similarities between objects
2: Transform K to a doubly stochastic matrix P
3: Determine the eigenvalues of the matrix P and evaluate the number of clusters as

the size of the Peron cluster
4: Initialize randomly a vector x0.
5: For the successive values t = 0, 1, . . . compute the vectors xT

t+1 = xT

tP . At each
step, sort the values of the vector xt+1 and, guided by these values, divide the set X
into k disjoint sets. If the resulting partition does not change through τ subsequent
steps, then STOP.

6: return the partition.

This algorithm can be used either to cluster a given dataset, or to perform
a more advanced analysis involving the aggregation of clusterings, obtained by
running various algorithms. This last problem is discussed in Sect. 2.5.5.

Example 5.6.1 Contrary to “standard” clustering algorithms, the algorithm
5.12 copes quite well with the data which are not linearly separable. Fig. 5.28(a)
presents the set of 350 observations coming from three different groups. Simi-
larity between the observations was computed by using the Gaussian kernel with
the parameter γ = 2.5. It was assumed that the values kij < 0.1 are replaced by
zeros. The doubly stochastic matrix P , presented in Fig. 5.28(b), was computed
by using the fast algorithm, described in [207]. Since the matrix is block-diagonal,
it has three eigenvalues equal to 1. The 50 largest eigenvalues are displayed (in

5.6 Some improvements and other methods 217

descending order) in Fig. 5.28(c), and Fig. 5.28(d) shows the gaps between suc-
cessive eigenvalues. Thus, the maximal gap criterion cannot be applied in this
case. But the ordered values of the vector x, computed in step 5 of the algorithm,
suggest existence of 3 groups: for objects belonging to first group these values
are in the interval [0.4590, 0.4871], the objects from the second group have the
values xi = 0.4978, and in case of the objects from the third group, these values
belong to the interval [0.5166, 0.5190]. These values are shown on Fig. 5.28(e).
The final partition, obtained by analyzing the vector x is shown in Fig. 5.28(f).

Fig. 5.29 illustrates the application of this idea to a more complicated 2-
dimensional dataset. �

5.6.2 Application of Singular Value Decomposition

A serious drawback of spectral methods is constituted by the necessity to com-
pute square similarity matrix which may in practice be very large. Shu et al.
[314], proposed a method overcoming this problem and relying upon computing
singular vectors of a rectangular matrix, characterizing the elements of the set
X . Such a procedure was possible because of using a specific similarity measure.

In this approach, X is a collection of m documents, which are described by
the matrix T = (t1, . . . , tm)T of size m×n. The element tij denotes the weight of
j-th term in i-th document (see e.g. [29] or [246] for an explanation of the term-
documents representation). Similarity between a two documents is expressed as
the cosine of the angle between the vectors representing these documents. If
we assume that the vectors are normalized, then the similarity of the documents
equals to sij = tTi tj , see Eqn. (2.13) on p. 31. Thus, the matrix S can be expressed
as the product

S = TT T (5.119)

The degree matrix takes the form

D = diag
(
T (T Te)

)
(5.120)

where the j-th element of the row w = T Te is computed as wj =
∑m

i=1 tij .
This observation allows for saving the space and time of computations, as T is
a sparse matrix. Instead of determination of the square similarity matrix and
summation of its rows, as done in the typical spectral approach, we sum the
elements in each column of matrix T , and the resulting vector is multiplied by
the matrix T .

The normalized Laplacian is computed now as follows

L = I−D−1/2SD−1/2

= I−D−1/2TT TD−1/2

= I− CCT

(5.121)

where C stands for the matrix

218 5 Spectral methods in clustering and dimensionality reduction

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 6416

(a) (b)

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c) (d)

0 50 100 150 200 250 300 350
0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

(e) (f)

Fig. 5.28. Illustration of results produced by the stochastic clustering algorithm (a):
Input data, (b): matrix P , (c) 50 maximal eigenvalues of the matrix P , (d) the values
of successive gaps λj − λj+1, (e) the components of the vector x obtained in Set 5 of
the algorithm (in ascending order), (f) partition of the set X according to the values
of the vector x

C = D−1/2T (5.122)

Also here we save space and time.
Consider now the SVD factorization of the matrix C

5.6 Some improvements and other methods 219

856 858 860 862 864 866 868 870
4114

4115

4116

4117

4118

4119

4120

4121

4122

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) (b)

0 50 100 150 200 250 300 350
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

856 858 860 862 864 866 868 870
4114

4115

4116

4117

4118

4119

4120

4121

4122

(c) (d)

Fig. 5.29. Results obtained with the stochastic clustering algorithm. (a): Data set,
(b): the values of successive gaps λj−λj+1, (c) the components of the vector x obtained
in Set 5 of the algorithm (in ascending order), (d) partition of the set X according to
the values of the vector x

C = UΣV T

where U and V are orthogonal matrices of the sizes, respectively, m ×m, and
n× n, and Σ is an m× n rectangular diagonal matrix. With this factorization,
the Laplacian L takes the form

L = U(I−ΣΣT)U−1 (5.123)

The matrix Λ = I−ΣΣT is a diagonal matrix, hence UΛU−1 defines the spectral
decomposition of the Laplacian L. Thus, the columns of matrix U , which are
singular vectors of the matrix C, are identical to the eigenvectors of the Lapla-
cian. They can be determined using the power method discussed in [143, Ch.7.3]
(see Theorem 7.3.1).

5.6.3 The PIC algorithm

This is a surprising algorithm, described by Lin and Cohen in [234]. The authors
refer to the consequences of mixing time. They consider the matrix P = D−1S

220 5 Spectral methods in clustering and dimensionality reduction

and they trace the rate with which the elements of the dominating eigenvector
converge to the stationary form. In our earlier considerations we noted that this
is useless! But while tracing the rate, with which elements of this vector stabilize,
the authors use this information to partition the dataset58. More precisely, using
the power method, the dominating eigenvector is computed as

x(t) = Px(t−1) = P tx(0), t = 1, 2, . . .

Using the property (B.11) from p. 238, this equation can be rewritten as

x(t) = P tx(0) =

m∑

i=1

λtiui(v
T

ix
(0))

=

m∑

i=0

ciλ
t
iui

(5.124)

where ui, vi stand for, respectively, right and left eigenvector of the matrix P ,
corresponding to the eigenvalue λi, while ci = vT

ix
(0). If the eigenvalues are

numbered in descending order, 1 = λ1 ≥ λ2, . . . , λm we state that

x(t)

c1λ1
=

1

c1
x(t) = u1 +

c2
c1
λt2u2 + · · ·+ cm

c1
λtmum (5.125)

Hence, the rate of convergence of the vector x(t) to the dominating eigenvector
u1 depends on the powered values λti. We already know that if the dataset ad-
mits a clear structure, consisting of k clusters, then λi ≈ 1 for i = 2, . . . , k, cf.
[252]. Thus, after a few initial iterations, the vector x(t) converges to the linear
combination of k dominant eigenvectors, and the remaining components of the
sum (5.125) vanish at the rate lower than λtk+1. When these residual elements

become sufficiently small, the vector x(t) tends to u1 with an almost fixed rate.
The algorithm inspired by these observations was termed Power Iteration Clus-
tering, or PIC for short. It is illustrated by pseudocode 5.13, and few steps of
this algorithm are illustrated in Fig. 5.30.

5.6.4 The PRC algorithm

Avrachenkov et al. proposed in [26] PageRank based Clustering, PRC, designed
for clustering hypertext documents. The algorithm uses the natural information
available, i.e. the links between the documents. So, the algorithm can be applied
for clustering nodes of a directed graph.

Clustering consists here of two steps. At the first step the most influential
nodes are identified. These nodes are treated as candidates for cluster centers.
In the second step, the remaining nodes of the graph are assigned to appropriate
clusters.
58 We must mention here a related paper by H. Zhou, D. Woodruff: Clustering via ma-

trix powering. In: Proc. of the 23-rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems. ACM, 2004. pp. 136-142.

5.6 Some improvements and other methods 221

Algorithm 5.13 The PIC algorithm, [234]

Require: Similarity matrix S, precision ǫ
1: Compute the stochastic matrix P = (diag(Se))−1S
2: Set t = 0, and initialize the vector x(t)

3: repeat

4: x(t+1) = Px
(t)

‖Px(t)‖1

5: δ(t+1) = ‖x(t+1) − x(t)‖1
6: t = t + 1
7: until |δ(t+1) − δ(t)| ≤ ǫ
8: use k-means algorithm on elements of x(t+1) to get cluster assignments C1, . . . , Ck

Ensure: clusters C1, . . . , Ck

0 100 200 300 400 500 600 700
0.0365

0.037

0.0375

0.038

0.0385

0.039

0.0395

0.04

(a) (b)

0 100 200 300 400 500 600 700
0.037

0.0372

0.0374

0.0376

0.0378

0.038

0.0382

0.0384

0.0386

0 100 200 300 400 500 600 700
0.0373

0.0374

0.0375

0.0376

0.0377

0.0378

0.0379

0.038

0.0381

0.0382

(c) (d)

Fig. 5.30. PIC algorithm in action: (a) The dataset consisting of k = 4 clusters. The
following figures illustrate the elements of the dominant eigenvector after: (b) – 500,
(c) – 1000, (d) – 1500 iterations

The choice of groups representatives is performed in two steps, as well. The
first step consistes in determining the set of the candidates, while the choice of
proper candidates is done in the second step. The candidates are the nodes with

222 5 Spectral methods in clustering and dimensionality reduction

high authority and simultaneously pointing at to many other pages59. Hence,
several alternative methods can be used to create such a collection: (a) sorting
the nodes in descending order with respect to the value of their PageRank,
(b) sorting the nodes in descending order with respect to the product of their
PageRank and Reverse PageRank, (c) sorting the nodes in descending order with
respect to the HITS values [205]. Lastly, the nodes can be sorted in descending
ordered with respect to their degrees. This last variant is problematic due to the
ease of attaching spamming links.

Having a list of candidates, the proper nodes are selected by verifying if they
belong to the same group. If so, the node with lower rank is removed. Finally, the
node assignment is performed. The authors suggest to use Personalized PageR-
ank vector to do this. Numerical experiments confirming the effectiveness of this
procedure are reported in [26].

5.7 Dimensionality reduction methods

By dimensionality reduction we understand the following task: given a set X
of n-dimensional observations, characterized by the (real-valued) feature vec-
tors x1, . . . ,xm, create a set of n′-dimensional representatives60 y1, . . . ,ym with
coordinates in space Rn′

, n′ << n.
A classical method of dimensionality reduction is Principal Component Anal-

ysis (PCA). It consists in designing a linear mapping φ from Rn to Rn′

, such
that the total variability of the patterns yi = φ(xi), measured in term of the
sum of variances of these patterns, is maximal. This is realized by using spectral
decomposition of the symmetric and positive defined covariance matrix of size
n× n.

The requirement of linearity is a serious limitation of this simple method.
Another, also simple and popular method is Multidimensional Scaling61. If dXij
denotes the distance between the points xi,xj ∈ X , then we search for a set
Y containing n′-dimensional points whose distances dYij reflect the original dis-
tances. This leads to the optimization problem

min
y1,...,ym

∑

i6=j

(dXij − dYij)

In practice this problem is instantiated in many different ways, see e.g. [164,
Sect. 14.8]. Also here the solution is provided by the eigenvectors of an appro-
priate matrix. The disadvantage of this approach results from the nature of the
Euclidean distance, which can faithfully reflect only local data structure.

59 See e.g. D. Gibson, J. Kleinberg and P. Raghavan: Inferring Web communities from
link topology, Proc. of the 9th ACM Conf. on Hypertext and Hypermedia, p. 225-234,
ACM New York 1998.

60 i.e. the vectors saving most vital characteristic of the whole collection
61 I. Borg, P. Groenen: Modern Multidimensional Scaling: Theory and Applications

(2nd ed.). New York: Springer-Verlag 2005.

5.7 Dimensionality reduction methods 223

Both these methods lose their appeal when the data are located near, or on,
a low-dimensional manifold which, is situated in the high dimensional space of
observations. Such a simplified situation is illustrated in Fig. 5.31. In case (a)
each observation is described by a pair of coordinates (xi1, xi2), but in fact the
data are located on the curve forming the letter S, i.e. these data are placed on
one-dimensional manifold embedded into 2-dimensional Euclidean space. Simi-
larly, case (b) presents a set of observations which can be characterized by only
two coordinates.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 −0.5 0 0.5 1
0

2
4

6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a) (b)

Fig. 5.31. Examples of the observations located on: (a) one-dimensional and (b) two-
dimensional

Nonlinear methods of data reduction are designed to cope with such situ-
ations. Briefly speaking, they rely on “smart flatening” of the manifold, which
results in the reduction of the number of coordinates necessary for precise char-
acterization of each observation. A review of different approaches used in the so
stated problem is given by Hastie, Tibshirani and Friedman in Section 14.9 of
their monograph [164], and by Lee and Verleysen in [229]. A detailed discussion
of these methods is beyond the scope of this book. We mention only that one of
the simplest and most popular methods is Local Linear Embedding (LLE), devel-
oped by Roweis and Saul, and described shortly in [296]; technical details62 can
be found in [304]. The substantial difference between results returned by PCA
and LLE is shown in Fig. 5.32. Panel (a) shows how particular observations are
projected onto the first principal component. Note that the projection of distant
original points are very close in the reduced space. In case (b), the projections
reflect relationships among original data.

Another method, using spectral properties is the so-called diffusion mapping
proposed by Coifman and Lafon, [83]. Suppose that S is a positive-semidefinite
matrix with nonnegative entries. Let D = diag(Se) be the degree matrix com-
puted from this S. The matrix

62 See also http://www.cs.nyu.edu/~roweis/lle/ for a description and source code.

224 5 Spectral methods in clustering and dimensionality reduction

−5 0 5 10

0

2

4

6

8

10

12

14

16

18

−4 −3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

12

14

16

18

(a) (b)

Fig. 5.32. A qualitative difference between PCA and LLE: (a) the projection obtained
by PCA does not reflect the distances between observations in the original space (b)
the projections produced by LLE properly represent the distances

P = D−1S (5.126)

is a row-stochastic matrix, and the matrix P (t) = P t with elements p
(t)
ij shows

the probability of moving from state i to state j in t time steps. The diffusion
distance between the states i, j is defined as [83]

D2
t (vi, vl) =

m∑

l=1

(
p
(t)
il − p

(t)
lj

)2

πl
(5.127)

where πl, l = 1, . . . ,m are components of the stationary distribution derived
from P .

By spectral decomposition of matrix P we obtain

pij =

m∑

l=1

λlψilφjl

where λl stands for the l-th eigenvalue of the matrix P , φjl – denotes the j-th
component of the left eigenvector of matrix P , and ψil – denotes the i-th compo-
nent of l-th right eigenvector of this matrix. After some simple transformations
we obtain

D2
t (vi, vj) =

m∑

l=2

λ2tl
(
ψil − ψjl

)2
(5.128)

Here, as usual, it was assumed that the eigenvectors are ordered according
to decreasing values of the corresponding eigenvalues: 1 = λ1 ≥ λ2 ≥ · · · ≥ λm.
In general, subsequent eigenvalues λ2tl vanish rather fast, what means that, with
sufficient precision, we can assume that for each t there exists a number n(t) < m,
such that

5.7 Dimensionality reduction methods 225

D2
t (vi, vj) ≈

n(t)∑

l=2

λ2tl
(
ψil − ψjl

)2
(5.129)

If Ψt(vi) stands for the spectral coordinates of the node (state) vi, i.e. Ψt(vi) =
(λ2t2 ψi2, . . . , λ

2t
mψim), then it appears the the Euclidean distance between points

with spectral coordinates is equal to their diffusion distance, that is

‖Ψt(vi)− Ψt(vj)‖ = Dt(vi, vj) (5.130)

Applications of this concept in data analysis, anomaly detection and knowledge
discovery are discussed in [317], [258], [223].

6

Data sets

We describe below the selected data sets used throughout this book.
The sets data3 2, data5 2, and data6 2 stem from the Web site http:

//www.isical.ac.in/~sanghami/data.html. These are 2-dimensional data sets.
The first, consisting of 76 elements, breaks up into three clusters, the second one,
containing 250 data points, splits into 5 clusters, and the third encompasses 300
points, forming six clusters. They are depicted in Figure 6.1.

1 2 3 4 5 6 7 8
2.5

3

3.5

4

4.5

5

5.5

6

4 6 8 10 12 14 16
4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20 22
2

4

6

8

10

12

14

16

18

20

22

(a) (b) (c)

Fig. 6.1. Test data sets from the Web site http://www.isical.ac.in/~sanghami/
data.html: (a) data3 2, (b) data5 2, (c) data6 2

The set 2rings, depicted in Figure 6.2(a) is a synthetic set consisting of 200
points. 100 points lie inside a circle of radius 1 and centre at (0,0); the remaining
100 points were distributed randomly in the outer ring. By adding 100 further
points forming the next ring, surrounding the two former ones, the set 3rings,
shown in Figure 6.2(b), was obtained.

The set 2spirals, visible in Figure 6.2(c), is a set comprising 190 points.
Each subset with cardinality 95 lies on the arm of one of the spirals. This set is
used in many papers.

We encourage the Reader to experiment with other test data available for
instance at the Web sites

• http://www.isical.ac.in/~sanghami/data.html,
• http://cs.joensuu.fi/sipu/datasets/,
• http://www.dr-fischer.org/pub/blockamp/index.html

Many empirical data sets can be found at the Web site http://

archive.ics.uci.edu/ml/. We exploit in this book the set iris.
Social networks of varying complexity are available at many sites, including

228 6 Data sets

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−0.5 0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Fig. 6.2. Test data sets: (a) 2rings, (b) 3rings, (c) 2spirals

• http://deim.urv.cat/~aarenas/data/welcome.htm,
• https://sites.google.com/site/santofortunato/inthepress2,
• http://www-personal.umich.edu/~mejn/netdata/,
• http://www3.nd.edu/~networks/resources.htm.

A

Justification of the FCM algorithm

We present here a justification for the formulas (3.57) and (3.58). Recall that
these formulas represent a minimum of the target function.

We formulate a Lagrangian in order to determine the elements uij of the
assignment matrix

L(Jα, λ) =
m∑

i=1

k∑

j=1

uαijd
2(xi,µj)−

m∑

i=1

λi

(k∑

j=1

uij − 1
)

(A.1)

We obtain the equation system, given below, by setting partial derivatives of
the Lagrangian to zero.

∂L

∂uij
= 0 ⇔ αuα−1

ij d2(xi,µj) = λi (a)

∂L

∂λi
= 0 ⇔ ∑k

j=1 uij = 1 (b)

The equation (a) is equivalent to the following

uij =

[
λi

αd2(xi,µj)

] 1
α−1

Using (b), we can write

(
λi
α

) 1
α−1

=
1

∑k
j=1 d

2/(1−α)(xi,µj)

which implies the equation (3.60).
In order to determine the components of the prototype, let us define

γj(µj) =
m∑

i=1

uαij‖xi − µj‖2A

Gradient of the function γj(µj) with respect to the components of the vector µj

is of the form

∇γj(µj) =
m∑

i=1

uαij∇‖xi − µj‖2A

= −2A
[m∑

i=1

uαij(xi − µj)
]

= 0

230 A Justification of the FCM algorithm

By definition of the norm, the matrix A is positive definite which guarantees the
existence of the inverse matrix A−1. Finally, we have

µj =

∑m
i=1 u

α
ijxi∑m

i=1 u
α
ij

Of course, in order to check if the solution of the optimisation task, obtained
in this way, is really a (local) minimum and not a saddle point, the Hessian of
the function Jα(U,M) needs to be investigated.

B

Matrix calculus

A detailed discussion of the topics presented here can be found in the books
[255], [290], [287], [338], [298].

B.1 Vectors and their properties

We denote with the symbol e a vector having each component equal 1. We denote
with ej a vector identical with the jth column of a unit matrix.

Definition B.1.1 Let x,y be n-dimensional vectors. They are
(a) orthogonal, which we denote x⊥y, if xTy = 0,
(b) orthonormal, if they are orthogonal vectors of unit length each. �

If V = {v1, . . . ,vk} is a set of linearly independent n-dimensional vectors,
where k ≤ n, then an orthogonal set U = {u1, . . . ,uk} of vectors, spanning
the same k-dimensional subspace of the space Rn as V does, is obtained by
application of the so-called Gram-Schmidt orthogonalisation procedure.

B.2 Matrices and their properties

Definition B.2.1 Let A = [aij]m×m be a square matrix with real-valued entries,
i.e. A ∈ Rm×m. We will call it
(a) non-negative (resp. positive), denoted by A ≥ 0 (resp. A > 0), if all its

elements are non-negative (resp[. positive)
(b) diagonal, denoted by A = diag(d1, . . . , dm), if aij = 0 wherever i 6= j and

aii = di, i = 1, . . . ,m. If all diagonal elements are identical and equal to 1,
di = 1, then A is called unit matrix and is denoted with the symbol I.

(c) symmetric, if A = AT.
(d) orthogonal, if AT = A−1, that is, if ATA = AAT = I.
(e) normal, if AAT = ATA. �

If A is an orthogonal matrix then | det(A)| = 1.

Definition B.2.2 A symmetric matrix A with dimensions m×m is called pos-
itive semidefinite, denoted by A � 0, if for any non-zero vector v ∈ Rm the
following holds: v′Av ≥ 0. If we can sharpen this relation (v′Av > 0 for each
nonzero vector) then A is called positive definite, denoted with the symbol A ≻ 0.

232 B Matrix calculus

On the other hand, if for each non-zero vector v v′Av ≤ 0 holds, then we call A
negative semidefinite,. And if v′Av < 0 holds, then we call A negative definite.
�

In practice, the Sylvester theorem is used to decide on definiteness of
quadratic forms. Let us denote with ∆i, i = 1, . . . ,m the leading principal sub-
determinants (leading principal minors) of the matrix A, that is

∆1(A) = a11, ∆2(A) =

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ , . . . , ∆m(A) =

∣∣∣∣∣∣

a11 . . . a1m
.
am1 . . . amm

∣∣∣∣∣∣

Matrix A is positive semidefinite if ∆i(A) ≥ 0, i = 1, . . . ,m. If, furthermore,
all the leading principal minors of the matrix are positive, then it is positive
definite. In the next section, see Lemma B.3.5 on page 236, we present further
characterisations of positive semidefinite matrices. For completeness, let us state
that if (−1)j∆j(A) > 0 then matrixA is negative definite, and if (−1)j∆j(A) ≥ 0
then matrix A is negative semidefinite. It is easily seen that if A is a positive
(semi)definite matrix then B = −A is a negative (semi)definite matrix.

The Gram matrix is an important example of a positive semidefinite matrix.

Definition B.2.3 If M = (m1, . . . ,mk) is a matrix of k column vectors of
dimension n then G = M TM is called Gram matrix. �

The above-defined matrix G is a matrix of dimensions k × k with elements
gij = mT

imj = gji. Its determinant is non-negative.

Definition B.2.4 If a matrix A with dimensions m×m can be represented in
the form A = BBT, where B is a non-negative matrix of dimensions m×n, then
A is called a completely positive matrix1. The minimal number of columns of B,
i.e. n, ensuring the above factorisation of matrix A is called the factorisation
index or cp-rank of the matrix A. �

Definition B.2.5 The number

tr (A) =

m∑

i=1

aii

is called matrix trace. It has the following properties:
(a) tr (A) = tr (AT),
(b) tr (A+B) = tr (A) + tr (B),
(c) tr (ABC) = tr (BCA) = tr (CAB) �

Definition B.2.6 A non-negative matrix P is called a row-stochastic or right-
stochastic matrix, if all elements of each row sum up to one. If the sum of all

1 See, e.g., C. Xu, Completely positive matrices, Linear Algebra and its Applications,
379(1), 2004, 319–327.

B.3 Eigenvalues and eigenvectors 233

elements of each of its columns equals one then P is called column-stochastic or
left-stochastic. If P is both column-stochastic and row-stochastic then we call it
doubly stochastic matrix. �

If A > 0 is a symmetric matrix, then by alternating the normalising oper-
ators of rows and columns we get a doubly stochastic matrix P , [316]. Saying
it differently, there exists a diagonal matrix D = diag(d) such that P = DAD.
Components of the vector d are equal to di =

√
pii/aii. This method of comput-

ing the doubly stochastic matrix is called Sinkhorn-Knopp method. The paper
[207] presents a quick algorithm for balancing a symmetric matrix A, that is,
an algorithm transforming it into doubly stochastic matrix P , and presents a
review of other related methods.

Definition B.2.7 A stochastic matrix is called
(a) stable, if all of its rows are identical,
(b) column-wise accessible, if its each column contains at least one positive ele-

ment. �

B.3 Eigenvalues and eigenvectors

B.3.1 Basic facts

A square matrix A of dimensions m ×m possesses an eigen (or characteristic)
value λ and an eigen (or characteristic) vector w 6= 0 if

Aw = λw (B.1)

The pair (λ,w), satisfying the above conditions is called eigenpair.
Equation (B.1) can be rewritten in the equivalent form

det(A− λIm) = 0 (B.2)

where Im is a unit matrix of dimensions m × m. Knowing that formula (B.2)
is a m-degree polynomial we can state that the matrix A possesses m (not
necessarily distinct) eigenpairs (λi,wi). If all eigenvalues are distinct then we
call them non-degenerate.

The set of all distinct eigenvalues

σ(A) = {λ1, . . . , λm′}, m′ ≤ m (B.3)

defines the spectrum of the matrix A, and the quantity

ρ(A) = max
1≤j≤m

|λj | (B.4)

is called spectral radius of matrix A.
If λ1, . . . , λm are eigenvalues of the matrix A of dimensions m, then

234 B Matrix calculus

(a)
∑m

i=1 λi = tr (A),
(b)

∏m
i=1 λi = det(A),

(c) λk1 , . . . , λ
k
m are eigenvalues of the matrix Ak.

If A = diag(a) is a diagonal matrix with the diagonal identical by the vector
a, then its eigenvalues are elements of the vector a, with the ith eigenpair of the
form (ai, ei), i.e. λi = ai, and ei = (0, . . . , 0, 1, 0, . . . , 0)T is the ith column of the
unit matrix.

Lemma B.3.1 If (λi,wi) is the ith eigenpair of the matrix A, then eigenpairs
of the matrix c1I + c2A with c1, c2 being any values, for which c2 6= 0 holds, are
of the form (c1 + c2λi,wi) �

Let λmax be the eigenvalue with the biggest module, i.e. |λmax| =
maxi=1,...,m |λi| and let wmax be the corresponding eigenvector. The pair
(λmax, wmax) is called the principal eigenpair.

If we know the eigenvector wi of a symmetric matrix A, then we can compute
the corresponding eigenvalue λi from the equation

λi =
wT

iAwi

wT

iwi
= R(A,wi) (B.5)

The quantity R(A,x), defined by equation (B.5), where x is any non-zero vector,
is called Rayleigh quotient. One can easily check that R(A, cx) = R(A,x) for
any constant c 6= 0.

Theorem B.3.1 Let Sk denote k-dimensional subspace of the space Rm and let
x⊥Sk denote that x is a vector orthogonal to any vector y ∈ Sk. Let A ∈ Rm×m

be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm. Then

λk = max
Sk

min
06=x⊥Sk

R(A, x) (B.6)

�

This is the so-called Courant-Fischer minimax theorem. It implies that

(a) λ1 = min
x 6=0

xTAx

xTx
, w1 = arg min

x 6=0

xTAx

xTx

(b) λ2 = min
x 6=0
x⊥w1

xTAx

xTx
, w2 = arg min

x 6=0
x⊥w1

xTAx

xTx

.

(c) λm = max
x 6=0

xTAx

xTx
, wm = arg max

x6=0

xTAx

xTx

(B.7)

In this way we obtain an estimate λ1 ≤ R(A,x) ≤ λm.

B.3 Eigenvalues and eigenvectors 235

Lemma B.3.2 If A is a symmetric square matrix, and x 6= 0 is a vector, then
the value µ, minimising the expression ‖Ax− µx‖, is equal to the Rayleigh quo-
tient. �

Let us mention some important properties of the eigenvectors:

(i) If A is a Hermitian matrix (in particular, a symmetric one with real-valued
elements) then all its eigenvalues are real numbers.

(ii) If 0 ∈ σ(A), then A is a singular matrix (the one with determinant equal
zero)

(iii) A square matrix A with positive elements has exactly one real-valued prin-
cipal eigenvalue and all the elements of the corresponding eigenvector are of
the same sign (Perron-Frobenius theorem).

(iv) Eigenvectors of a normal matrix with non-degenerate eigenvalues form a
complete set and are orthonormal. This means that they are versors span-
ning an m dimensional vector space.
One applies Gram-Schmidt orthogonalisation in case of degenerate eigenval-
ues. In this way one can find a set of eigenvectors that form a complete set
and are orthonormal.

(v) (Gershogorin theorem, [255, Ex. 7.1.4]) Each eigenvalue λ of a square matrix
A of dimension m fulfils at least one of the inequalities:

|λ− aii| ≤ ri =
∑

j 6=i
1≤j≤m

|aij |

i.e. λ lies inside at least one (complex) circle with a centre at the point aii
and radius ri being the sum of absolute values of non-diagonal elements of
the ith row. �

Definition B.3.1 Matrices A and B are called similar, which we denote A ≈ B,
if there exists a non-singular matrix X such that

A = XBX−1 (B.8)

The mapping transforming the matrix B into the matrix A is called the similarity
mapping. �

Lemma B.3.3 If A and B are similar matrices then they have identical
eigenvalues, and their eigenvectors satisfy the condition wB = X−1wA.

Proof: Let (λ,wA) be an eigenpair of the matrix A, i.e. XBX−1wA = λwA

(because A ≈ B). Let us multiply both sides of this equation by X−1. Then we
obtain B(X−1wA) = λ(X−1wA), which implies the thesis. �

Definition B.3.2 The square matrix A is called a diagonalisable matrix if and
only if there exists a non-singular matrix X of the same dimension as A, such
that X−1AX is a diagonal matrix. If, furthermore, X is an orthogonal matrix,
i.e. X−1 = XT, then A is called an orthogonally diagonalisable matrix. �

236 B Matrix calculus

Let (λi,wi), i = 1, . . . ,m denote the set of eigenpairs of the matrix A. The
matrix is diagnosable if its eigenvectors are linearly independent 2. By substi-
tuting X = (w1, . . . ,wm), i.e. by placing eigenvectors of the matrix A in the
columns of the matrix X we obtain X−1AX = diag(λ1, . . . , λm) = Λ.

Lemma B.3.4 A square matrix A is a symmetric matrix if and only if it is
orthogonally diagonalisable.

Proof: Let us restrict our considerations to the simpler necessary condition. If
A is an orthogonally diagonalisable matrix then there exists such an orthogonal
matrix X and a diagonal matrix D that A = XDXT. Hence AT = (XDXT)T = A
�

Let us consider again the positive semi-definite matrices that were introduced
in the preceding section.

Lemma B.3.5 The following conditions are equivalent for a symmetric matrix
A:
(a) A � 0.
(b) All eigenvalues of the matrix A are non-negative.
(c) A = CTC, where C ∈ Rm×n.

Proof: We will show that (a) implies (b), (b) implies (c), and (c) implies (a).

(a) ⇒ (b): As A is a symmetric matrix, hence all, its eigenvalues are real
numbers. Let (λ,w) be an eigenpair bound by the equation Aw = λw. Let us
perform left multiplication of both sides of this equation with the vector wT.
We obtain wTAw = λwTw. Both the left side of this equation and wTw are
non-negative numbers, hence λ ≥ 0.

(b)⇒ (c): Let Λ = diag(λ1, . . . , λm) and let W = (w1, . . . ,wm) be a matrix with
columns being eigenvectors corresponding to eigenvalues λ1, . . . , λm. The equa-
tion (B.1) can be rewritten in matrix form as AW = WΛ. By performing right
multiplication of this equation with matrix W T we obtain AWW T = WΛW T. But
eigenvectors of a symmetric matrix A are orthonormal, hence A = WΛW T. As
λi ≥ 0, hence matrix Λ can be represented as Λ1/2(Λ1/2)T. Therefore

A = WΛ1/2(Λ1/2)TW T = WΛ1/2(WΛ1/2)T = CTC

where CT = WΛ1/2.

(c)⇒ (a): Because of A = CTC, we have, for any non-zero vector v,

vTAv = vTCTCv⇔ vTAv = yTy⇔ vTAv ≥ 0

where y = Cv. �

2 Because then its rank is equal m, which is a necessary condition for the existence of
the matrix inverse to the given matrix A.

B.3 Eigenvalues and eigenvectors 237

Let Ak = [aij], i, j ∈ {1, . . . , k} denote a submatrix of the positive semi-
definite matrix A. Then, for each value 1 ≤ k ≤ m and each non-zero vector
x ∈ R

k, the following conditions hold : (a) xTAkx ≥ 0 and (b) det(Ak) ≥ 0.

B.3.2 Left- and right-hand eigenvectors

The eigenvectors w of a matrix A that we have been talking about so far are
called also right eigenvectors because they stand to the right of the matrix A in
the defining equation (B.1). In an analogous way also the left eigenvectors can
be defined.

uTA = λuT (B.9)

By transposing this equation we see that the left eigenvector of the matrix
A is the right eigenvector of the matrix AT. It is obvious that the distinction
between left and right eigenvectors would be pointless if A were symmetric,
because u = w, that is- the left and right eigenvectors are identical. Hence, let
us subsequently consider predominantly the non-symmetric or even non-normal
matrices. Such a distinction is not necessary for eigenvalues, because due to
equation (B.2) and due to det(A) = det(AT) we see that in both cases one
obtains the same eigenvalue.

By reasoning like in the proof of the Lemma B.3.3 we infer

Lemma B.3.6 If A, B are similar matrices, then they have identical eigenval-
ues and their left eigenvectors are linked by the interelation uB = XuA.

Lemmas B.3.3 and B.3.6 imply that for similar matrices A and B with A,
being symmetric, the left (uB) and right (wB) eigenvectors of the matrix B can
be expressed in terms of the eigenvectors of vA of the matrix A as follows:

uB = XvA, wB = X−1vA

where X is a matrix of coefficients.

Lemma B.3.7 Let A be a matrix of dimension m possessing m distinct left and
right eigenvectors3 ui, wi. Then

3 Eigenvector normalization footnote: We deliberately postponed the issue of normal-
ization of the eigenvectors till this point because it becomes only here clear why
some choices are done. One should be aware that if a vector w is a right eigenvector
of a matrix A, according to equation (B.1), then also any vector c ·w for any non
zero scalar c is. Similarly, if a vector u is a left eigenvector of a matrix A, accord-
ing to equation (B.9), then also any vector c · u for any non zero scalar c is. To
get rid of such an ambiguity, we assume throughout this book, if not stated other-
wise, that the vectors are normalised, that is, we select that right eigenvector w,
for which wTw = 1 and the left eigenvector u having the corresponding normalised
right eigenvector w, for which uTw = 1. Note that the right and left eigenvectors
are normalised differently.

238 B Matrix calculus

A =
m∑

i=1

λiwiu
T
i (B.10)

The above spectral representation implies the equation

An =

m∑

i=1

λni wiu
T

i (B.11)

In particular, if A is a symmetric matrix, we get

An =

m∑

i=1

λni viv
T

i (B.12)

where v = u = w.

B.3.3 Determining eigenvalues and eigenvectors

Quick algorithms for computation of eigenvectors are indispensable for the spec-
tral clustering methods. Many monographs have been devoted to this topic, e.g.
[31], [298], [338]. Projection methods seem to play a key role here. Chapter 9 of
the monograph [143] is devoted to them.

Here below we present the simplest method allowing to find quickly the
principal eigenvector and then discuss its application for determining eigenpairs
of the Laplacians.

B.3.3.1 The power method

As stated previously, eigenvectors x1, . . . ,xm of a diagonalisable matrix A are
linearly independent. Therefore, they constitute a vector base in the space R

m.
Any vector x(0) ∈ Rm can be represented in the form

x(0) = c1x1 + · · ·+ cmxm

where c1, . . . , cm are scalars. By multiplying the above equation by Ak, k =
1, 2, . . . , we get

Akx(0) = c1(Akx1) + · · ·+ cm(Akxm)

= c1(λk1x1) + · · ·+ cm(λkmxm) = c1λ
k
1

[
x1 +

k∑

j=2

cj

(λj
λ1

)k
xj

]
(B.13)

We exploit here the fact that Axj = λjxj , where λj denotes the eigenvalue
corresponding to the eigenvector xj , and that whenever λj is an eigenvalue of
the matrix A, then λkj is an eigenvalue of the matrix Ak. If eigenvalues are sorted
according to their decreasing module, then |λj/λ1| ≤ 1. So, if only |λj/λ1| < 1
then

B.3 Eigenvalues and eigenvectors 239

lim
k→∞

x(k)

λk1
= lim

k→∞
Akx(0)

λk1
= c1x1

that is, the series {x(k)/λk1} converges with speed dependent on the quotient
|λ2/λ1|, to the vector c1x1.

In practice, the successive approximations of the eigenvector are not com-
puted from the equation x(k) = Akx(0), but rather iteratively, x(k) = Ax(k−1),
k = 1, In this way we do not need to compute successive powers of the
matrix A. Instead, we multiply each time the matrix A with the vector x(k−1),
obtained in the preceding step. As ‖x(k)‖ → 0 when |λ1| < 1 (or ‖x(k)‖ → ∞
when |λ1| > 1), hence, to avoid overflow and underflow, the vector x(k) is nor-
malised. If we denote by y(k) the product Ax(k−1) then x(k) = y(k)/m(y), where
m(y) is the first element of the vector y with the largest module. If, for example,
y(k) = (1,−5, 2, 5), then m(y(k)) = −5. Thereby not only the division error is
minimized in line 6 of pseudocode B.1, but also the total computational burden
is minimized, see [255, page 534], [290]. The value m(y(k))→ λ1 when k →∞, so
we get also a method to determine an approximation of the principal eigenvalue.
We choose usually, as the stopping criterion, the criterion of minimal correction,

i.e. ‖x(k+1) − x(k)‖ < ǫ, or |m(y(k+1)) −m(y(k))| ≤ ǫ. One initialises the vector
x(0) randomly. Such an initialisation is particularly recommended if the main
diagonal contains elements that are significantly larger than the other elements
of the matrix A.

The method of computation of the principal eigenpair is presented as the
pseudocode B.1.

Algorithm B.1 Power method returning the principal eigenpair of the matrix
A
1: k = 0.
2: Initialise the vector x(k). {x(k) cannot be orthogonal to the principal eigenvector.

In practice, it is sufficient that all its components have the same sign. }
3: while not done do

4: y(k+1) = Ax(k)

5: β(k+1) = m(y(k+1))
6: x(k+1) = y(k+1)/β(k+1)

7: if ‖x(k+1) − x(k)‖ ≤ ǫ then

8: done = true;
9: end if

10: k = k + 1
11: end while

12: return eigenvalue λ ≈ β(k+1) and the corresponding eigenvector x(k)

Remark B.3.1 The weakness of the power method is that if the principal eigen-
value is a complex number, then the approximation series x(k) is not convergent!
�

240 B Matrix calculus

The power method returns the principal eigenpair, which means that the
obtained approximation λ̃ can be a negative number. If our goal is to find the
eigenvector corresponding to the maximal positive eigenvalue, then we proceed
as follows: We construct a matrix A′ = A−λ̃I. Its eigenvalues are λ′i = λi−λ̃ ≥ 0.
One can verify that if λi is the ith eigenvalue of the matrix A, and xi is the
corresponding eigenvector then

(A− λ̃I)xi = λixi − λ̃xi

Hence, the matrices A and A′ have identical eigenvectors, while the principal
eigenvalue of the matrix A′ corresponds to the maximal positive eigenvalue of
the matrix A increased by o −λ̃. So, by repeating the power method, this time
for the matrix A′, we find the eigenvector corresponding to the maximal posi-
tive eigenvalue of the matrix A. This approach is referred to as the ”deflation
method”.

B.3.3.2 Determining the eigenpairs of the Laplacian

In case of spectral cluster analysis, we are interested in finding p < m eigen-
vectors, corresponding to the lowest non-trivial eigenvalues of the Laplacian
L = D − A, where A ∈ Rm×m is a symmetric matrix4, and D is a diagonal
matrix with elements dii =

∑m
j=1 aij . An interesting solution to this problem

was proposed by Koren, Carmel and Harel in [212]. The method is outlined in
the pseudocode B.2. Originally, the method was developed for drawing graphs,
which means that only the first and the second (positive) non-trivial Laplacian
eigenvalues are sought.

Let us note, first, that if (λi,vi) are eigenpairs of the matrix A, then

(g−λi,vi) are eigenpairs of the matrix Ã = gI−A. In particular, if A is a Lapla-
cian, and g ≥ max1≤i≤m |λi|, then by applying the deflation method one can
determine the eigenpairs corresponding to the lowest eigenvalues of the Lapla-
cian. Gershogorin theorem is used to estimate the value of g – see property (iv)
from page 235, according to which the eigenvalues of a matrix A belong to the
set sum of discs Ki in the complex plane.

Ki = {z ∈ C : |z − aii| ≤
∑

j 6=i

|aij |}, i = 1, . . .m

Eigenvalues of any Laplacian L = [lij] are non-negative. Furthermore lii =∑
j 6=i |lij |. Therefore, to estimate the largest eigenvalue, it is sufficient to compute

the value

g = 2 · max
1≤j≤m

lii (B.14)

L = D − A, hence diag(L) = diag(D), which allows to accelerate the com-
putations significantly. It is the step 2. of the algorithm B.2. Let us sort the

4 A is interpreted as a neighbourhood matrix (similarity or adjacency matrix), see
Section 5.1.

B.3 Eigenvalues and eigenvectors 241

eigenvalues of a Laplacian increasingly, and let λi be the ith eigenvalue in this
order. Then, values λ̂i = g − λi (decreasing with growing i) are the eigenvalues

of the matrix L̂ = gI − L. This transformation is performed in step 3. of the
algorithm B.2.

The eigenvector, corresponding to the value λ̂1 = g, is a normalised unit
vector, that is - its components are equal 1/

√
m. Therefore, one determines the

eigenvectors corresponding to eigenvalues λ̂2 ≥ . . . ,≥ λ̂p – steps 4 – 19. The
initial, random approximation of the ith eigenvector (step 5) is subject to Gram-
Schmidt orthogonalisation, so that the resultant vector will be orthogonal to the
already determined approximations of eigenvectors (step 10). Next one step of
the power method is executed.

Let us look at the stopping condition of the loop while – do. Formally, one
can iterate the loop till the product v̂v exceeds the threshold 1− ǫ. In practice,
one observes stabilisation after a number of iterations, v̂Tv = const. Therefore,
the formal condition was replaced by a more natural condition prev−next = 0,
where next (resp. prev) is the current (resp. previous) value of the product v̂Tv.

The only serious computational burden of the algorithm is determination
of the product L̂v = D̂v − Av. Notice, however, that D̂v is a vector with
components of the form (g − di)vi, and A is a sparse matrix.

Algorithm B.2 Applying power method to determine the first p ≤ m eigenvec-
tors of the Laplacian

Require: A – neighbourhood matrix, V = [vij]m×p – a matrix of randomly generated
and normalised columns; elements of the first column are of the form vi1 = 1/

√
m,

i = 1, . . . ,m.
1: L = D − A, where D is the degree matrix

2: g = max1≤i≤m

(
lii +

∑
j 6=i |lij |

)

3: L̂ = gI− L {inversion of the order of the eigenvalues }
4: for i = 2 to p do

5: v̂i = V (:, i) {ith column of the matrix V }
6: prev = 1, next = 0, done = false
7: while (not done) do

8: v← v̂i

9: for j = 1 to i− 1 do

10: v = v − (vTvj)vj { Gram-Schmidt orthogonalisation}
11: end for

12: v̂ = L̂v
13: v̂ = v̂/‖v̂‖
14: next = v̂Tv

15: done = |prev − next| < ǫ
16: prev = next
17: end while

18: V (:, i) = v̂ {saving the vector v̂ in the ith column of the matrix V }
19: end for

242 B Matrix calculus

B.4 Norms of vectors and matrices

A tool allowing to measure the ”size” of a vector x ∈ R
m is its norm ‖x‖p,

defined as follows:

‖x‖p =
(m∑

i=1

|xi|p
)1/p

, p = 1, 2, . . . (B.15)

If we set p = 1, then we obtain the so-called Manhattan norm (called also
taxicab metric, rectilinear distance , city block distance, Manhattan distance,
or Manhattan length) , ‖x‖1 =

∑
i |xi|, while ‖x‖2 is called Euclidean norm, or

simply – vector length. Finally, p =∞ corresponds to the maximum norm, also
known as supremum norm, sup norm, the Chebyshev norm, the infinity norm or
the ”uniform norm”:

‖x‖∞ = max
1≤i≤m

xi (B.16)

The case of p ∈ (0, 1) was investigated exhaustively by Aggarwal, Hinneburg
and Keim in the paper [4], where they suggest its high usefulness.

Given a rectangular matrix A ∈ Rn×m, one defines either the Frobenius norm

‖A‖F =
√

tr (ATA) =

√√√√
n∑

i=1

m∑

j=1

a2ij (B.17)

or one uses a matrix norm induced by a vector norm

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p (B.18)

In particular:

(i) ‖A‖1 = max1≤j≤m

∑n
i=1 |aij | is the maximum value of the sum of modules

of column elements,
(ii) ‖A‖2 =

√
λmax, where λmax is the maximal eigenvalue of the matrix ATA;

this norm is called spectral norm,
(iii) ‖A‖∞ = max1≤i≤n

∑m
j=1 |aij | is the maximum value of the sum of modules

of row elements.

If A is a diagonal matrix, A = diag(a1, . . . , am), then

‖A‖p = max
1≤j≤m

|aj|, p = 1, 2, . . .

More information on this subject can be found for example, in chapter 5 of the
monograph [255].

C

Graph theory

C.1 Basic definitions

A graph G is a pair of sets (V,E), where V is called the set of vertices (or
nodes) and E is a set of edges (or links, because they are deemed to link the
nodes). Depending on the interpretation of the set E we speak about directed
or undirected graphs. In a directed graph E ⊆ V 2. In an undirected graph E is
a subset of the set of all subsets of V with cardinality 2 (or 2 and 1 if we allow
for loops in the graph). Thus, the ordering of nodes in an edge is important
for a directed graph and unimportant for an undirected one. A graph may be
labelled either with respect to nodes, or to edges, or both, if we define functions
fV : V → S, fE : E → S, or both, where S is a set. In particular, if the function
fE is defined in such a way that S is a (sub)set of the natural numbers, then
we speak about a multigraph (a graph with multiple edges between two nodes)
which reduces to a plain graph if S = {1}. If the function fE is defined in such a
way that S is a (sub)set of the positive real numbers (zero is sometimes permitted
to denote a non-existent edge), then we speak about a weighted graph (a graph
with differing strengths of connections between nodes). Again, it reduces to a
plain graph if S = {1}.

The cardinality of the set V is called the order of the graph , and the cardi-
nality of the set E is called the size of the graph. One defines also the density
of a graph as the number g equal to

g =
2m

|V |(|V | − 1)
(C.1)

for undirected graphs and

g =
m

|V |(|V | − 1)
(C.2)

for directed graphs.
Subsequently, we discuss, first, the concepts relevant to undirected graphs,

and later on we present their counterparts for directed graphs.

244 C Graph theory

C.1.1 Undirected graphs

(1) We say that the edge e = (u, v) ∈ E connects the nodes u and v, and the
nodes u and v are called end points of the edge e.1 Nodes connected by an
edge are called neighbours (they are said to be adjacent). If e = (u, u) ∈ E,
meaning that u is its own neighbour, then the edge e is called a self-loop. A
graph without self-loops and without multiple edges is called a simple graph.
Subsequently, we consider only simple graphs.

(2) A graph Gc = (V,Ec) is called a complement (or inverse) graph of the graph
G = (V,E), if no edge e ∈ E belongs to Ec and each edge e′ 6∈ E belongs
to Ec.
A subset of nodes V ′ ⊂ V , in which no two nodes are neighbours of one
another, is called an independent set (or stable set) in the graph G.
If D ⊂ V is such a set of nodes that each node v ∈ V \D is a neighbour of a
node from the set D, then D is called a dominating set in the graph G.

(3) The set of neighbours of the node u, denoted with the symbol N(u), is
defined as

N(u) = {v ∈ V : (u, v) ∈ E} (C.3)

and its cardinality |N(u)| is called the degree of the node u and we denote
it with the symbol du. If |N(u)| = 1, then the node u is called a leaf or
a pendant vertex. Edges connecting leaves with their neighbours are called
pendant edges.

(4) A graph, in which each node has the same number of neighbours, di = d,
i = 1, . . . , |V | is called a d-regular graph. In particular:

– If d = 2, then the graph is called a graph cycle and is denoted with the
symbol Cm, where m is the graph order (i.e. the number of its nodes).
By removing a single edge from this graph we obtain a linear graph,
denoted with the symbol Pm (it is not a regular graph).

– If d = |V |−1, then the graph G is called a complete graph or a clique
and is denoted with the symbol Km, where m = |V |.

We distinguish one important class of d-regular graphs, called ”expanders”.
Expanders are relatively sparse graphs, in which each ”small” subset of ver-
tices possesses a ”large” neighbourhood. We say that a d-regular graph
c-expands, or is a (d, c)-expander, if for any set of vertices S with cardi-
nality not bigger than |V |/2 the condition |N(S)\S| ≥ c|S| holds, where
N(S) =

⋃
v∈S N(v).

(5) We speak about expansion of (general) undirected graphs, which is under-
stood as the number

1 Strictly speaking, we shall write that e = {u, v} in the case of undirected graphs,
but we will use the popular convention (u, v) understanding that (u, v) = (v, u) in
the context of undirected graphs.

C.1 Basic definitions 245

α(G) = min
∅6=S⊂V

|∂S|
min(|S|, |V | − |S|) (C.4)

where the symbol ∂S means the set of edges, for which one end belongs to
the set S and the other to its complement S.

A measure indicating the degree, to which the neighbours of a node u resem-
ble a clique, is the so-called local clustering coefficient, defined as the ratio
of the number of edges linking pairs of nodes being neighbours of the node
u to the number of all possible edges connecting them [360]

cu =
2|{(vi, vj) ∈ E : vi, vj ∈ N(u)}|

du(du − 1)
(C.5)

(6) Let V = {v1, . . . , vm} be a set of nodes. If each edge (vi, vj) ∈ E is assigned
a weight sij , then G = (V,E) is called a weighted graph. In a special case
one can assume that

sij =

{
1 when (vi, vj) ∈ E
0 otherwise

(C.6)

The concept of node degree in an unweighted graph has its counterpart
within the realm of weighted graphs, called the strength (or typicality) of
a node, which is defined as the sum of weights of edges linking node u to
its neighbours. If sij is interpreted as node similarity then di expresses the
”typicality” of the node i, that is - its total similarity to all the other nodes.

(7) We call a path in a graph G a sequence of nodes d(v0, vl) = v0, v1, . . . , vl
such that (vi−1, vi) ∈ E for each i = 1, . . . , l. A path v0, v1, . . . , vl is said to
connect nodes v0 and vl; these nodes are called end nodes of the path. We
say also that the node vl is reachable from the node v0, and the number l is
called the length of this path. If vl = v0, then the path v0, v1, . . . , vl is called
a closed path or a cycle.
If d, d′ are two paths sharing only the end points then these paths are called
independent.

(8) The concept of path enables the introduction of concepts of graph distance
and connectivity. A graph is called connected if for any two nodes there
exists at least one path connecting them. The path of minimal length con-
necting two nodes u and v is called a geodesic, and the length d(u, v) of this
geodesic is called the distance between the nodes at its ends. If no path exists
connecting u and v, then we assume d(u, v) = ∞. The maximum distance
between any pair of nodes of a connected graph G is called graph diameter;
the diameter is denoted with diam(G), i.e. diam(G) = maxu,v∈V d(u, v).
If S denotes the neighbourhood matrix of the graph G (i.e. sij ∈ {0, 1}),
and if N is the lowest number such that SN is a positive matrix, then
diam(G) = N .,

246 C Graph theory

C.1.2 Directed graphs

The definitions from the previous section need a refinement if they should
be applied to directed graphs. We present below such refinements of selected
definitions. As in previous section, we consider only simple graphs.

(1) In a directed graph, we say that the edge e = (u, v) is directed from the node
u to the node v, which may be denoted as u → v. The node u is called the
head of the edge and the node v is called the tail of the edge. Instead of saying
”edge” one frequently uses the term ”arc”, ”directed edge” or ”arrow”.

(2) A path in a directed graph G is such a sequence of nodes {v0, v1, . . . , vl},
that (vi−1, vi) ∈ E for i = 1, . . . , l. The graph G is called strongly connected
if for each pair of nodes s, t there exists a path of length l ≥ 1 such that
s = v0, t = vl.
If v0 = vl then the path is called a (directed) cycle.
A graph G is called aperiodic, if there exists no such natural number k > 1,
which is a divisor of the length of all of its cycles2. Otherwise, we can also
say that G is an aperiodic graph if the largest common divisor of the lengths
of all its cycles is equal 1.

(3) Let sij denote the weight of the arc vi → vj . The simplest case is when
sij = 1 whenever vi → vj ∈ E. For each node we define its in-degree d

− and
its out-degree d

+

d
−
j =

∑

vi∈X
vi→vj

sij (C.7)

d
+
j =

∑

vl∈X
vj→vl

sjl (C.8)

C.2 Graph matrices

A convenient characterisation of a graph is ensured by its neighbourhood matrix
A = [aij] with entries

aij =

{
1 if (vi, vj) ∈ E
0 otherwise

(C.9)

It is a symmetric matrix in the case of undirected graphs. Then, the degree of
the ith node is the sum of the elements of the ith column of the matrix A. In case
of weighted graphs it can be replaced by the matrix S, mentioned in definition
(6) from section C.1.1.

Knowing the neighbourhood matrix we can determine so-called left (or col-
umn) stochastic matrix P by dividing elements of each column by its degree,

2 By this definition an acyclic graph is a periodic graph.

C.2 Graph matrices 247

pij = aij/dj. It is the transition matrix of a certain Markov chain, describing
random walk in the graph G. The so-called transfer-matrix (called also the right
or row stochastic matrix) is of the form T = P T.

A graph spectrum G is understood as the set of distinct eigenvalues of its
neighbourhood matrix. Spectral properties of a graph play an important role in
the graph theory, see e.g. the monograph [62] or [75]. In particular, in order to
determine the time needed to reach a stationary distribution in the random walk
process, it is sufficient to compute the principal eigenvector of the matrix T .

Many applications benefit from the combinatorial Laplacian (called simply
Laplacian) L of the graph G, defined as

L = D −A (C.10)

whereD is a diagonal matrix, having the elements equal to the degrees of nodes of
this graph. We present below the selected properties of Laplacians of undirected
and directed graphs. A reader interested in further applications of the Laplacian
is advised to consult the papers [259, 260].

C.2.1 Laplacian of a graph

Equation C.10 defines the combinatorial (or unnormalised) Laplacian of an undi-
rected graph. We discuss its properties below along with those of the so-called
normalised Laplacian. We will also introduce respective definitions applying to
directed graphs.

C.2.1.1 Laplacian of an undirected graph

Let us summarise its basic properties

Lemma C.2.1 Combinatorial Laplacian L possesses the following proper-
ties:
(a) L is a symmetric and positive semi-definite matrix
(b) Sum of elements of each row and of each column of a Laplacian is equal zero.
(c) L has m non-negative real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λm−1.
(d) The lowest eigenvalue λ1 = 0 of the Laplacian corresponds to a constant

eigenvector e. �

The positive semi-definiteness of the Laplacian results from the identity3

demonstrated in section 5.2.1.1:

xTLx =
1

2

m∑

i=1

m∑

j=1

sij(xi − xj)2 (C.11)

where x 6= 0 is any vector. As L is a symmetric matrix, then its eigenvalues
are real numbers. Because of positive semi-definiteness the eigenvalues are non-
negative,

3 see equation (5.16) on page 152.

248 C Graph theory

λ1 = 0 is the lowest value of a Laplacian, which is an immediate consequence
of the fact (b) in the above Lemma. Therefore, L is a singular matrix, so an
inverse matrix of a Laplacian does not exist. However, a pseudo-inverse can be
computed. We discuss this topic in section C.2.1.2.

The lowest positive (the second) eigenvalue of the Laplacian, that is - the
Fiedler value carries the information on the connectivity of the graph G. Namely

Lemma C.2.2 [123] Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λm be eigenvalues of the Lapla-
cian L of the graph G. This graph is connected if and only if λ2 > 0. In case
of a not connected graph, the number of its connected sub-graphs is equal to the
multiplicity of the eigenvalue λ1. �

The next Lemma, mentioned as Conclusion 3.2 in the original paper by
Fiedler [122], points at an important property of the eigenvalue λ2.

Lemma C.2.3 Let G1 = (X,E1) be a sub-graph of the graph G = (X,E), i.e.
both graphs have a common set of vertices, but the graph G1 contains only a
subset of edges of the graph G, E1 ⊂ E. Let λG2 and λG1

2 be the second lowest
eigenvalues of the Laplacian of the respective graphs. Then

λG1
2 ≤ λG2 (C.12)

�

This implies that removal of edges from the graph G, hence the reduction of its
connectivity, is accompanied by the decrease of eigenvalue λ2 of its Laplacian.
Therefore, the Fiedler value λ2 is called algebraic connectivity of the graph G.
The paper [92] may be consulted for a broader overview of properties of the
Fiedler value.

The normalised Fiedler vector v2 and the Fiedler value λ2 are related as
follows

λ1 = vT1Lv1 =
∑

(i,j)∈E

(v1,i − v1,j)2 (C.13)

Definition C.2.1 Conductance of the cut {C,C} of the graph G is defined as

φG(S) =
vol ∂C

min(volC, volC)
(C.14)

and
φG = min

C⊂V
φG(C) (C.15)

is called the conductance of the graph G (or Cheeger constant). �

The following relation holds between the conductance of an undirected graph
and the Fiedler value of its normalised Laplacian:

1

2
φ2G ≤ λ1 ≤ 2φG (C.16)

C.2 Graph matrices 249

This is the so-called Cheeger inequality [75]. It implies that if λ1 is a small
number, then the graph possesses also a cut with low conductance (sparsity
coefficient).

Definition C.2.2 Normalised Laplacian of the graph G is defined as the sym-
metric matrix

L = D−1/2LD−1/2 = I−D−1/2SD−1/2 (C.17)

�

While the equation (C.11) holds for any nonzero vector x in case of a com-
binatorial Laplacian, the following analogous equation holds for a normalised
Laplacian

xTLx =
∑

(vi,vj)∈E

sij

(
xi√
di

− xj√
dj

)2

(C.18)

C.2.1.2 Pseudo-inverse of the Laplacian

It has been stated in the preceding section that L is a singular matrix. It is,
however, possible to compute the pseudo-inverse of the Laplacian, (called also

Moore-Penrose inverse), that is, a matrix L† = [l†ij] fulfilling the following con-
ditions

LL†L = L, L+LL† = L†

(LL†)T = LL†, (L†L)T = L†L
(C.19)

The pseudo-inverse L† is characterised by properties, [351], [150]:

(a) L† is a symmetric and positive semi-definite matrix,
(b) Let (λi,ui) be an eigenpair of a Laplacian. If λi 6= 0 then (λ−1

i ,ui) is an
eigenpair of its pseudo-inverse. Otherwise, (λi,ui) is also an eigenpair of the
matrix L†.

(c) (eTL†)T = L†e = 0.
(d) L† is a Gram matrix.

The property (b) means that L† can be represented as the product

L† = UΛ†U T (C.20)

where U = (u, . . . ,um) is a matrix with columns being eigenvectors of the Lapla-
cian, and Λ† is a diagonal matrix having elements

λ†ii =

{
1/λi if λi > 0
0 otherwise

(C.21)

where λi means an eigenvalue of the Laplacian. Equation (C.20) implies that
we can compute the elements of the pseudo-inverse from the eigenvalues and
eigenvectors of a Laplacian as follows:

250 C Graph theory

l†ij =

m∑

k=1

uikujkλ
†
k (C.22)

Property (d) means that, according to the definition B.2.3, there exists a

matrix Y = (y1, . . . ,ym) such that l†ij = yT

iyj . Hence, we can treat elements of

the matrix L† as degrees of similarity between objects i and j, see e.g. [130].
Another way to determine the pseudo-inverse is based on the formula

L† =
(
L− 1

m
eeT
)−1

+
1

m
eeT (C.23)

An efficient method of using this formula in the case of large graphs has been
presented in section 4.3 of the paper [130].

Definition C.2.3 Let G = (V,E) be a connected and undirected graph and let
L† be a pseudo-inverse of its Laplacian. The resistance distance cij between the
nodes vi, vj is equal

cij = (vol V)(l†ii − 2l†ij + l†jj) = (vol V)(ei − ej)
TL†(ei − ej) (C.24)

where ei denotes i
th column of a unit matrix. �

It turns out that
√
cij possesses the properties of Euclidean distance. Hence,

nodes of the graph G can be assigned points zi ∈ Rn, i = 1, . . . ,m, in such
a way that distances between them are equal to resistance distances. Precisely
speaking, the coordinates of these points are identical with rows of the matrix
U(Λ†)1/2. Thus, we have zTizj = eTiL

†ej as well as cij = (volV)‖zi − zj‖2.
More information on the topic can be found in section 6 of the paper [351] and
in the references cited therein. We present in section D.1.2 other examples of
application of pseudo-inversion.

C.2.1.3 Laplacian of a directed graph

Laplacian of a directed graph is a more subtle object than a Laplacian of an
undirected graph. The proposal presented here stems from Chung [76].

Let G = (V,E) be a directed graph of the neighbourhood matrix S. Its
elements sij are positive, if vj is a direct neighbour of the node vi, tzn. vi → vj ,
and sij = 0 otherwise. Now we have to distinguish between in-degree d

in
j and

out-degree d
out
j ; they are defined by equations (C.7) and (C.8)

If doutj > 0 holds for each node, then we can construct the Markov chain over
the transition matrix

P = D−1S (C.25)

where D is a diagonal matrix with elements dj = d
out
j . Let π be a stationary

distribution of this chain, i.e. π is a row vector fulfilling the equation π = πP .

C.2 Graph matrices 251

Let us recall that the condition of existence and uniqueness of such a solution
is that G be a strongly connected and aperiodic graph. Chung [77] proposes the
following construction 4:

L̃ =
ΠP + P TP

2
(C.26)

It is an analogue of the combinatorial Laplacian, defined for the undirected
graph. A normalised variant is of the form, see [76], [391]:

L = I− 1

2

(
Π1/2PΠ−1/2 +Π−1/2P TΠ1/2

)
(C.27)

where Π = diag(π).
For a Laplacian defined in this way, the methods elaborated for undirected

graph are applied.

C.2.2 Green functions

Basic results characterising the Green function for undirected graphs were ob-
tained by Chung and Yau5. We present in this section those related basic for-
mulas that are exploited in this book. We make use of the formalism of [288].

Formally, if L is a normalised Laplacian, corresponding to the similarity
matrix S, and ∆ = D−1/2LD1/2 is a discrete Laplace operator, then a discrete
Greeen function is understood as the left inverse of the operator ∆, i.e. matrix
G such that G∆ = I.

Let λ1 ≤ λ2,≤ . . . leλm be increasingly ordered eigenvalues of the combina-
torial Laplacian L and let vi mean Laplacian’s eigenvector corresponding to the
ith eigenvalue (i = 1, . . . ,m). Similarly, let λ′1 ≤ λ′2,≤ · · · ≤ λ′m denote ordered
eigenvalues of the normalised Laplacian L, and let wi denote the eigenvector
corresponding to the ith eigenvalue of the matrix L.

Elements gij of Green function, corresponding to the combinatorial Laplacian
L, may be determined from the equation

gij =

m∑

u=2

1

λu
viuvju (C.28)

and elements gij of the Green function, corresponding to the normalised Lapla-
cian L, are determined from the equation

gij =

m∑

u=2

1

λ′u
wiuwju (C.29)

4 Many interesting remarks are contained in the report of D.F. Gleich, Hierarchical
directed spectral graph partitioning. Information Networks, Stanford University, Fi-
nal Project, 2005, URL: http://www.cs.purdue.edu/homes/dgleich/publications/
Gleich2005-hierarchicaldirectedspectral.pdf.

5 F. Chung and S.-T. Yau, “Discrete Green’s functions”, J. Combinatorial Theory
Ser., pp. 191-214, 2000.

252 C Graph theory

Symbol viu (resp. wiu) denotes the ith element of the eigenvector vu (resp. wu).
A comparison of these formulas with equation (C.22) allows us to conclude

that the Green matrix G = [gij] is a pseudo-inverse of the combinatorial Lapla-
cian L, and G = [gij] is a pseudo-inverse of the normalised Laplacian L. Fur-
thermore, one can check that

GL = LG = I− v1v
T

1

GL = LG = I−w1w
T

1

D

Random walk on a graph

A random walk over an undirected graph is a classic example of a (discrete)
Markov chain. In this Appendix we are dealing with some specific features of
such a random walk on undirected graphs, which apply to the issues of clustering
of objects. A reader who is interested in the relationship between random walk
and solving heat conduction equations or random walk and resistance networks
is recommended to consult papers [239], [110], [227].

D.1 Random walk on undirected graphs

D.1.1 Basic facts

Let G = (V,E) be an undirected graph with m nodes. The probability of tran-
sition from the node j to the neighbouring node i is equal 1/dj, i.e. each node
belonging to the set of neighbours N(j) of the node j is selected with same
probability. Such a walk represents the indifference of the walker: when he is at
the node j, he chooses with equal probability one of dj edges leaving this node.
If G is an undirected graph with neighbourhood matrix A then

P = AD−1 (D.1)

is the transfer matrix characterising the random walk process. D denotes the
matrix of node degrees, D = diag(d1, . . . , dm).

Remark D.1.1 Matrix P from equation (D.1) is a column-stochastic matrix,
meaning that the sum of elements in each column is equal 1. If we denote the
initial probability distribution over the set of nodes with p0, then this distribution
takes on the form p1 = Pp0 after the first step. The number pij is called proba-
bility of passage (or transfer) from the node j to the node i (the index sequence
may seem a bit counter-intuitive here).

In the Markov chain theory (see, e.g., [188]), the column stochastic matrix

P is frequently replaced by the row stochastic matrix P̃ = P T = D−1A. In this
case, the element p̃ij represents the probability of transition from the node i
to the node j. Hence, if w0 is a row vector, representing the initial probability
distribution over the set of nodes, then after one step this distribution will be of
the form w1 = w0P̃ . The price to be paid for the use of the transition matrix
with a more natural interpretation of its elements is the necessity to use row

254 D Random walk on a graph

vectors and to apply left side multiplication of the row vectors with the transition
matrix.

Though both representations yield the very same results, we will use the rep-
resentation (D.1) as the right-hand sided multiplication of the column vector
with a matrix is more efficient that left-sided multiplication of a row vector by a
matrix1. �

If G is a connected graph, then the Perron-Frobenius theorem implies that
P has at least one (right) vector π corresponding to the principal eigenvalue
λmax = 1, and all the components of this vector are positive. Further, if G is
aperiodic, then there exists exactly one such vector. A random walk on a graph
G is connected if and only if G is connected, and is aperiodic if and only if G
is not bipartite. The probability distribution represented by the (normalised2)
vector π is called stationary distribution. The above implies

Pπ = π (D.2)

An element πi of this vector can be treated as the inverse of the expected number
of steps necessary to return to the node vi ∈ V on a random walk according to
the distribution P when starting at this node.

We summarise below some important facts about the properties of such a
random walk.

Lemma D.1.1 Let G(V,E) be a connected and aperiodic undirected graph and
let d = (d1, . . . , dm)T denote the vector of degrees. Then the vector

π =
d∑
i di

=
d

vol V
(D.3)

represents a stationary distribution of a Markov chain with transfer matrix P .

Proof: D−1
d = e, hence

Pd = AD−1
d = Ae = d

i.e. d is a right eigenvector of the matrix P (note that the last equality is a consequence

of the symmetry of the matrix A). By normalising this vector we obtain a stochastic

vector π of the abovementioned form. �

Lemma D.1.2 A Markov chain with the transfer matrix (D.1) is a reversible
chain, i.e..

pijπj = pjiπi

Proof results from the symmetry of the matrix A and the fact that pij = aij/dj, and

πj = dj/volX. �

1 See G. Gundersen and T. Steihaug. Data structures in Java for matrix computations.
In: Proc. Norwegian Informatics Conf., NIK’2002, pp. 97-108, Kongsberg, Norway,
2002. URL: http://www.nik.no/2002/Gundersen.pdf.

2 Here, normalisation means that the sum of components of the vector is equal 1

D.1 Random walk on undirected graphs 255

To ensure aperiodicity, the so-called lazy random walk is introduced, repre-
sented by the transfer matrix

P̂ = αI + (1− α)P, 0 < α < 1 (D.4)

that is, with probability α the walker does not change the location (hence the
name ”lazy random walk”), and with probability (1 − α) moves to a randomly
selected neighbour of the current node. Usually, α = 1/2 is assumed. Such a
solution is suggested both by Chung [77] and Zhou and Schölkopf [392].

Lemma D.1.3 Matrices P and P̂ have identical eigenvectors.

Proof: Let (λ,w) be an eigenpair of the matrix P , i.e. Pw = λw. Then

P̂w = αw + (1− α)λw = [α + (1− α)λ]w = λ̂w

hence, (λ̂,w) is an eigenpair of the matrix P̂ . �

The interval [−1, 1], containing all eigenvalues of the matrix P , is now trans-

formed into the interval [2α − 1, 1], containing eigenvalues of the matrix P̂ . In

particular, if α = 1/2, then λ̂ = (1+λ)/2, that is, the eigenvalues of the matrix P̂
belong to the set [0, 1]. This property is a justification for the choice of α = 1/2.
The above lemma implies also that, independently of the value of α, the vector
π, defined by the formula (D.3), is a stationary distribution of the Markov chain

with transfer matrix P̂ .
Matrices P and P̂ are not symmetric. To derive related symmetric matrices,

we apply the trick known from section, 5.2.4 consisting in multiplication by
special matrices:

P = D−1/2PD1/2 = D−1/2AD−1/2 (D.5)

and

P̂ = D−1/2P̂D1/2 = αI + (1− α)D−1/2AD−1/2 (D.6)

We see in equation (D.5) the complement of the normalised Laplacian (5.51)
from section 5.2.4.

Note also that both matrices can be obtained by an analogous trick, applied
to the symmetric row-stochastic matrix P̃ , i.e.

P = D1/2P̃D−1/2

P̂ = D1/2
(
αI + (1− α)P̃

)
D−1/2 = αI + (1− α)D−1/2AD−1/2

The following simple lemma is worth noting:

Lemma D.1.4 If (λ,w) is an eigenpair of a symmetric matrix, P then
(λ,D1/2w) is an eigenpair of the matrix P .

Proof: Since (λ,w) is an eigenpair of the matrix P, we have

256 D Random walk on a graph

λw = Pw = D−1/2PD1/2
w = D−1/2Pv

where v = D1/2w. By multiplying both sides of the above equality by D1/2, we obtain

λD1/2w = Pv, that is, λv = Pv. �

Lemma D.1.5 Let G = (V,E) be an undirected graph, described by the neigh-
bourhood matrix A, and let P = AD−1 be a transfer matrix. If the pair (λ,w)
is the solution of the eigen problem

Pw = λw

then the pair (1−λ,w) is the solution of the generalised eigen problem (5.45). �

An elementary proof of this lemma was presented in section 5.2.4 while jus-
tifying the algorithm 5.3.

D.1.2 Characteristics of random walk

The times, required to reach some states are among the important characterisa-
tions of a random walk. We present below their definitions and related compu-
tational methods.

D.1.2.1 Mean access time

The mean hitting time3 (hitting time), hij , is understood as the expected number
of steps after which a random walker starting his journey at node j will reach
the node i. This time can be computed in several ways.
(a) A naive method consists in transforming the Markov chain with transfer

matrix P , describing a random walk over a connected graph, into a chain
with a single absorbing state i, characterised by a matrix P̂ . If we assign
numerical identifiers to chain states in such a way that the state i gets the
identifier 1 then the matrix P̂ is of the form4

P̂ =

[
1 R
0 T

]

The average number of steps needed to reach the absorbing state from any
state is equal to the components of the vector t = (I− T T)−1e.

(b) Another method was presented in [130]. Let L† = [l†ij] be the pseudo-inverse
of the Laplacian, see section C.2.1.2. The expected number of steps hij re-
quired to reach state i from state j is equal

hij =

m∑

k=1

(
l†jk − l

†
ji − l†ik + l†ii

)
dk (D.7)

3 It is called in the literature also first passage time, mean escape time or mean reaching
time.

4 Please remember that P is a column-stochastic matrix !

D.1 Random walk on undirected graphs 257

(c) Lovász in [239] provides a further method. Let P̃ = I − L = D−1/2AD−1/2

and let (λi,ui) be eigen pairs of this matrix, ordered by decreasing eigenval-
ues 1 = λ1 > λ2 ≥ · · · ≥ λm. Then, see [239, Thm. 3.1]

hij = 2m

m∑

k=2

1

1− λk

(u2ik
di
− uikujk√

didj

)
(D.8)

D.1.2.2 Commute time

The commute time , cij , is the average number of steps, after which a random
walker starting at node i reaches node j, and from there he returns to node i,
i.e. cij = hij + hji. One can compute it directly from the definition or use the
equation below, see [130, Appendix C]

cij = 2m(l+ii + l+jj − 2l+ij) (D.9)

This equality can be rewritten as

cij = 2m(ei − ej)
TL†(ei − ej) (D.10)

where ei means the ith column of unit matrix.
Using notation introduced in section C.2.2, the commute time can be equiv-

alently computed from the formulas5

cij = 2m
m∑

u=2

1

λu

′
(
wiu√
di
− wju√

dj

)2

= 2m

m∑

u=2

1

λu

(
viu − vju

)2
(D.11)

If we treat the nodes of the graph in the space of nodes, that is, we associate
ith node with the vector ei and apply the equation (2.2) from page 26 then we
can state that

√
cij is a distance in the space spanned over the set of vectors ei,

i = 1, . . . ,m.
In fact, the commute time cij is a distance. It is related to the so-called

resistance distance rij via the formula [68]

cij = 2mrij (D.12)

Bapat, Gutman and Xiao6 provided a simple formula allowing to compute the
resistance distance:

5 They are correct under the assumption that the similarity matrix S represents a
connected graph. Only in such a case the corresponding Laplacian has exactly one
eigenvalue equal to zero.

6 R.B. Bapat, I. Gutman, W. Xiao. A simple method for computing resistance dis-
tance. Z. Naturforsch., 58: 2003, pp. 494–498.

258 D Random walk on a graph

rij =
detL(i, j)

detL(i)
(D.13)

where L(i) means the matrix L (Laplacian), from which ith row and ith column
have been removed, and L(i, j) is the Laplacian, from which rows and columns
with numbers i and j have been removed. Let us stress that L(i) is constant for
each i, so that the denominator needs to be computed only once.

D.1.2.3 Coverage time

Coverage time, ci, is the expected number of steps required for a random walker
who starts at node i to visit all the nodes. The number C(G) = maxi ci is called
the coverage time of the graph G. One can demonstrate that C(G) ≤ m(m− 1).

D.1.2.4 Mixing time

Mixing speed, µ, shows how quickly the random walk approaches the stationary
distribution

µ = lim sup
t→∞

max
i,j
|pij(t)− πj |1/t (D.14)

Here, pij(t) means the probability of passing from node i to j in t steps.
The inverse of mixing speed is called mixing time. It tells after how many

steps the matrix P turns into the stationary matrix P∞, that is - becomes a
matrix of the form eπT. An approximate value of this time is τ = (logm)/(1−λ2),
where λ2 is the second principal eigenvalue of the matrix P . However, its exact
value depends on the understanding of the proximity between the matrices P t

and P∞, see [239].

D.2 Random walk on directed graphs

Random walk in a directed graph G = (V,E), endowed with the neighbourhood
matrix W , is described by the probabilities

pij =

{
wij/d

+
i if (vi, vj) ∈ E

0 otherwise
(D.15)

where d
+
i is the out-degree of the node i, that is, the number of arcs leaving this

node.
If G is a strongly connected graph, then there exists a unique stationary dis-

tribution π with positive components, such that the condition πj =
∑

vi→vj
πipij

holds. Regrettably, the distribution π does not have an analytical form in this
case, contrary to undirected graphs. We find it by applying e.g. the power
method, that is - by iterating the equation π(k+1) = Pπ(k) till ‖π(k+1)−π(k)‖ ≤
ǫ, where ǫ is a predefined precision.

The matrix P needs to be modified if G is not a strongly connected graph.
Zhou Huang and Schölkopf propose the following construction of the random

D.2 Random walk on directed graphs 259

walk with teleportation [391]. If the random walker reached a node u with a
positive out-degree d

+
u , then in the next step he moves to: (a) a (uniformly)

randomly selected node v 6= u or (b) one of the nodes pointed to by the arcs
u → v. Decision (a) is made with probability 1 − η, and decision (b) – with
probability η > 0. Otherwise, if d+u = 0, then the random walker jumps to any
node v ∈ X\{u}. Hence, the elements of the transfer matrix are of the form

pteleij =

η
wij

d
+
i

+
1− η
m− 1

if d+i > 0 and i 6= j

η
wij

d
+
i

if d+i > 0 and i = j

1/(m− 1) if d+i = 0 and i 6= j
0 otherwise

(D.16)

Another variant of random walk with teleportation, proposed in [274], con-
sists in construction of the transfer matrix of the form

P tele = ξP +
1− ξ
m

eeT (D.17)

given that P is an aperiodic transfer matrix.

E

Personalized PageRank vector

In case of undirected graphs, the PageRank vector corresponds to a stationary
distribution of random the walk, described by a transfer matrix of a special form,
see the remark E.1.1. We are interested in a special case of such a random walk,
in which the random walker is located in a particular initial node. Knowledge
of such stationary distributions allows to construct a stationary distribution for
any stochastic initial vector. We discuss below some specific features of such a
random walk.

E.1 Basic notions and interdependences

Let G = (V,E) be an undirected and connected graph, and P = AD−1 be a
(column) stochastic transition matrix, describing random walk in this graph. As
before, A is the neighbourhood matrix representing links in graph G, and D
is the diagonal degree matrix. The PageRank vector is defined, as proposed by
Page and Brin, in [274], as the vector ρ(s, β) being the solution to the equation

ρ(s, β) = βs + (1− β)Pρ(s, β) (E.1)

where β ∈ (0, 1] is the so-called damping factor, and s is the starting vector. In
the original formulation, s is a vector with all elements equal to 1/|V |. If only
some elements of this vector are positive, while the other ones are equal zero,
then we talk about the personalized PageRank vector. The set supp(s) = {v ∈
V : s(v) > 0} indicates the range of personalization. Subsequently, we will denote
a personalised PageRank vector with the symbol p(s, β).

Lemma E.1.1 PageRank vector possesses the following properties:
(a) ρ(s, 1) = s,
(b) If π is a stationary distribution with components of the form (D.3) then

ρ(π, β) = π holds for any value of the parameter β ∈ (0, 1],
(c) ‖ρ(s, β)‖1 = 1 if only ‖s‖1 = 1.

�

Remark E.1.1 Please pay attention that in the original formulation of Page
and Brin G is a directed graph, which requires a more careful transformation of
the connection matrix into a stochastic matrix. Furthermore, in order to ensure
that the corresponding transfer matrix has a single principal value, the authors
modify the stochastic matrix P to the form P ′ = βseT + (1 − β)P . If we denote

262 E Personalized PageRank vector

with ρ(s, β) the eigenvector, corresponding to the principal eigenvalue (equal 1)
of the matrix P ′, we can easily check that, in fact, it fulfills the conditions of the
equation (E.1), i.e.

P ′ρ(s, β) = βs(eTρ(s, β)) + (1− β)Pρ(s, β)

because eTρ(s, β) = 1.
As indicated in the remark D.1.1 on page 254, many authors assume that ρ

and s are row vectors. In such a case the equation (E.1) is of the form

ρ(s, β) = βs + (1 − β)ρ(s, β)P T

i.e. the matrix P T is defined as the product D−1A. �

Remark E.1.2 Let us stress that the symbols ρ(s, β) and p(s, β) denote the
same solution of the equation system (E.1). We introduce them solely for the
convenience of the Reader. When we use the symbol ρ(s, β), we have in mind
the global PageRank vector, that is, a solution obtained for the positive vector s,
whereas the symbol p(s, β) is intended to mean the personalised PageRank vector
that is the solution of equation system (E.1) for the nonnegative starting vector
s. �

The transfer matrix P , which appears in equation (E.1), was replaced in the
paper [13] by the lazy random walk matrix of the form

P̂ =
1

2
(I +AD−1) (E.2)

In such a case, the personalised PageRank vector is a vector p(s, α), for which
the equation below holds:

p(s, α) = αs + (1 − α)P̂p(s, α) = αs + (1− α)
1

2
(I + P)p(s, α) (E.3)

Lemma E.1.2 If p(s, α; P̂) is a solution of the equation system (E.3), and
p(s, β;P) is a solution of the system (E.1), and if β = 2α/(1 + α), then

p(s, α; P̂) = p(s, β;P) .

Proof: By transforming the equation (E.3), we obtain

1 + α

2
p(s, α; P̂) = αs +

(1− α)

2
Pp(s, α; P̂)

By multiplying both sides of the above equation by 2/(1 + α) and noticing that (1 −
α)/(1 + α) = 1− β, where β = 2α/(1 + α), we obtain the thesis. �

The above lemma demonstrates that the equations (E.1) and (E.3) possess
identical solutions if we apply in both cases the same starting vector and the
damping factors satisfy the condition β = 2α/(1 + α), and matrices P and P̂
correspond to one another, according to equation (E.2). Furthermore, equations

E.1 Basic notions and interdependences 263

(E.1) and (E.3), defining p(s, β) and p(s, α), have exactly the same formal form.
Hence, algebraic considerations, as well as algorithms derived for p(s, β) and

β, P , can be mapped by simple symbol substitution into p(s, α) and α, P̂ and
vice versa. Therefore, we will limit ourselves to seeking the distributions of p for
α, P̂ only.

Lemma E.1.3 A PageRank vector, personalised with respect to the starting vec-
tor s, is a sum of the geometric series:

p(s, α) = α

∞∑

t=0

(1 − α)tP̂ ts = αs + α

∞∑

t=1

(1− α)tP̂ ts (E.4)

Proof: Let us rewrite the equation (E.3) in the form

[I − (1− α)P̂]p(s, α) = αs

This implies that p(s, α) = α[I−(1−α)P̂]−1s if there exists the matrix [I−(1−α)P̂]−1.
Theorem 1.7 in [188] leads to the conclusion that if X is a square matrix such that
Xn → 0 when n→∞, then the matrix (I−X) possesses an inverse matrix of the form

(I−X)−1 =

∞∑

t=0

Xt

Substituting the matrix (1−α)P̂ for X we can check that the condition of the theorem

is fulfilled, hence the conclusion. �

Note that in the proof of the above lemma we represented the personalised
PageRank vector in the form p(s, α) = α[I− (1 − α)P̂]−1s.

By substituting

Rα = αI + α

∞∑

t=1

(1− α)tP̂ t (E.5)

we can rewrite the equation (E.4) in the form

p(s, α) = Rαs (E.6)

This equation makes apparent that the presonalised PageRank vector is a linear
transformation of the vector s, and Rα is the matrix of this transformation. Two
important properties of the PageRank vector can be derived from it.

Lemma E.1.4 The PageRank vector possesses the following properties:

(a) It is linear with respect to the starting vector, i.e. p(s1 + s2, α) = p(s1, α) +
p(s2, α) for any vectors s1, s2. This, in turn, means that the standard PageR-
ank vector ρ(s, α) is a weighted average of personalised PageRank vectors
p(χv, α), v ∈ V . Here, the symbol χv denotes the characteristic function of
the set S = {v}.

264 E Personalized PageRank vector

(b) The operator p(s, α) commutes with the matrix P̂ , i.e. P̂p(s, α) = p(P̂ s, α).
The equality below is a consequence of this property

p(s, α) = αs + (1− α)p(P̂ s, α) (E.7)

Proof: The property (a) results directly from the formula p(s, α) = Rαs. The property
(b) results from a simple transformation

P̂p(s, α) = α(P̂ s) + (1− α)P̂ (P̂ s) = p(P̂ s, α)

Taking this into account, we transform the definition of the PageRank vector into the
form

p(s, α) = αs + (1− α)P̂p(s, α) = αs + (1− α)p(P̂ s, α)

�

E.2 Approximate algorithm of determining the
personalized PageRank vector

The PageRank vector represents, in fact, a stationary distribution of the matrix
P ′ = (1 − β)P + βseT, see remark E.1.1. If G = (V,E) is a connected graph,
then P is a regular matrix as in a finite number of steps one can pass from any
node u ∈ V to any other node v ∈ V . According to the theory of regular Markov
chains, see e.g. [188], the stationary distribution of the matrix P ′ has the form

pi(s, α) =
∆i∑m
j=1∆i

, i = 1, . . . ,m (E.8)

where ∆i is the algebraic complement of the ith element, lying on the main
diagonal in the matrix I−P ′, and pi(s, α) is the ith element of the personalised
vector p(s, α).

Application of the above formula requires computation of m determinants of
matrices of dimensions (m− 1)× (m− 1), which is quite expensive in practice.
The equation (E.4) implies a conceptually simple method of determining the
approximate value of the personalised PageRank vector. It is illustrated by the
algorithm E.1.

A disadvantage of the algorithm is the necessity to perform multiple multi-
plications of a vector by a matrix. Taking into account that P is a sparse matrix,
this algorithm can be applied to the middle sized graphs.

In case of large graphs, a simulation method, suggested in the paper [13], can
prove to be much more convenient. The authors exploited there in an interesting
way the idea of Berkhina, who proposed in [46] the following metaphor: let
us place a portion of paint in the starting node v, which is spilled over the
neighbouring nodes. In each step, a fraction α of the paint, present in a given
node v dries out, half of the still wet paint remains in the node v, and the
remaining part spills in equal proportions onto the neighbours of the node v.
Let pt be a vector with elements pt(v), representing the amount of dried paint

E.2 Approximate algorithm of determining the personalized PageRank vector 265

Algorithm E.1 Algorithm of determination of the approximation to the per-
sonalised PageRank vector on the basis of equation (E.4)

1: Input parameters : Starting vector s, damping coefficient α, column-stochastic ma-
trix P , precision ǫ.

2: pold = 0, pnew = 0, s1 = s.
3: β = 1, α1 = 1− α
4: res = 1
5: while (res > ǫ) do

6: s1 = P s1
7: β = α1β
8: pnew = pnew + βs1
9: res = ‖pnew − pold‖1

10: pold = pnew

11: end while

12: Return the vector p = α(s + pnew)

at node v ∈ V at the time point t, and let rt be the vector having the elements
rt(v) representing the amount of wet paint present at the time point t in the
node v. The process of graph ”colouring” is described by two equations

pt+1 = pt + αrt

rt+1 = (1− α)P̂ rt
(E.9)

where P̂ is a matrix of lazy random walk of the form (E.2), p0 = 0, and r0 = eu.
It is not difficult to see that the vector pt+1 assumes the form

pt+1 = α

t∑

k=0

rk = α

t∑

k=0

(1 − α)kP̂ kr0

By substituting r0 = s and t→∞, we obtain the equation (E.4).
In the algorithm, presented in the paper [13], further simplifications were

proposed, consisting in ignoring the time and in local perspective on the colouring
process. The details of this approach are available in the cited paper. Let us only
mention here that the essence of the algorithm is the creation of the so-called
ǫ − appproximation of the vector p(s, α), that is, a vector p, for which the
equation

p + p(r, α) = p(s, α)

holds, where s is the starting vector, and r is a non-negative vector with compo-
nents r(v) < ǫd(v), representing the amount of non-dried (wet) paint at nodes
v ∈ V .

A further improvement to this algorithm was proposed by Chung and Zhao
in [80]. Its time complexity was reduced to O(αm log(1/ǫ)). The essence of this
idea is illustrated by the pseudo-code E.2.
Let us underline that the method of choosing the node influences only the speed
measured in terms of the number of iterations within the while loop. When lazy

266 E Personalized PageRank vector

Algorithm E.2 Fast algorithm of determining an ǫ-approximation of the per-
sonalised PageRank vector, [80]

1: Input parameters: Undirected graph G = (V,E), initial vector (distribution) s,
coefficient α ∈ (0, 1), precision ǫ.

2: Substitute p = 0, r = s, e = 1.
3: while (e > ǫ) do

4: e = e/2
5: p′ = 0
6: while (∃v ∈ V : r(v) ≥ ed(v)) do

7: Choose node u such that r(u) ≥ ǫd(u)
8: p′(u) = p′(u) + αr(u)
9: r(v) = r(v) + 1−α

d(u)
r(u), ∀v ∈ N(u)

10: r(u) = 0
11: end while

12: p = p + p′

13: end while

14: Return the vector p

random walk is applied, about 50% more iterations are needed to find an ap-
proximation with required precision. The abovementioned results were obtained
for the random walk with the random walk matrix P , teleportation coefficient
α = 0.15 and precision ǫ = 10−12. As comparisons show further on, the variant
E.2 can be considered as the quickest one.

It turns out that in the graph G there are not many links between the nodes
with high PageRank values and those with a low PageRank, [12]. More precisely,
if we sort the graph nodes by the decreasing value p(s, α), and the kth node in
this order is assigned a higher portion of probability than the node of rank
k(1 + δ), then there exist few connections between nodes with ranks {1, . . . , k}
and those with ranks from the set {k(1 + δ) + 1, . . . , |V |}.

F

Axiomatic systems for clustering

A considerable amount of research work has been devoted to understanding the
essentials of clustering, as briefly discussed in Section 2.6.

A number of axiomatic frameworks1 have been devised in order to capture
the nature of the clustering process, the most often cited being probably the
Kleinberg’s system [206].

In general, the axiomatic frameworks of clustering address either:

• the required properties of clustering functions, or
• the required properties of the values of a clustering quality function, or
• the required properties of the relation between the qualities of different par-

titions (ordering of partitions for a particular set of objects and a given
similarity/dissimilarity function).

We will now briefly overview Kleinberg’s axioms and some work done around
their implications.

F.1 Kleinberg’s axioms

As a justification for his axiomatic system, Kleinberg [206] claims that a good
clustering may only be a result of a reasonable method of clustering. His ax-
ioms are dealing with distance-based cluster analysis. He defines the clustering
function as follows:

Definition F.1.1 A function f is a clustering function if it takes as its argu-
ment a distance function d on the set S and returns a partition Γ of S. The sets
in Γ will be called its clusters. �

He postulated that some quite “natural” axioms need to be met, when we ma-
nipulate the distances between objects. These are:

Axiom F.1.1 The clustering method should allow to obtain any clustering of
the objects (so-called richness property). More formally, if Range(f) denotes
the set of all partitions Γ such that f(d) = Γ for some distance function d then
Range(f) should be equal to the set of all partitions of S.

1 Axiomatic systems may be traced back to as early as 1973, when Wright proposed
axioms of weighted clustering functions. This means that every domain object was
attached a positive real-valued weight, that could be distributed among multiple
clusters, like in later fuzzy systems. See: W.E. Wright. A formalization of cluster
analysis. Pattern Recognition, 5(3):273-282, 1973.

268 F Axiomatic systems for clustering

Axiom F.1.2 The method should deliver clusterings invariant with respect to
distance scale (so-called (scale)-invariance property). Formally: for any distance
function d and any α > 0, f(d) = f(α · d) should hold.

Axiom F.1.3 The method should deliver the same clustering if we move objects
closer to cluster centers to which they are assigned (so-called consistency prop-
erty). Formally, for a partition Γ of S, and any two distance functions d and
d′ on S such that (a) for all i, j ∈ S belonging to the same cluster of Γ , we
have d′(i, j) ≤ d(i, j), and (b) for all i, j ∈ S belonging to different clusters of
Γ , we have d′(i, j) ≥ d(i, j) (we will say that d′ is a Γ -transformation of d), the
following must hold: if f(d) = Γ then f(d′) = Γ .

F.1.1 Formal problems

Though the axioms may seem to be reasonable, Kleinberg demonstrated that
they cannot be met all at once (but only pair-wise).

Theorem F.1.1 No clustering function can have at the same time the proper-
ties of richness, invariance and consistency

The axiom set is apparently not sound. The proof is achieved via contradic-
tion. For example, take a set of n+2 elements. The richness property implies that
under two distinct distance functions d1, d2 the clustering function f may form
two clusterings, respectively Γ1, Γ2, where the first n elements form one cluster
and in Γ1 the remaining two elements are in one cluster, and in Γ2 they are in two
separate clusters. By the invariance property, we can derive from d2 the distance
function d4 such that no distance between the elements under d4 is lower than the
biggest distance under d1. By the invariance property, we can derive from d1 the
distance function d3 such that the distance between elements n+1, n+2 is bigger
than under d4. We have then f({1, .., n+ 2}; d4) = Γ2, f({1, .., n+ 2}; d3) = Γ1.
Now let us apply the consistency axiom. From d4 we derive the distance func-
tion d6 such that for elements 1, ..., n the d1 and d6 are identical, the distance
between n+ 1, n+ 2 is the same as in d4, and the distances between any element
of 1, ..., n and any of n + 1, n + 2 is some l that is bigger than any distances
between any elements under d1, ..., d4. From d3 we derive the distance func-
tion d5 such that for elements 1, ..., n the d1 and d5 are identical, the distance
between n + 1, n + 2 is the same as in d4 and the distances between any ele-
ment of 1, ..., n and any of n + 1, n + 2 is the same l as above. We have, then,
f({1, .., n+2}; d6) = Γ2, f({1, .., n+2}; d5) = Γ1. But this means a contradiction,
because by construction, d5 and d6 are identical.

At the same time, Kleinberg demonstrated that there exist algorithms that
satisfy any pair of the above conditions. He uses for the purpose of this demon-
stration the versions of the well known statistical single-linkage procedure. The
versions differ by the stopping condition:

• k-cluster stopping condition (which stops adding edges as soon as the linkage
graph for the first time consists of k connected components) - not ”rich”

F.1 Kleinberg’s axioms 269

• distance-r stopping condition (which adds edges of weight at most r only) -
not scale-invariant

• scale-stopping condition (which adds edges of weight being at most some
percentage of the largest distance between nodes) - not consistent

Notice that also k-median and k-means, as well as the MDL clustering do
not fulfill the consistency axiom.

F.1.2 Common sense problems

As there are practical limitations on the measurement precision, scale-invariance
may not be appropriate for the whole range of scaling factors.

The consistency axiom precludes a quite natural phenomenon that under
stretching of distances new clusters may be revealed.

Finally, we are really not interested in getting clusters of cardinality say equal
one, so that the richness axiom is in fact not intuitive,

F.1.3 Clusterability theory concerns

A set of objects is not all we want to know when saying that we discovered a
cluster. We want to see that objects belonging to different clusters differ sub-
stantially from one another, for example that the clusters are separated from
one another by some space.

But this separating space is something what the majority of clustering meth-
ods do not take into account and about which Kleinberg’s axiomatisation does
not care. Speaking differently, a clustering algorithm may provide us with clus-
ters even when there are none in the data.

The very existence of clusters in the data, or, more precisely, the separation
of clusters, was the subject of research on the so-called clusterability2, see e.g.
[3, 2].

Definition F.1.2 [3] Clusterability is a function of the set X ⊂ Rm mapping it
into the set of real numbers that specifies how a set X is clusterable.

These functions are constructed in such a way that the higher the value of
the function the stronger is the evidence that high quality clusterings may occur.

Methods of cluster analysis, examined by Ackerman [3], on which we base
our reflection in this section, are limited to the so-called center based (or centric)
clustering,

Definition F.1.3 We say that a partition is a centric clustering if each clus-
ter is distinguished by the center or several centers, where the distance of any
element to the nearest center of its own cluster is not greater than that to any
other center (of any other cluster).

2 Instead of clusterability, that is, the issue of the very existence of clusters, the
cluster validity, that is - their agreement with some prior knowledge about expected
clusters, may be investigated, as discussed already in chapter 4. Cluster validity was
also studied in papers [81, 264].

270 F Axiomatic systems for clustering

Centric clusterings are a special case of results from the distance driven clustering
functions (Definition F.1.1) so that Kleinberg’s axioms should be applicable.

To express the inadequacy of data clustering, Ackerman and Ben-David in-
troduce the concept of loss function for this class of clustering. An optimal
clustering minimizes the loss function for a particular data set.

Ackerman introduced the following concepts:

Definition F.1.4 Two centric clusterings are ǫ-close, if you can create a set of
disjoint pairs of centers from both clusterings such that the distance between the
centers of each pair is less than ǫ.

Definition F.1.5 Data is ǫ, δ-clusterable if the loss function for any clustering,
that is ǫ-close to an optimal clustering, is not greater than (1+δ) times the value
of the loss function of the optimal clustering (perturbational clusterability).

The study [3] proposed algorithms detecting such clusterability for ǫ =
radius(X)√

l
, where l is the cardinality of subsets of X , which all have to be

considered.
Let us recall two concepts on which clusterability evaluation is based.

Definition F.1.6 The separation in the clustering is the minimum distance
between the elements of different classes. Clustering diameter is the maximum
distance between elements of the the same class.

It is argued in [3] that there is at most one clustering such that the separation
is larger than the diameter.

With these concepts, Ackerman introduces in [3] various kinds of clusterabil-
ity.

Definition F.1.7 (Clusterability and related concepts)

• Worst-pair-quality of a clustering is the ratio of separation and diameter.
• Worst-pair-clusterability is the minimal worst-pair-quality over all centric

clusterings of the set X.
• k-separable clusterability is the decrease in the loss function while passing

from k − 1 clusters to k clusters.
• Variance-clusterability is the quotient of the variance between clusters to the

variance within clusters.
• Target-clusterability is measured as the distance to the clustering defined

manually.

It is claimed that in polynomial time, one can calculate only the worst-pair-
clusterability.

Note, first of all, that all these clusterability measures are sensitive to out-
liers because (most) clustering methods do not allow for an element to be left
unclustered.

But more interesting is the relationship to the Kleinberg’s axioms. We would
naively expect that if a clustering algorithm returns a clustering, then there
exists an intrinsic clustering. Furthermore, one would expect that if there is

F.1 Kleinberg’s axioms 271

an intrinsic clustering, then the clustering algorithm returns it. And it returns
(approximately) the clustering that is there in the data.

But any algorithm, seeking clusters fitting the requirements of ǫ, δ-
clusterability, will fail under distance-scaling, so it will not satisfy the Kleinberg’s
invariance-axiom.

On the other hand, a clustering algorithm, seeking to match the worst-pair-
clusterability or variance-clusterability or target-clusterability criterion, will per-
form well under scaling.

The k-separable clusterability may or may not depend on scaling this being
determined by the loss function.

The axiom of consistency seems not to constitute any obstacle in achiev-
ing any of the mentioned clusterability criteria. However, the Kleinberg’s Γ -
transformation may lead to emergence of new clusters according to at least the
variance-based clusterability criterion.

The Kleinberg’s axiom of richness is, however, hard to fulfil at least by the
variance-based clusterability. This clusterability criterion puts preference on clus-
ters with small numbers of elements, but if the variance is to be estimated with
any basic scrutiny, the minimum number of three elements within each cluster
is necessary, which precludes matching of the richness axiom.

F.1.4 Learnability theory concerns

Learnability theory [342] defines learnability as the possibility to generalize from
the sample to the population. Its basic postulate is: the concept is learnable if it
can be falsified. In order to learn, the algorithm must be able to conclude that
the data do not belong to the space of concepts. If the algorithm is able to assign
to each set of data a concept from the concept space, it does not learn anything.

In the light of the learnability theory

• the classical cluster analysis does not reveal any ”natural clusters”, but pro-
vides a mixture of the intrinsic structure of the data and of the structure
induced by the clustering algorithm

• the classical cluster analysis is not a method of learning without supervision
(”without a teacher”)3

• the capability of a clustering algorithm to recreate the external (”manual”)
clustering is not a criterion for the correctness of the algorithm, if it has not
learning abilities

• if the cluster analysis has something to contribute, it cannot satisfy the ax-
ioms of Kleinberg that is to
– produce any clustering possible (via manipulation of distance)
– produce invariant results while scaling distance
– produce invariant results with respect to reduction of distance to cluster

center.

3 There is, in fact, always a teacher who provides an aesthetic criterion of what is
”similar”/”different”

272 F Axiomatic systems for clustering

because these axioms give a much too big number of degrees of freedom for
manipulation of the function of distance.

F.2 Cluster quality axiomatisation

Ackerman and Ben-David4 propose to resolve the problem of Kleinberg’s ax-
iomatics by axiomatising not the clustering function, but rather cluster quality
function. We base the following on their considerations.

Definition F.2.1 Let C(X) be the set of all possible clusterings over the set of
objects X, and let D(X) be the set of all possible distance functions over the set
of objects X.

A clustering-quality measure (CQM) J : X × C(X) × D(X) → R+ ∪ {0}
is a function that, given a data set (with a distance function) and its partition
into clusters, returns a non-negative real number representing how strong or
conclusive the clustering is.

Ackerman and Ben-David propose the following axioms:

Axiom F.2.1 (Scale Invariance) A quality measure J satisfies scale invari-
ance if for every clustering Γ of (X, d)5, and every positive β, J(X,Γ, d) =
J(X,Γ, βd).

Note that if we define a clustering function in such a way that it maximises
the quality function, then the clustering function has also to be invariant.

Axiom F.2.2 (Consistency) A quality measure J satisfies richness if for ev-
ery clustering Γ over (X, d), whenever d′ is a Γ -transformation of d, then
J(X,Γ, d′) ≥ J(X,Γ, d).

Note that if we define a clustering function in such a way that it maximises
the quality function, then the clustering function does not need to be invariant.

Axiom F.2.3 (Richness) A quality measurem satisfies richness if for each non-
trivial clustering Γ ∗ of X, there exists a distance function d over X such that
Γ ∗ = argmaxΓ {J(X,Γ, d)}.

Note that if we define a clustering function in such a way that it maximises
the quality function, then the clustering function has also to be rich.

Ackerman and Ben-David claim that

Theorem F.2.1 Consistency, scale invariance, and richness for clustering-
quality measures form a consistent set of requirements.

4 M. Ackerman and S. Ben-David: Measures of Clustering Quality: A Working Set
of Axioms for Clustering. in: D. Koller and D. Schuurmans and Y. Bengio and L.
Bottou eds: Advances in Neural Information Processing Systems 21 NIPS09, 2009,
pp. 121–128

5 X is the set of objects, d is a distance function

F.3 Relaxations for overcoming the Kleinberg’s problems 273

and prove this claim by providing a quality measure that matches all these
axioms.

The quality measure they propose here is the ”Relative Margin”. First, one
needs to compute the ratio of distance of a data point to its closest centre to
that to the second closest centre. Then, a representative set of a clustering is de-
fined as a set K containing exactly one element from each cluster. One computes
the average of the ratio, mentioned before, for each potential representative set.
The minimum over these averages is the cluster quality function called Relative
Margin. The lower the value of the Relative Margin, the higher the clustering
quality. This does not match quite their axiomatisation because the axiomati-
sation assumed that increasing quality is related to increasing quality function
value. So to satisfy the axiomatic system, axioms have to be inverted, so that
quality increase is related to function decrease.

A disadvantage of this measure is that it ranks highly a clustering in which
each element is a separate cluster.

F.3 Relaxations for overcoming the Kleinberg’s problems

In the preceding section one way of clustering axiomatisation improvement was
presented. It consisted in shifting axiomatisation from clustering function to
clustering quality, which imlicitly relaxed at least one Kleinberg’s axiom (con-
sistency).

Let us look now at other proposals, concerning now the explicit relaxation
of the Kleinberg’s axioms, as summarised by Ben-David.

Axiom F.3.1 (Relaxation of Kleinberg’s richness) For any partition Γ of the
set X, consisting of exactly k clusters, there exists such a distance function d
that the clustering function f(d) returns this partition Γ .

This relaxation allows for the algorithms splitting the data into a fixed number of
clusters, like k-means. But it still leaves the open problem of a minimal number
of elements in a cluster.

Axiom F.3.2 (Local Consistency) Let C1, . . . , Ck be the clusters of f(d). For
every β0 ≥ 1 and positive β1, . . . βk ≤ 1, if d′ is defined by: d′(a, b) = βid(a, b)
for a and b in Ci, d

′(a, b) = β0d(a, b) for a, b not in the same f(d)-cluster, then
f(d) = f(d′).

This axiom does not guarantee that d′ is in fact a distance, so that it is hard
to satisfy.

Axiom F.3.3 (Refinement Consistency) is a modification of the consistency ax-
iom obtained by replacing the requirement that f(d) = f(d′) with the requirement
that one of f(d), f(d′) is a refinement of the other.

Obviously, the replacement of the consistency requirement with refinement
consistency breaks the impossibility proof of Kleinberg’s axiom system. But

274 F Axiomatic systems for clustering

there is a practical concern: assume a data set of points uniformly randomly
distributed in a plane on line segments ((a, 0), (2a, 6a)), ((a, 0), (2a,−6a)),
((−a, 0), (−2a, 6a)), ((−a, 0), (−2a,−6a)). A k-means algorithm with k = 2
would create two clusters: (1) segments ((a, 0), (2a, 6a)), ((a, 0), (2a,−6a)), (2)
((−a, 0), (−2a, 6a)), ((−a, 0), (−2a,−6a)). But if cluster (2) is shrunk as follows:
all points are rotated around (−a, 0) so that they lie on the X axis to the left
of (−a, 0), then k-means would change class allocation of a part of points from
this cluster, violating refinement consistency.

F.4 Learnability oriented axiomatisation

Let us now look at ways to formulate a learnability based axiomatic framework
for clustering algorithms. The clustering algorithm is inevitably connected to
the clusterings it can produce. So, first let us state the axioms necessary for
clustering.6

Axiom F.4.1 (Strong learnability) Clustering must split the sample space (for
each point in sample space we must be able to say to which cluster it belongs or
if it belongs to the undecided space),

Axiom F.4.2 (Weak learnability) Clustering must be learnable from finite sam-
ple (the clustering to be discovered must belong to a class of clusterings such that
the class is learnable in the sense of learnability theory),

Axiom F.4.3 (Separability) Clusters in the clustering must be separable (for
a sufficiently large sample it should be significantly more probable to have the
closest neighbor from the same cluster than from a different one),

Axiom F.4.4 (Enlightening) Clustering must be enlightening (new information
should be obtained via clustering compared to prior knowledge).

Therefore:

Axiom F.4.5 (Learnability) A clustering algorithm with high probability shall
return a clustering if the intrinsic clustering of the data belongs to the class of
clusterings for which the algorithm is designed and this clustering should be close
to the intrinsic one,

Axiom F.4.6 (Strong learnability) A clustering algorithm with high probability
shall return a failure information if the intrinsic clustering of the data does not
belong to the class of clusterings for which the algorithm is designed or if there
is no clustering behind the data,

Axiom F.4.7 (Separability) A clustering algorithm shall state with high relia-
bility what is the separation between clusters,

6 See: R. A. K lopotek and M. A. K lopotek: Fallacy of Kleinberg’s Richness Axiom
in Document Clustering. Conference on Tools, Applications and Implementations of
Methods For Determining Similarities Between Documents. Warszawa, 22.4.2015

F.5 Graph clustering axiomatisation 275

Axiom F.4.8 (Enlightening) A clustering algorithm shall verify if there is a
difference between the detected clustering and the prior knowledge of the sample
space.

Note that these axioms are in opposition to axioms of Kleinberg. Learnability
contradicts the richness axiom. Separability contradicts invariance. Enlightening
opposes consistency.

F.5 Graph clustering axiomatisation

In the preceding sections we considered the case, when the clustered objects are
placed in a space, where distances between objects may be defined. But a large
portion of this book was devoted to clustering of graphs (chapter 5).

Hence we cannot overlook axiomatic frameworks developed specially for
them.

Van Laarhoven and Marchiori7 developed an axiomatic framework, defining
the desired properties of the clustering quality function, understood in a similar
way as previously.

Their first axiom assumes ”Permutation invariance”, namely.

Axiom F.5.1 (Permutation invariance) The graph partition quality depends on
node similarities but not on node labels.

The second axiom is the ”Scale invariance” which means that

Axiom F.5.2 (Scale invariance) Proportional increase/decrease of weights of
edges (node similarities) does not change the partition quality.

Authors quoted request also the ”Richness”, that is

Axiom F.5.3 (Richness) For any partition of the sets of nodes there exists a
graph, for which this partition is optimal with respect to the given quality function
among all the partitions of the graph considered.

Further, they request the ”Consistent improvement monotonicity”, that is

Axiom F.5.4 (Consistent improvement monotonicity) If the edge weights
within clusters are increased and between clusters they are decreased, then the
quality function shall increase.

One sees immediately that these axioms parallel those from section F.2 –
the difference is that we talk now about similarity measures and not distances
and that some similarities could be equal zero. A similarity equal to zero breaks
Kleinberg’s contradiction proof, because scaling by the lowest and highest dis-
tances is necessary, and in this case the highest distance is infinite. However,
there are two difficulties here. One is that the graph may have all edges with

7 see: T. van Laarhoven and E. Marchiori: Axioms for Graph Clustering Quality Func-
tions, Journal of Machine Learning Research 15 (2014) 193-215

276 F Axiomatic systems for clustering

non-zero weights. In this case the claim of breaking Kleinberg’s contradiction
is not valid. Furthermore, the weight zero stems frequently from the fact of
thresholding the similarity level between nodes. In this case the Scale invari-
ance is violated, because an increase in similarity would introduce new edges, its
decrease would remove the existing ones (crossing the threshold).

Van Laarhoven and Marchiori introduce, as well, an axiom for ”Local con-
sistency” (violated by the algorithms with a fixed number of clusters):

Axiom F.5.5 (Local consistency) For graphs agreeing on some subgraphs, if a
change of clustering in the common subgraph increases the quality function in
one graph, then the same change should cause an increase in the other.

Their final axiom is called ”Continuity”. That is

Axiom F.5.6 (Continuity) For each ǫ > 0 there exists a δ > 0 such that for
two graphs differing by edge weights for each edge by only δ, the quality functions
of the two graphs differ only by ǫ for each clustering C (of both graphs).

The same authors show that the popular graph partition quality measure
called modularity8 conforms only to four of their axioms (richness, continuity,
scle invariance, permutation invariance) but violates monotonicity and locality.

Therefore, they propose a new quality function, called adaptive scale modu-
larity,

QM,γ =
∑

c∈Γ

(
w(c)

M + γvol(c)
−
(

vol(c)

M + γvol(c)

)2
)

where vol(c) is the volume of the cluster c, and w(c) is the sum of weights of edges
within the cluster c. This function satisfies all their axioms for M = 0, γ ≥ 2,
and violates only scale invariance for M > 0.

For comparison, the original modularity was of the form

QM,γ =
∑

c∈Γ

(
w(c)

vol(G)
−
(
vol(c)

vol(G)

)2
)

where vol(G) is the volume of the entire graph G.
It has been observed by Fortunato and Barthelemy9 that modularity suffers

from the so-called resolution limit. Consider a ring of cliques in which cliques
are interconnected by a single link only. One would expect that an optimal
clustering would contain exactly one clique in one cluster. However, optimality
with respect to modularity does not behave in this way. Therefore, Fortunato and
Barthelemy require that graph partition quality measure should be Resolution-
limit-free. This means that: If a partition Γ of a graph G is optimal with respect
to such a measure among all partitions of G, then for each subgraph G′ of G the

8 See: Mark E. J. Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113, Feb 2004.

9 See: Santo Fortunato and Marc Barthelemy. Resolution limit in community detec-
tion. Proc. Natl. Acad. Sci. USA, 104(1):36-41, 2007.

F.5 Graph clustering axiomatisation 277

partition Γ ′ induced from Γ by G′ should also be optimal among all partitions
of G′.

Adaptive scale modularity does not fulfil this requirement but it does not
suffer, nonetheless, from the resolution limit. Hence, the axiom of resolution-
limit-freedom remains an open question for further investigations.

Let us make a further remark on modularity. It has a clear interpretation
as a difference between the current link structure and a random one. This is in
concordance with the enlightening axiom, mentioned before. The adaptive scale
modularity lacks such an interpretation and one can suspect that it will promote
big clusters (high volume compared to border, that is the sum of cluster node
degrees being much larger than the number of edges linking the given cluster
with other clusters). Hence, it seems that lack of contradictions in an axiomatic
system is a necessary condition for the adequacy of this system, but it is not
sufficient.

Furthermore, it turns out that finding a partition optimising the value of
modularity is NP hard. Hence, in fact approximate, but fast algorithms are used
instead, without even any guarantees of giving a solution within some bounds
with respect to the optimal one.

Therefore, it seems reasonable to press on learnability rather than on richness
in axiomatic systems.

This concluding remark would be conform with the opinion of Estivill-Castro,
expressed in his position paper 10 ”[...] there are many clustering algorithms,
because the notion of ”cluster” cannot be precisely defined. Clustering is in the
eye of the beholder”. That is we have to define our notion of clustering and then
prove that it is learnable from data using one’s algorithm.

10 Vladimir Estivill-Castro: Why So Many Clustering Algorithms: A Position Paper.
SIGKDD Explor. Newsl., June 2002, Vol. 4, No. 1, 65–75.

References

1. Z. Abbassi and V.S. Mirrokni. A recommender system based on local random
walks and spectral methods. In Proc. of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis, pages 102–108, San Jose,
California, USA, 12-17 Aug. 2007. ACM New York, NY, USA. [cited on page 53]

2. M. Ackerman and S. Ben-David. Which data sets are ’clusterable’? – a theoret-
ical study of clusterability. preprint (D.R.C. School of Computer Science, Uni-
versity of Waterloo), 2008. URL: http://www.ima.umn.edu/~iwen/REU/ability_
submit.pdf. [cited on page 67, 269]

3. M. Ackerman and S. Ben-David. Clusterability: A theoretical study. In Proc. of
the 12th International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2009), JMLR: W&CP 5, pages 1–8, 2009. [cited on page 269, 270]

4. C.C. Aggarwal, A. Hinneburg, and D.A. Keim. On the surprising behavior of
distance metrics in high dimensional space. In Proc. of the 8th Int. Conf. on
Database Theory, LNCS 1973, pages 420–430. Springer-Verlag Berlin, Heidelberg,
2001. [cited on page 27, 28, 242]

5. Ch.C. Aggarwal and Ch.K. Reddy, editors. Data Clustering. Algorithms and
Applications. CRC Data Mining and Knowledge Discovery Series. Chapman and
Hall/CRC, Boca Raton, FL, 2013. [cited on page 21]

6. M.A. Ajzerman, E.M. Brawerman, and L.I. Rozonoer. Rozpoznawanie obrazów.
Metoda funkcji potencja lowych. WNT, Warszawa, 1976. [cited on page 18, 57]

7. N. Alldrin, A. Smith, and D. Turnbull. Clustering with EM and k-means. Tech-
nical report, Department of Computer Science. University of California, San
Diego. La Jolla, CA 92037, 2003. URL: http://neilalldrin.com/research/w03/
cse253/project1.pdf. [cited on page 97]

8. D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Eu-
clidean sum-of-squares clustering. Cahiers du GERAD, pages G–2008–33, 2008.
[cited on page 42]

9. N. Alon. Eigenvectors and expanders. Combinatorica, 6(2):83–96, 1986. DOI:
10.1007/BF02579166. [cited on page 154]

10. M.R. Anderberg. Cluster Analysis for Applications. Academic Press, London,
1973. [cited on page 18, 21, 39]

11. R. Andersen, Ch. Borgs, J. Chayes, J. Hopcraft, V.S. Mirrokni, and S.-H. Teng.
Local computation of PageRank contributions. Internet Mathematics, 5(1-2):23–
45, 2008. DOI: 10.1080/15427951.2008.10129302. [cited on page 211]

12. R. Andersen and F. Chung. Detecting sharp drops in PageRank and a simplified
local partitioning algorithm. In J. Cai, S.B. Cooper, and H. Zhu, editors, Proc. 4th
Int. Conf. on Theory and Applications of Models of Computation, TAMC 2007,
volume 4484 of LNCS, pages 1–13, Shanghai, China, 22-25 May 2007. Springer.
DOI: 10.1007/978-3-540-72504-6 1. [cited on page 266]

13. R. Andersen, F. Chung, and K. Lang. Using PageRank to locally partition a
graph. Internet Mathematics, 4(1):35–64, 2007. [cited on page 205, 209, 262, 264, 265]

280 References

14. R. Andersen, F. Chung, and K. Lang. Local partitioning for directed graphs using
PageRank. Internet Mathematics, 5(1-2):3–22, 2008. [cited on page 19, 205, 211]

15. R. Andersen and S.M. Cioabă. Spectral densest subgraph and independence
number of a graph. J. of Universal Computer Science, 13(11):1501–1513, Nov.
2007. DOI: 10.3217/jucs-013-11-1501. [cited on page 211]

16. R. Andersen and K.J. Lang. Communities from seed sets. In Proc. of the 15th
Int. Conf. on World Wide Web, WWW’06, pages 223–232, Edinburgh, Scotland,
23-26 May 2006. ACM Press, New York, NY. DOI: 10.1145/1135777.1135814.
[cited on page 205]

17. M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. In Proc. of 1999 ACM-SIGMOD Int.
Conf. on Management of Data, pages 49–60, Philadelphia, Pennsylvania, Jun.
1999. ACM Press. [cited on page 54]

18. A. Anthony and M. des Jardins. Open problems in relational data clustering.
In Proc. ICML Workshop on Open Problems in Statistical Relational Learning,
Pittsburgh, PA, 2006. [cited on page 52]

19. P. Arbenz. Lecture notes on solving large scale eigenvalue problems. D-Infk.,
ETH Zürich, 2012. URL: http://people.inf.ethz.ch/arbenz/ewp/lnotes.html.
[cited on page 154]

20. D. Arthur. Analyzing and improving local search: k-means and ICP. PhD thesis,
Stanford University. Department of Computer Science, Stanford, CA, Jun. 2009.
[cited on page 42, 71, 72, 77]

21. D. Arthur, B. Manthey, and H. Röglin. Smoothed analysis of the k-means method.
J. of the ACM (JACM), 58(5):19, Oct. 2011. DOI: 10.1145/2027216.2027217.
[cited on page 70]

22. D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.
In N. Bansal, K. Pruhs, and C. Stein, editors, Proc. of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pages 1027–1035,
New Orleans, Louisiana, USA, 7-9 Jan. 2007. SIAM. [cited on page 13, 70, 77, 78]

23. S. Arya, D.M. Mount, N.S. Netanyahu R. Silverman, and A.Y. Wu. An optimal
algorithm for approximate nearest neighbor searching. J. ACM, 45(6):891–8923,
Nov. 1998. DOI: 10.1145/293347.293348. [cited on page 79]

24. B. Aspvall and J.R. Gilbert. Graph coloring using eigenvalue decomposi-
tion. SIAM. J. on Algebraic and Discrete Methods, 5(4):526–538, Dec. 1984.
[cited on page 160]

25. A. Asuncion and D.J. Newman. UCI machine learning repository. University
of California, Irvine, School of Information and Computer Sciences, 2007. URL:
http://www.ics.uci.edu/~mlearn/MLRepository.html. [cited on page 102]

26. K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S.K. Pham, and E. Sirnova.
PageRank based clustering of hypertext document collections. In Proc. of the
31st Annual Int. ACM SIGIR Conf. on Research and Development in Informa-
tion Retrieval, Singapore, Singapore, SIGIR ’08, pages 873–874. ACM, New York,
NY, USA, 20-24 Jul. 2008. DOI: 10.1145/1390334.1390549. [cited on page 220, 222]

27. R. Babuška. Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston,
USA, 1998. [cited on page 112]

28. R. Babuška, P.J. van der Veen, and U. Kaymak. Improved covariance estimation
for Gustafson-Kessel clustering. In Proc. of the 2002 IEEE Int. Conf. on Fuzzy
Systems, 2002. FUZZ-IEEE’02, volume 2, pages 1081–1085. IEEE, 12-17 May
2002. DOI: 10.1109/FUZZ.2002.1006654. [cited on page 112]

29. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM
Press/Addison-Wesley, New York, 1999. [cited on page 31, 217]

References 281

30. B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable
k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, Mar. 2012.
[cited on page 78]

31. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates
for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM,
Philadelphia, Jan. 2000. [cited on page 238]

32. M. F. Balcan, A. Blum, and N. Srebro. A theory of learning with similarity
functions. Machine Learning, 72(1-2):89–112, Aug. 2008. DOI: 10.1007/s10994-
008-5059-5. [cited on page 23]

33. M. F. Balcan, A. Blum, and S. Vempala. Clustering via simi-
larity functions: Theoretical foundations and algorithms. Unpublished,
2009. URL: http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/avrim/Papers/
BBVclustering_full.pdf. [cited on page 23]

34. P. Baldi and G.W. Hatfield. DNA Microarrays and Gene Expression: From Exper-
iments to Data Analysis and Modeling. Cambridge University Press, Cambridge,
UK, 2002. [cited on page 17]

35. G.H. Ball and D.J. Hall. ISODATA: a novel method of data analysis and pattern
classification. Technical Report NTIS AD 699616, Stanford Research Institute,
Stanford, CA, 1965. [cited on page 69, 80]

36. A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R.J. Mooney. Model-
based overlapping clustering. In Proc. of the 11th ACM SIGKDD Intl Conf. on
Knowledge Discovery in Data Mining, pages 532–537. ACM New York, NY, USA,
Aug. 2005. DOI: 10.1145/1081870.1081932. [cited on page 50]

37. A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with Bregman
divergences. J. Mach. Learn. Res., 6:1705–1749, 1 Dec. 2005. [cited on page 30, 31,

44]

38. W. Barbakh and C. Fyfe. Online clustering algorithms. Int. J. Neural Syst.,
18(3):185–194, 2008. DOI: 10.1142/S0129065708001518. [cited on page 81]

39. S.T. Barnard, A. Pothen, and H.D. Simon. A spectral algorithm for envelope re-
duction of sparse matrices. Numerical Linear Algebra with Applications, 2(4):317–
334, Jul./Aug. 1995. DOI: 10.1002/nla.1680020402. [cited on page 145]

40. S.T. Barnard and H.D. Simon. Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency – Prac-
tice and Experience, 6(2):101–117, Apr. 1994. DOI: 10.1002/cpe.4330060203.
[cited on page 156]

41. G. Barnett. Correspondence analysis: A method for the description of commu-
nication networks. In W.D. Richards and G. Barnett, editors, Progress in Com-
munication Sciences, volume 12, pages 135–164. Ablex Publishing Corporation,
U.S., 1993. [cited on page 169]

42. M. Basseville. Distance measures for signal processing and pattern recognition.
Signal Processing, 18(4):349–369, Dec. 1989. doi: 10.1016/0165-1684(89)90079-0.
[cited on page 30]

43. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 6(15):1373–1396, Jun. 2003.
[cited on page 147, 148]

44. A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clus-
tering. J. of Machine Learning Research 2 (2001) 125-137, 2:125–137, 2001.
[cited on page 60]

45. A.M. Bensaid, L.O. Hall, J.C. Bezdek, L.P. Clarke, M.L. Silbiger, J.A. Arrington,
and R.F. Murtagh. Validity-guided (re)clustering with applications to image
segmentation. IEEE Trans. Fuzzy Syst., 4(2):112–123, 1996. [cited on page 102]

282 References

46. P. Berkhin. Bookmark-coloring approach to personalized PageRank computing.
Internet Mathematics, 3(1):41–62, 2006. DOI: 10.1080/15427951.2006.10129116.
[cited on page 264]

47. P. Berkhin. A survey of clustering data mining techniques. In J. Kogan, Ch.
Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data, pages 25–
72. Springer, 2006. [cited on page 21]

48. M.W. Berry, M. Browne, A.M. Langville, V.P.Pauca, and R.J. Plemmons. Algo-
rithms and applications for approximate nonnegative matrix factorization. Com-
putational Statistics & Data Analysis, 52(1):155–173, 2007. [cited on page 46]

49. M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intel-
ligent information retrieval. SIAM Review, 37(4):573–595, Dec. 1995. DOI:
10.1137/1037127. [cited on page 53]

50. J.C. Bezdek. A convergence theorem for the fuzzy ISODATA clustering al-
gorithms. IEEE Trans. Pattern Anal. Mach. Intell, PAMI-2(1):1–8, 1980.
[cited on page 100, 104]

51. J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York and London, 1981. [cited on page 18, 21, 100, 105, 106,

109]

52. J.C. Bezdek and R.J. Hathaway. Numerical convergence and interpretation of the
fuzzy c-shells clustering algorithm. IEEE Trans. on Neural Networks, 3(5):787–
793, Sep. 1992. DOI: 10.1109/72.159067. [cited on page 115]

53. J.C. Bezdek, J. Keller, R. Krisnapuram, and N.R. Pal. Fuzzy Models and Al-
gorithms for Pattern Recognition and Image Processing. Kluwer Academic Pub-
lisher, Boston, London, 1999. [cited on page 113, 124]

54. J.C. Bezdek and S.K. Pal. Fuzzy Models for Pattern Recognition: Metods that
Search for Structures in Data. IEEE, New York, 1992. [cited on page 21, 99, 109]

55. C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, London,
1995. [cited on page 21, 95]

56. Ch. Boutsidis, A. Zouzias, M.W. Mahoney, and P. Drineas. Stochastic dimen-
sionality reduction for k-means clustering. arXiv:1110.2897v1 [cs.DS], 13 Oct
2011. [cited on page 128]

57. P.S. Bradley, K.P. Bennett, and A. Demiriz. Constrained k-means clus-
tering. Technical Report MSR-TR-2000-65, Microsoft Research, May 2000.
[cited on page 80, 91]

58. P.S. Bradley and O.L. Mangasarian. k-plane clustering. J. of Global Optimization,
16(1):23–32, 2000. [cited on page 114]

59. M. Brand. A random walk perspective on maximizing satisfaction and
profit. Technical Report TR2005-050, Mitsubishi Electric Research Labora-
tories, Dec. 2005. URL: http://www.merl.com/reports/docs/TR2005-050.pdf.
[cited on page 191, 198]

60. J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proc. 14-th Conf. on Uncertainty in Artificial
Intelligence, pages 43–52, Madison WI, 1998. Morgan Kauffman. [cited on page 33]

61. M. Breitenbach and Gr.Z. Grudic. Clustering through ranking on manifolds. In
Proc. of the 22nd Intnl Conf. on Machine Learning, ICML’05, pages 73–80. ACM
New York, NY, USA, 2005. DOI: 10.1145/1102351.1102361. [cited on page 214]

62. A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Springer, 2011.
[cited on page 247]

63. J.-Ph. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes and molecu-
lar pattern discovery using matrix factorization. PNAS, 101(12):4164–4169, Mar.
2004. DOI: 10.1073/pnas.0308531101. [cited on page 63, 64]

References 283

64. S. Bubeck, M. Meilă, and U. von Luxburg. How the initialization affects the
stability of the k-means algorithm. arXiv:0907.5494v1 [stat.ML], 31 Jul. 2009.
[cited on page 77]

65. Th. Bühler and M. Hein. Spectral clustering based on the graph p-laplacian. In
Proc. of the 26th Annual Intl Conf. on Machine Learning, ICML’09. ACM, New
York, NY, USA, 2009. doi: 10.1145/1553374.1553385. [cited on page 161]

66. S.H. Cha. Comprehensive survey on distance/similarity measures between prob-
ability density functions. Intl J. of Mathematical Models and Methods in Applied
Sciences, 4(1):300–307, 2007. [cited on page 26]

67. P.K. Chan, M.D.F. Schlag, and J.Y. Zien. Spectral K-way ratio-cut partition-
ing and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(9):1088–1096, Sep. 1994. [cited on page 160, 173]

68. A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari. The elec-
trical resistance of a graph captures its commute time and cover times. Comput.
Complexity, 6(4):312–340, 1997. [cited on page 197, 257]

69. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering
and dynamic information retrieval. In Proc. of 29th Symposium on Theory of
Computing, pages 626–635. ACM, New York, 1997. [cited on page 132]

70. P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory and re-
sults. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-
itors, Advances in Knowledge Discovery and Data Mining, pages 153–180. AAAI
Press/MIT Press, 1996. [cited on page 96]

71. H. Chen and J. Peng. 0-1 semidefinite programming for graph-cut clustering:
Modelling and approximation. In P.M. Pardalos and P. Hansen, editors, Data
mining and mathematical programming, CRM Proceedings & Lecture Notes, pages
15–41. AMS, 2008. [cited on page 45]

72. S. Chen, B. Ma, and K. Zhang. On the similarity metric and the distance
metric. Theoretical Computer Science, 410(24-25):2365–2376, May 2009. doi:
10.1016/j.tcs.2009.02.023. [cited on page 26]

73. T.W. Cheng, D.B. Goldof, and L.O. Hall. Fast fuzzy clustering. Fuzzy Sets and
Systems, 93(1):49–56, Jan. 1998. [cited on page 109]

74. H. Choe and J. Jordan. On the optimal choice of parameters in a fuzzy c-means
algorithm. In Proc. First IEEE Conf. on Fuzzy Systems, pages 349–353, San
Diego, CA, 1992. [cited on page 102]

75. F. Chung. Spectral Graph Theory. AMS, Providence, RI, 1997. [cited on page 19,

145, 147, 162, 200, 247, 249]

76. F. Chung. Laplacians and the Cheeger inequality for directed graphs. An-
nals of Combinatorics, 9(1):1–19, Apr. 2005. DOI: 10.1007/s00026-005-0237-z.
[cited on page 250, 251]

77. F. Chung. Random walks and local cuts in graphs. Linear Algebra and its Ap-
plications, 423(1):22–32, 1 May 2007. [cited on page 19, 251, 255]

78. F. Chung. Graph theory in the information age. Notices of the AMS, 57(6):726–
732, 2010. [cited on page 145, 200]

79. F. Chung and A. Tsiatas. Finding and visualizing graph clusters using PageRank
optimization. In R. Kumar and D. Sivakumar, editors, Algorithms and Models
for the Web Graph. 7th Int. Workshop, WAW 2010. Stanford, CA, USA, volume
6516 of LNCS, pages 86–97. Springer, 13-14 Dec. 2010. DOI: 10.1007/978-3-642-
18009-5 9. [cited on page 211]

80. F. Chung and W. Zhao. A sharp PageRank algorithm with applications to edge
ranking and graph sparsification. In R. Kumar and D. Sivakumar, editors, Proc.

284 References

of 7th Int. Workshop on Algorithms and Models for the Web-Graph, volume 6516
of WAW 2010, pages 2–14. Springer, Stanford, CA, USA, 13-14 Dec. 2010. DOI:
10.1007/978-3-642-18009-5 2. [cited on page 14, 265, 266]

81. A. Ciaramella, S. Cocozza, F. Iorio, G. Miele, F. Napolitano, M. Pinelli,
G. Raiconi, and R. Tagliaferri. Interactive data analysis and clustering of
genomic data. Neural Networks, 21, Issues 2-3:368–378, March-April 2008.
[cited on page 269]

82. K.L. Clarkson. Nearest-neighbor searching and metric space dimensions. In
G. Shakhnarovich, T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods in
Learning and Vision. Theory and Practice, pages 26–71. MIT Press, Mar. 2006.
[cited on page 79]

83. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21:5–30, 2006. [cited on page 19, 144, 223, 224]

84. P. Corsini, B. Lazzerini, and F Marcelloni. A new fuzzy relational clustering
algorithm based on the fuzzy c-means algorithm. Soft Computing, 9:439–447,
2005. [cited on page 123, 124]

85. D. Cvetković, P. Rowlinson, and S. Simić. Eigenvalue bounds for the signless
Laplacian. Publications de l’Institut Mathématique (Beograd), 81(95):11–27, 2007.
DOI: 102298/PIM0795011C. [cited on page 181]

86. J. Czekanowski. Zarys metod statystycznych w zastosowaniu do antropologii
(An outline of statistical methods applied in anthropology), volume 5 of
Travaux de la Société des Sciences de Varsovie. III - Classe des sciences
mathématiques et naturelles. Towarzystwo Naukowe Warszawskie, Warszawa,
1913. reprint availabnle at http://rcin.org.pl/dlibra/doccontent?id=
29411&from=FBC. [cited on page 22, 145]

87. S. Dasgupta and L. Schulman. A probabilistic analysis of EM for mixtures of
separated, spherical Gaussians. J. Machine Learning Research, 8:203–226,, Feb.
2007. [cited on page 65, 66, 96, 97]

88. R.M. Dave. Fuzzy shell-clustering and applications to circle detection
in digital images. Int. J. General Systems, 16(4):343–355, 1990. DOI:
10.1080/03081079008935087. [cited on page 115]

89. R.N. Dave. Characterization and detection of noise in clustering. Pattern Recog-
nition Letters, 12(11):657–664, 1991. [cited on page 120]

90. R.N. Dave. Generalized fuzzy c-shells clustering and detection of circular and
elliptical boundaries. Pattern Recognition, 25(7):713–721, Jul. 1992. DOI:
10.1016/0031-3203(92)90134-5. [cited on page 115]

91. R.N Dave and S. Sen. Robust fuzzy clustering of relational data. IEEE Trans.
Fuzzy Systems, 10(6):713–727, Dec. 2001. [cited on page 51]

92. N.M.M. de Abreu. Old and new results on algebraic connectivity of
graphs. Linear Algebra and its Applications, 423(1):53–73, 1 May 2007. DOI:
10.1016/j.laa.2006.08.017. [cited on page 248]

93. J.V. de Oliveira and W. Pedrycz, editors. Advances in Fuzzy Clustering and its
Applications. J. Wiley & Sons, Ltd, New York, 2007. [cited on page 21, 109, 111]

94. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. J. Royal Statistical Soc., Series B,, 39:1–38,
1967. [cited on page 95, 97]

95. K Devarajan. Nonnegative matrix factorization: An analytical and interpretive
tool in computational biology. PLoS Comput. Biol., 4(7):e1000029, Jul. 2008.
DOI: 10.1371/journal.pcbi.1000029. [cited on page 46]

References 285

96. I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proceedings of the 7-th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD), San Francisco, California, USA, 26-29 Aug.
2001. [cited on page 152, 173, 182]

97. I.S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document
collections. In R. Grossman, G. Kamath, and R. Naburu, editors, Data Mining
for Scientific and Engineering Applications. Kluwer Academic Publishers, 2001.
[cited on page 84]

98. I.S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high dimensional text
data augmented by local search. In Proc. IEEE Int. Conf. Data Mining, pages
131–138, Maebashi City, Japan, 2002. [cited on page 82, 83]

99. I.S. Dhillon, Y. Guan, and J. Kogan. Refining clusters in high dimensional
text data. In 2-nd SIAM ICDM, Workshop on clustering high dimensional
data, Arlington, VA, 2002. http://citeseer.ist.psu.edu/dhillon02refining.html.
[cited on page 82, 83]

100. I.S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spec-
tral clustering and graph cuts. Technical Report TR-04-25, University of Texas,
Dept. of Computer Science, 2005. URL: http://www.cs.utexas.edu/ftp/pub/
techreports/tr04-25.pdf. [cited on page 46]

101. I.S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A
multilevel approach. IEEE Trans. on Pattern Analysis and Machine Intelligence,
29(11):1944–1957, Nov. 2007. DOI: 10.1109/TPAMI.2007.1115. [cited on page 146,

173, 203]

102. I.S. Dhillon and D.S. Modha. Concept decompositions for large sparse text data
using clustering. Machine Learning, 42:143–175, 2001. [cited on page 82, 84]

103. I.S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with
Bregman divergences. In Proc. of the Neural Information Processing Systems
Conf., NIPS 2005, pages 283–290, Vancouver, Canada, Dec. 2005. [cited on page 46]

104. E. Dimitriadou, S. Dolničar, and A. Weingessel. An examination of indexes for
determining the number of clusters in binary data sets. Psychometrica, 67(1):137–
159, 2002. [cited on page 132]

105. C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for
graph partitioning and data clustering. In Proc. IEEE Int. Conf. on Data Mining,
ICDM 2001, pages 107–114, San Jose, CA , USA, 10 Nov. - 2 Dec. 2001. DOI:
10.1109/ICDM.2001.989507. [cited on page 161]

106. Ch. Ding, X. He, and H.D. Simon. On the equivalence of nonnegative matrix
factorization and spectral clustering. In Proc. 5-th SIAM Intnl Conf. on Data
Mining, volume 5, pages 606–610, 2005. [cited on page 167]

107. C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopou-
los. Locally adaptive metrics for clustering high dimensional data. Data Mining
and Knowledge Discovery, 14(1):63–97, 2007. [cited on page 114]

108. W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Develop., 17:420–425, 1973. [cited on page 145]

109. B. Dorow, D. Widdows, K. Ling, J.-P. Eckmann, D. Sergi, and E. Moses. Using
curvature and Markov clustering in graphs for lexical acquisition and word sense
discrimination. In Workshop MEANING-2005, 2004. [cited on page 201]

110. P.G. Doyle and J.L. Snell. Random walks and electric networks.
arXiv:math/0001057v1 [math.PR], 11 Jan 2000. [cited on page 195, 197, 199, 253]

111. L. Duana, L. Xub, F. Guoc, J. Leea, and B. Yana. A local-density based spa-
tial clustering algorithm with noise. Information Systems, 32(7):978–986, 2007.
[cited on page 56]

286 References

112. R.O. Duda, P.E. Hart, and G. Stork. Pattern Classification. J. Wiley & Sons,
New York, 2nd edition, 2000. [cited on page 18, 21, 73, 128]

113. D. Dueck. Clustering by Affinity Propagation. PhD thesis, Department
of Electrical & Computer Engineering, University of Toronto, 2009. url:
http://www.cs.columbia.edu/~delbert/docs/DDueck-thesis_small.pdf.
[cited on page 125]

114. J.C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. J. Cyber., 3(3):32–57, 1974. [cited on page 98]

115. M. Dyer and A Frieze. A simple heuristic for the p-center problem. Oper. Res.
Lett., 3(6):285–288, 1985. [cited on page 132]

116. W. E, T. Li, and E. Vanden-Eijnden. Optimal partition and effective dynamics of
complex networks. Proc. Nat. Acad. Sci. USA, 105(23):7907–7912, 10 Jun. 2008.
[cited on page 193]

117. Ch. Elkan. Using the triangle inequality to accelerate k-means. In T. Fawcett and
N. Mishra, editors, Proc. of the 20th Int. Conf. on Machine Learning, ICML 2003,
pages 147–153, Washington, DC, 21-24 Aug. 2003. AAAI Press. [cited on page 79]

118. A.J. Enright, S. van Dongen, and C.A. Ouzounis. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Research, 30(7):1575–1584, 1
Apr. 2002. DOI: 10.1093/nar/30.7.1575. [cited on page 201]

119. A. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering
for mining in a data warehousing environment. In E. Simoudis, J. Han, and
U.M. Fayyad, editors, Proc. of the 2nd Int. Conf. on Knowledge Discovery and
Data Mining, pages 323–333, New York City, Aug. 1998. Morgan Kaufmann.
[cited on page 54]

120. A. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large databases with noise. In Proc. of the 24th VLDB Conf.
on Knowledge Discovery and Data Mining, pages 226–231, Portland, Oregon, Aug.
1996. AAAI Press. [cited on page 54]

121. B.S. Everitt. Cluster Analysis. Halsted Press, 1993. [cited on page 18, 21, 41]

122. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298–
305, 1973. [cited on page 145, 248]

123. M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czechoslovak Math. J., 25:619–672, 1975.
[cited on page 145, 154, 248]

124. M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey on spectral and
kernel methods for clustering. Pattern Recognition, 41(1):176–190, Jan. 2008.
[cited on page 21, 53, 57, 59, 60]

125. M. Filippone, F. Masulli, and S. Rovetta. Applying the possibilistic c-means
algorithm in kernel-induced spaces. IEEE Trans. on Fuzzy Systems, 18(3):572–
584, Jun. 2010. DOI: 10.1109/TFUZZ.2010.2043440. [cited on page 122]

126. I. Fisher and J. Poland. Amplifying the block matrix structure for spectral clus-
tering. In M. van Otterlo, M. Poel, and A. Nijholt, editors, Proc. of the 14th
Annual Machine Learning Conf. of Belgium and the Netherlands, pages 21–28,
2005. http://www.dr-fischer.org/pub/blockamp/index.html. [cited on page 114,

176, 187, 189]

127. P. Fjällström. Algorithms for graph partitioning: A survey. Linköping Electronic
Articles in Computer and Information Science, 3(10), 1998. [cited on page 53, 144]

128. E. Forgy. Cluster analysis of multivariate data: Efficiency versus interpretability
of classification. Biometrics, pages 768–780, 1965. [cited on page 73, 75]

129. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
17 Feb. 2010. [cited on page 140, 205]

References 287

130. F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation
of similarities between nodes of a graph with application to collaborative recom-
mendation. IEEE Trans. on Knowledge and Data Engineering, 19(3):355–369,
Mar. 2007. [cited on page 191, 197, 198, 250, 256, 257]

131. C. Fraley and A. Raftery. MCLUST: Software for model-based cluster and dis-
criminant analysis. Technical Report 342, Dept. Statistics, University of Wash-
ington, 1999. [cited on page 96]

132. A.L.N. Fred and A.K. Jain. Data clustering using evidence accumulation. In Proc.
of the 16th Internat. Conf. on Pattern Recognition, volume 4 of ICPR 2002, pages
276 – 280, DOI: 10.1109/ICPR.2002.1047450, 11-15 Aug. 2002. [cited on page 61]

133. A.L.N. Fred and A.K. Jain. Robust data clustering. In Proc. of IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition, volume 2 of CVPR
2003, pages 128–136, Madison, Wisconsin, USA, 16-22 Jun. 2003. [cited on page 61,

62, 139]

134. A.L.N. Fred and A.K. Jain. Combining multiple clusterings using evidence accu-
mulation. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(6):835–850,
Jun. 2005. DOI: 10.1109/TPAMI.2005.113. [cited on page 62]

135. B.J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315:972–976, 16 Feb. 2007. [cited on page 13, 124, 125, 126]

136. B. Fritzke. Some competitive learning methods. Draft, Institute for Neu-
ral Computation, Ruhr-Universität Bochum, Germany, 5 Apr. 1997. URL:
http://www.ki.inf.tu-dresden.de/~fritzke/JavaPaper/. [cited on page 81]

137. Y. Fukuyama and M. Sugeno. A new method of choosing the number of clusters
for the fuzzy c-means method. In Proc. 5th Fuzzy Syst. Symp., pages 247–250,
1989. (in Japanese). [cited on page 134]

138. C. Fyfe and J. Corchado. A comparison of kernel methods for instantiating case
based reasoning systems. Advanced Engineering Informatics, 16(3):165–178, Jul.
2002. [cited on page 88]

139. I. Gath and A.B. Geva. Unsupervised optimal fuzzy clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 11(7):773–781, 1989.
[cited on page 109, 134]

140. A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM
Trans. Knowl. Discov. Data, 1(1), Mar. 2007. DOI: 10.1145/1217299.1217303.
[cited on page 60]

141. M. Girvan and M.E.J. Newman. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, 11 Jun. 2002. DOI:
10.1073/pnas.122653799. [cited on page 205]

142. X. Golay, S. Kollias, G. Stoll, D. Meier, A. Valavanis, and P. Boesiger. A
new correlation-based fuzzy logic clustering algorithm for fmri. Magnetic Res-
onance in Medicine, 40(2):249–260, Aug. 1998. DOI: 10.1002/mrm.1910400211.
[cited on page 33]

143. G.H. Golub and Ch. F. van Loan. Matrix Computation. Third edition. Hindustan
Book Agency, New Delhi, India, 1996. [cited on page 219, 238]

144. R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice Hall, Upper
Saddle River, NJ, third edition, 2008. [cited on page 115]

145. T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293–306, 1985. [cited on page 75]

146. L. Grady. Random walks for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(11):1768–1783, Nov. 2006. [cited on page 19]

288 References

147. D. Graves and W. Pedrycz. Kernel-based fuzzy clustering and fuzzy clustering: A
comparative experimental study. Fuzzy Sets and Systems, 161(4):522–543, 2010.
[cited on page 105, 117, 118, 119]

148. S. Guattery and G.L. Miller. On the quality of spectral separators. SIAM J. of
Matrix Anal. Appl., 19(3):701–719, Jul. 1998. DOI: 10.1137/S0895479896312262.
[cited on page 8, 170]

149. E.E. Gustafson and W.C. Kessel. Fuzzy clustering with a fuzzy covariance matrix.
In IEEE CDC, pages 761–766, San Diego, CA, 1979. [cited on page 111]

150. I. Gutman and W. Xiao. Generalized inverse of the Laplacian matrix and some
apptications. Bull. de l’Academie Serbe des Sciences at des Artes (Cl. Math.
Ntur.), 129:15–23, 2004. [cited on page 249]

151. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc.
Third ACM SIGMOD Intnl. Conf. on Management of Data, SIGMOD ’84, pages
47–57, 1984. [cited on page 79]

152. I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J.
of Mach. Learn. Res., 3:1157–1182, Mar. 2003. [cited on page 128]

153. I. Guyon, S. Gunn, M. Nikravesh, and L.A. Zadeh, editors. Feature Extraction.
Foundations and Applications, volume 207 of Studies in Fuzziness and Soft Com-
puting. Springer, 2006. [cited on page 127]

154. L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. on Computer-Aided Design, 11(9):1074–1085, Sep. 1992.
DOI: 10.1109/43.159993. [cited on page 156, 161, 173]

155. M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation tech-
niques. Intelligent Information Systems, 17(2-3):107–145, 2001. [cited on page 132]

156. M. Halkidi and M. Vazirgiannis. Clustering validity assignment: Finding the
optimal partitioning of a data set. In Proc. ICDM Conf., 2001. [cited on page 132]

157. K.M. Hall. An r-dimensional quadratic placement algorithm. Management Sci-
ence, 17(3):219–229, Nov. 1970. DOI: 10.1287/mnsc.17.3.219. [cited on page 146,

153, 156, 158, 160]

158. L.O. Hall, I.B. Ozyurt, and J.C. Bezdek. Clustering with a genetically optimized
approach. IEEE Trans. on Evolutionary Computation, 3(2):103–112, Jul. 1999.
DOI: 10.1109/4235.771164. [cited on page 108]

159. G. Hamerly. Learnig structure and concepts in data using data clustering. PhD
thesis, University of California, San Diego, 2003. [cited on page 31, 97]

160. G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better
clusterings. In Proc. of the ACM Conf. on Information and Knowledge Manage-
ment, CIKM-2002, pages 600–607, 2002. [cited on page 47, 86, 87]

161. J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in
post-genomic data analysis. Bioinformatics, 21(15):3201–3212, Aug. 2005. DOI:
10.1093/bioinformatics/bti517. [cited on page 132]

162. P. Hansen and B. Jaumard. Cluster analysis and mathematical programming.
Matematical Programming, 79(1-3):191–215, 1997. DOI: 10.1007/BF02614317.
[cited on page 39, 42]

163. P. Hansen and N. Mladenović. j-Means: a new local search heuristic for minimum
sum-of-squares clustering. Pattern Recognition, 34:405–413, 2002. [cited on page 73,

74]

164. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer-
Verlag Berlin, Heidelberg, New York, 2-nd edition, Feb. 2009. [cited on page 17, 90,

128, 222, 223]

References 289

165. R.J. Hathaway and J.C. Bezdek. Recent convergence results for the fuzzy c-means
clustering algorithm. J. of Classification, 5:237–247, 1988. [cited on page 103, 104]

166. R.J. Hathaway and J.C. Bezdek. Optimization of clustering criteria by reformu-
lation. IEEE Trans. Fuzzy Systems, 3:241–245, 1995. [cited on page 107, 108]

167. R.J. Hathaway and J.C. Bezdek. Generalized fuzzy c-means clustering strate-
gies using Lp norm distances. IEEE Trans. Fuzzy Systems, 8(5):576–582, 2000.
[cited on page 109, 111]

168. R.J. Hathaway, J.C Bezdek, and J.W. Davenport. On relational data versions of c-
means algorithms. Pattern Recognition Letters, 17:607–612, 1996. [cited on page 51,

123]

169. R.J. Hathaway, J.C. Bezdek, and W. Tucker. An improved convergence theorem
for the fuzzy c-means clustering algorithm. In J.C. Bezdek, editor, The Analy-
sis of Fuzzy Information, volume 3, pages 1–10. CRC Press, Boca Raton, 1986.
[cited on page 104]

170. R.J. Hathaway, J.W. Davenport, and J.C Bezdek. Relational duals of the c-means
clustering algorithms. Pattern Recognition, 22:205–212, 1989. [cited on page 122]

171. T.C. Havens, R. Chitta, A.K. Jain, and R. Jin. Speedup of fuzzy and possibilistic
kernel c-means for large-scale clustering. In IEEE Int. Conf. on Fuzzy Systems,
pages 463 – 470, Grand Hyatt Taipei, Taipei, Taiwan, Jun. 27-30 2011. IEEE.
DOI: 10.1109/FUZZY.2011.6007618. [cited on page 119]

172. X. He, H. Zha, Ch.H.Q. Ding, and H.D. Simon. Web document clustering using
hyperlink structures. Computational Statistics & Data Analysis, 41(1):19–45, 28
Nov. 2002. DOI: 10.1016/S0167-9473(02)00070-1. [cited on page 147]

173. B. Hendrickson. Latent semantic analysis and Fiedler retrieval. Linear Alge-
bra and its Applications, 421(2-3):345–355, 2007. DOI: 10.1016/j.laa.2006.09.026.
[cited on page 147]

174. D.J. Higham, G. Kalna, and M. Kibble. Spectral clustering and its use in bioinfor-
matics. J. of Computational and Applied Mathematics, 204(1):25–37, Jul. 2007.
DOI: 10.1016/j.cam.2006.04.026. [cited on page 53, 147]

175. A. Hinneburg, E. Hinneburg, and D.A. Keim. An efficient approach to clustering
in large multimedia databases with noise. In Proc. of the 4th Int. Conf. on
Knowledge Discovery and Datamining, KDD 1998, pages 58–65, New York, NY,
Sep. 1998. AAAI Press. [cited on page 55]

176. D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-
center problem. Mathematics of Operations Research, 10(2):180–184, May 1985.
[cited on page 75]

177. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. J.
Wiley & Sons, Chichester, England, 1999. [cited on page 109]

178. P. Hore, L.O. Hall, and D.B. Goldgof. Single pass fuzzy c means. In IEEE
Int. Conf. on Fuzzy Systems, FUZZ-IEEE, Imperial College, London, UK,
2007. IEEE. URL: http://www.csee.usf.edu/~hall/papers/singlepass.pdf.
[cited on page 109]

179. P. Hore, L.O. Hall, and D.B. Goldgof. A scalable framework for clus-
ter ensembles. Pattern Recognition, 42(5):676–688, May 2009. DOI:
10.1016/j.patcog.2008.09.027. [cited on page 60, 62]

180. J. Hu, B.K. Ray, and M. Singh. Statistical methods for automated generation
of service engagement staffing plans. IBM J. Res. Dev., 51(3):281–293, 2007.
[cited on page 17]

181. A. Huang. Similarity measures for text document clustering. In J. Holland,
A. Nicholas, and D. Brignoli, editors, Proc. New Zealand Comput. Sci. Res. Stu-
dent Conf., NZCSRSC 2008, pages 49–56. Christchurch, New Zealand, 14-18 Apr.

290 References

2008. URL: http://nzcsrsc08.canterbury.ac.nz/site/digital-proceedings.
[cited on page 32]

182. J.Z. Huang, M.K. Ng, H. Rong, and Z. Li. Automated variable weighting in
k-means type clustering. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 27(5):657–668, May 2005. DOI: 10.1109/TPAMI.2005.95. [cited on page 128]

183. Z. Huang. Extensions to the k-means algorithm for clustering large data sets
with categorical values. Data Mining and Knowledge Discovery, 2(3):283–304,
Sep. 1998. DOI: 10.1023/A:1009769707641. [cited on page 13, 91, 92, 93, 94]

184. Z. Huang, A. Zhou, and G. Zhang. Non-negative matrix factorization: A short
survey on methods and applications. springer berlin heidelberg, 2012. . In Z. Li,
X. Li, Y. Liu, and Z. Cai, editors, Computational Intelligence and Intelligent
Systems, volume 316 of CCIS, pages 331–340. Springer, 2012. [cited on page 46]

185. L. Hubert and Ph. Arabie. Comparing partitions. J. of Classification, 2(1):193–
218, 1985. DOI: 10.1007/BF01908075. [cited on page 136]

186. T. Huntsberger and P. Ajjimarangsee. Parallel self-organizing feature maps for
unsupervised pattern recognition. Int. J. Gen. Syst., 16(4):357–372, May 1989.
[cited on page 109]

187. H.M. Hussain, K. Benkrid, A. Ebrahim, A.T. Erdogan, and H. Seker. Novel
dynamic partial reconfiguration implementation of k-means clustering on FPGAs:
Comparative results with GPPs and GPUs. Int. J. Reconfig. Comp., 2012. Article
ID 135926. DOI: 10.1155/2012/135926. [cited on page 80]

188. M. Iosifescu. Skończone procesy Markowa i ich zastosowania. PWN, Warszawa,
1988. [cited on page 196, 199, 253, 263, 264]

189. M.A. Ismail and S.Z. Selim. Fuzzy c-means optimality of solutions and effec-
tive termination of the algorithm. Pattern Recognition, 19(6):481–485, 1986.
[cited on page 100, 104]

190. A. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31:651–666, 2010. [cited on page 17, 21, 25, 69]

191. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey,
1988. [cited on page 17, 18, 21, 91, 132]

192. A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing
Surveys, 31:264–323, 1999. [cited on page 21, 25, 132]

193. H. Jia, S. Ding, X. Xu, and R. Nie. The latest research progress on spec-
tral clustering. Neural Comput. & Applic., 24(7-8):1477–1486, Jun 2014. DOI:
10.1007/s00521-013-1439-2. [cited on page 147, 148, 179, 187]

194. R. Kannan, H. Salmasian, and S. Vempala. The spectral method for gen-
eral mixture models. SIAM J. Comput., 38(3):1141–1156, Jun. 2008. DOI:
10.1137/S0097539704445925. [cited on page 97]

195. R. Kannan, S. Vempala, and Vetta. On clusterings: Good, bad and spectral. J.
ACM, 51(3):497–515, May 2004. [cited on page 132, 193]

196. T. Kanungo, D.M. Mount, N.S. Netanyahu, Ch.D. Piatko, R. Silverman, and A.Y.
Wu. A local search approximation algorithm for k-means clustering. Computa-
tional Geometry, 28(2-3):89–112, Jun. 2004. DOI: 10.1016/j.comgeo.2004.03.003.
[cited on page 72]

197. T. Kanungo, N.S. Netanyahu, Ch.D. Piatko, R. Silverman, and A.Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 24(7):881–892, Jul. 2002.
[cited on page 66, 78, 79]

198. B. Karrer, E. Levina, and M.E.J. Newman. Robustness of community structure
in networks. Phys. Rev. E, 77(4):046119, 13 Apr. 2008. DOI: 10.1103/Phys-
RevE.77.046119. [cited on page 140]

References 291

199. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. on Scientific Computing, 20(1):359–392, Aug.
1999. DOI: 10.1137/S1064827595287997. [cited on page 203]

200. I. Katsavounidis, C.-C.J. Kuo, and Z. Zhang. A new initialization technique for
generalized Lloyd iteration. IEEE Signal Processing Letters, 1(10):144–146, Oct.
1994. DOI: 10.1109/97.329844. [cited on page 75]

201. L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons, New York, 1990. [cited on page 21, 76, 90, 133]

202. M. Kearns, Y. Mansour, and A.Y. Ng. An information-theoretic analysis of hard
and soft assignment methods for clusterig. In Proc. 13-th Conf. Uncertainty in
Artificial Intelligence, Madison WI, 1997. Morgan Kaufmann. [cited on page 97]

203. D.W. Kim, K.Y. Lee, D. Lee, and K.H. Lee. Evaluation of the performance
of clustering algorithms in kernel-induced feature space. Pattern Recognition,
38(4):607–611, Apr. 2005. DOI: 10.1016/j.patcog.2004.09.006. [cited on page 59, 88]

204. T. Kim, J.C. Bezdek, and R.J. Hathaway. Optimality tests for fixed points of the
fuzzy c-means algorithm. Pattern Recognition, 21:651–663, 1988. [cited on page 104]

205. J. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys,
31(4):5, Dec. 1999. DOI: 10.1145/345966.345982. [cited on page 173, 222]

206. J. Kleinberg. An impossibility theorem for clustering. In Proc. NIPS
2002, pages 446–453, 2002. http://books.nips.cc/papers/files/nips15/LT17.pdf.
[cited on page 267]

207. Ph. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. In A. From-
mer, M.W. Mahoney, and D.B. Szyld, editors, Web Information Retrieval and
Linear Algebra Algorithms, number 07071 in Dagstuhl Seminar Proceedings. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007. URL: http://drops.dagstuhl.de/opus/volltexte/
2007/1073. [cited on page 216, 233]

208. Ph.A. Knight. The Sinkhorn-Knopp algorithm. convergence and applications.
SIMAX, 30(1):261–275, 2008. [cited on page 45]

209. J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cam-
bridge University Press, Cambridge, 2007. [cited on page 21, 85]

210. J.F. Kolen and T. Hutcheson. Reducing the time complexity of the fuzzy C-means
algorithm. IEEE Trans. Fuzzy Systems, 10(2):263–267, 2002. [cited on page 109]

211. Y. Koren, R. Bell, and Ch. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, Aug. 2009. DOI: 10.1109/MC.2009.263.
[cited on page 46]

212. Y. Koren, L. Carmel, and D. Harel. ACE: a fast multiscale eigenvectors com-
putation for drawing huge graphs. In Proc. of IEEE Symposium on Information
Visualization, INFOVIS 2002, pages 137–144, Boston, Massachusetts, USA, 29-29
Oct. 2002. IEEE Computer Society Washington, DC, USA. DOI: 10.1109/IN-
FVIS.2002.1173159. [cited on page 240]

213. J. Koronacki and J. Ćwik. Statystyczne systemy ucza̧ce siȩ. 2-nd Edition. EXIT,
Warszawa, 2008. ISBN: 978-83-60434-56-7. [cited on page 17, 32, 39, 41, 60, 95]

214. H.-P. Kriegel, P. Krger, and A. Zimek. Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Tran. on Knowledge Discovery from Data (TKDD), 3(1):1, Mar. 2009. DOI:
10.1145/1497577.1497578. [cited on page 51]

215. R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low-complexity fuzzy rela-
tional clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems,
9(4):595–608, 2001. [cited on page 124]

292 References

216. R. Krishnapuram and J.M. Keller. A possibilistic approach to clustering. IEEE
Trans. on Fuzzy Systems, 2(2):98–110, May 1993. DOI: 10.1109/91.227387.
[cited on page 120, 121]

217. R. Kruse, Ch. Döring, and M.-J. Lesot. Fundamentals of fuzzy clustering. In
J. Valente de Oliveira and W. Pedrycz, editors, Advances in Fuzzy Clustering
and its Applications, chapter 1, pages 3–30. J. Wiley & Sons, Ltd, 2007. DOI:
10.1002/9780470061190.ch1. [cited on page 114]

218. B. Kulis, A.C. Surendran, and J.C. Platt. Fast low-rank semidefinite programming
for embedding and clustering. In M. Meila and X. Shen, editors, Proc. 11th
Int. Conf. on Artificial Intelligence and Statistics, AISTAT 2007, pages 235–242,
San Juan, Puerto Rico, 21-24 Mar. 2007. URL: http://jmlr.csail.mit.edu/
proceedings/papers/v2/kulis07a/kulis07a.pdf. [cited on page 45]

219. A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε)-approximation
algorithm for k-means clustering in any dimensions. In Proc. of the 45th Annual
IEEE Symposium on Foudations of Computer Science, FOCS’04, pages 454–462.
IEEE Computer Society, 2004. [cited on page 72]

220. M. Kumar and J.B. Orlin. Scale-invariantclustering with minimum volume el-
lipsoids. Computers & Operations Research, 35(4):1017–1029, Apr. 2006. DOI:
10.1016/j.cor.2006.07.001. [cited on page 49, 50]

221. R. Kumar. Recommendation systems: a probabilistic analysis. J. of Com-
puter and System Sciences, 63(1):42–61, Aug. 2001. DOI: 10.1006/jcss.2001.1757.
[cited on page 53]

222. L.I. Kuncheva and D.P. Vetrov. Evaluation of stability of k-means cluster ensem-
bles with respect to random initialization. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 28(11):1798–1808, Nov. 2006. [cited on page 62, 76]

223. S. Lafon, Y. Keller, and R. R. Coifman. Data fusion and multi-cue data matching
by diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(11):1784–1797, 2006. [cited on page 225]

224. S. Lafon and A.B. Lee. Diffusion maps and coarse-graining: A unified framework
for dimensionality reduction, graph partitioning, and data set parameterization.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(9):1393–1403, Sep.
2006. [cited on page 193]

225. A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and
hierarchical community structure of complex networks. New Journal of Physics,
11:033015, 10 Mar. 2009. DOI: 10.1088/1367-2630/11/3/033015. [cited on page 139,

140, 141]

226. K. Lang. Fixing two weaknesses of the spectral method. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems 18,
pages 715–722. MIT Press, Cambridge, MA, 2006. [cited on page 204]

227. G.F. Lawler. Random Walk and the Heat Equation, volume 55 of Student
Mathematical Library. Providence, R.I.: American Mathematical Society, 2010.
[cited on page 253]

228. D. Lee and H.S. Seung. Learning the parts of objects by nonnegative matrix
factorization. Nature, 401(6755):788–791, 21 Oct. 1999. DOI: 10.1038/44565.
[cited on page 46]

229. J.A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Information
Science and Statistics. Springer, 2007. [cited on page 148, 223]

230. T. Li. Clustering based on matrix approximation: A unifying view. Knowl-
edge & Information Systems, 17(1):1–15, 2008. DOI: 10.1007/s10115-007-0116-0.
[cited on page 46, 167]

References 293

231. T. Li and Ch. Ding. Non-negative matrix factorizations for clustering: A sur-
vey. In C.C. Aggarwal and C.K. Reddy, editors, Data Clustering: Algorithms
and Applications, Data Mining and Knowledge Discovery Series, chapter 7, pages
149–176. Chapman & Hall/CRC, 2013. [cited on page 46, 167]

232. T.W. Liao. Clustering of time series data – a survey. Pattern Recognition,
38(11):1857–1874, Nov. 2005. DOI: 10.1016/j.patcog.2005.01.025. [cited on page 35]

233. Y. Lifshits. The homepage of nearest neighbors and similarity search, 2004-2007.
http://simsearch.yury.name/tutorial.html. [cited on page 79]

234. F. Lin and W.C. Cohen. A very fast method for clustering big text datasets.
In Proc. of the 19th European Conf. on Artificial Intelligence, ECAI 2010,
pages 303–308, Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.
[cited on page 13, 219, 221]

235. Y. Linde, A. Buzo, and R. (1980) 28: 84. Gray. An algorithm for vector quan-
tizer design. IEEE Trans. on Communications, 28(1):84–95, Jan. 1980. DOI:
10.1109/TCOM.1980.1094577. [cited on page 69]

236. H. Liu and H. Motoda, editors. Computational Methods of Feature Selection. CRC
Data Mining and Knowledge Discovery Series. Chapman and Hall/CRC, Bocca
Raton, FL, 2007. [cited on page 127]

237. N. Liu. Spectral clustering for graphs and Markov chains. PhD thesis, North
Carolina State University, Raleigh, North Carolina, USA, 2010. [cited on page 161,

182]

238. S.P. Lloyd. Least squares quantization in pcm. IEEE Trans. on Information The-
ory, 28(2):129–137, Mar. 1982. DOI: 10.1109/TIT.1982.1056489. [cited on page 47,

69]

239. L. Lovász. Random walks on graphs: a survey. Combinatorics, 2:353–398, 1993.
[cited on page 253, 257, 258]

240. J. MacQueen. Some methods for classifications and analysis of multivariate ob-
servations. In Proc. of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297, Berkeley, 1967. University of California Press.
[cited on page 69, 81]

241. K. Macropol, T. Can, and A.K Singh. RRW: repeated random walks on genome-
scale protein networks for local cluster discovery. BMC Bioinformatics, 10(1):283–
292, 2009. DOI: 10.1186/1471-2105-10-283. [cited on page 205, 211]

242. R. De Maesschalck, D. Jouan-Rimbaud, and D.L. Massart. The Mahalanobis
distance. Chemometrics and Intelligent Laboratory Systems, 50:1–18, 2000.
[cited on page 30]

243. M. Maier, U. von Luxburg, and M. Hein. Influence of graph construction on
graph based clustering measures. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing, volume 21, pages
1025–1032. Curran, Red Hook, 2009. [cited on page 148]

244. R. Maitra, A.D. Peterson, and A.P. Ghosh. A systematic evaluation of different
methods for initializing the K-means clustering algorithm. Preprint, 2010. http:
//www.public.iastate.edu/~apghosh/files/IEEEclust2.pdf. [cited on page 76]

245. M. Manguoglu. A highly efficient parallel algorithm for computing the Fiedler
vector. arXiv:1003.3689v1 [cs.NA], 18 Mar. 2010. [cited on page 146]

246. Ch.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 1 Apr. 2009. [cited on page 17, 137, 217]

247. G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley &
Sons, 1997. [cited on page 95]

294 References

248. F. McSherry. Spectral methods for data analysis. PhD thesis, University of Wash-
ington, Seattle, WA, 2004. URL: http://khup.com/download/2_keyword-
matrix-of-spectral-data/spectral-methods-for-data-analysis.pdf.
[cited on page 147]

249. M. Meilă. Comparing clusterings – an information based distance. J. of Multi-
variate Analysis, 98(5):873–895, May 2007. [cited on page 136, 138, 140]

250. M. Meilă and D. Heckerman. An experimental comparison of model-base
clustering methods. Mach. Learning, 42(1/2):9–29, Jan.-Feb. 2001. DOI:
10.1023/A:1007648401407. [cited on page 138]

251. M. Meilă and W. Pentney. Clustering by weighted cuts in directed graphs. In
Proc. of the 7th SIAM Int. Conf. on Data Mining, Radisson University Hotel,
Minneapolis, Minnesota, 26-28 Apr. 2007. [cited on page 173]

252. M. Meilă and J. Shi. A random walks view on spectral segmentation. In 8th Int.
Workshop on AI and Statistics, AISTATS 2001. Hyatt Hotel, Key West, Florida,
USA, 4-7 Jan. 2001. URL: http://www.gatsby.ucl.ac.uk/aistats/aistats2001/
files/meila177.ps. [cited on page 19, 175, 192, 193, 194, 220]

253. M. Meilă and L. Xu. Multiway cuts and spectral clustering. Technical report,
University of Washington, 2003. [cited on page 175]

254. M.E.S. Mendes and L. Sacks. Dynamic knowledge representation for e-learning
applications. In M. Nikravesh, B. Azvine, R. Yager, and L.A. Zadeh, editors,
Enhancing the Power of the Internet, volume 139 of Studies in Fuzziness and Soft
Computing, pages 259–282. Springer-Verlag Berlin, Heidelberg, Berlin Heidelberg
New York, Jan. 2004. [cited on page 116]

255. C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia,
2000. [cited on page 231, 235, 239, 242]

256. C.D. Meyer and Ch. D. Wessell. Stochastic data clustering. arXiv:1008.1758v2

[math.NA], 25 Apr 2012. [cited on page 13, 214, 215, 216]

257. G. Milligan and M. Cooper. An examination of procedures for determining
the number of clusters in data sets. Psychometrica, 50(2):159–179, Jun. 1985.
[cited on page 132]

258. G. Mishne and I. Cohen. Multiscale anomaly detection using diffusion maps.
IEEE J. of Selected Topics in Signal Processing, 7(1):111 – 123, Jan 2013. DOI:
10.1109/JSTSP.2012.2232279. [cited on page 225]

259. B. Mohar. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R.
Oellermann, and A.J. Schwenk, editors, Proceedings of the Sixth Quadrennial Int.
Conf. on the Theory and Applications of Graphs, volume 2, pages 871–898, Kala-
mazoo, MI, 1991. Wiley, New York. [cited on page 145, 247]

260. B. Mohar. Some applications of Laplace eigenvalues of graphs. In G. Hahn
and G. Sabidussi, editors, Graph Symmetry: Algebraic Methods and Applications,
volume 497 of NATO ASI Ser. C, pages 225–275. Kluwer, 1997. [cited on page 247]

261. A. Moore. Very fast EM-based mixture model clustering using multiresolution
kd-trees. In M. Kearns and D. Cohn, editors, Proceedings of the 1998 Conf. on
Advances in Neural Information Processing Systems II, pages 543–549. Morgan
Kaufman, Apr. 1998. [cited on page 97]

262. A. Moore. The anchors hierarchy: Using the triangle inequality to survive high-
dimensional data. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelli-
gence, pages 397–405. AAAI Press, 2000. [cited on page 13, 57]

263. B. Nadler and M Galun. Fundamental limitations of spectral clustering. In
B. Schölkopf, J. Platt, and Th. Hofmann, editors, Proc. of the 2006 Conf. Ad-
vances in Neural Information Processing Systems, number 19 in NIPS 2007, pages
1017–1024. MIT Press, 2007. [cited on page 190]

References 295

264. F. Napolitano, G. Raiconi, R. Tagliaferri, A. Ciaramella, A. Staiano, and G. Miele.
Clustering and visualization approaches for human cell cycle gene ex- pression
data analysis. International Journal of Approximate Reasoning, 47, Issue 1:70–
84, January 2008. [cited on page 269]

265. M.C.V. Nascimento and A.C.P.L.F. de Carvalho. Spectral methods for graph
clustering – a survey. European J. of Op. Res., 211(2):221–231, Jun 2011. DOI:
10.1016/j.ejor.2010.08.012. [cited on page 147]

266. O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R. Germain. A Web usage min-
ing framework for mining evolving user profiles in dynamic websites. IEEE Trans.
on Knowledge and Data Engineering, 20(2):202–215, Feb. 2008. [cited on page 124]

267. M.E.J. Newman. Detecting community structure in networks. Eur. Phys. J. B,
38:321–330, 25 Mar. 2004. DOI: 10.1140/epjb/e2004-00124-y. [cited on page 205]

268. M.E.J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Phys. Rev. E, 74(3):036104, 2006. DOI: 10.1103/Phys-
RevE.74.036104. [cited on page 146, 205]

269. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm.
In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems, volume 14, pages 849–856. MIT Press, 2002.
[cited on page 13, 76, 175, 176, 177, 178, 179, 186, 187]

270. R. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In Proc. 20-th Conf. on VLDB, pages 144–155, Santiago, Chile, 1994.
[cited on page 91]

271. C.K. Nicholas and R. Dahlberg. Spotting topics with the singular value de-
composition. In Proc. of the 4th Int. Workshop on Principles of Digital Doc-
ument Processing, volume 1481 of LNCS, pages 82–91. Springer-Verlag, 1998.
[cited on page 173]

272. P. Orponen, S.E. Schaeffer, and V.A. Gaytán. Locally computable approximations
for spectral clustering and absorption times of random walks. arXiv:0810.4061v1
[cs.DM], 22 Oct. 2000. [cited on page 199, 200]

273. R. Ostrovsky, Y. Rabani, L.J. Schulman, and Ch. Swamy. The effectiveness
of Lloyd-type methods for the k-means problem. In Proc. of the 47th Annual
IEEE Symposium on Foundations of Computer Science, FOCS’06, pages 165–
176, Berkeley, CA, 21-24 Oct. 2006. [cited on page 70, 77]

274. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-
ing: Bringing order to the Web. Technical report, Stanford Digital Library
Technologies Project, 1998. URL: citeseer.ist.psu.edu/page98pagerank.html.
[cited on page 19, 209, 259, 261]

275. N.R. Pal and J.C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE
Trans. Fuzzy Syst., 3(3):370–379, 1995. [cited on page 102]

276. N.R. Pal, J.C. Bezdek, and E.C.-K. Tsao. Generalized clustering networks and
Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks, 4(4):549–557,
Jul. 1993. [cited on page 109]

277. N.R. Pal, K. Pal, J.M. Keller, and J.C. Bezdek. A possibilistic fuzzy c-means
clustering algorithm. IEEE Trans. on Fuzzy Systems, 13(4):517–530, Aug. 2005.
[cited on page 122]

278. H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering.
Expert Syst. Appl., 36(2):3336–3341, Mar. 2009. DOI: 10.1016/j.eswa.2008.01.039.
[cited on page 91]

279. L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:
a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, Jun. 2004. DOI:
10.1145/1007730.1007731. [cited on page 51]

296 References

280. W. Pedrycz. Knowledge-based Clustering. Wiley, Hoboken, NJ, 2005.
[cited on page 21, 104]

281. J.M. Pena, J.A. Lozano, and P. Larrañaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern Recognition Letters,
20:1027–1040, 1999. [cited on page 76]

282. J. Peng and Y. Wei. Approximating K-means-type clustering via semidef-
inite programming. SIAM J. on Optimization, 18(1):186–205, 2007. DOI:
10.1137/050641983. [cited on page 42, 44, 45, 49]

283. A. Pérez-Suárez, J.F. Martinéz-Trinidad, J.A. Carrasco-Ochoa, and J.E. Medina-
Pagola. A new overlapping clustering algorithm based on graph theory. In Ad-
vances in Artificial Intelligence, number 7629 in LNCS, pages 61–72. Springer,
2013. [cited on page 51]

284. F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning
Gaussian mixture models. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 27(8):1344–1348, Aug. 1344-1348. DOI: 10.1109/TPAMI.2005.162.
[cited on page 98]

285. A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.
[cited on page 146, 173]

286. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag
Berlin, Heidelberg, New York, 1990. [cited on page 48]

287. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes: The Art of Scientific Computing, (third ed.). Cambridge University Press,
Cambridge, New York, 1992. [cited on page 108, 231]

288. H. Qiu and E.R. Hancock. Clustering and embedding using commute times.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(11):1873–1890,
2007. [cited on page 162, 197, 251]

289. A. Rajaraman and J.D. Ullman. Mining of Massive Data Sets. Stan-
ford University, 2010. URL: http://infolab.stanford.edu/~ullman/mmds.html.
[cited on page 21, 27, 130]

290. A. Ralston. Wstȩp do analizy numerycznej. PWN, Warszawa, 1971.
[cited on page 231, 239]

291. D. Rao, D. Yarowsky, and Ch. Callison-Burch. Affinity measures based on the
graph laplacian. In Proc. of the Third Textgraphs Workshop on Graph-Based Algo-
rithms for Natural Language Processing, TextGraphs-3, pages 41–48, Stroudsburg,
PA, USA, 2008. Association for Computational Linguistics. [cited on page 191]

292. N. Rebagliati and A. Verri. Spectral clustering with more than
K eigenvectors. Neurocomputing, 74(9):1391–1401, Apr 2011. DOI:
10.1016/j.neurocom.2010.12.08. [cited on page 179]

293. R.A. Redner and H.F. Walker. Mixture densities, maximum likelihood and the
EM algorithm. SIAM Review, 26(2):195–239, 1984. [cited on page 65]

294. J.L. Rodgers and W.A. Nicewander. Thirteen ways to look at the corre-
lation coefficient. The American Statistician, Vol. 42, No. 1 (Feb., 1988),
pp. 59-66, 42(1):59–66, Feb. 1988. url: http://www.jstor.org/stable/2685263.
[cited on page 34]

295. M. Roubens. Pattern classification problems and fuzzy sets. Fuzzy Sets and
Systems, 1:239–253, 1978. [cited on page 122]

296. S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally lin-
ear embedding. Science, 290(5500):2323–2326, 22 Dec. 2000. DOI: 10.1126/sci-
ence.290.5500.2323. [cited on page 223]

References 297

297. E.H. Ruspini. A new approach to clustering. Inf. Control, 15:22–32, 1969.
[cited on page 98]

298. Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia,
2-nd edition, 2011. [cited on page 231, 238]

299. J. Sander, A. Ester, H.-P. Kriegel, and X Xu. Density-based clustering in spatial
databases: The algorithm GDBSCAN and its applications. Data Mining and
Knowledge Discovery, 2(2):169–194, 1998. [cited on page 54, 56]

300. B.M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender systems for
large-scale e-commerce: Scalable neighborhood formation using clustering. In
Proc. of the Fifth Int. Conf. on Computer and Information Technology, ICCIT
2002, 2002. [cited on page 17]

301. V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic
flows: applications to community discovery. In Proc. of the 15th ACM SIGKDD
Intnal Conf. on Knowledge Discovery and Data Mining, KDD’09, pages 737–
746, Paris, France, 28 Jun. - 01 Jul. 2009. ACM New York, NY, USA. DOI:
10.1145/1557019.1557101. [cited on page 201, 203]

302. V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for scalable
clustering. In Int. Conf. on Management of Data, SIGMOD/PODS’11, pages
721–732, Athens, Greece, 12-16 Jun. 2011. ACM New York, NY, USA. DOI:
10.1145/1989323.1989399. [cited on page 203]

303. V. Satuluri, S. Parthasarathy, and D. Ucar. Markov clustering of protein in-
teraction networks with improved balance and scalability. In Proc. of the First
ACM Int. Conf. on Bioinformatics and Computational Biology, pages 247–256,
Niagara Falls, NY, USA, 2-4 Aug. 2010. ACM New York, NY, USA. DOI:
10.1145/1854776.1854812. [cited on page 201, 203]

304. L.K. Saul and S.T. Roweis. Think globally, fit locally: unsupervised learning of
low dimensional manifolds. J. of Machine Learning Research, 4:119–155, 1 Dec.
2003. DOI: 10.1162/153244304322972667. [cited on page 114, 223]

305. S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, Aug.
2007. DOI: 10.1016/j.cosrev.2007.05.001. [cited on page 53, 144, 147]

306. B. Schölkopf, A.J. Smola, and K.R. Müller. Nonlinear component analy-
sis as a kernel eigenvalue problem. Neural Comput., 10(5):1299–1319, 1998.
[cited on page 88]

307. M. Schonlau. The clustergram: a graph for visualizing hierarchical and
non-hierarchical cluster analyses. The Stata Journal, 2(4):391–402, 2002.
[cited on page 131]

308. V. Schwämmle and O.N. Jensen. A simple and fast method to determine the
parameters for fuzzy c-means cluster validation. arxiv:1004.1307v1 [q-bio.qm],
Department of Biochemistry and Molecular Biology, University of Southern Den-
mark, DK-5230 Odense M,Denmark, Apr. 2010. [cited on page 103]

309. A.J. Seary and W.D. Richards. Spectral methods for analyzing and visualiz-
ing networks: an introduction. In R.L. Breiger, K.M. Carley, and Ph. Patti-
son, editors, Dynamic Social Network Modeling and Analysis: workshop summary
and papers, pages 209–228. National Academy Press, Washington, DC, 2003.
[cited on page 160, 169]

310. S.Z. Selim and M.A. Ismail. k-means-type algorithms: a generalized convergence
theorem and characterization of local optimality. IEEE. Trans. on Pattern Anal-
ysis and Mach. Intell., 6:81–87, 1984. [cited on page 73]

311. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug. 2000.
[cited on page 13, 146, 152, 161, 162, 164, 168, 172, 173, 174, 175, 193]

298 References

312. T. Shi, M. Belkin, and B. Yu. Data spectroscopy: Eigenspaces of convolution
operators and clustering. The Annals of Statistics, 37(6B):3960–3984, 2009. DOI:
10.1214/09-AOS700. [cited on page 13, 172, 179, 180, 181, 194]

313. R. Shioda and L. Tunçel. Clustering via minimum volume ellipsoids. J.
Computational Optimization and Applications, 37(3):247–295, Jul. 2007. DOI:
10.1007/s10589-007-9024-1. [cited on page 49]

314. L. Shu, A. Chen, M. Xiong, and W. Meng. Efficient spectral neigh-
borhood blocking for entity resolution. In Proc. IEEE Intn’l Conf on
Data Engineering, ICDE 2011, pages 1067–1078, Hannover, Germany, Apr.
2011. URL: http://www.cs.binghamton.edu/~mrng/pub.d/ICDE11_conf_full_
065_update.pdf. [cited on page 217]

315. A. Singer, R. Erban, I.G. Kevrekidis, and R.R. Coifman. Detecting intrinsic
slow variables in stochastic dynamical systems by anisotropic diffusion maps.
PNAS, 106(38):16090–16095, 22 Sep. 2009. DOI: 10.1073/pnas.0905547106.
[cited on page 187]

316. R. Sinkhorn. A relationship between arbitrary positive matrices and dou-
bly stochastic matrices. The Annals of Math. Stat., 35:876–879, 1964.
[cited on page 233]

317. T. Sipola. Knowledge Discovery Using Diffusion Maps. PhD thesis, Univer-
sity of Jyvaskälä, Jyvaskälä, Finland, 2013. https://jyx.jyu.fi/dspace/handle/
123456789/42647?show=full. [cited on page 225]

318. P.H. Sneath and R.R. Sokal. Numerical Taxonomy. Freeman, San Francisco,
1973. [cited on page 35]

319. H. Späth. Cluster Analysis Algorithms for Data Reduction and Classification of
Objects. Ellis Harwood, Chichester, 1980. [cited on page 21, 73, 74]

320. D. Spielman. Spectral graph theory. In U. Naumann and O. Schenk, editors, Com-
binatorial Scientific Computing, chapter 16. Chapman & Hall/CRC Computa-
tional Science, 25 Jan. 2012. URL: http://www.cs.yale.edu/~spielman/PAPERS/
SGTChapter.pdf. [cited on page 147, 157, 159]

321. D.A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and
finite element meshes. Proc. 37th Annual IEEE Symposium on Foundations
of Computer Science, pages 96–105, 1996. DOI: 10.1109/SFCS.1996.548468.
[cited on page 205]

322. D.A. Spielman and S.-H. Teng. Solving sparse, symmetric, diagonally-domiant
linear systems in time O(m1.31). In Proc. 44th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS’03, pages 416–427, Los Alamitos, CA, USA,
11-14 Oct. 2003. IEEE Computer Society. DOI: 10.1109/SFCS.2003.1238215.
[cited on page 212]

323. D.A. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs
and its application to nearly-linear time graph partitioning. arXiv:0809.3232v1

[cs.DS], 18 Sep. 2008. [cited on page 13, 192, 205, 206, 207, 208]

324. N. Srebro, G. Shakhnarovich, and S. Roweis. When is clustering hard?
PASCAL Workshop on Statistics and Optimization of Clustering Work-
shop, Jul. 2005. URL: http://ttic.uchicago.edu/~nati/Publications/
SrebroEtalPASCAL05.pdf. [cited on page 65]

325. M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proc. of KDD Workshop on Text Mining, Proc. of the 6th Int. Conf.
on Knowledge discovery and Data Mining, Boston, MA, Aug. 2000. URL: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.1505. [cited on page 81,

82]

References 299

326. H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon.
Sci., 4(12):801–804, 1956. [cited on page 69]

327. A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for
combining multiple partitions. J. of Machine Learning Research, 3:583–617, Dec.
2002. DOI: 10.1162/153244303321897735. [cited on page 60, 61, 62, 139]

328. T. Su and J.G. Dy. In search of deterministic methods for initializing k-means
and Gaussian mixture clustering. Intelligent Data Analysis, 11(4):319–338, Sep.
2007. [cited on page 76]

329. C.A. Sugar and G.M. James. Finding the number of clusters in a data set:
An information theoretic approach. J. of the American Statistical Association,
98(463):750–763, Sep. 2003. [cited on page 131]

330. P. Sun and R.M. Freund. Computation of minimum-volume covering ellip-
soids. Operations Research, 52(5):690–706, 2004. DOI: 10.1287/opre.1040.0115.
[cited on page 50]

331. A. Szlam and X. Bresson. Total variation and Cheeger cuts. In J. Fürnkranz and
Th. Joachims, editors, Proc. of the 27th Intl Conf. on Machine Learning (ICML-
10), pages 1039–1046, Haifa, Israel, June 2010. Omnipress. [cited on page 161]

332. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison
Wesley Longman, 2006. [cited on page 21]

333. K. Thangavel and N.K. Visalakshi. Ensemble based distributed k-harmonic means
clustering. Int. J. of Recent Trends in Engineering, 2(1):125–129, Nov. 2009.
[cited on page 62]

334. R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a
data set via the gap statistic. J. of the Royal Stat. Soc.: Ser. B (Statistical Method-
ology), 63(2):411–423, Jan. 2001. DOI: 10.1111/1467-9868.00293. [cited on page 130]

335. D.A. Tolliver. Spectral rounding & image segmentation. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, Aug. 2006. [cited on page 169, 192]

336. D.A. Tolliver and G.L. Miller. Graph partitioning by spectral rounding: Applica-
tions in image segmentation and clustering. In A. Fitzgibbon, C.J. Taylor, and
Y. LeCun, editors, IEEE Computer Society Conf. on Computer Vision and Pat-
tern Recognition, volume 1, pages 1053 – 1060. IEEE Computer Soc., 17-22 Jun.
2006. DOI: 10.1109/CVPR.2006.129. [cited on page 156, 167]

337. J.T. Tou and R.C. Gonzalez. Pattern Recognition Principles. Addison-Wesely
Pub. Co., 1974. [cited on page 21, 57, 80]

338. L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM, Philadelphia,
Apr. 1997. [cited on page 231, 238]

339. M. Trosset. Visualizing correlation. J. of Computational and Graphical Statistics,
14(1):1–19, 2005. DOI: 10.1198/106186005X27004. [cited on page 33]

340. E.C.-K. Tsao, J.C. Bezdek, and N.R. Pal. Fuzzy Kohonen clustering networks.
Pattern Recognition, 27(5):757–764, May 1994. [cited on page 109]

341. J.K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.
Info. Processing Lett., 40:175–179, 1991. [cited on page 79]

342. L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
November 1984. [cited on page 271]

343. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, Amsterdam, May 2000. [cited on page 201, 202]

344. S. van Dongen. Performance criteria for graph clustering and Markov cluster ex-
periments. Technical Report INS-R0012, Centre for Mathematics and Computer
Science, Amsterdam, The Netherlands, 31 May 2000. http://www.cwi.nl/ftp/
CWIreports/INS/INS-R0012.pdf. [cited on page 136, 137]

300 References

345. S. van Dongen. Graph clustering via a discrete uncoupling process. SIAM J.
Matrix Analysis & Applications, 30(1):121–141, 2008. [cited on page 201]

346. R. van Driessche and D. Roose. An improved spectral bisection algorithm and
its application to dynamic load balancing. Parallel Computing, 21(1):29–48, Jan.
1995. [cited on page 145]

347. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995. [cited on page 57]

348. S. Vempala and G. Wang. A spectral algorithm for learning mixture mod-
els. J. of Computer and System Sciences, 68(4):841–860, Jun. 2004. DOI:
10.1016/j.jcss.2003.11.008. [cited on page 66]

349. D. Verma and M. Meilă. Comparison of spectral clustering methods. Technical
Report TR CSE-03-05-01, Uniwersity of Washington, Seattle, WA, USA, 2003.
[cited on page 13, 171, 174, 175]

350. N.K. Vishnoi. Laplacian solvers and their algorithmic applications. Founda-
tions and Trendsrin Theoretical Computer Science, 8(1-2):1–141, 2013. doi:
10.1561/0400000054. [cited on page 171]

351. U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007. [cited on page 53, 147, 148, 153, 161, 165, 166, 171, 185, 186, 249,

250]

352. U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spec-
tral clustering. The Annals of Statistics, 36(2):555–586, 2008. DOI:
10.1214/009053607000000640. [cited on page 170]

353. U. von Luxburg, A. Radl, and M. Hein. Getting lost in space: Large sample
analysis of the commute distance. In J. Lafferty, C.K.I. Williams, J. Shawe-Taylor,
R.S. Zemel, and A. Culotta, editors, Proc. of the 23rd Conf. Advances in Neural
Information Processing Systems, NIPS 2010, pages 2622–2630, Vancouver, British
Columbia, Canada, 6-9 Dec. 2010. Curran Associates, Inc. [cited on page 198]

354. S. Wagner and D. Wagner. Comparing clustering. Interner Bericht. Fakultät
für Informatik, Universität Karlsruhe, 12 Jan. 2007. http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000011477. [cited on page 135, 136, 137, 138]

355. K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clus-
tering with background knowledge. In Proc. of the 18-th Int. Conf. on Ma-
chine Learning, pages 577–584, Williamstown, MA, USA, 28 Jun. - 1 Jul. 2001.
[cited on page 80]

356. D.L. Wallace. Comment. J. of the Americal Statistical Association, 78(383):569–
576, 1983. [cited on page 138]

357. C. Walles and D. Dowe. Intristic classification by MML – the Snob program. In
Proc. 7th Australian Joint Conf. on Artificial Intelligence, pages 37–44, Armidale,
Australia, 1994. World Scientific Publishing Co. [cited on page 96]

358. F. Wang, P. Li, A.Ch. König, and M. Wan. Improving clustering by learning
a bi-stochastic data similarity matrix. Knowl. Inf. Syst., 32(2):351–382, 1 Aug.
2012. DOI: 10.1007/s10115-011-0433-1. [cited on page 44]

359. Y.-X. Wang and Y.-J. Zhang. Nonnegative matrix factorization: A comprehensive
review. IEEE Trans. on Knowledge and Data Engineering, 25(6):1336–1353, Jun.
2013. [cited on page 46]

360. D.J. Watts and S. Strogatz. Collective dynamics of ”small-world” networks. Na-
ture, 393(6684):440–442, Jun. 1998. DOI: 10.1038/30918. [cited on page 245]

361. W. Wei and J.M. Mendel. Optimality tests for the fuzzy c-means algorithm.
Pattern Recognition, 27(11):1567–1573, 1994. [cited on page 104, 107]

362. M.P. Windham. Numerical classification of proximity data with assignment mea-
sures. J. Classification, 2:157–172, 1985. [cited on page 122, 124]

References 301

363. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Second Edition. Morgan Kaufmann, 2005. [cited on page 96]

364. F. Wu and B.A. Huberman. Finding communities in linear time: a physics ap-
proach. The European Physical Journal B, 38(2):331–338, 2004. [cited on page 8,

196, 197]

365. J. Wu, J. Chen, H. Xiong, and M. Xie. External validation measures for k-means
clustering: A data distribution perspective. Expert Systems with Applications,
36(3):6050–6061, Apr. 2009. [cited on page 132]

366. K.L. Wu and M.S. Yang. Alternative c-means clustering algorithms. Pattern
Recognition, 35(10):2267–2278, 2002. [cited on page 109, 120]

367. L. Wu, X. Ying, X. Wu, and Z.-H. Zhou. Line orthogonality in adjacency
eigenspace with application to community partition. In Proc. of the 22-nd Intl
Joint Conf. on Artificial Intelligence – Vol. 3, IJCAI’11, pages 2349–2354. AAAI
Press, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-391. [cited on page 178]

368. X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg.
Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1–
37, 2007. DOI: 10.1007/s10115-007-0114-2. [cited on page 69]

369. Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(11):1101–1113, Nov. 1993. [cited on page 156]

370. X.L. Xie and G. Beni. A validity measure for fuzzy clustering. IEEE. Trans. on
Pattern Analysis and Mach. Intell., 13(8):841–847, 1991. [cited on page 132, 134]

371. E.P. Xing and M.I. Jordan. On semidefinite relaxation for normalized k-cut and
connections to spectral clustering. Technical Report UCB/CSD-3-1265, Computer
Sci. Division (EECS), University of California, Berkeley, CA 94720, Jun. 2003.
[cited on page 45]

372. L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with linear con-
straints. In IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR-09), pages 2866 – 2873, Miami, FL, USA, 20-25 Jun. 2009. DOI:
10.1109/CVPR.2009.5206561. [cited on page 13, 213, 214]

373. R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Trans. on Neural
Networks, 16(3):645–678, May 2005. [cited on page 21, 25, 59, 114, 129]

374. W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix
factorization. In Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research
and Development in Informaion Retrieval, pages 267–273, New York, NY, USA,
2003. ACM Press. [cited on page 46]

375. F. Yang, T. Sun, and Ch. Zhang. An efficient hybrid data clustering method
based on K-harmonic means and particle swarm optimization. Expert Systems
with Applications, 36:9847–9852, 2009. [cited on page 87]

376. M.-S. Yang. A survey of fuzzy clustering. Mathematical and Computer Modelling,
18(11):1–16, Dec. 1993. DOI: 10.1016/0895-7177(93)90202-A. [cited on page 109]

377. J. Yu, Q. Cheng, and Huang H. Analysis of the weighting exponent in the
FCM. IEEE. Trans. on Syst., Man Cybern. B, Cybern., 34(1):634–638, 2004.
[cited on page 102]

378. J. Yu and M.S. Yang. Optimality test for generalized FCM and its applica-
tion to parameter selection. IEEE. Trans. Fuzzy Syst., 13(1):164–176, 2005.
[cited on page 104]

379. S.X. Yu and J. Shi. Multiclass spectral clustering. In Proc. of the IEEE Int.
Conf. on Computer Vision, volume 1, pages 313–319, Nice, France, 11-17 Oct.
2003. [cited on page 146, 173]

302 References

380. W.W. Zachary. An information flow model for conflict and fission in small groups.
J. of Anthropological Research, 33:452–473, 1977. [cited on page 209]

381. R. Zass and A. Shashua. A unifying approach to hard and probabilistic clustering.
In Proc. 10th IEEE Int. Conf. on Computer Vision, volume 1 of ICCV 2005, pages
294–301, Beijing, China, 17-21 Oct. 2005. [cited on page 44, 45]

382. L. Zelnik-Menor and P. Perona. Self-tuning spectral clustering. In Advances in
Neural Information Processing Systems 17, pages 1601–1608. MIT Press, 2000.
[cited on page 188]

383. B. Zhang. Generalized k-harmonic means – boosting in unsupervised learn-
ing. Technical Report HPL-2000-137, Hewlett-Packard Labs, 2000. URL: http:
//www.hpl.hp.com/techreports/2000/HPL-2000-137.html. [cited on page 47, 85, 86,

87]

384. B. Zhang. Dependence of clustering algorithm performance on clustered-
ness of data. Technical Report HPL-2001-91, Hewlett-Packard Labs, 2001.
[cited on page 66, 67]

385. D. Zhang and S. Chen. Clustering incomplete data using kernel-based fuzzy c-
means algorithm. Neural Processing Letters, 18(3):155–162, Dec. 2003. DOI:
10.1023/B:NEPL.0000011135.19145.1b. [cited on page 117, 118]

386. R. Zhang and A.I. Rudnicky. A large scale clustering scheme for kernel k-means.
In Proc. of the 16th Int. Conf. on Pattern Recognition, volume 4 of ICPR’02,
pages 40289–40292, Washington, DC, USA, 11-15 Aug. 2002. IEEE Computer
Society. [cited on page 88]

387. L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approxi-
mating multiway partition problems. Math. Programming, 102(1):167–183, 2005.
doi: 10.1007/s10107-004-0510-2. [cited on page 171]

388. Q. Zhao. Cluster validity in clustering methods. PhD thesis, University of Eastern
Finland, Jun. 2012. URL: http://epublications.uef.fi/pub/urn_isbn_978-
952-61-0841-4/urn_isbn_978-952-61-0841-4.pdf. [cited on page 98, 132]

389. W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on MapReduce.
In M.G. Jaatun, G. Zhao, and C. Rong, editors, Proc. of the 1st Int. Conf. on
Cloud Computing, volume 5931 of LNCS, pages 674–679. Springer-Verlag Berlin,
Heidelberg, 2009. DOI: 10.1007/978-3-642-10665-1 71. [cited on page 80]

390. S. Zhong. Efficient online spherical k-means clustering. In Proc. IEEE Int. Joint
Conf. Neural Networks, IJCNN 2005, pages 3180–3185, Montreal, Canada, 31 Jul.
- 4 Aug. 2004. IEEE Computer Society. [cited on page 85]

391. D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data
on a directed graph. In Proc. of the 22nd Int. Conf. on Machine Learning, ICML
’05, pages 1036–1043, Bonn, Germany, 7-11 Aug. 2005. ACM, New York. DOI:
10.1145/1102351.1102482. [cited on page 13, 212, 213, 251, 259]

392. D. Zhou and B. Schölkopf. Learning from labeled and unlabeled data using ran-
dom walks. In C.E. Rasmussen, H.H. Bülthoff, B. Schölkopf, and M.A. Giese,
editors, Proc. 26th DAGM Symposium on Pattern Recognition, Tübingen, Ger-
many, volume 3175 of LNCS, pages 237–244, Bonn, Germany, 30 Aug. - 1 Sep.
2004. Springer. DOI: 10.1007/978-3-540-28649-3 29. [cited on page 13, 211, 212, 255]

393. D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schöolkopf. Ranking on data
manifolds. In L. Saul, S. Thrun, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems 16, pages 169–176. MIT Press, Cambridge, Mass.,
2004. [cited on page 213, 214]

394. S. Zhou and J.Q. Gan. Mercer kernel, fuzzy c-means algorithm, and prototypes
of clusters. In Z.R. Yang, H. Yin, and R.M. Everson, editors, Intelligent Data

References 303

Engineering and Automated Learning - IDEAL 2004, volume 3177 of LNCS, pages
613–618. Springer, 2004. [cited on page 119]

395. X. Zhou, M. Belkin, and N. Srebro. An iterated graph laplacian approach for
ranking on manifolds. In Proc. of the 17th ACM SIGKDD Intnl Conf. on Knowl-
edge Discovery and Data Mining, KDD-11, pages 877–885, San Diego, California,
USA, 12-24 Aug. 2011. ACM New York, NY, USA. [cited on page 214]

Index

affinity propagation, 124
algebraic connectivity , 248
algorithm

UM approximation of data matrix, 46

k-means, 69
k-means

k -means||, 78
on line version, 80
ISODATA version, 80
balanced, 80
semi-supervised , 80

k-means
batch version, 73
harmonic, 85

incremental version, 73
kernel-based, 87
spherical, 82

k-medians, 91
k-medoids, 89
k-medoids (k-centres), 89
k-modes, 91, 92
Zhang semisupervised learning, 212
affinity propagation, 124

agglomerative, 35
anchor grouping, 57
ARCA, 124
BM aggregation, 62
CLARA, 90
CLARANS, 90
constrained Rayleigh quotient

minimisation, 213

DaSpec, 179
DBSCAN , 54
EM, 94
FCM, 99
FCM , see algorithm, fuzzy c-means
FCS(Fuzzy c-shells), 115
FCV(Fuzzy c-varietes), 113
FKCN, 109
fuzzy c-means, 98

with Minkowski metric, 109
GK (Gustafson-Kessel), 111
Kernel-based FCM, 117
KFCM-F , 118
KFCM-X, 117
Laplacian leading eigenvectors , 240
MCL, 201
Meyer and Wessell stochastic

clustering, 216
MM aggregation, 62
MVE (Minimum Volume Ellipsoids),

49
Nibble, 207
NJW, 175
PageRank-Nibble, 208
PAM, 90
partitional, 38
PCM (possibilistic Clustering Method),

120
PIC, 219
relational FCM , 122
SFCM(spherical fuzzy c-means), 116
thresholded discretization of Fiedler

vecto, 156
Wu and Huberman node potential, 196
Wu and Huberman voltage, 196

algorithm of
SM normalized cuts, 173
VM normalised cuts, 174

assignment matrix, 70
averaged entropy, 82

binarization (rounding), 144

centroid, 36
Cheeger

constant, 162
Cheeger inequality , 249
Cheeger’s

constant, 248
CLARA, 90

306 Index

CLARANS, 90
cluster

compact, 98
Perron’s, 215
Voronoi cluster, 48
well separated, 98

clusterability, 66
coefficient

partition, 105
conductance

graph, 248
of graph, 162

conductance
cut, 248

connectedness
density connectedness, 54

consensus partitioning, 60
contingency table, 135
contingency table

two way, 135
correlation

cophenetic , 36
correlation coefficient

cophenetic, 37
Pearson (modified) , 33

cut
conduktance, 162

CWS, 98

deflation method, 240
degree of

importance, 149
typicality, 149

discretization of a solution, 154
dissimilarity relation

Euclidean , 122
dissimilarity relation

definition, 122
distance

k-distance, 55
Bhattacharyya , 35
chi-square , 34
resistance distance , 250

distribution
c-separable, 66

disturbance of information, 140

eigendecomposition, 172
eigenmap, see Laplacian eigenmap
eigenpair, 233

eigenpair
principal , 234
trivial, 153

eigenvalue , 233
non-degenerate , 233
spurious, 194

eigenvector
definition , 233
left, 237
piecewise linear, 175
right, 237

entropy
conditional, see quality indexes
fuzzy partition , 105
joint, 140
of partition, see quality indexes

Expectation Maximisation , see
algorithm, EM

factor
damping , 261

factorisation index (cp-rank), 232
FCM , see algorithm, fuzzy c-means
feature

extraction, 128
selection, 128

Fiedler
value, 145
vector, 145

Fiedler value , 248
Forgy algorithm , see algorithm, k-means,

batch version
function

kernel (Mercer kernel), 57
fuzziness exponent, 99
fuzzy c-means , see algorithm, fuzzy

c-means
Fuzzy ISODATA, 99

gap
Perron’s, 215

Gram-Schmidt orthogonalisation, 231
graph

aperiodic, 246
associated with similarity matrix, 148
complete (clique), Km, 244
connected, 245
cut, 150
cycle of, Cm, 244
density of, 243

Index 307

diameter of, 245
expansion of, 244
geodetic of , 245
leaf of, 244
linear, Pm, 244
of similarity, 148
order of, 243
pendant edge of, 244
regular (d-regular), 244
similarity, 144
simple, 244
size of, 243
spectrum of, 247
strongly connected , 246
weighted, 245

H-MEANS, see algorithm, k-means, batch
version

H-MEANS+, 74
heuristics

Lloyd heuristics, 47
generalised, 47

isoperimetric
constant, 162
number, 162

k-means , see algorithm, k-means
k-prototypes algorithm, 94
KHCM , see algorithm, k-means,

kernel-based
KHM , see algorithm, k-means, harmonic

Laplacian
eigenmap, 159
normalized, 166
pseudo-inverse of , 249
signless, 181
unnormalized (combinatorial), 152

matrix
almost block-diagonal, 215
band, 189
column-wise accessible , 233
completely positive , 232
degree, 149
diagonalisable , 235
diagonally dominant, 206
dispersion , 41
doubly stochastic , 233

Gram, 232
Gram matrix, 58
in-group covariance , 41
inter-group covariance , 41
left stochastic , 246
non-negative, 231
positive a, 231
positive definite , 231
positive semidefinite, 231
right stochastic , 247
similar (to some other matrix) , 235
similarity, 147
spectral radius of , 233
spectral representation of, 238
spectrum of, 233
stable, 233
stochastic, 232

medoid, 40
method

average linkage , 36
centroid (UPGC) , 36
complete linkage , 36
farthest neighbor , 36
minimum variance (Ward) , 36
nearest neighbor , 35
single linkage , 35
Sinkhorn-Knopp, 233
weighted centroids (WPGC) , 36
weighted pair-group average , 36

Moore-Penrose inverse, 249
mutual information

definition, 139
Fred and Jain normalisation, 139
Strehl and Gosh normalisation, 139

node
clustering coefficient of, 245
degree of, 244
in-degree of , 246
out-degree , 246
reachability of, 245
strength (typicality) of, 245

norm
determined by quadratic form, 26
Euclidean, 242
Frobenius, 242
induced by a vector norm, 242
spectral, 242

outlier, 30

308 Index

PAM, 90
partition cost, 70
power method, 239
prototype (of a class), 98
purity index, 104

quality indexes
chi-square statistics, 136
conditional entropy, 139
Davies-Bouldin index, 134
external, 132
F-measure, 137
Fowlkes-Mallows coefficient, 136
internal, 132
Kaufmann and Rousseeuw’s indicator,

133
MH measure, 138
Mirkin coefficient, 137
partition entropy, 138
purity, 137
quantisation error, 133
Rand coefficient, 136
The Dunn index, 133
Wallace measure, 138
Xie-Beni index, 134

quantisation error, 133
quotient

Rayleigh, see Rayleigh quotient

random walk
lazy, 255

Rayleigh quotient, 152
Rayleigh quotient , 234

generalized, 164
reachability

density-reachability, 54

reconstruction error, 104

seed, 205
separator

edge, 150
similarity

graph, 148
spectral

coordinates, 157, 159
decomposition, 172
mapping, 172

speed
mixing, 258

tessellation
Dirichlet , 48
Voronoi , 48

theorem
Courant-Fischer, 234
Perron-Frobenius, 235

time
commute, 257
coverage, 258
hitting, 256
mixing, 258

vector
binarization, 164
coloring, 160
grouping, 160
local Fiedler (Dirichlet-Fiedler), 200
PageRank (global), 261
PageRank (personalised), 261
rounding of, 164

volume of the set , 149

The Project is co-financed by the European Union from resources of the European Social Found

ISBN 978-83-63159-10-8
e-ISBN 978-83-63159-11-5

KAPITAŁ LUDZKI
NARODOWA STRATEGIA SPÓJNOŚCI

UNIA EUROPEJSKA
EUROPEJSKI

FUNDUSZ SPOŁECZNY

M
O

N
O

G
R

A
PH

 SER
IES:

3

 S.T. W
IER

ZC
H

O
Ń

, M
.A

. K
ŁO

PO
TEK

 A
LG

O
R

ITH
M

S O
F C

LU
STER

 A
N

A
LY

SIS

