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My greatest concern was what to call it. I thought of calling it
‘information’, but the word was overly used, so I decided to call it
‘uncertainty’. When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, ‘You should call it entropy,
for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have
the advantage.’

Claude Shannon (1916-2001)



Preface

The object of information theory is the amount of information contained in the
data, which is the length of the shortest description of the data given which
the data may be decoded. In parallel, the interest of statistics and machine
learning lies in the analysis and interpretation of data. Since certain data analysis
methods can be used for data compression, the domains of information theory
and statistics are intertwined. Concurring with this view, this monograph offers
a uniform introduction into basic concepts and facts of information theory and
statistics.

The present book is intended for adepts and scholars of computer science
and applied mathematics, rather than of engineering. The monograph covers an
original selection of problems from the interface of information theory, statistics,
physics, and theoretical computer science, which are connected by the ques-
tion of quantifying information. Problems of lossy compression and information
transmission, traditionally discussed in information theory textbooks, have been
omitted, as of less importance for the addressed audience. Instead of this, some
new material is discussed, such as excess entropy and computational optimality
of Bayesian inference.

The book is divided into three parts with the following contents:

Shannon information theory: The first part is a basic course in infor-
mation theory. Chapter 1 introduces necessary probabilistic notions and facts.
In Chapter 2, we present the concept of entropy and mutual information. In
Chapter 3, we introduce the problem of source coding and prefix-free codes.
The following Chapter 4 and Chapter 5 concern stationary and ergodic stochas-
tic processes, respectively. In Chapter 4 we also discuss the concept of excess
entropy, for the first time in terms of a monograph. Chapters 4 and 5 form
background to present the Lempel-Ziv code, which is done in Chapter 6. The
discussion of Shannon information theory is concluded in Chapter 7, where we
discuss the entropy and mutual information for Gaussian processes.

Mathematical statistics: The second part of the book is a brief course
in mathematical statistics. In Chapter 8, we discuss sufficient statistics and in-
troduce basic statistical models, namely exponential families. In Chapter 9, we
define the maximum likelihood estimator and present its core properties. Chap-
ter 10 concerns Bayesian inference and the problem how to choose a reasonable
prior. Chapter 11 discusses the expectation-maximization algorithm. The course
is concluded in Chapter 12, where we exhibit the maximum entropy principle
and its origin in physics.

Algorithmic information theory: The third part is an exposition of the
field of Kolmogorov complexity. In Chapter 13, we introduce plain Kolmogorov
complexity and a few related facts such as the information-theoretic Gédel the-
orem. Chapter 14 is devoted to prefix-free Kolmogorov complexity. We exhibit
the links of prefix-free complexity with algorithmic probability and its analogies
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to entropy such as symmetry of mutual information. The final Chapter 15 treats
on Martin-Lof random sequences. Besides exhibiting various characterizations
of random sequences, we discuss computational optimality of Bayesian inference
for Martin-Lof random parameters. This book is the first monograph to treat on
this interesting topic, which links algorithmic information theory with classical
problems of mathematical statistics.

A preliminary version of this book has been used as a textbook for a mono-
graph lecture addressed to students of applied mathematics. For this reason each
chapter is concluded with a selection of exercises, whereas solutions of chosen
exercises are given at the end of the book.

Preparing this book, I have drawn from various sources. The most impor-
tant book sources have been: Cover and Thomas (2006), Billingsley (1979),
Breiman (1992), Brockwell and Davis (1987), Grenander and Szegé (1958),
van der Vaart (1998), Keener (2010), Barndorff-Nielsen (1978), Bishop (2006),
Griinwald (2007), Li and Vitdanyi (2008), and Chaitin (1987). The chapters on
algorithmic information theory owe much also to a few journal articles: Chaitin
(1975a), Vovk and V’yugin (1993), Vovk and V’yugin (1994), V’yugin (2007),
Takahashi (2008). All those books and papers can be recommended as comple-
mentary reading. At the reader’s leisure, I also recommend a prank article by
Knuth (1984).

Last but not least, I thank Jan Mielniczuk, Jacek Koronacki, Anna Zalewska,
and Brunon Kaminski, who were the first readers of this book, provided me with
many helpful comments regarding its composition, and helped me to correct
typos.



Probabilistic preliminaries

Probability and processes. Expectation. Conditional expectation. Borel-
Cantelli lemma. Markov inequality. Monotone and dominated conver-
gence theorems. Martingales. Levy law.

Formally, probability is a normalized, additive, and continuous function of
events defined on a suitable domain.

Definition 1.1 (probability space). Probability space (2,7, P) is a triple
where 2 is a certain set (called the event space), J C 2 is a o-field, and P
is a probability measure on (£2,J). The o-field J is an algebra of subsets of (2
which satisfies

e NeJ,
o A€ J implies A° € J, where A¢:= 2\ A,
o Ay, A, Az, ... € J implies |, ey An € T

The elements of J are called events, whereas the elements of 2 are called el-
ementary events. Probability measure P : J — [0,1] is a normalized measure,
i.e., a function of events that satisfies

P($2) =

P(A) > 0 for AeJ,

P( neN ) =Y nen P(An) for pairwise disjoint events Ay, As, Az, ... €
If the event space (2 is a finite set, we may define probability measure P by

setting the values of P({w}) for all elementary events w € {2 and we may put

J =22,

Ezample 1.1 (cubic die). The elementary outcomes of a cubic die are {2 =
{1,2,3,4,5,6}. Assuming that the outcomes of the die are equiprobable, we
have P({n}) = 1/6 so that P(£2) =

For an uncountably infinite {2, we may encounter many different measures
such that P({w}) = 0 for all elementary events w € (2. In that case J need not
be necessarily equal 2.

Ezample 1.2 (Lebesgue measure on [0,1]). Let £2 = [0,1] be the unit interval.
We define J as the intersection of all o-fields that contain all subintervals [a, b],

a,b € [0,1]. Next, the Lebesgue measure on J is defined as the unique measure P
such that P([a,b]) = b — a. In particular, we obtain P({w}) =0 and P(£2) = 1.
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The Lebesgue measure is a generalization of the concept of length from the set
of sections to a larger family of sets 7. It turns out, however, that 7 # 2 and
the Lebesgue measure cannot be uniquely extended to the family of all subsets
of 2 (Billingsley, 1979, Section 3).

The measure-theoretic approach puts different applications of probability on
a uniform basis. Using the same framework we can discuss both finite and infinite
probability spaces. Let us notice for instance that an uncountably infinite event
space arises also when elementary events are infinite sequences of some discrete
values. In that case it is convenient to introduce the concept of a random variable.

Definition 1.2 (random variable). Function X : 2 — X is called a discrete
random variable if set X is countable and events

X=2z2)={we?: X(w) =1}

belong to the o-field J for each x € X. Analogously, function Y : 2 — R is
called a real random variable if events (Y <r):={w € 2:Y(w) < r} belong to
the o-field J for each r € R.

Ezample 1.3 (stochastic process). An infinite sequence of random variables is
called a stochastic process. For instance, let

Q2 ={w=(w)2_ 1w €X,i€Z}

1=—00

and let J contain all cylinder sets {w € 2 : w; = s}, where i varies over integers
and s € X. Then we may define discrete variables X; : 2 — X as X;(w) := w;.

Let us write 1{¢} = 1 if proposition ¢ is true and 1{¢} = 0 if proposition ¢
is false. The characteristic function of a set A is defined as

Ia(w) = 1{w € A). (1.1)

The supremum sup,c 4 a is defined as the least real number r such that r > a for
all @ € A. On the other hand, infimum inf,¢ 4 a is the largest real number r such
that r < a for all @ € A. Having these concepts we may define the expectation.

Definition 1.3 (expectation). Let P be a probability measure. For a discrete
random variable X > 0, the expectation (integral, or average) is defined as

/XdP:: > PX=q)w

z:P(X=z)>0

For a real random variable X > 0, we define

/XdP = sup /YdP,
Y<X
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where the supremum is taken over all discrete variables Y that satisfy Y < X.
Integrals over subsets are defined as

/XdP ::/XIAdP.
A

For random variables that assume negative values, we put

/XdP = XdP—/ (-X)dP,
X>0 X<0

unless both terms are infinite. A more frequent notation for the expectation is
EXEEPXE/XdP,

where we suppress the index P in E pX for probability measure P.

In the following we shall define conditional expectation and conditional prob-
ability with respect to a real random variable. Two necessary prerequisites are a
definition of a signed measure and the Lebesgue-Radon-Nikodym theorem. The
signed measure is a certain generalization of probability measure.

Definition 1.4 (measure). The pair (£2,J) where {2 is a certain set and J C
29 is a o-field is called a measurable space. Function p : J — R is called a
finite signed measure if

u( U An) = Z w(Ay) for pairwise disjoint sets Ay, As, As, ... € J.
neN neN

If additionally p(A) > 0 for all A € J then p is called a finite measure.

Definition 1.5 (mutually singular and absolutely continuous mea-
sures). Let pu,v:J — R be two finite measures. Measures p and v are called
mutually singular if u(A) = v(A°) = 0 for a certain set A € J. This fact is
written as v L p. In contrast, measure v is called absolutely continuous with
respect to p if w(A) = 0 implies v(A) = 0 for any set A € J. This fact is written
as v < [i.

The integral with respect to a finite measure is defined in the same way as
the integral with respect to a probability measure. Moreover, for a o-field G, we
say that a real function f : 2 — R is G-measurable if {w € 2: f(w) <r} € G.
Let us recall that J-measurable functions have been called random variables in
context of probability theory.

Theorem 1.1 (Lebesgue-Radon-Nikodym theorem). Let p,v : J —
[0,00) be two finite measures. There exist two unique finite measures v, and
v« such that

V=V + Vg
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where v; L p and v < p. Moreover there exists a [J-measurable function
f 92 — R, called the Radon-Nikodym derivative of v with respect to p, such
that

Ve (4) :/Afdu

for all A € J. Function f is given uniquely up to a set of measure 0, i.e., if f, g
are two Radon-Nikodym derivatives then p({w € 2: f(w) # g(w)}) = 0.

Theorem 1.2 (Hahn-Jordan decomposition). Let v : J — R be a finite
signed measure. There exist two unique finite measures vT and v~ such that

V=V —V

where vt L v,

Proofs of these theorems can be found in Billingsley (1979, Section 32).
Let G be a sub-o-field of 7. With respect to this o-field, we define the concept
of conditional expectation.

Definition 1.6 (conditional expectation). Conditional expectation of a
real random variable X given o-field G is a G-measurable function E [X|G] such
that

E[X|G]dP= [ XdP (1.2)
J, I,

for any event B € G.

Theorem 1.3. Conditional expectation E [X|G] exists if EX exists and is
unique up to sets of probability 0.

Proof. Define a function v : G — R as
v(B) :/ XdpP.
B

Function v is a finite signed measure if EX = [ X dP exists. Let v+ and v~
provide the Hahn-Jordan decomposition of measure v. These measures are ab-
solutely continuous with respect to P. Let f* and f~ be their Radon-Nikodym
derivatives. If we put E [X|G] = f* — f~ then we obtain (1.2). The uniqueness
of conditional expectation follows by uniqueness of Hahn-Jordan decomposition
and the uniqueness of Radon-Nikodym derivatives.

Having conditional expectation, we can define conditional probability with
respect to a o-field.

Definition 1.7 (conditional probability). Conditional probability of event
A given o-field G is defined as random variable

P(AlG) = E [14|9].
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Consecutively, we define conditional probability of an event A given a real ran-
dom variable (or a stochastic process) Y as P(A|Y) = P(A|G) where G is the
intersection of all o-fields with respect to which Y is measurable.

Next, we shall be interested in limits of sequences and events. The upper
limit of a sequence is defined as

limsupa, := lim sup a,,
n—oo =0 m>n

and the lower limit of a sequence is defined as

liminf a,, := lim inf a,,.
n—oo n—oo m>n
These limits exist for any sequence but they may be different. For example,
limsup,,_,.(—1)" = 1 and liminf, _,,(—1)" = —1. We have limsup,,_, ., an =
liminf, .. a, = a if and only if there exists lim,,_, a, = a.
Analogously we define the upper and the lower limit of a sequence of events.
Recall the definition (1.1). We put

limsup A,, :== B, where Ip =limsup /4,
n—oo n—oo

and

liminf A, := B, where Ip =liminf I, .
n—roo n—roo

Equivalently, we have

limsup A,, = {w : w € A,, for infinitely many m}
n—oo

and

liminf A,, = {w : w € A,, for all but finitely many m}.
n—oo
For a random proposition &, we say that @ holds with probability 1 if
P({w : ®#(w) is true}) = 1. For proving that some events hold with probability
1, the following proposition is particularly useful.

Theorem 1.4 (Borel-Cantelli lemma). If > *_ P(A,,) < oo for a family
of events Ay, As, As, ... then

P (lim sup An) =0.

n—oo
Proof. Notice that > °_, P(A,,) < oo implies

oo

lim ; P(A;) = 0.
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Hence we obtain

P{w : w € A, for infinitely many m})
= P({w : Vleakme S Ak})

= p( N U Ak) < %I;ﬂP(kL_JmAk) < gl,;npmk) =0.

m=1k=m
Another handy fact in probability theory is Markov inequality.

Theorem 1.5 (Markov inequality). Let e > 0 be a fized constant and let Y
be a random variable such that Y > 0. We have
EY

Proof. Consider random variable Z = Y/e. We have

P(Y>e):P(Zzl):/ dPS/ ZdPg/Zszg.
Z>1 Z>1

Finally, let us recall a few results concerning sequences of random variables.
If we have a sequence of random variables converging to a limit, we can ask
whether the expectation of the limit equals the limit of expectations. In general
it is not true but there are three important results stating when the order of
expectation and the limit may be switched.

Theorem 1.6 (monotone convergence theorem). Let (X;)52, be a se-
quence of nonnegative (X; > 0), nondecreasing (X;y+1 > X;) real random vari-
ables. Then function X =lim, . X, is also a real random variable and

lim [ X, dP = /XdP.
n— oo

Theorem 1.7 (Fatou lemma). Let (X;)2, be a sequence of nonnegative
(X; > 0) real random variables. Then function X = liminf,, . X, is also a
real random variable and

liminf [ X, dP > /XdP.
n—oo

Theorem 1.8 (Lebesgue dominated convergence theorem). Let (X;)°,

be a sequence of real random wvariables which are dominated by an integrable

real random variable Y, i.e., |X| <Y and [Y dP < oo. If there exists limit

X =lim,,_, X,, then

lim /Xnsz/XdP.
n— oo

Proofs of these results can be found in Billingsley (1979, Section 16).
An important instance of a stochastic process is a martingale.
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Definition 1.8 (filtration and martingale). A sequence of o-fields (G;)$2,
is called o filtration if Goy1 D Gn. A sequence of random variables (X;)$2, is
called a martingale with respect to filtration (G;)$24 if each X, is Gy-measurable,
E |X,| < oo, and E [X,,41|Gn] = X,.

A particular example of a martingale is a collection of conditional probabilities
with respect to a rising sequence of o-fields.

Ezample 1.4. Let (X;)$2, be an arbitrary sequence of random variables and let
Gn be the intersection of all o-fields with respect to which (X, ..., X,,) is mea-
surable. Then (G;)$2, is a filtration and the sequence of conditional probabilities
(P(A|G:))2, is a martingale with respect to this filtration.

A fundamental property of martingales is that they converge with probability 1.
Here we will state this result in a particular case.

Theorem 1.9 (Levy law). Let (X;)$2, and G, be as in Example 1.4. Define
G as the intersection of all o-fields which contain all G,. Equality
lim P(A|G,) = P(A[G)

n—oo

holds with probability 1.

A proof of this theorem can be found in Billingsley (1979, Section 35).

Exercises

1. (Monty Hall paradoz) A participant of the “Let’s Make A Deal” quiz
hosted by Monty Hall is exposed to three closed doors. Behind one of
the doors there is an expensive car, behind two other doors there are two
goats. Monty Hall asks the participant to choose a door. It is known that
there is a goat behind one of the not selected doors. This door is opened
and the goat is shown. Now the participant is asked to choose one of the
remaining two doors. He will get what is behind it. Should he choose the
same door as before or the other one?

2. Prove that if f is a measurable function so is |f]. Is the converse true?

3. Prove that

E E [X|G]| =EX, (1.3)
E [X|J] = X holds with probability 1,
E [X|{0,2}] =EX.

4. Define P(A|B) = P(ANB)/P(B) for P(B) > 0. Show that, for a discrete
random variable X, we have P(A|X)(w) = P(A|X =z) if X(w) = z.
5. Show that the upper limit lim sup,,_, ., a, and the lower limit lim inf,,_, ay,

exist for any sequence (a,)22 ;.
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10.

11.

12.
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. Prove that

P(lim inf An) < liminf P(An),

n—oo n—oo

P (lim sup An) > lim sup P(An) .

n—oo n—oo

Prove the second Borel-Cantelli lemma: If >~ P(A,,) = oo for a family
of independent events A, A, Ag, ... then

P(lim sup An) =1.

n— oo

. Let X be a random variable with expectation E X = p and variance

E [X — p)® = 02. Prove the Chebyshev inequality: For any real number
k>0,

1
P(\X = ka) < e

. Let (X;)$2; be independent identically distributed random variables

(see Definition 2.2) with finite expectation E X; = p and finite variance
E [X; — u]z = ¢2. Using Markov inequality, prove the weak law of large
numbers

: RN
nh_)rr;@P( EZ;XZ —u’ > e) =0
for any € > 0.
Let (X;)$2, be independent identically distributed random variables with
finite expectation E X; = p, finite variance E [X; — u]2 = 02, and finite
fourth moment E [X,; — u]4 = uy4. Using Markov inequality and Borel-

Cantelli lemma, demonstrate the strong law of large numbers
P 1l 1 i X; = =1 1.4
A 2 Xe=n) =1 14

Give an example of a sequence of random variables (X;)$°; such that
lim, o0 [ X5 dP # [(limy, 0 X)) dP.
Prove the result from Example 1.4.



Entropy and information

Entropy. Kullback-Leibler divergence. Mutual information.

Entropy of a random variable on a probability space is the fundamental
concept of information theory developed by Claude Shannon (1916-2001) in pa-
pers (Shannon, 1948, 1951). Basic definitions in probability, such as probability
spaces, random variables, and expectations, have been reviewed in Chapter 1.
In information theory the following random variables play an important role.

Definition 2.1 (probability as a random variable). Let X and Y be dis-
crete variables and A be an event on a probability space (2,7, P). We define
P(X) as a discrete random variable such that

PX)w)=P(X =2) < X(w)=u=.
Analogously we define P(X|Y) and P(X|A) as
P(X|YV)(w)=P(X =alY =y) < X(w) =2 and Y(w) =y,
P(X|4)(@) = P(X = 2]4) <> X(u) =,
where the conditional probability is P(B|A) = P(BN A)/P(A) for P(A) > 0.

We write P(Y) = P(X3,Xs,....X,) for Y = (X1, Xa, ..., Xp). (The same
convention will be adopted for other functions of random variables.) Given this
concept we may easily define independent variables.

Definition 2.2 (independence). We say that random variables X1, Xo, ..., X,
are independent if

n

P(X1,Xs,... X,) = [[ P(X3).
i=1
Analogously, we say that random variables X1, Xo, X3, ... are independent if
X1, X, ..., Xy, are independent for any n.

Ezample 2.1. Let £2 = [0,1] be the unit section and let P be the Lebesgue
measure. Define real random variable Y (w) = w. If we consider its binary expan-
sion Y = Y77, 27Z;, where Z; : 2 — {0,1}, then P(Zy,2s,...,2Z,) = 27" =
[Ti-, P(Z;). Consequently, variables Z1, Z, Zs, ... are independent.

Another concept that we need is the expectation E X of a random variable
X (see Definition 1.3). One of fundamental properties of the expectation is its
additivity.



16 2 Entropy and information

Theorem 2.1. If EX + EY exists then X + Y is defined with probability 1,
E(X +Y) exists and

E(X+Y)=EX+EY.

Now we will introduce the main concept of information theory, which is the
entropy. Some interpretation of this quantity is the average uncertainty carried
by a random variable or a tuple of random variables, regardless of their partic-
ular values. We expect that uncertainty adds for probabilistically independent
sources. Thus entropy H(X) is a functional of random variable P(X) which is
additive for independent random variables. Formally, for P(X,Y) = P(X)P(Y),
we postulate H(X,Y) = H(X) + H(Y). Because log(zy) = logx + log y for the
logarithm function, the following definition comes as a very natural idea.

Definition 2.3 (entropy). The entropy of a discrete variable X is defined as
H(X) :zE[—logP(X)]. (2.1)
Traditionally, it is assumed that log is the logarithm to the base 2.

Because log P(X) < 0, we put the minus sign in the definition (2.1) so that
entropy be positive. Equivalently, we have

H(X)=- Y  PX=ux)logP(X=xz),
z:P(X=x)>0
Indeed, we can verify that for P(X,Y) = P(X)P(Y),
H(X,Y) =E [— logP(X7Y)] =E [—logP(X) — logP(X)]
=E[-logP(X)]|+E[-log P(X)] =H(X)+H(Y).

Ezample 2.2. Let P(X =0) =1/3 and P(X =1) =2/3. Then
— Zlog 2 =log3 —2/3 = 0.918....

We obtain the same value for P(X = 0) = 2/3 and P(X = 1) = 1/3 because
entropy depends on distribution P(X) rather than on particular values of X.
On the other hand, for P(X =0) =1/2 and P(X =1) = 1/2, we have

1 1 1 1
H(X) = _510g§ — 510g§ =log2=1.
The plot of function H(X) for a binary variable (cf., Figure 1) shows that H(X)
attains maximum 1 when the variable values are equiprobable whilst H(X) at-
tains minimum 0 when the probability is concentrated on a single value.

What is the range of function H(X) in general? Because function f(p) =
—plogp is strictly positive for p € (0,1) and equals 0 for p = 1, it can be easily
seen that:
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0.8 F

0.6

0.4 F

0.2 F

0 0.2 0.4 0.6 0.8 1
P

Fig.1. Entropy H(X) = —plogp — (1 — p)log(1l — p) for P(X = 0) = p and P(X =
1)=1-p.

Theorem 2.2. H(X) > 0, whereas H(X) = 0 if and only if X assumes only
a single value.

This fact agrees intuitively with the idea that constants carry no uncertainty.
On the other hand, assume that X takes values z € {1,2,...,n} with equal
probabilities P(X = x) = 1/n. Then we have

n

H(X) = —Z%log% :Z%logn:logn.
=1

r=1

As we will see, logn is the maximal value of H(X) given X assumes values
in {1,2,...,n}. That fact agrees with the intuition that the highest uncertainty
occurs for uniformly distributed variables. The simplest proof of this property
goes via Kullback-Leibler divergence and Jensen inequality, which are objects of
their own interest.

First, it is convenient to enhance the notation and introduce discrete proba-
bility distributions.

Definition 2.4. A discrete probability distribution is a function p : X — [0,1]
defined on a countable set X such that p(x) >0 and )" p(x) = 1.

For example we may put p(z) = P(X = x). Thus we can define the entropy of
a probability distribution.

Definition 2.5 (entropy revisited). The entropy of a discrete probability dis-
tribution is denoted as

H(p):=— Y p(z)logp(x).

z:p(x)>0

For two distributions we define a similar function.
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Definition 2.6 (KL divergence). Kullback-Leibler divergence, or relative
entropy of probability distributions p and q is defined as

D(pllg) == > p(x)log 22 — > p(x)logg(z) — H(p).

z:p(x)>0 q(gj) z:p(2)>0

We will show that D(p||q) > 0. For this purpose, we will consider a special
class of functions.

Definition 2.7 (convex and concave functions). A real function f : R — R
is convex if

p1f(x1) + paf(22) > f(p171 + p2r2)

forp; >0,1=1,2, and p1 + p2 = 1. Moreover, f is called strictly convex if

p1f(z1) + paf(x2) > f(p171 + Paa)

forp; >0,i=1,2, and p1 + p2 = 1. We say that function f is concave if —f is
convex, whereas f is strictly concave if —f is strictly convex.

Ezxample 2.5. If function f has a positive second derivative then it is strictly
convex. Hence functions h(z) = —logx and g(z) = x? are strictly convex.

The expectation of a convex function is greater than the function of the
expected argument.

Theorem 2.3 (Jensen inequality). If f is a convex function and p is a dis-
crete probability distribution over real values then

> @ =Y pe) ).
z:p(xz)>0 z:p(z)>0
Moreover, if f is strictly convex then
S @) =f( Y ) w)
z:p(xz)>0 z:p(xz)>0
holds if and only if distribution p is concentrated on a single value.

The proof proceeds by an easy induction on the number of values that p assumes.
Now we prove the requested proposition.

Theorem 2.4. We have

D(pllq) >0,

where the equality holds if and only if p = q.
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Proof. By the Jensen inequality for f(y) = —logy, we have

Dillg) = - Y p@)logmzlog( 3 p(z)qm))

z:p(x)>0 p(aj) z:p(x)>0 p(x)
:—log( Z q(m))z—loglzo,
z:p(xz)>0

with equality if and only if p = gq.
Given this fact we can show when entropy is maximized.

Theorem 2.5. Let X assume values in {1,2,...,n}. We have H(X) < logn,
whereas H(X) = logn if and only if P(X =) =1/n.

Remark: If the range of variable X is infinite then entropy H(X) may be infinite.
Proof. Let p(z) = P(X = z) and ¢(z) = 1/n. Then

0 < D(pllg) = Z jzj(yc)loglM =logn — H(X),

z:p(x)>0 1/71
where the equality occurs if and only if p = q.

The next important question is what is the behavior of entropy under con-
ditioning. The intuition is that given additional information, the uncertainty
should decrease. So should entropy. There are, however, two distinct ways of
defining conditional entropy.

Definition 2.8 (conditional entropy). Conditional entropy of a discrete
variable X given event A is

H(X|A) := H(p) for p(z) = P(X = z|A).
Conditional entropy of X given a discrete variable Y is defined as
H(X[Y):= > P =y)HX]Y=y).
y:P(Y=y)>0
Both H(X|A) and H(X|Y') are nonnegative.

Theorem 2.6. H(X|Y) = 0 holds if and only if X = f(Y) for a certain func-
tion f except for a set of probability 0.

Proof. Observe that H(X|Y) = 0 if and only if H(X|Y = y) = 0 for all y such
that P(Y = y) > 0. This holds if and only if given (Y = y) with P(Y = y) >
0, variable X is concentrated on a single value. Denoting this value as f(y),
we obtain X = f(Y), except for the union of those sets (Y = y) which have
probability 0.

Let us note that inequality H(X|A) < H(X) need not hold.
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Ezample 2.4. Let P(X =0]A) = P(X = 1|A) = 1/2, whereas P(X = 0]|A°) =1
and P(X = 1|A°) = 0. Assuming P(A4) = 1/2, we have P(X = 0) = (1/2) -
(1/2) + (1/2) =3/4 and P(X =0) = (1/2) - (1/2) =1/4 so
3 3 1 1 3
H(X)=—-log—- — —-log— =log4d — —1 =0.811....
(X) 1log 7 — jlog g =log 4og3 0.8

On the other hand, we have H(X|A) =log2 = 1.

Despite that fact, it is true that H(X|Y) < H(X) holds in general. Thus
entropy decreases given additional information on average. Before we prove it,
let us observe:

Theorem 2.7. We have
H(X|Y) =F [—10gP(X|Y)].
Proof. Observe
AEY) = Y PV =) H(XIY =)
y:P(Y=y)>0
= > P(Y =y)P(X =z|Y =y)log P(X = z|Y =)
z,y:P(X=2,Y=y)>0
=— > P(X =2,V =y)log P(X = z|Y = y)
z,y:P(X=2,Y=y)>0
=E [~ log P(X[|Y)].

Because P(Y)P(X|Y) = P(X,Y), by Theorem 2.7 we obtain
H(Y)+H(X|Y)=H(X,Y).
Hence
H(X,Y)>H(Y).

To show that H(X) is greater than H(X|Y), it is convenient to introduce
another important concept.

Definition 2.9 (mutual information). Mutual information between discrete
variables X and Y is defined as

P(X,Y)
I(X;Y):=FE |l
() {Og P(X)P(Y)]
Let us observe that I(X;X) = H(X). Hence entropy is sometimes called self-
information.
Mutual information is nonnegative because it is a special instance of

Kullback-Leibler divergence.
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Theorem 2.8. We have
I(X; Y) >0,
where the equality holds if and only if X and Y are independent.

Proof. Let p(z,y) = P(X = 2,Y =y) and ¢(z,y) = P(X = 2)P(Y = y). Then
we have

plx,
1Y) = 2, syl Em y; = D(pllg) > 0
(%,y):p(®,y)>0 9,y

with the equality exactly for p = g.

By the definition of mutual information and by Theorem 2.7,
H(X,Y)+I(X;Y)=H(X)+H(Y),
H(X|Y)+I(X;Y)=H(X). (2.2)

Hence by Theorem 2.8, we have

H(X)+H(Y)
H(X)

> H(X,Y),
> H(X|Y), I(X;Y).

Moreover, we have H(X|Y) = H(Y) if X and Y are independent, which also
agrees with intuition.

In a similar fashion as for entropy, we may introduce conditional mutual
information.

Definition 2.10 (conditional mutual information). Conditional mutual in-
formation between discrete variables X andY given event A is

I(X;Y|A) := D(pllq) for p(x,y) = P(X = 2,Y = y|A)
and q(z,y) = P(X = z|A)P(Y = y|A).

Conditional mutual information between discrete variables X and 'Y given vari-

able Z is defined as
I(X;Y|Z2):= > PZ=2)I(X;Y|Z=2z).
z2:P(Z=2)>0

Both I(X;Y|A) and I(X;Y|Z) are nonnegative. As in the case of conditional
entropy, the following proposition is true:

Theorem 2.9. We have

. ._ PX,Y|Z)
[(X;Y|Z) = E [1ogP(XZ)P(Y|Z) .
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The notion of conditional information is useful when analyzing conditional
independence.

Definition 2.11 (conditional independence). Variables X1, X, ..., X,, are
conditionally independent given Z if

n
P(X1, X2, .., Xn|Z) = [[ P(Xi|2).

i=1

Analogously, we say that variables X1, Xo, X3, ... are conditionally independent
given Z if X1, Xo, ..., X, are conditionally independent given Z for any n.

Ezample 2.5. Let Y = f(Z) be a function of variable Z, whereas X be an
arbitrary variable. Variables X and Y are conditionally independent given Z.
Indeed, we have

P(X=a2Y=ylZ=2)=P(X =z|Z=2)1{y = f(2)}
=P(X =z|Z=2)P(Y =y|Z ==z).

Ezxample 2.6. Let variables X, Y, and Z be independent assuming with equal
probability values 0 and 1. Variables U = X+Z7 and W = Y +Z are conditionally
independent given Z. Indeed, we have

PU=uW=wlZ=2)=P(X=u—2Y =w-2)
=P(X=u—2)P(Y=w—-2)=PU=ulZ=2)P(W=w|Z ==z).

It can be checked, however, that U and V are not independent.

Definition 2.12 (Markov chain). A stochastic process (X;)$2 is called

a Markov chain if -
P(Xi| X1, Xi—2, ~~~,Xzen) = P(Xi|Xi71)
holds for any i € Z and n € N.

Ezample 2.7. For a Markov chain (X;)$2__, variables X; and X} are condi-
tionally independent given X; if ¢ < j < k. Indeed, after simple calculations we
obtain P(X|X;, X;) = P(X|X;), and hence

P(Xi, Xi|X;) = P (Xl X;) P(Xe| X, X;) = P(X;]X;) P(X5|X5).
As in the case of plain mutual information the following fact is true:
Theorem 2.10. We have
I(X;Y|Z) >0,

where the equality holds if and only if X and Y are conditionally independent
given Z.
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Of particular interest is this generalization of formula (2.2):
Theorem 2.11. We have
I(X;Y|2)+1(X;2) =1(X;Y,Z).

Remark: Hence, variables X and (Y, Z) are independent if and only if X and Z
are independent and X and Y are independent given Z.

Proof.

1@&YZ)+HXﬂﬁ=F3h@i8§2i§¥2}+EP%figmzﬂ}
- PX,Y,2) | .

Finally, one can ask whether conditional entropy and mutual information
may be expressed by entropies of tuples of variables. The answer is positive if
the entropies are finite.

Theorem 2.12. If entropies H(X), H(Y), and H(Z) are finite, we observe
these identities:
H(X|Y) = H(X,Y) - H(Y),
I(X;Y) = H(X) - H(X]Y) = H(X) + H(Y) - H(X,Y),
I(X;Y|Z) = H(X|Z)+ H(Y|Z) - H(X,Y|Z)
=H(X,2)+H(Y,2)-H(X,Y,Z2) - H(Z),

where all terms are finite and nonnegative.

The proof is left as an easy exercise.

Exercises

1. (Entropy) We are tossing a coin until the first tail is obtained. The out-
come of the experiment is the number of tossings. Compute the entropy.

2. We are drawing balls from an urn. The outcome of the experiment is a se-
quence of drawn balls. Is the entropy higher for drawing with replacement
or for drawing without replacement?

3. We have two random variables X and Y with disjoint sets of values. Let
Z take values P(Z =0) = p and P(Z = 1) =1 — p and be independent
from X and Y. Compute the entropy of variable

U= X, %fZ:O,
Y, ifZ=1.
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5. Show that function d(X,Y) = H(X|Y)+H(Y|X) is a distance (a metric),

i.e., it satisfies:
e d(X,Y) =0 if there is a bijection between X and Y;
e d(X,Y) = d(Y, X);
e d(X,7) <d(X,Y)+d(Y,Z).

6. (Venn diagrams) The dependence between entropy, conditional entropy
and mutual information can be depicted by Venn diagrams. The diagram
for two variables is given in Figure 2, whereas the diagram for three
variables is presented in Figure 3.

Fig. 2. Venn diagram for two random variables.

Fig. 3. Venn diagram for three random variables.

Quantity I(X;Y; Z), appearing in Figure 3, is called triple information.
It can be defined as

[(X;Y;2) = I1(X;Y) - I[(X;Y|2).

Show that I(X;Y;2) = I(Y;X;Z) = I(Y; Z; X). Construct also vari-
ables X, Y, Z such that I(X;Y; Z) >0and I(X;Y;Z) <0.
7. Let A be an event. Show that

[1(X;Y) = P(A)I(X;Y]A) — P(A)I(X;Y|A%)| < 1.
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(Data-processing inequality) Let X and Z be conditionally independent
given Y. Show that

I(X;Y) > I(X;Z).
For a function g show that
I(X;9(Y)) <I(X;Y).

For a Markov chain (X;)2__ prove that

I(X;; Xp) < I(X;;X;) fori < j < k.
(Chain rules) Prove the chain rule
n
H(X1, ., Xn) = H(X1) + Y H(Xi|X1, .. X 1).
i=2
Let variables X7, Xo, ..., X,, be independent and conditionally indepen-
dent given Z. Prove that

n

I((X1, X2, X0 )1 Z) = > _1(X; Z).

=1

(Fano inequality) Let random variable X : 2 — X be approximated by a
random variable X, which is a function of another variable Y. Denote the
probability of error p. = P(X # X) and the entropy H (p.) = —pe logp.—
(1 — pe)log(l — pe). Show that

H(pe) + pelogcardX > H(X|X) > H(X[Y).
Let X and X be two independent random variables with distributions
p(z) = P(X = z) and r(z) = P(X = z). Show that
P(X = X) > 9~ H(@)-D(plIr)

(Infinite entropy) Consider a random variable X taking values in natural
numbers (without zero) whose distribution is

C

PR=m) = oy

n>1,

where 8 € (1,2]. Show that entropy H(X) is infinite.

Consider another variable X taking values in natural numbers. Show that
H(X) <o if EX < c0.

(Stirling approzimation) Show that

(2) <uen(2)

Hint: Use bounds fon Inzdr <Ilnn! < fln Inxzdx + Inn.
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Use the Stirling approximation to show that for p € [0,1] and k,, = [np]
we have

1 n
lim ~1 - H
Jim —log (kn) (p),

where H (p) = —plogp — (1 — p)log(1 — p),
(Bregman divergence) Let ¢ be a differentiable and strictly convex func-
tion of vector = (1, 2, ..., k). Bregman divergence is defined as

d(2.9) = 0(2) — () — (i — ) 2.
Show that for ¢(p) = —H(p) = >, pilogp;, Bregman divergence equals
Kullback-Leibler divergence, i.e., dg(p,q) = D(p||q).

Show that dy(z,y) > 0 and equality holds if and only if z = y.

Bregman information of a random variable X is defined as I;(X) =
E dy(X,EX). Show that I,(X) = E¢(X) — ¢(E X).

What is the Bregman divergence for ¢(z) = >, 2?? What is Bregman
information I4(X) in that case?

(Generalized Pythagoras theorem) Define argmin, . g f(x) as the argument
x € S for which the function f attains the minimal value. Let S be
a convex set of points, let x; € S and let x9 = argmin, ¢ g dy(z, x3). Show
that

d¢,($17.’172) + d¢<.’1?2,l‘3) S d¢($1,$3).
Hint: Let xx = Az + (1 — X\)z. Show that

0 < Ody(z, x3)

=dg(x1,23) — dg(w1,22) — dg (72, 23).
o\ =0



Source coding

Uniquely decodable codes. Kraft inequality. Shannon-Fano code. Huff-
man code.

In the previous chapter we have shown that entropy satisfies many intuitive
identities. Now we will work on the links between entropy and coding. First we
need to introduce some basic concepts in coding. The link with entropy will arise
when we seek for optimal codes.

Definition 3.1 (injection). Function f is called an injection if x # y implies
flx) # f(y).

In coding theory we consider injections that map elements of a countable set
X into strings over a countable set Y. The set of these strings is denoted as
Y+ = Up—; Y. Sometimes we also consider set Y* = {A} UY™ where X is the
empty string. Sets X and Y are called alphabets.

Definition 3.2 (code). Any injection B : X — Y* will be called a code.

In this chapter we consider mostly binary codes, i.e., codes for which Y = {0,1}".
On the other hand, the alphabet X may consist of letters, digits or other symbols.

Example 3.1. An example of a code:

symbol z:  code word B(x):

a 0
b 1
C 10
d 11

The original purpose of coding is to transmit some representations of strings
written with symbols from an alphabet X through a communication channel
which passes only strings written with symbols from a smaller alphabet Y. Thus
the idea of a particularly good coding is that we should be able to reconstruct
coded symbols from the concatenation of their codes. Formally speaking, the
following property is desired.

Definition 3.3 (uniquely decodable code). Code B : X — Y* is called
uniquely decodable if the code extension

B*:X* 3 (21, ...,%n) — B(z1)..B(zy) € Y*

is also an injection.
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Ezample 3.2. The code given in Example 3.1 is not uniquely decodable because
B(ba) = 10 = B(c).

Example 3.3. However, this code is uniquely decodable:

symbol z:  code word B(z):

a Oc
b lc
C 10c
d 11c

The above code is a special case of a more general construction called
a comma-separated code.

Definition 3.4 (comma-separated code). Let ¢ € Y. Code B : X — (YU
{c})* is called comma-separated if for each x € X there exists a string w € Y*
such that B(z) = we. Symbol ¢ is called the comma.

Theorem 3.1. Fach comma-separated code is uniquely decodable.

Proof. For a comma-separated code B, let us decompose B(z) = ¢(x)c. We first
observe that B(z1)...B(z,) = B(y1)...B(ym) holds only if n = m (the same
number of ¢’s on both sides of equality) and ¢(z;) = ¢(y;) for ¢ = 1,...,n. Next,
we observe that function ¢ is a code. Hence string B(z1)...B(x,) may be only the
image of (x1, ..., x,) under the mapping B*. This means that code B is uniquely
decodable.

Another recipe for producing a uniquely decodable code is to restrict the
length of code words.

Definition 3.5 (fixed-length code). Let n be a fized natural number. Code
B : X — Y" is called o fixed-length code.

Example 3.4. An example of a fixed-length code:

symbol z:  code word B(z):

a 00
b 01
c 10
d 11

Theorem 3.2. Each fized-length code is uniquely decodable.

Proof. Consider a fixed-length code B. We observe that B(zi)..B(z,) =
B(y1)...B(ym) holds only if n = m (the same length of strings on both sides of
equality) and B(x;) = B(y;) for i = 1,...,n. Because B is an injection, string
B(z1)...B(x,) may be only the image of (z1,...,2,) under the mapping B*.
Hence, code B is uniquely decodable.
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In the second turn we may ask what is the shortest code to encode a given set
of symbols, where the symbols appear with given probabilities. Let |w| denote
the length of a string w € Y*, measured in the number in symbols. For a random
variable X : 2 — X, we will be interested in the expected code length

E [B(X)| =) P(X =2)[B(z)].

zeX

Example 3.5. Consider the following distribution and a code:

symbol :  P(X =z): code word B(z):

a 1/2 0C
b 1/6 1C
c 1/6 10C
d 1/6 11C

We have E [B(X)|=2-5+2 - +3- ¢ +3-§ =23

Specifically, we are interested in codes that minimize the expected code length
for a given probability distribution. In this regard, both comma-separated codes
and fixed-length codes have advantages and drawbacks. If certain symbols ap-
pear more often than others then comma-separated codes allow to code them as
shorter strings and thus to spare space. On the other hand, if all symbols are
equiprobable then a fixed-length code without a comma occupies less space than
the same code with a comma.

In general, there arises a lower bound for the expected code length which
holds for any uniquely decodable code. Namely, E |B(X)| cannot be less than
a multiplicity of entropy H(X). This link is particularly easy for binary codes.
The first step is to observe the following inequality.

Theorem 3.3 (Kraft inequality). For any uniquely decodable code B : X —
{0,1}" we have inequality

> oriB@l <, (3.1)
zeX

Proof. (By Brockway McMillan.) Consider an arbitrary L. Let a(m,n, L) denote
the number of sequences (1, ...,x,) such that |B(z;)| < L and the length of
B*(z1,...,zy,) equals m. We have

n nL
( Z 2_B($)) = Z a(m,n,L) -2,
z:|B(z)|<L m=1

Because the code is uniquely decodable, we have a(m,n, L) < 2™. Therefore

Y 27 B@l < ()" 1,
@ B(x)| <L

Letting L — oo, we obtain (3.1).
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Hence we obtain the main theorem, which links coding and entropy.

Theorem 3.4 (source coding inequality). For any uniquely decodable code
B : X — {0,1}", the expected length of the code satisfies inequality

E|B(X)| > H(X), (3.2)
where H(X) is the entropy of X.

Proof. Introduce probability distributions p(z) = P(X = x) and
9-|B(@)|

rie) = >, ex 2 POl

We have

E [B(X)| - H(X)

- p log( ) 2 ‘B(y”) > plx)logp(x)

zeX yeX z:p(x)>0
= Z p(x)log p(@) log (Z 2_|B(”3)|>
z:p(x)>0 T(i) zeX
= D(p||r) — log (22 |B(x)|)
xeX

That difference is nonnegative by nonnegativity of Kullback-Leibler divergence,
Theorem 2.4, and Kraft inequality, Theorem 3.3.

One can ask whether there exist codes for which the source coding inequality
is close to equality. In fact, there exists a simple class of codes which is sufficient
to encode a given set of symbols optimally. There are two mirror-like definitions.

Definition 3.6 (prefix-free code). A code B is called prefix-free if no code
word B(x) is a prefix of another code word B(y), i.e., it is not true that B(y) =
B(z)u for x #y and a string u € Y*.

Definition 3.7 (suffix-free code). A code B is called suffix-free if no code
word B(x) is a suffix of another code word B(y), i.e., it is not true that B(y) =
B(x) for x #y and a string u € Y*.

Ezample 3.6. Codes in Examples 3.3 and 3.4 are prefix-free. Moreover, the code
in Example 3.4 is also suffix-free.

Ezxample 3.7. A code which is prefix-free but not suffix-free:
symbol z:  code word B(z):

a 10
b 0
c 110
d 111
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Example 3.8. A code which is suffix-free but not prefix-free:
symbol z: code word B(z):

a 01
b 0

c 011
d 111

Theorem 3.5. Any prefiz-free or suffiz-free code is uniquely decodable.

Proof. Without loss of generality we shall restrict ourselves to prefix-free codes.
The proof for suffix-free codes is mirror-like. Let B be a prefix-free code and
assume that B(z1)...B(z,) = B(y1)...B(ym). By the prefix-free property the
initial segments B(x1) and B(y;) must match exactly and x; = y;. The anal-
ogous argument applied by induction yields x; = y; for i = 2,..,n and n = m.
Thus code B is uniquely decodable.

For prefix-free codes there exists a theorem converse to the Kraft inequality.

Theorem 3.6. If function | : X — N satisfies inequality

D 2@ < (3.3)

reX
then we may construct a prefiz-free code B : X — {0,1}" such that |B(z)| = I(x).

Proof. (By Nicholas J. Pippenger.) Let u be the k-th element of set {0,1}l
enumerated in the lexicographic order. We define section s(u) := [k27!, (k +
1)27%) as the set of all real numbers whose binary expansions begin with string
0.u. We observe that code B is prefix-free if and only if sections s(B(x)) and
s(B(y)) are disjoint for x # y.

Because the code domain X is countable, we may assume without loss of gen-
erality that X = {1,2,...,n} or X = N. Then we define B by iteration as follows.
First, we denote sets of sections s(B(y)) excluded before the z-th iteration as
N(1) := 0 and N(z) := UZ: s(B(y)) for & > 1. Next, we define B(z) := u,

where u is the first element of set {0, l}l(x) in the lexicographic order such that
sets s(u) and N (z) are disjoint. It is obvious that B defined in this way is prefix-
free and satisfies |B(z)| = I(x), as long as strings u with the requested property
exist.

Now we will show that strings « with the requested property exist if inequality
(3.3) is satisfied. The proof of existence rests on this fact, which can be shown
easily by induction: Set [0,1) \ N(z) can be represented as a sum of finitely
many sections [k27!, (k +1)27!) of different I, which appear in [0,1) in order of
decreasing [. Let 27 be the length of the largest available of these sections. By
the mentioned fact, we have

x—1
A D I = (3.4)

y=1
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The requested string u exists if and only if 27/®) < 2= In view of (3.4), the
latter condition holds if and only if

z—1
1— Z 27lW) > 9~ M=)
y=1

But this condition is satisfied by (3.3).

We observe that Kraft inequality (3.1) may be satisfied with equality.
Definition 3.8 (complete code). A code B : X — {0,1}" is called complete
if

Z 9—1B@)| — 1.

zeX
Example 3.9. A code which is prefix-free, suffix-free, and complete.

symbol z:  code word B(z):

a 00
b 01
¢ 10
d 11

Example 3.10. Another code which is prefix-free, suffix-free, and complete.

symbol z:  code word B(z):
01

000

100

110

111

0010

0011

1010

1011

I =a C R LI I e PR e B o A

Source: Gillman and Rivest (1995).

Now we return to the question whether equality in the source coding inequal-
ity may be approximately achieved.

Definition 3.9 (Shannon-Fano code). A prefiz-free code B : X — {0,1}" is
called a Shannon-Fano code if

|B(z)] = [~log P(X = z)].
Theorem 3.7. Shannon-Fano codes exist for any distribution and satisfy

H(X)<E|B(X)|<H(X)+1. (3.5)
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Proof. We have
Z 9-[-log P(X=2)] < Z glog P(X=2) < 1.
z€X z€X
Hence Shannon-Fano codes exist by Theorem 3.6. Inequality (3.5) follows by
—log P(X =) < |B(z)| < —log P(X =2) + 1.
In spite of inequality (3.5), Shannon-Fano code is not necessarily the shortest
possible code.
Example 3.11. Consider the following distribution and codes:
symbol z:  P(X =z): code word B(x): code word C(x)

a 1—-275 0 0
b 2-6 100000 10
c 2-6 100001 11

Code B is a Shannon-Fano code, whereas code C is another code. We have
H(X)=0.231..., E |B(X)| = 1.15625, and E |C(X)| = 1.03125. For no symbol
code C' is worse than code B, whereas for less probable symbols code C' is much
better.

A code that minimizes the expected length E |B(X)| is known under the
name of Huffman code. To introduce this code we need first to uncover a rela-
tionship between prefix-free codes and binary trees.

Definition 3.10 (binary tree). A binary tree is a directed acyclic connected
graph where each node has at most two children nodes (left and/or right one)
and at most one parent node. The node which has no parents is called the root
node. The nodes which have no children are called leaf nodes. We assume that
links to the left children are labeled with 0’s whereas links to the right children
are labeled with 1’s. Moreover, some nodes may be labeled with some symbols as
well.

Definition 3.11 (path). We say that a binary tree contains a path w € {0,1}"
if there is a sequence of links starting from the root node and labeled with the
consecutive symbols of w. We say that the path is ended with symbol a € X if the
last link of the sequence ends in a node labeled with symbol a.

Definition 3.12 (code tree). The code tree for a code B : X — {0,1}" is
a labeled binary tree which contains a path w if and only if B(a) = w for some
a € X, and exactly in that case we require that path w is ended with symbol a.

Example 3.12. Consider codes:
symbol x:  code word B(x): code word C(z):

a 0 00
b 1 01
c 10 10
d 11 110
e 00 111
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Fig. 4. The code trees for the codes from Example 3.12.

The code trees for these codes are depicted in Figure 4.

It is easy to observe the following fact.

Theorem 3.8. There is a one-to-one correspondence between the binary codes
and code trees. Moreover, a code is prefix-free if and only if the leaf nodes are
the only nodes labeled.

In the next step, we will add some weights to the code trees, which stem
from the distribution of symbols.

Definition 3.13 (weighted code tree). The weighted code tree for a prefix
code B : X — {0,1}" and a probability distribution p : X — [0,1] is the code
tree for code B where the nodes are enhanced with the following weights: (1) for
a leaf node with symbol a, we add weight p(a), (2) to other (internal) nodes, we
ascribe weights equal to the sum of weights of their children.

Example 3.13. Consider this distribution and the code C' from Example 3.12:

symbol x:  p(x): code word C(x):

a 0.2 00
b 0.3 01
c 0.1 10
d 0.2 110
e 0.2 111

The weighted code tree is depicted in Figure 5.

Now we can describe the Huffman code.

Definition 3.14 (Huffman code). The Huffman code for a probability distri-
bution p : X — [0,1] is a code whose weighted code tree is constructed by the
following algorithm:

1. Create a leaf node for each symbol and add them to a list.
2. While there is more than one node in the list:
(a) Remove two nodes of the lowest weight from the list.
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Fig.5. The weighted code tree for Example 3.13.

(b) Create a new internal node with these two nodes as children and with
weight equal to the sum of the two nodes’ weights.
(c) Add the new node to the list.

3. The remaining node is the root node and the tree is complete.

Ezample 3.14. The Huffman code for the distribution from Example 3.13 is:

symbol z:  p(z): Huffman code B(x):

a 0.2 00
b 0.3 10
c 0.1 110
d 0.2 111
e 0.2 01

The corresponding Huffman code tree is depicted in Figure 6.

]a, 0.2\

¢, 0.2][b, 0.3]

Fig.6. The Huffman code tree for Example 3.14.
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It can be proved that no code fares better than the Huffman code if the
probability distribution is known.

Theorem 3.9. For any probability distribution p(x) = P(X = x), the Huffman
code achieves the minimum expected length E |B(X)].

Proof. A code B will be called optimal if E |B(X)| achieves the minimum for
a given distribution p(z) = P(X = z). We will use the this fact:

Consider the two symbols x and y with the smallest probabilities. Then there
is an optimal code tree C such that these two symbols are sibling leaves in the
lowest level of C’s code tree.

To prove this fact, observe the following. Every internal node in a code tree
for an optimal code must have two children. (Surely, if some internal node had
only a single child, we might discard this node.) Then let B be an optimal code
and let symbols a and b be two siblings at the maximal depth of B’s code tree.
Assume without loss of generality that p(z) < p(y) and p(a) < p(b). We have
p(@) < pla), p(y) < p(b), |B(a)] = |B(2)], and [B(b)| > |B(y)|. Now let C’s code
tree differ from the B’s code tree by switching a <+ x and b <+ y. Then we obtain

E|O(X )!—E|B( )l
—p(x) |B(z)| = p(a) |B(a)| + p(a) | B(x)| + p(z) | B(a)|
p(y) [By)| = p(0) [B(b)] + p(b) |B(y)| + p(y) | B(D)]
= (p(a) = p(x))(|B(z)| — [B(a)])
+(p(0) — p(y))(I1B(y)| — [B(O)]) <0.

Hence code C'is also optimal.

Now we will proceed by induction on the number of symbols in the alphabet
X. If X contains only two symbols, then Huffman code is optimal. In the second
step, we assume that Huffman code is optimal for n — 1 symbols and we prove
its optimality for n symbols. Let C' be an optimal code for n symbols. Without
loss of generality we may assume that symbols x and y having the smallest
probabilities occupy two sibling leaves in the lowest level of C’s code tree. Then
from the weighted code tree of C' we construct a code C’ for n — 1 symbols by
removing nodes with symbols x and y and ascribing a symbol z to its parent
node. Hence we have

E [C'(X)| = E [C(X)| = p(=) = p(v),

where variable X’ = z if X € {x,y} and X' = X otherwise. On the other hand,
let B’ be the Huffman code for X’ and let B be the code constructed from B’ by
adding leaves with symbols z and y to the node with symbol z. By construction,
code B is the Huffman code for X. We have

E |B'(X')| =E |B(X)| - p(x) — p(y)

Because E |B'(X')| < E |C'(X")] by optimality of Huffman code B’, we obtain
E |B(X)| < E |C(X)|. Hence Huffman code B is also optimal.
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Exercises

1. (Prefiz-free codes) Which of the following codes are prefix-free?

(a) {0,01,1}

(b) {01,101, 11},

(¢) {0,10,110},

(d) {00,010,110,11}.

2. We say that a prefix-free code is maximal if no superset of the code words
is prefix-free. Show that a maximal prefix-free code B : X — {0,1}" is
complete if X is finite, whereas it need not be so if X is infinite.

3. (D-ary codes) Show that for any uniquely decodable code B : X —
{0,1,...,D — 1}",

S p-lE@l <1,

zeX

Using this inequality, show further that E |B(X)| > H(X)/log D.
4. Let a uniquely decodable code B : X — {0,1,..., D — 1}" satisfy

S DIBEl <1,

zeX

Show that there exist arbitrarily long sequences in {0, 1, ..., D — 1}" which
cannot be decoded into sequences of codewords.
5. (Huffman codes) Find the Huffman codes for the following distributions:

(a) symbol z:  P(X = z):
a 1/12
b 1/6
c 1/4
d 1/3
e 1/6
(b) symbol z:  P(X = z):
a 1/11
b 3/11
c 2/11
d 1/11
e 3/11
f 1/11
(c) symbol z:  P(X = z):
a 1/7
b 1/2
c 1/6
d 3/42
e 5/42
6. Which of these codes cannot be Huffman codes for any probability dis-
tribution?

(a) {001,01,1},
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(b) {01,10,11}

(c) {0,10,11},
(d) {00,010,10,11}

. Consider a random variable X with distribution

symbol z:  P(X = x):

a 1/3
b 1/3
c 4/15
d 1/15

Show that there are two Huffman codes for this distribution: one has
lengths (1,2,3,3) and the other has lengths (2,2,2,2). Use this result to
demonstrate that the length of some Huffman code can be greater for
some symbol than the length of the Shannon-Fano code.

. We say that X has a dyadic distribution if for each x there exists an

integer k such that P(x) = 27%. Show that the length of the Huffman
code for a dyadic distribution is the same as the length of the Shannon-
Fano code and satisfies E |B(X)| = H(X).

. (Elias omega code) Binary expansion is an example of a code for natural

numbers which is not prefix-free. We can correct this code to make it
prefix-free by preceding the binary expansion with a recursive represen-
tation of its length. In this way we obtain the Elias omega code.
The algorithm for the Elias omega encoding is as follows:
(a) Put 0 at the end of the code.
(b) If the coded number is 1, stop. Otherwise, write the binary represen-
tation of the coded number before the code.
(c) Repeat the previous step with the coded number equal to the number
of digits written in the previous step minus 1.
In this way we obtain the following correspondence:
number n:  code word B(n):
0
100
110
10 100 0
10 101 0
10 110 0
10 111 0
8 11 1000 O
Find the algorithm for decoding the Elias omega code.

N O U= W N



Stationary processes

Stationary processes. Markov models. Hidden Markov models. Entropy
rate. Entropy rate as the limiting compression rate. Excess entropy.

An infinite collection of random variables on a probability space is called
a stochastic process. In this chapter we will study stationary processes, whose
probability distributions are invariant under shifting. For the sake of ergodic
processes that will be discussed in the next chapter, it pays off to start with
a more abstract setup and to begin with probability measures that are invariant
under an arbitrary transformation.

Definition 4.1 (invariant measure). Consider a probability space (£2,J,P)
and an invertible operation T : 2 — §2 such that T"'A € J for A € J. Measure
P is called T-invariant and T is called P-preserving if

P(T'4) = P(4)
for any event A € J.

Definition 4.2 (dynamical system). A dynamical system (2,J,P,T) is
a quadruple that consists of a probability space (2, J,P) and a P-preserving
operation T

To check whether a given measure P is T-invariant, we often do not need
to check whether P(T~1A) = P(A) for all events A € J. Usually it suffices to
check this condition only for A € A where A is some reasonable subset of 7.

Definition 4.3 (generated o-field). We say that subset J C 2% is a o-field
generated by subset A C 27 if it is the intersection of all o-fields that contain
A. We denote this fact as J = o(A).

Definition 4.4 (r-system). A subset A C 2 is called a w-system if for all
A, B e A we have ANB € A.

Theorem 4.1 (w-) theorem). Let A be a w-system and let P and P’ be two
probability measures on J = o(A). If P'(A) = P(A) for all A € A then P’ = P.

The proof of this theorem can be found in Billingsley (1979, Section 2).

Now we can see that P'(A) := P(T~!A) is also a probability measure. Thus if
we have P(T~1A) = P(A) for all A € A, where A is a T-system, then P(T~1A4) =
P(A) holds also for all A € o(A).
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Ezample 4.1 (rotation). Let 2 = (0,1] and let J be generated by sections (a, b],
a,b € (0,1]. The intersection of two sections is a section so the set of all sections
is a m-system that generates [J. Let P be the Lebesgue measure on 7, defined
by P((a,b]) = b—a, and define T'(w) = (w—+r) mod 1 for an r € (0, 1]. We have
P(T~(a,b]) = P((a,b]). Hence P is T-invariant.

A stationary process is a concept tightly related to an invariant measure.

Definition 4.5 (stationary process). A stochastic process (X;)2_ ., where

X; : 2 — X are discrete random variables, is called stationary if there exists
a distribution of blocks p : X* — [0,1] such that

P(Xi+1 :xla---;XH—n :In) :p(xlxn) (41)
foranyi € Z and n € N.

Ezample 4.2 (IID process). If variables X; are independent and have identical
distribution P(X; = x) = p(x) then (X;)$2 is stationary.

1=—00

It is easy to see that, if we have an invariant measure, we can produce a sta-
tionary process given an arbitrary random variable.

Example 4.3. Let measure P be T-invariant and let Xy : 2 — X be a random
variable on (2, 7, P). Define random variables X;(w) = Xo(T*w). For

A= (Xi+1 =21,y Xjbn = xn)
={w: Xo(T"™'w) = 21, .., Xo(T"""w) = 2, },
we have
T'A={T"w: Xo(T""w) = 21, ..., Xo(T""w) = 2, }
={w: Xo(T"w) = 21, ..., Xo (T 'w) = 2, }
= (X1'+2 =1y, Xignt1 = zn)
Hence, because P(T~1A) = P(A), process (X;)2

1=—00

is stationary.

An interesting question is whether given a distribution of blocks, we can
construct a probability space with the requested stationary process and an in-
variant measure. The answer is positive if the distribution of blocks satisfies
a consistency criterion, cf. Billingsley (1979, Section 36).

Theorem 4.2 (process theorem). Let distribution of blocks p : X* — [0,1]
satisfy conditions

> plaw) = pw) =Y p(wa) (4.2)

and p(\) = 1, where X is the empty word. Let event space
= {w = (W)X _ o tw; € X}

consist of infinite sequences and introduce random variables X;(w) = w;. Let J
be the o-field generated by all cylinder sets (X; = s) = {w € N2: X;(w) = s}.
Then there exists a unique probability measure P on J that satisfies (4.1).
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If there are some other random variables considered in an application, then
we have to consider a larger probability space, whose construction proceeds
analogously. With appropriate modifications, Theorem 4.2 may be generalized
to nonstationary, real-valued, and real-time processes.

Theorem 4.3. Let (£2,J,P) be the probability space constructed in Theorem
4.2. Measure P is T-invariant for the operation

(T‘(,L))Z = Wi,
called shift. Moreover, we have X;(w) = Xo(T'w).

Proof. By the m-)\ theorem it suffices to prove P(T"'A) = P(A) for A =
(Xiv1 = 1,0, Xjun = 7). But X;(w) = Xo(T'w). Hence T71A = (X410 =
21,y Xitnt1 = Zp), as shown in Example 4.3. In consequence, we obtain
P(T~'A) = P(A) by stationarity.

Definition 4.6. The triple (£2,7,P) constructed in Theorem 4.2 and the
quadruple (2, T, P,T) constructed in Theorem 4.3 will be called the probability
space and the dynamical system generated by a stationary process (X;)2_
(with a given block distribution p : X* — [0,1]).

Now, once we have the process theorem, let us investigate a few further
examples of stationary processes. The first example are Markov processes.

Theorem 4.4. A Markov chain (X;)5°_ . is stationary if and only if it has
marginal distribution P(X; = k) = m, and transition probabilities P(X;11 =

[|X; = k) = pri which satisfy
™ = Zﬂkpkz- (4'3)
k

Proof. If (X;)2 is stationary then the marginal distribution P(X; = k) and

1=—00

transition probabilities P(X;+1 = [|X; = k) may not depend on i. We also have

P(Xi+1 = kh ...7Xi+n = kn) = p(klkn) = Wklpk1k2...pkn71kn

Function p(k;...k,) satisfies (4.2). Hence we obtain (4.3). On the other hand, if
P(X; =k) =7 and P(X;41 = | X; = k) = pg; hold with (4.3) then function
p(k1...ky,) satisfies (4.2) and the process is stationary.

If the process variables assume a finite number of values, relationship (4.3)
can be written in the vector notation as

P11 P12 --- Pin
P21 P22 --- P2n
(7T171'2...71'n) . .. . :(7T17T2...7Tn).
Pn1 Pn2 -+ - Pnn
Matrix (pgi) is called the transition matrix. For a given transition matrix the
stationary distribution may not exist or there may be many stationary distribu-
tions.



42 4 Stationary processes

Ezample 4.4. Let variables X; assume values in natural numbers and let
P(X;41 = k+ 1|X; = k) = 1. Then the process (X;)2; is not stationary.
Indeed, assume that there is a stationary distribution P(X; = k) = m. Then by
(4.3) we obtain 741 = 7 for any k. Such distribution does not exist if there
are infinitely many k.

Example 4.5. For the transition matrix
pupiz) _ (10
D21 D22 01

(7T17T2):(a1—a>, a € [0,1],

any vector of form

is the solution of equation (4.3).

Once we have a stationary process we can construct another stationary pro-
cess as a function of that process.

Theorem 4.5. If a process (X;)$2 is stationary then the process (Y;)5°

i=—00 i=—00
where Yy, = f(T*(X;)2_ ) is also stationary.

1=—00

In particular, we have the following case:

Definition 4.7. Process (Y;)2 is called a hidden Markov chain if ¥; =

1=—00

f(X;) where (X;)$2 is a Markov chain. (If variables X; assume finitely many

1=—00

values then (Y;)$2 is also called a finite-state source.)

1=—00

Now let us consider information theoretic properties of stationary processes.
We will be interested in the information carried by strings of consecutive vari-
ables, called blocks.

Definition 4.8 (block). Blocks of variables are written as X} = (X;)r<i<i-

The entropy of a block drawn from a stationary process depends only on the
block length.

Definition 4.9 (block entropy). The entropy of the block of n variables drawn
from a stationary process will be denoted as

H(n) = H(XIL) = H(Xl, ceey Xn) = H(Xi+17 ceey Xz-i—n)
For convenience, we also put H(0) = 0.

Theorem 4.6. Let A be the difference operator, AF(n) := F(n) — F(n — 1).
Block entropy satisfies

AH(n) = H(X,|X} ),
A’H(n) = —I(X1; X, X271,

where H(X1|XY) := H(X1) and I(X1; X2|X3) := I(X1; X2).
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Remark: Hence, for any stationary process, block entropy H(n) is nonnegative
(H(n) > 0), nondecreasing (AH (n) > 0) and concave (A?H (n) < 0).
Proof. We have

In the following we will introduce a certain limiting quantity.

Definition 4.10 (entropy rate). The entropy rate of a stationary process will
be defined as

h= lim AH(n)=H(1) + i A?H(n). (4.4)

n—o0

By the previous theorem, we have 0 < h < H(1).

Ezample 4.6. Let (X;)2 be a stationary Markov chain with marginal distri-

bution P(X; = k) = Wkiafnd transition probabilities P(X;11 = | X; = k) = pp.
We have AH(n) = H(X,|X]™!) = H(X,|X,_1), s0

h=— Z TPk 108 Pri-
ki
The name “entropy rate” is motivated by the following identity.

Theorem 4.7. Entropy rate satisfies equality

h— tim 7))

n—oo N

Proof. Difference AH (-) is nonincreasing. Hence block entropy H(n) = H(m) +
> ey 1 AH(K) satisfies inequalities

H(m)+ (n—m)-AH(n) < H(n) < H(m) + (n —m) - AH(m). (4.5)
Putting m = 0 in the left inequality in (4.5), we obtain
AH(n) < H(n)/n (4.6)

Putting m = n — 1 in the right inequality in (4.5), we hence obtain H(n) <
H(n—-1)+AH(n—1) < H(n—1)+H(n—1)/(n—1). Thus H(n)/n < H(n—1)/(n—
1). Because function H(n)/n is nonincreasing, the limit A’ := lim, . H(n)/n
exists. By (4.6), we have b’ > h. Now we will prove the converse. Putting n = 2m
in the right inequality in (4.5) and dividing both sides by m we obtain 2h’ < h'+h
in the limit. Hence h' < h.
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Entropy rate equals the minimal compression rate with which the data typical
for a stationary process can be compressed.

Theorem 4.8. For a stationary process (X;)$2_ ., let L, denote the minimal

expected compression rate of a uniquely decodable code B, : X" — {0,1}" for
the block of n variables. That is,

1
L, = %15513 |Bn (X1, ... X5 |-

We claim that lim,,_, o L, = h.

Proof. Assume that B,, is the Shannon-Fano code for the block (Xi,..., X,).
Then H(X?) < nL, < E |B,(X1,...,Xn)| < H(X}) + 1. Hence the claim
follows.

There is another interesting limiting quantity, which is called excess entropy.

Definition 4.11 (excess entropy). Ezxcess entropy of a stationary process is
defined as

E := lim E(n), (4.7)

n—oo

where
E(n) =1(X%,.1;X7)
is the mutual information between adjacent blocks of length n.

For any process, excess entropy E is a definite value from range [0, co] because
E(+) is nondecreasing.
The name “excess entropy” is motivated by the following theorem:

Theorem 4.9. For the functions

we have inequalities
0< E(n) < E(n) < E(2n) < B,
E(n) < E(n) < E,
whereas E(-) and E(-) are nondecreasing. Hence

E = lim E(n)= lim E(n)= lim E(n).

n—roo n—oo n—oo
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Proof. We have

B(n) = H(XT) - H(X7|X%, ;) Z (XX = H(X| X5 )]
:Zn:[AH() AH(i+n)] = Zn:i: A*H (i + j)

n 2n

> (k=DAH(k)— > (2n—k+1)A%H(k),
k=2 k=n+1
E(n) =Y [AH(i)— AH(n)] ==Y > AH(j)
i=1 i=1 j=i+1
zn: — 1)A*H (k).
k=2

Each of quantities F(n), E(n), E(2n) is a sum of nonnegative terms —A2H (k)
multiplied by nonnegative factors. The factors rise for the consecutive quantities
E(n), E(n), E(2n). Hence we have 0 < E(n) < FE(n) < E(2n). By a similar
argument, E(n) < E(n + 1), so E(-) is nondecreasing. Hence there exists limit
lim,, 0o F(n) and it equals lim,, ., E(n).

For m > n define

E(n;m) = H(n) — nAH(m) = E(m) + n[AH(n) — AH(m)]

_ Zn:(k; —1)AZH (k) — i nA*H (k). (4.8)
k=2 k=n-+1

By (4.8) we have E(n, m) < E(n;m+1). Hence there exists limit lim,, oo E(n;m)
and it equals FE(n). Comparing the coefficients at —A?H(k), we infer
that E(n) < E(n;m) < E(m) for m > 2n. By a similar argument,

E(n;m) < E(n + 1; ;m). For m — oo these two sets of inequalities imply
E(n) < E(n) < E and E(n) < E(n +1). Hence lim,_,o E(n) = lim,_,, E(n)
and E(-) is nondecreasing.

Exercises

1. (Markov processes) Find the stationary distributions (m;) for transition

matrices
~(1/10 9/10
(pis) = (1/12 11/12) ’
1/21/41/4

1/41/41/2



46

10.

11.

4 Stationary processes

([ 3/8 5/8
(piy) = (7/10 3/10>’
1/31/61/2

1/61/21/3

. (Subadditive functions) A function f is called subadditive f(n + m) <

f(n) + f(m). Assuming f(0) = 0, show that if A%f(n) < 0 then the
function is subadditive.

. Let sequence (ay)nen be nonnegative. Consider four conditions:

(a) Sequence (ay)nen has decreasing increments if (a, — an—1)nen is de-
creasing.

(b) Sequence (a,)nen has decreasing nths if (n~1a,)nen is decreasing.

(¢) Sequence (an)nen is subadditive if a4 < apn + G-

(d) Sequence (an)neny has descending nths if limsup,_,.n ta, =
inf,enn " ay,.

Show that (a) = (b) = (¢) == (d) but the converse is not true.

Moreover if (a) holds then (a,)nen increases and lim, oo (an — ap—1) =

lim,, o0 n Y,

. (Concave functions) Assuming f(0) = 0, show that if A?f(n) < 0 then

p1f(n) + paf(m) < f(pm+ pam) for p; >0, p1 +ps = 1.

. (Entropy rate) Show that a stationary process is a sequence of indepen-

dent identically distributed variables if and only if h = H(1).

. Let (Y;)$2 be a stationary process whose variables assume % distinct

1=—00

values. Show that (Y;)$2_ . is a sequence of independent uniformly dis-

tributed variables if and only if h = logk.

. For a stationary process show that

LHORIXY) L H(GIXY,)

n—oo n k—oc0 n

= h.

. (Excess entropy) Show that excess entropy is finite for a hidden Markov

chain (Y;)$2__ where Y; = f(X;) and variables of the Markov chain X;

assume a finite number of values.

. For a stationary process and k < n/2, show that

I(XFhXp) <I(xFxp).

(Randomly stopped sequences) Let (Y;)$2__ be a stationary process.
Moreover, let S be a random variable assuming values in natural num-
bers, where events (S = n) and (Y{* = y}') are independent. Show that
H(YS) < H(S)+ H(v/"5T).

Let (Y;)2_, be a stationary process with entropy rate h. Moreover,
let S be a random variable assuming values in natural numbers, where
events (S =n) and (Y, =y, ) are independent. Show that H(Y;) >

H(S|(Y:)2,) + hE S, where H(S|(Y;)22,) = limn_o0 H(S|Y7).



Ergodic processes

Ergodic systems. Ergodic theorem. Ergodic Markov processes. Shannon-
McMillan-Breiman theorem.

In this chapter, we will discuss the ergodic theorem, which generalizes the
strong law of large numbers to the case of stationary ergodic processes. To begin
with, let us note that the probability space generated by a stationary process
supports many interesting events, whose probability is well defined. Some of
them belong to the so called invariant algebra.

Definition 5.1 (invariant algebra). Let (2,7, P,T) be a dynamical system.
The set of events which are invariant with respect to operation T,

IT:={AcJ:A=T""A},
will be called the invariant algebra.

It may be insightful to substantiate this concept by a few examples.

Ezample 5.1. Let (£2,J, P,T) be the dynamical system generated by a station-
ary process (X;)2_ ., where X; : 2 — {0,1}. The operation T results in shift-
ing variables X;, i.e., X;(w) = Xo(T"w) for all i € Z. Thus the following events
belong to the invariant algebra Z:

{w: Xiw)=1foralliczZ}= (] (X;=1), (5.1)
i=—00
{w: X;(w) =1 for infinitely many i > 1} = ﬂ U (X;=1), (5.2)
i=1j=i
) 1 n oo oo o0 1 n 1
{w:nh_{I;CﬁZXk(w):a}:ﬂ U ﬂ (’nZXk—a Sp). (5.3)
k=1 p=1N=1n=N k=1

If the process (X;)2_ . is a sequence of independent identically distributed
variables then the probability of the mentioned events is 0 or 1. In the case of
event (5.1) direct evaluation yields probability 0 for P(X; = 1) < 1 and 1 for
P(X; =1) = 1. The probability of event (5.2) is also 0 or 1 by the Kolmogorov
zero-one law. Finally, if the strong law of large numbers holds, the probability
of (5.3) is 1 if and only if « = E X, where E X is the expectation of random
variable X;.

Following our intuition for independent variables, we may think that a sta-
tionary process is well-behaved if the probability of invariant events is 0 or 1.

Formally, this condition is known as ergodicity.
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Definition 5.2 (ergodicity). A dynamical system (§2,J,P,T) is called er-
godic if any event from the invariant algebra has probability 0 or 1, i.e.,

AeTI = P(A)€{0,1}.

Analogously, we call a stationary process (X;)e2

X _ o ergodic if the dynamical
system generated by this process is ergodic.

Now we will present the ergodic theorem, which gives a more intuitive charac-
terization of ergodic systems. In 1931, Georg David Birkhoff (1884-1944) showed
the following fact:

Theorem 5.1 (individual ergodic theorem). Let (2,7, P,T) be a dynam-
ical system and define stationary process X;(w) := Xo(T'w) for a real random
variable Xo on the probability space (2,7, P). The dynamical system is ergodic
if and only if for any real random variable Xy where E | Xy| < 0o equality

R
Jim - ;Xk = EX, (5.4)
holds with probability 1.

The concept of a dynamical system has its roots in statistical mechanics. His-
torically, it was imagined that variables X} represent a certain time evolution
of a state function X, subject to iteration of operation T, which describes the
dynamics of a physical system. Thus, the dynamical system is ergodic if and only
if the time average of any state function of the system equals its expectation.

In information theory, we often use this property of ergodic processes in the
following way. Namely, for a stationary ergodic process (X;)2_ ., with proba-
bility 1 we have

n

lim © Z [—log P(Xi| X}~ )] = E [~ log P(Xo| X~ )]
k=1

= H(X0|X:71n)
This equality holds since P(Xy|X ,’j:}n) is a random variable on the probability
space generated by process (X;)52_ .
The proof of the ergodic theorem consists of two parts. The “if” part is very
easy and will be presented first.

Proof of Theorem 5.1(<): Assume that (5.4) holds for any random variable
Xo. Let I4(w) = 1{w € A} be the indicator function of an event A. If A belongs
to the invariant algebra, we have w € A <= w € T'A <= T'w € A so
I4=1I40T" Hence
LI i
I4= 7}1?50521*“ oT'=EI, = P(A)
k=1
holds with probability 1. Because I4 € {0,1} with probability 1, we obtain
P(A) € {0,1}. Thus the dynamical system is ergodic. O
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Now we shall present a more involved proof of the “only if” part by Adriano
Garsia. First, we will demonstrate an auxiliary fact called the maximal ergodic
theorem.

Lemma 5.1 (maximal ergodic theorem). Let (X;)2_ be a stationary pro-

cess where E | X1| < co. Define S, = >.;_, Xj and M, — max (0,51, 82, ..., 5,).-
We have

/ X;dP > 0.
M, >0

Proof. For each k < n we have M, oT > S oT. Hence
X1+ MyoT >X1+ SpoT = Sky1.
Let us write it as
X122 Sp1—MyoT, k=1,...n.
But we also have
X1 >8—-M,oT.

Both inequalities yield X; > max (S1, Se, ..., Sn) — M, o T. Hence

/ depz/ [M,, — M, o T] dP
My, >0 M, >0

:/ MndP—/ M, oTdP
M, >0 M, >0

Z/Mnde/MnonP:O.

In the next step, we will prove the ergodic theorem proper.

Proof of Theorem 5.1(=): Assume that the dynamical system is ergodic.
Without loss of generality, let us assume E X; = 0. Statement (5.4) can be
derived applying the proof below to process (X; — EX;)5°___ . For a fixed €
denote the event

G = (limsupSn/n > e).

n—oo

We define random variable

X (w) = (X;(w) — )1{w € G}

3

and using X} we define S;; and M} as in the statement of the maximal ergodic
theorem.
By the maximal ergodic theorem, we have

/ X;dP > 0.
Mx>0
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The remaining part of the proof is not so difficult. Events
F,=(M;>0)= (12113%(71 Sg>0)
converge to

F = (sup S > 0) = (sup Si/k > 0) = (supSi/k > ¢) NG =G.
k>1 k>1 k>1
Inequality E |X7| < E |X1] 4+ € < oo allows to use the Lebesgue dominated
convergence theorem (Theorem 1.8), which yields

lim/ X{dP:/X{dP.
n—o0 F, F

Hence

/depzo.
G

But G € Z so [, X1 dP =0, regardless whether P(G) = 0 or P(G) = 1. Hence

/X{‘dP:/deP—eP(G):—eP(G),
G G

and thus P(G) = 0. Parameter € was chosen arbitrarily so we have lim sup,,_, ., Sn/n <
0 with probability 1. Applying the analogous reasoning to process (—X;)52,, we
also obtain liminf,,_,~, S, /n > 0. Hence lim, o, S, /n = 0. d

The ergodic theorem may be generalized to the case of stationary nonergodic
processes. In that case, the right hand side of (5.4) equals conditional expectation
E [X1|Z] (see Definition 1.6). The interested reader is referred to Breiman (1992,
Section 6.5).

Before we give some examples of ergodic processes, it is insightful to present
an instance of a process which is not ergodic.

Ezample 5.2 (nonergodic process). Let (U;)$2_ . and (W;)$2 _  be independent
stationary ergodic processes having different distributions and let an independent
variable Z have distribution P(Z =0) =p € (0,1) and P(Z =1) =1—p. We

will show that process (X;)32_ ., where

X = 1{Z = 0}U; + 1{Z = 1}W;,
is stationary but not ergodic. Assume that P(U} = w) # P(W?Y = w). Then

n

: 1 k4+p—1 _
Jim o> X = w)

k=1
= Jim 13 (12 =0 (U =)+ 17 = 1 <))
k=1
=1{Z=0}P(U} =w) +1{Z = 1}P(W} = w), (5.5)

which is not constant. Hence (X;)
equals, however, P(X? = w).

is not ergodic. The expectation of (5.5)

(?O
1=—00
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A stationary process is ergodic if there is no such random “switch” like the
variable Z in the above example. To substantiate this claim, let us present
a proposition that specifies which Markov chains are ergodic. The proof can
be found in Breiman (1992, Theorem 7.16).

Theorem 5.2. Let (X;)°_ . be a stationary Markov chain, where P(X;41 =
1| X; = k) = pr, P(X; = k) =7, and the variables assume values from a count-
able set. The following conditions are equivalent:

1. Process (X;)$2

1=—00

is ergodic.

2. There are no two disjoint closed sets of states; a set A of states is called
closed if ) ;. g pr1 = 1 for each k € A.

3. For a given transition matriz (pg;) there exists a unique stationary dis-
tribution.

Proving 2. = 1. is more difficult than the converse. In fact, the converse
statement is quite easy. For suppose that there are two disjoint closed sets of
states A and B. Then we obtain

R
Jim kZ:l 1{X; € A} =1{X, € A},

which is not constant. Thus the process is not ergodic. That is, 1. = 2.
Now we may present a few examples of ergodic processes.

Example 5.3. A sequence of independent identically distributed random vari-
ables is an ergodic process.

Remark: Hence the strong law of large numbers (1.4) is a corollary of the ergodic
theorem (Theorem 5.1).

Ezample 5.4. Consider a stationary Markov chain (X;)2_
J|1 X5 =1) = pi; and P(Xy =i) = m;. It is ergodic for

(mm)=(1/21/2), (pn pw) _ ((1)(1))7

P21 P22

where P(X, 41 =

and nonergodic for

B B pupiz) _ (10
(7T17T2)—(a1 a), (p21p22)_<01>'

Ergodicity of some hidden Markov chains follows from this proposition.

Theorem 5.3. If (X;)2__ is an ergodic process then process (Y;)52 _ . where
Vi = g(TF(X;)$2 ) is also ergodic.

In particular a hidden Markov chain Yy, = g(X}) is ergodic, too.
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Proof. By the ergodic theorem, the process (X;)52

1=—00

is ergodic if and only if
li ! i Z,=EZ
Jim ) % =B

for any process Z, = f(T*(X;)
WTH(Y)E
by the ergodic theorem.

In particular, we may take Z; =

Z_—OO)
) for an arbitrary function h. Hence process (Y;)$2 is ergodic

1=—00

An important corollary of the ergodic theorem is the Shannon-McMillan-
Breiman theorem which states that the blocks in a stationary process are asymp-
totically equidistributed.

Theorem 5.4 (Shannon-McMillan-Breiman theorem). Let P(X]") be the
random variable that assumes value P(X{ = z¥) if and only if X7* = x7. For
a stationary ergodic process (X;)32_ ., where X; assume finitely many values,
equality

— lim llogP(X{l) =h (5.6)

n—o00 M

holds with probability 1, where h is the entropy rate of (X

)’L_*OO
Theorem 5.4 has been generalized by Chung to variables that assume countably
infinitely many values, but the proof is more involved than we wish to give here.

In order to demonstrate the Shannon-McMillan-Breiman theorem, we intro-
duce two quantities

PH(xp) = P(xE) [[ POGIXEY). k=1
i=k+1
hoo = E [~ log P(X1|X° )]

and we prove the following three auxiliary results.

e o]
1=—00"7

Lemma 5.2. For a stationary ergodic process (X;) equalities

Pk(Xn)
li 1 <0, 5.7
lnHi)Solip 08 7o P(XT) = (5.7)

1 P(X7
lim sup — log (X1)

——= <0 5.8
o o8 BrgXT ) S (5%)

hold with probability 1.

Proof. Let A denote the support set of P(X}"). We have

k n k n = "
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By Markov inequality (Theorem 1.5) and (5.9), we have

or

1. PHXP) _ 2 1
Pl =log——12 > 2] < =
(n 8 P(X) —n ogn) ~ n2?

Noting that Y>> ; 1/n? < oo, we infer from the Borel-Cantelli lemma (Theorem
1.4) that the event

1. PHXP) _ 2

“log ——12 > "1

n 08 P(X?) —n oen
occurs only finitely often with probability one. Hence we obtain (5.7).

To infer (5.8), we use a similar reasoning. First, let B(X?_) denote the

support set of P(X7'|X°_ ). Using conditional expectation (see Definition 1.6),
we obtain

® [pocrr) < [P sz -

P(X7 =27)
=E > P(X} =27 X° L1
| (87 =X ) Bt
;c{beB(XEOO)

<1 (5.10)

Applying the same arguments using Markov’s inequality to (5.10), we obtain
(5.8).

Lemma 5.3. For a stationary ergodic process (X;)2_ ., equalities
: 1 k n 0 0
_ — = > .
nlgréc - log P (X1 |X_OO) H(X1|X_k+1), k>1, (5.11)
: 1 n 0 _
= Jim ~ log P(X71X?% ) = heo (5.12)

hold with probability 1.

Proof. Functions of ergodic processes are ergodic processes. Hence by the ergodic

theorem, we obtain

~ lim L log P* (X71X%,) =— lim L log P(XT) — lim L En: log P(X;|X/=})
n—oo N 1 - n—oo n 1 n—o0o N, Rarr ik

=0+ H(X1|X%,1),
R l n 0 _ l . . 1—1
ngrolonlogp(xl 1X0,) = nlgrgon;bgp(mx_w)

= Noo-
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Lemma 5.4. For a stationary process (X;)2 where X; assume finitely

1=—00"

many values, we have limyg_yoo H(X1|X%,) =h = hs

Proof. In the previous chapter we have defined h := limy_, o H(X1|X9k). Now
it remains to show that h = h.,. By the Levy law for conditional probabilities
(Theorem 1.9) we have

klingo P(Xy =21|X%,) = P(X; = 21| X%)

with probability 1. Since the alphabet is finite and function plog p is bounded,
the dominated convergence theorem (Theorem 1.8) allows to interchange the
expectation and the limit. This yields

Jlim H(X,]X0,) = lm B [- ZP = 21| X2)) log P(X = 21| X2,
—E [— ST P(X = 21 X0, ) log P(X = 21X )| = hee.

Now the proof of the main proposition follows.

Proof of Theorem 5.4: On the one hand, from (5.7) and (5.11), we obtain

1
li 1 < H(X{|1X°,).
msup - log 5y < H (X |X2,)

On the other hand, from (5.8) and (5.12), we obtain

1
lim inf — log > hoo-

n—oo 1 P(XI")

Since limy_yo0o H(X1|X%,) = h = hoo, this yields (5.6). O

Exercises

1. (Invariant algebra) Show that the invariant algebra is a o-field.

2. (Weakly stationary processes) A stochastic process (X;)$2_ is called

weakly stationary if EX; = p and E(X; — p)(X; — p) = o(]i — j|) for
i,j € Z. Moreover, the process is called weakly ergodic if

2
. 1 ¢
Jin B|LS 2 <o
k=1
Show that the process is weakly ergodic if and only if

J&%Zghﬂ

Prove also that the latter condition is satisfied if limg_,o o(k) = 0.
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Compute lim,, % ZZ:1 X, for a stationary nonergodic Markov chain,
where X; assume a finite number of values.

(Gambling and information theory) Following Cover and Thomas (2006),
let us consider this curious problem. Bookmakers at horse races return xy,
dollars for 1 dollar paid for a horse k if it wins and they pay nothing if it
loses. In each race, there is exactly one horse that wins. Obviously our gain
depends on the stakes chosen by the bookmakers and the probabilities of
horses’ winnings. It turns out that the optimal strategy of betting does
not depend on bookmakers’ stakes. Show that this holds for the following
scheme: Let W, be our capital after the n-th race. Out of W, _; dollars
that we have before the n-th race we bet bW, _1 dollars for the horse
k=1,...,q, where by, > 0 and 22:1 b, = 1. Moreover, let K; be the horse
that wins in the i-th race. We assume that (K;)2_ _ forms a stationary
ergodic process with P(K; = k) = pg. Find the optimal by and show that
they do not depend on xy.






Lempel-Ziv code

The problem of universal compression. The definition of Lempel-Ziv
code. Universality of the Lempel-Ziv code.

From Theorem 4.8, we know that for any stationary process (X;)$2_ . there
exists a sequence of uniquely decodable codes B,, : X" — {0,1}" that achieve

the compression rate equal to the entropy rate. That is

M 1 n
Jim —F |Bn(XT)| = h.
In the proposition above, we may take B, equal to the Shannon-Fano code for
the probability distribution of block X7*. To compute the Shannon-Fano code
we need however to know the probability distribution of the block. Such a situa-
tion is unlikely in practical applications of data compression, where we have no
prior information about the probability distribution of blocks. Fortunately, as
an important corollary of the ergodic theorem, there exist universal codes whose
compression rates tend to the entropy rate for any stationary process.

Definition 6.1 (L!-universal code). A uniquely decodable code B : X* —
{0,1}" is called L'-universal if for any stationary process (not necessarily er-
godic) we have

.1 |
nlgr;o ﬁE |B(X1)| = h.

Definition 6.2 (universal code with probability 1). On the other hand,
a uniquely decodable code B : X* — {0,1}" is called universal with probability
1 if for any stationary ergodic process inequality

lim sup M < h.
n—o00 n

holds with probability 1.

The second condition is stronger.

Theorem 6.1. Let code B be universal with probability 1. If there exists a con-
stant K such that

|B(21)] < Kn

for each string x7 then code B is L'-universal.
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We omit the proof of this theorem because it relies on the ergodic decomposition
for stationary processes, the proof of which is quite difficult (cf. Kallenberg, 1997,
Theorem 9.12).

The problem of universal compression falls under the scope of statistics.
Indeed, the interest of statisticians lies in identifying parameters of a stochastic
process basing on the data typical for that process. Entropy rate of an ergodic
process is an example of such a parameter. When we have a universal code, we
may estimate the entropy rate as the compression rate yielded by the code.

Now we will present the oldest known universal code, called the Lempel-Ziv
(LZ) code. The code was derived by Abraham Lempel (1936-) and Jacob Ziv
(1931-) in 1977 (Ziv and Lempel, 1977). The LZ code is partly implemented in
the Unix programs gzip and compress. It is worth noting, however, that neither
of those programs yields a universal code because the buffer length imposed in
both gzip and compress is limited.

Definition 6.3 (LZ code). For simplicity of the algorithm description we as-
sume that the compressed data are binary sequences, that is X = {0,1}. The
Lempel-Ziv compression algorithm is as follows.

1. The compressed sequence is parsed into a sequence of shortest phrases that
have not appeared before (except for the last phrase). For example, the se-
quence 001010010011100... s split into phrases 0,01,010,0100, 1,11, 00, ....

2. In the following, each phrase is described using a binary index of the
longest prefix that appeared earlier and a single bit that follows that
prefix. For the considered sequence, this representation is as follows:
(0,0)(1,1)(10,0)(11,0)(0,1)(101,1)(1,0).

Let (), be the number of phrases in the compressed block X7'. If we know C,,, we
need log C), bits to identify the prefix index for each phrase and 1 bit to describe
the following bit. Thus the LZ code uses |B(X})| = C, [log C,, + O(1)] bits in
total to describe the whole sequence.

Now we will prove that LZ code is universal. A splitting of a sequence into
distinct phrases will be called a distinct parsing of the sequence. Universality of
the LZ code follows from this proposition.

Theorem 6.2. Let (X;)°__ be a stationary ergodic process and let Cy, be the
number of phrases in a distinct parsing of block (X1, Xa, ..., X,,). With probability
1 we have

lim sup Cn [log € + O(1)]

n—00 n

< h. (6.1)

Remark: Hence the LZ code is universal with probability 1. Moreover, inequality
Crllog C,, + O(1)] < Kn follows from Lemma 6.1, discussed below. Hence by
Theorem 6.1 the LZ code is also L!-universal.

For the derivation of Theorem 6.2 we need a couple of auxiliary statements.
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Lemma 6.1. The number of phrases C, in any distinct parsing of block
(X1, Xs, ..., X)) satisfies inequality

Ly Cnlogn

n—00 n

1.

Proof. Let ng, = 25:1 j29 = (k — 1)2¥+1 4 2 be the sum of lengths of distinct
phrases that are not longer than k. The number of phrases C,, in a distinct
parsing will be maximal if the phrases are as short as possible. For ny <n < ng41
this happens if we take all phrases of length < k and §/(k + 1) phrases of length
k + 1, where § = n —ny. Then

k
. 1) 1) n ) n
<N 20— =9kt 9 <k .
C*; trrl R T e R A

In the following we will provide a bound for k given n. We have n > n; =
(k—1)2kt 42> 2k 5o

k <logn.
Moreover n < nj41 = k282 +2 < (logn + 2)2%+2. Hence

n
k+2>log—.
+2>log logn + 2
Further transformations yield k — 1 > logn —log(logn 4 2) — 3. Hence we obtain
the claim.

For the next lemma we need some new notation. Let P* denote the measure
of the k-th order Markov approximation of the process (X;)52 That is

i=—00"

n

PE(X" X0 00) = [ P(XIXZ)).

=1

Moreover, assume that sequence (Xi,Xo,...,X,) is parsed into C,, distinct
phrases (Y7,Ya,...,Ye, ). Let W, denote the k bits preceding Y;. Next, let Cflw
denote the number of phrases Y; that have length [ and context W; = w.

Lemma 6.2 (Ziv inequality). We have inequality

—log P¥ (X1, Xa, ... Xpu[W1) > > CHUlog LY.

law

Proof. Observe that

Ch
—log P¥ (X1, Xa, .., Xp[W1) = = > log P(Y;|W;)
j=1
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1
=D Clam ). lePM(Y;W)
lLaw

gy =L W=

> (g Y PRGIm),
law

Y=L Wi =w

where the inequality follows from the Jensen inequality because the logarithm
function is concave. Because the phrases Y; under the sum are distinct, we have
Zj:\yj|:l,wj:w P*(Y;|W;) < 1. Hence the claim follows.

Lemma 6.3. Let L be a nonnegative random variable taking values in integers
and having expectation E L. Then entropy H(L) is bounded by inequality

H(L) < (EL+1)log(EL+1) — ELlog EL.

The proof of this lemma will be discussed in Chapter 12 as an exercise.
Now we can prove the main theorem.

Proof of Theorem 6.2: Let L and W be random variables such that

lw
i

P(L=1,W=w) = o

The expectation of L is

)
= (C% 1>10g(cin+1)—c%logc%
= (& +1)1og (Cu+n) + (& +1) log - — = log -
= (Ci+1) log(C’n+n) fﬁlogn+logci+lognflogn
= (Cﬁ+1>log(6’n+n)f(C,£4r1>logn+1ogci
zlogcin—i-(%—i—l)log(%—f—l).

On the other hand, H(W) < k, so

H(L,W) < H(L) + H(W) <log 4+ (& +1) log (% +1) +k.
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Then by Lemma 6.1, we have

lim @H(L,W)

n—oo N

— lim <—C"10gc” + <&+1> log <&+1) +O"k:) —0.
n—oo n n n n n

Now using Lemma 6.1 again, the Ziv inequality, and the ergodic theorem, we
obtain

lim sup Cn [log Cn + O(D] = lim sup (M - &H(L, W))
n—o0 n n— o0 n n
. 1 Clhe . Clv
= 117€risotip - <C’n log C,, + C), g rom log C—n)

M 1 w w
= lim sup — lz Ol log OF

n—oo

1
< — lim —log P*(X7|X%41)

n—oo n
1 i
=— lim — Z}logP(XAXF;)
=B [~log P(XX7})] = H (XX 7).

with probability 1. This inequality holds for any k. Considering k — oo, we
obtain (6.1). O

The LZ code is very simple but its convergence to the entropy rate is not very
fast. There are codes which compress particular sources better, such as grammar-
based codes for natural language (Kieffer and Yang, 2000). Usually the better the
compression, the harder is a code to compute. The limit of efficient compression
is set by the Kolmogorov complexity but, as we will learn in Chapter 13, the
Kolmogorov complexity itself is not computable.

Exercises

1. The LZ algorithm, as described in this chapter, may have problems with
parsing the last phrase of a compressed sequence. Propose a modification
of the algorithm which solves this problem and argue that a so modified
code is universal.

2. Find the LZ parsings for the sequences:

(a) 010101010101010101...,

(b) 1001000100001000001...,
(c) 001001001001001001...,
(d) 1011001100011000011....
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. Find the sequences corresponding to these LZ parsings:

(a) (0,1)(1,0)(1,1)(0,0)(10,1)(11, 1)...,

(b) (0,0)(0, )(10 1)(11 0)(100,1)(0,1)...,

(c¢) (0,1)(0,0)(10,1)(11,0)(100,1)(11,1)...,

(d) (0,0)(0,1)(10,1)(10,0)(11,1)(100,0)....

Check whether these parsings are produced by the LZ algorithm.

. Consider the constant sequence 00000000....

(a) Produce the LZ parsing for this sequence.
(b) Show that the number of bits per symbol for prefixes of that sequence
tends to zero with the increasing length.

. Produce a sequence for which the number of phrases in the LZ parsing

grows as fast as possible.

. Produce a sequence for which the number of phrases in the LZ parsing

grows as slow as possible.



Gaussian processes

Differential entropy and Kullback-Leibler divergence. Stationary Gaus-
sian processes. Autocorrelation and partial autocorrelation. Information
measures for Gaussian processes. Innovation variance and generalized
variance.

In this chapter we will discuss entropy of continuous rather than discrete
probability distributions. Let us recall that probability density p of a (continu-
ous) real random variable X is a function such that

P(XeA)= /Ap(a:) dz. (7.1)

For a probability density we may define entropy in the following way.

Definition 7.1 (differential entropy). The (differential) entropy of proba-
bility density p is defined as

H(p) =~ [ plo)ln pla) da.

The natural logarithm (In) rather than the binary logarithm (log) is used for
convenience. Unlike the discrete case, the differential entropy may be negative
and infinite.

Ezxample 7.1. Consider the density of the Gauss distribution:

@ =[] w2
PRE= | on02 P79z |

We obtain
1/2 1
_ _ 2
H(p)=—In {%02] + 55 = 5 In(2red?),

which is negative for o < 1/v/2we.

For a real random variable X with density (7.1) we will define the differential
entropy as

H(X) :=H(p).

In contrast to differential entropy, the continuous analogue of Kullback-
Leibler divergence is nonnegative like in the discrete case.
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Definition 7.2 (KL divergence). The Kullback-Leibler divergence for prob-
ability densities p and p* is defined as

Dl = [ o) n 2

p*(x)
Theorem 7.1. We have
D(pllp™) = 0
with equality if and only if p = p* except for a set of measure 0.

Proof. Observe that Inz > 1 — 1/z with equality if and only if = 1. Hence

meﬂ=/mmm;%$

z/p(:c) {1— p;((xx))] dx:/p(x)dx—/p*(m)dxzo

with equality if and only if p = p* except for a set of measure 0.

dz

As we recall from Chapter 2, mutual information for discrete random variables
is equal to the Kullback-Leibler divergence between the joint distribution and
the product of marginal distributions. The same property holds for mutual in-
formation between real random variables X and Y if we define it as

I(X;Y):=H(X)+H(Y) - H(X,Y)

_ - pxy(@,y)
= [ pxvapon L dray (7.2)

where pxy is the density of the random vector (X,Y) and px,p, are the
marginal densities of it. We will adopt (7.2) as the definition of mutual in-
formation for real variables. Then, by Theorem 7.1, we have I(X;Y) > 0 with
equality if and only if X and Y are independent, exactly as in the discrete case.

For completeness, we will also define the conditional entropy and conditional
mutual information as

H(X|Y):=H(X,Y)-H(Y),
I(X;Y|Z) :=H(X|2)+ H(Y|Z) - H(X,Y|Z).

Quantity H(X|Y') need not be nonnegative, whereas I(X;Y]Z) is.

For a pair of real random variables X and Y let us also denote the covariance
Cov(X,Y):=E [XY]-EXEY, the norm || X|| := /Cov(X, X) and the corre-
lation Corr(X,Y) := Cov(X,Y)/||X|]| - ||Y]|- In the following, we will consider
the class of processes whose every distribution is Gaussian (normal) centered
around 0.
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Definition 7.3 (zero-mean Gaussian process). A zero mean Gaussian pro-
cess (X;)$2, is a process such that the densities of vector X7' take form

1 1 n n .
p(I?) = [(27r)n detF(n)}l/Q exXp D) ;;xz [F(n) ]ij L » (73)

where I'(n) is the autocovariance matriz.

The following proposition states when the Gaussian process with a given auto-
covariance exists, cf. Brockwell and Davis (1987, Proposition 1.6.2).

Theorem 7.2. The Gaussian process with densities (7.3) exists if and only if
for each n matriz I'(n) is symmetric and nonnegative definite, i.e., if I'(n);; =
I'(n);; and

Z Zaif(n)ijaj Z 0 (74)

i=1 j=1
for every vector af.

Condition (7.4) is equivalent to

[ZX] 5

For a Gaussian process, quantity E [XZ- -3 jeK a; X j]2 is a quadratic func-
tion of coefficients a; with a single minimum denoted a; = fj( (Brockwell and
Davis, 1987, Theorem 2.3.1). It can proved that the so called innovation

X; — P X;,

where PgX; := ZjeK ¢5Xj, is independent of X;, j € K (Brockwell and
Davis, 1987, Proposition 1.6.6). Px X; is called the best linear predictor of X;
given (X;)jexk-

For a stationary Gaussian process, we have I'(n);; = Cov(X;, X;) = y(i—j),
where v(+) is called the autocovariance function. We further define autocorrela-
tion function (ACF) p(n), best linear predictor coefficients ¢,;, partial autocor-
relation function (PACF) «(n), and relative innovation variance vy, as

p(n) := Corr (Xn+1,X1) = 7(n)/~(0), (7.6)
1,....n
Pni = ¢i+1,n-&1—i7
a(n) := Corr (Xn+1 — P,y Xnt1, X1 — P{Q,m’n}Xl), (7.7)
- [ Xnt1 — P,y Xng | |2
! [ Xt P

Given either p(n) or a(n), the other quantities may be computed using the
Durbin-Levinson algorithm (Durbin, 1960; Brockwell and Davis, 1987, Proposi-
tion 5.2.1).
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Theorem 7.3 (Durbin-Levinson algorithm). Some algorithm for comput-

ing a(n) given p(n) is as follows. First, we set vg = 1 and then for n = 1,2, ...
we iterate

ot = [ot) ~ 5 60100 )] (75)
j=1

anj = d)n—l,j - a(n)¢n—1,n—ja ] S {17 w0 — 1}& (79)
v = [1—a(n)?] va_1. (7.11)

Theorem 7.2 about the existence of a Gaussian process has its simpler ana-
logue for the partial autocorrelation function, cf. Ramsey (1974); Schur (1917).

Theorem 7.4. A stationary Gaussian process with densities (7.3) exists if and
only if a(-) computed from p(-) = ~v(-)/v(0) using formulae (7.8)-(7.11) satisfies
two conditions:

1. Ja(m)| <1 for allm > 1,
2. if la(k)| =1 for some k > 0, then a(m) is not determined for m > k.

Proof. Condition (7.4) is equivalent to (7.5). Using induction on n, we will show
that this is equivalent to the requested conditions 1. and 2. on the PACF up to
m = n. Assume that (7.5) holds for some n and any a; whereas conditions 1.
and 2. are satisfied up to m = n. Then

2 2

n+1 n
E|> aX;| =E > bX;| +a7,,E [Xnﬂ—p{lw_m}xnﬂ]?
i=1 i=1
n 2
=E |) bX;| +al v,
i=1

Hence the sum is nonnegative for any a,1 if and only if v, > 0. According to
(7.11), this is equivalent to conditions 1. and 2. on the PACF up to m =n + 1.

A similar theorem can be formulated also for nonstationary processes (Dégerine
and Lambert-Lacroix, 2003).

Partial autocorrelation function is not only useful to check whether a given
stationary process exists but it can be also used to efficiently compute the block
entropies of the process. Let us inspect the information-theoretic properties of a
Gaussian process. We will denote the block entropy

H(n):= H(X7) = H(p),

where p is given by (7.3). As proved by Cover and Thomas (2006, Theorem 8.4.1)
we have:
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Theorem 7.5. For a Gaussian process with densities (7.3),
n 1
H(n) = 5 log(2me) + 3 log det I'(n). (7.12)

A straightforward corollary of the above theorem is this proposition:

Theorem 7.6. For a pair of Gaussian random variables X and Y,
I(X;Y) = —% log [1 — Corr(X,Y)?] . (7.13)
Proof. We have
I(X;Y)=H(X)+H(Y)-H(X,)Y)
= %log(Qﬂ'e) + %log Var X + %log(%re) + %log VarY
— log(2me) — %log [(Var X)(VarY) — Cov(X,Y)?]
= —% log [1 — Corr(X, Y)Q] .
As in the case of discrete-valued processes, we have Theorem 4.6. Now we are

in a position to show that the second difference of the block entropy is a simple
function of the partial autocorrelation.

Theorem 7.7. For a stationary Gaussian process (X;)$2

I(X1;X,) = —% log [1 — p(n —1)], (7.14)
I(X1; Xn|Xoim—1) = —A*H(n) = f% log [1 — a(n —1)]. (7.15)

Proof. Equality (7.14) follows directly from (7.6) and (7.13). To demonstrate
equality (7.15) let us notice that innovation X; — PxX; is independent of X,
j € K, whereas PgX; is a function of X;, j € K. Since entropy H(X; +
F(X;)jex)(X;)jex) equals entropy H(X;|(X;)ek) for any measurable func-
tion f then

H(Xi|(Xj)jeK) = H(Xi - PKXi‘(Xj)jeK) = H(Xi - PKXi)-

Hence
I(X1; X |X537Y) = H(X X2 + H(X, | X3 — H(Xq, X, | X5
= H(X1 - P{z,...n—l}Xl) + H(Xn - P{2,...n—1}Xn)
— H(X1 = P, n-13X1, X0 — Pp2,n-1})
=1 (Xl - P{2,...n71}X1; Xn — P{2,..,n71}) .

Because the innovations also have Gaussian distribution then (7.15) follows from
(7.7) and (7.13).
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By formulae (7.15) and (7.12) it follows that Durbin-Levinson algorithm is
an efficient algorithm to compute the determinant of the autocovariance matrix.
Indeed (7.15) and (7.8) imply

AH(n)—H(Q1) = Zn:AQH(k) = %logvn_l <0,
k=2

H(n) —nH(1) =Y [AH(k) - H(1)] = %Zlog vp—1 < 0.
k=1 k=1

On the other hand, from (7.12) we obtain

H(n) —nH(1) = = [logdet I'(n) — nlog~(0)].

N | =

n n — n—k
Hence det I'(n) = v(0)™ [[,_; ve—1 = 7(0) Z:11 [1—|a(k)?]" .
Moreover from Theorem 7.4 we obtain this statement:

Theorem 7.8. For any concave real function H(-) such that H(0) = 0 there
exists a stationary Gaussian process such that H(-) is its block entropy function.

For a stationary Gaussian process let us define entropy rate h and excess
entropy E via formulae (4.4) and (4.7). Because the analogues of Theorems 4.7
and 4.9 also hold in the Gaussian case, these two quantities can be related to the
following two concepts researched in time series theory (Brockwell and Davis,
1987; McLeod, 1998):

Definition 7.4 (innovation variance). The innovation variance of a station-
ary Gaussian process is defined as

1/n 1
2. _ 1 -
o° = nlgigo (det F(n)) =9 exp(2h).

Definition 7.5 (generalized variance). The generalized variance of a sta-
tionary Gaussian process is defined as

det I'(n)

g= lim >

n— o0 g

= exp(2E).

There exist alternative formulae for the innovation variance and the gener-
alized variance in terms of spectral density.

Theorem 7.9 (Herglotz theorem). For any autocovariance function =,
there exists a unique finite measure F on I = (—m,w| such that

1 ™

v(k) = 2—/ exp(tkw) dF (w). (7.16)
™ —Tr

Moreover, for any finite measure F, function ~y given by (7.16) is an autoco-

variance function of a certain stationary process (cf. Brockwell and Davis, 1987,

Theorem 4.3.1).
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Measure F' is called the spectral measure of the process. By the Lebesgue-Radon-
Nikodym theorem (Theorem 1.1), any measure F' on I = (—m, 7| can be decom-
posed as

F=F +F,,

where measure F'| is mutually singular with the Lebesgue measure m on I =
(—m, 7] and F« is absolutely continuous with respect to m. According to the
second part of the Lebesgue-Radon-Nikodym theorem, there exists a measurable
function f such that

F<<(A):/Af(w)dw.

For the spectral measure F', function f is called spectral density.

Theorem 7.10 (Kolmogorov formula). Let f be the spectral density. The
imnovation variance equals

o {exp [ 7 Jog fw)dw|, [, flog f(w)] dw < o,

0, else

(cf. Grenander and Szegd, 1958, Section 5.2).

Theorem 7.11. Suppose that F| = 0, spectral densily satisfies f(w) € [a,b] C
(0,00) for all w € (—m, 7| and there exists the derivative f' which satisfies Lip-
schitz condition |f'(w1) — f'(w2)| < const |w; — wa|* for 0 < a < 1. Then the
generalized variance equals

2

d

: /
g=-exp|— —log(z)| d(Rez)d(Imz)]|,
2 |aeeee)] aesam
where function v is given by
1 1 [T e +z
= — = — - 1 ~1
v e 30| 16 = o [ S @ )

for |z| <1 (cf. Grenander and Szegd, 1958, Sections 1.1, 1.13, 1.14, 5.5).

Exercises

1. Derive the Durbin-Levinson algorithm (7.8)—(7.11).
2. Derive the Yule-Walker equations

Z(bmp(k —i)=p(k), n>1, ke{l,..n}. (7.18)
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3. We say that a Gaussian process (X;)$2__ has a moving average repre-
sentation MA (c0) if

Xi =Y UnZik,

k=0

where Y77 o [¢g| < oo and (Z;)52_ is a Gaussian white noise, i.e.,
EZ; =0and E [Z;Z;] = 1{i = j}. Compute the autocorrelation function
of an MA(oo) process.

4. Let X; = aZ; + bZ;_1, where (Z;)2_ . is a Gaussian white noise. Com-
pute the ACF and PACF.

5. Process (X;)$2 _ . is called exchangeable if vectors of variables (Xj, , ..., X;,)
have a distribution that depends only on n. By definition, all exchange-
able processes are stationary. Gaussian exchangeable processes have
autocorrelation function

(n) = 1, n=0,
= p, n#0,

where 0 < p < 1. Show that in that case we have

. o p
a(n) = ¢p; = 7(n71)p+1'

6. Show that for d € (—o00,1/2) there exists a weakly stationary process,
called ARIMA(0,d, 0), that has parameters

n

p(n)=]] Hdi_l, (7.19)

i —d
i=1

n\ (k—d—1)(n—d— k)
(k> —d—=1Dl(n—d)! ~

(7.20)

a(n): d 7 (7.21)

where z! := I'(z + 1). Moreover, as for the asymptotics of the ACF,
we have lim,, p,/n~172¢ = (=d)!/(d — 1)! if —d + 1 ¢ N. We also have
Sope o pr=ocforde (0,1/2) and > o~ pr =0 for d <O0.

7. Let X; = Y cos(iA) + Zsin(i)), where Y and Z are independent Gaus-
sian variables with zero means and unit variances. Show that process
(X;)$2_ . is stationary. What is its spectral measure?

8. Show that there exists a nonstationary Gaussian process (X;)52, such
that EX; = 0 and E [X;X;] = min(i, j).



Sufficient statistics

Families of probability distributions. Sufficient statistic. Minimal suffi-
cient statistic. Exponential families. Basu theorem.

In this chapter we start the discussion of mathematical statistics and its links
with information theory. Mathematical statistics is focused on problems inverse
to probability theory. The distinction is as follows. We toss a coin n times.
A typical problem in probability theory is to compute the probability of tossing
n/2 heads if the probability of the head in a single toss is known to be 1/2. On
the other hand, a typical problem of statistics is to estimate the probability of
the head in a single toss if we obtained n/2 heads in the sample of n tosses.

Two fundamental notions of statistics are a parametric family of distributions
and a statistic, called also an estimator. A parametric family of distributions
specifies a statistical problem, whereas estimators offer its possible solutions.

Definition 8.1 (parametric family). A parametric family of distributions is
a family of probability distributions indexed by parameter € O, which specify
probabilities of a stochastic process (X;) For discrete variables we write
these distributions as

o0
1=—00 "

P(X7 =a10).

For real variables, we assume that there exists a probability density function
p(x|0) which satisfies

P(X7 € Alf) = /Ap(w?w) da?,

where [ da? is the integral with respect to the n-dimensional Lebesque measure.

Usually, parameter 6 is a single real number or a vector of real numbers. It is
also usually assumed that variables X; are probabilistically independent (given
the parameter 6). In that case, we call X" a random sample of length n drawn
from distribution P(X; = z;|0) or p(z;|0), respectively. The first case will be
called a discrete random sample, whereas the second will be called a real random
sample.

Example 8.1. A random sample of length n drawn from Bernoulli distributions
with success probability 6 has probability distribution

P(Xp =a7l0) =[]0 (1 —0) ",
=1

where z; € {0,1} and 0 € (0,1).
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Ezample 8.2. A random sample of length n drawn from normal (or Gauss) dis-
tributions with expectation ;1 and variance o2 has probability density

1 (z — p)?
371 |/'(” H \/ﬁ €xXp |:_ 20_2 )

where x; € (—00,00), € (—00,00), and o € (0, c0).

The theoretical problem of mathematical statistics is to point out efficient
ways of estimating parameter 6 given the random sample X7'. Any such method
is a function of X7'. Thus we arrive at the concept of a statistic.

Definition 8.2 (statistic). Any function T(X7}) of the random sample X7 is
called a statistic.

A statistic the aim of which is to approximate the unknown parameter 6 is called
an estimator. The distinction between a statistic and an estimator is largely
informal. We will grasp the difference on a few examples that will be presented
later.

Before we study particular estimators it is advised to devote some consid-
eration to statistics in general. The fundamental problem is whether a statistic
entails all information about the parameter contained in the random sample and
whether there is a statistic that does it in the most efficient way.

Definition 8.3 (sufficient statistic). We say that statistic T(X7) is sufficient
if the conditional distribution of sample X7 given T (X7") does not depend on 0.
That is, for discrete X{" we require

P(XT =Y |T(XT) = t,6) = P(X]' = 27|T(X]') = t) (8.1)

for P(T(X7) = t|0) # 0. An analogous statement is required for real variables
X7 using properly defined conditional densities.

Informally speaking, statistics is sufficient if it contains all information about
the parameter carried by the sample. The information-theoretic sense of condi-
tion (8.1) becomes clear if we adopt the view of Bayesian statistics, which as-
sumes that the parameter is a random variable © with a certain distribution
P(© = 0), called the prior. (In non-Bayesian statistics there is no prior distri-
bution on the values of 6.)

Theorem 8.1. Assume that X' and O are discrete random variables. Condi-
tion

P(X] = 2}|T(X]) =t,0 =0) = P(X] = 2]|T(X]) = 1) (8.2)
for P(T(X]) =1t,0 =0) # 0 is equivalent to

I(T(X7);0) = I(X1;0).
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Remark: For any statistic, T(X]") and © are conditionally independent given
the sample X7". Hence I(T(X7);0) < I(X7;0) holds by the data-processing
inequality. For a sufficient statistic, © and X7* are also conditionally independent
given T(X7).
Proof. Conditional independence (8.2) is equivalent to I(X7;O0|T(X7)) = 0.
Because H(T'(X7)|X7) = 0 then, by the Venn diagram for three variables on
page 24, I(X}; ©|T(X7])) = 0 is equivalent to I[(T(X}); 0) = I(X]; O).

A convenient characterization of the sufficient statistic is given by the fol-
lowing proposition. This proposition can be used to effectively check whether
a given statistic is sufficient both in the discrete and real case.

Theorem 8.2 (Fisher factorization theorem). Statistic T is sufficient if
and only if there exist functions g and h such that for discrete X' we have for
all z¢

P(XT = a710) = h(z7)g(0, T(aT)), (8.3)
whereas for real X' we have for almost all x}
p(x710) = h(z1)g(0, T (2)).

Proof. We give only the proof for the discrete case. The proof for the real case
can be found in Keener (2010, Section 6.4). Let t = T'(z7). Assume (8.3). Then
P(X7 =T (XT) =t,0)
P(XT = 270) h(z7)

Dypirpy= PXT =9710) X pniripy=e h(UT)

does not depend on #. On the other hand, if T is sufficient, we may put h(z}) =
P(X} = o} |T(X}) = t) and g(8,t) = P(T(XT) = t}6).

Now we can exhibit sufficient statistics for the pair of parametric families
introduced previously.
Ezxample 8.3. Consider a random sample of length n drawn from Bernoulli dis-
tribution. We have

P(XT =a7|0) =[] 0™ (1 — 0)' = = o= (1 — g)n 2tz (8.4)
i=1
so > i, x; is a sufficient statistic.

Ezample 8.4. Consider a random sample of length n drawn from normal distri-
bution. We have

T 1 (w; — M)2:|
7w, o) = exp |—
p(@ |, 0) };[10_ . p{ 52
_ 1 exp _Z?ﬂzx? + /‘2%1 Ti Mi; 7
(ov/2m)n 20 o 20

so the pair (Y1 z;, >, ?) is a sufficient statistic.

%
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We can ask how much can we compress the information about the parameter.
The following concept sets the limit of this compression.

Definition 8.4 (minimal sufficient statistics). A4 sufficient statistic T(X7)
is called minimal if for any other sufficient statistic T'(X]) there exists a func-
tion f such that T(X7) = f(T'(X])).

Like in the case of sufficiency, there is a theorem which allows to verify

minimal sufficiency effectively.

Theorem 8.3. T is the minimal sufficient statistic, for discrete X7, if for each
27 and 7,
P(XT = x710)

does not depend on 0 <— T (xV) =T(y7),
P(X} = y116) (@) =T (1)

whereas, for real X7, if for almost all 7 and y7,

p(z7]0)
p(y710)

Proof. We give only the proof for the discrete case. The proof for the real case
is analogous. First, we show that T is a sufficient statistic. For any value ¢ we fix
a sample y7'(t) which achieves T(y}(t)) = t. For an arbitrary «7, let T(27) = t.
Then we have

does not depend on 6 < T () =T(y}),

P(XT = a116) = e s P(XT = 1 (0)16) = a6, T(a).

Next, we will show that T is a function of any other statistic T”. Let z7 and y7
satisfy T"(x%) = T'(y7'). Since

PXT = at]0) _ h'(27)g"(0,T"(a1)) _ W'(a7)

T
PXT =yr0)  Wt)g' (0, T (1) W (yr)
does not depend on 6, we have T'(z7) = T(y}). Hence T is a function of T".

Thus we may show that the previously exhibited sufficient statistics are min-
imal.

FEzample 8.5. Consider a random sample of length n from Bernoulli distribution.
We have

P(X{L = x711|€) _ 927:1 Ti=3 yl(l — 9)2?:1 Yi—d i T
P(XT = y1'0)

)

$o > 1", x; is a minimal sufficient statistic.

Example 8.6. Consider a random sample of length n drawn from normal distri-
bution. We have

=exp |— + (i i — Y i)
p(yi|p, o)

2 )

202 o

so the pair (31" | z;, >, 2?) is a minimal sufficient statistic.
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For a given parametric family, there may exist more than one minimal suffi-
cient statistic. For example, for the sample drawn from the normal distribution
not only (3°7, X;, > ; X?) is a minimal sufficient statistic but also (X, S2),
where X, =n"'>" | X; and S2 =n"1 Y0 (X; — X,,)?. As we will see in the
next chapter, pair (X,,,S?) is the maximum likelihood estimator of (u,o?).

An important class of parametric families that admit particularly simple suf-
ficient statistics are exponential families. They include Bernoulli and normal dis-
tributions in particular. As we will show later, exponential families also provide
a link between statistics and information theory because they maximize entropy
given certain linear constraints. The formal definition is as follows. (Symbol In
denotes the natural logarithm.)

Definition 8.5 (exponential family). In the discrete case, let function p :
X — (0,00) satisfy Y, cx p(x) < oo. Having functions T; : X - R, 1 =1,2,...,s,
we denote the canonical sum

Z(0) = Zp(x) exp (Z 951}(3:)) (8.5)
=1

zeX

and define s-parameter exponential family

n

P(X7 = a716) = [[ plas) exp (Z 0T (a:) — 1nZ<0>> (8.6)
=1

i=1

for @ = (01,0,...,0,) € O :={w e R*: Z(w) < co}. In the real case, let function
p: R — (0,00) satisfy [p(xz)de < oco. Having functions T; : R — R, | =
1,2,...,s, we denote the canonical sum

20)= [ p)esp (lz 0iTia) ) da
=1

and define s-parameter exponential family

p(x710) = Hp(xz) exp (Z 0,Ty(x;) —In Z(G))

=1 =1

for 0 = (61,02,....,05) € © := {0 e R*: Z(0') < >o}. The s-parameter exponen-
tial family is called of full rank if the interior of © is not empty and T; do not
satisfy a linear constraint of the form > ;_, a)T;(x;) = ¢ for a constant c.

Example 8.7. Bernoulli distributions form an exponential family because

P(X] =a7]0) =[] 6" (1 - 0)'
i=1

= ﬁexp (xl In % +In(1 — 0))
i=1

= Hexp (nmi —1In Z(U))a

i=1
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where = In and Z(n) = 1 — 0. Function n = n(f) is called the logit

0
1-6
function.

FEzample 8.8. Normal distributions form an exponential family because

o1, 0) H e |- ("“2;2”)2}

1 { N T s }
exp |— -—
27

202 o2 202

exp (oza:? + Bx; — an(a,ﬁ)) ,

Z§ I z:

i=1

where o = —555, 8= %, and Z(a, ) = 0v/2mexp [%}

Now we can exhibit the minimal sufficient statistic for an exponential family.

Theorem 8.4. Consider the full rank exponential family as defined in Defini-
tion 8.5. The minimal sufficient statistic is

(ZTl ;) ZTQ ), ZT z; ) (8.7)

Proof. We give only the proof for the discrete case since the proof for the real
case is analogous. We have

- e (S-S}

i=1P

We observe that this expression does not depend on 6; if and only if T'(z}) =
T(y}). Hence T'(27) is the minimal sufficient statistic.

The last result we will present in this chapter is the Basu theorem, a handy
proposition for proving independence of two statistics. Let us denote the expec-
tation

E,Y = /YdP(-w),

which equals EoY = 3  yP(Y = y|0) in the discrete case. The conditional
expectation of ¥ given X will be denoted E ¢ [Y|X]. For the conditional expec-
tation we have the smoothing identity E ¢ [E¢ [Y|X]] = E(Y, see (1.3).

Definition 8.6 (complete statistic). A statistic T(X7) is called complete if
for any function s the following implication holds

Eys(T(XT)) =0 for all 0 = P(s(T(X7)) =0[6) =1 for all 6.
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Theorem 8.5. If a statistic T(X7') is complete and sufficient then it is minimal
sufficient.

Proof. Let T(X}) be a minimal sufficient statistic. Then T(X}) = f(T(X})).
Define g(T(X})) = Ey [T (X{l)|T(X{L)] Function g¢(T(XP)) is indepen—
dent of @ since T(X7') is sufficient. Taking the expectation of g(T [(X7)),
we obtain Egg(T(X})) = E¢T(X}) so Eg[T(X}) - g(T(X))] = 0. But
T(X7) — g(T(X})) is a function of T(X7), so by completeness of T(X]) we
obtain T(X7) = g(T (X)) with P(-|0)-probability 1. Hence there is a one-to-one
correspondence between T(X?) and T(X?) and T(X}*) must be also minimal
sufficient.

Theorem 8.6. Consider the full rank exponential family as defined in Defi-
nition 8.5. Statistic T'(x7) given by (8.7) is complete. (See Barndorff-Nielsen,
1978, Lemma 8.2.)

Ezample 8.9. For the sample drawn from the normal distribution with an un-
known mean g and a fixed variance o, statistic X,, = n™! Z?:l X, is complete
and sufficient.

Definition 8.7 (ancillary statistic). A statistic T(X]) is called ancillary if
its distribution does not depend on 6.

Ezample 8.10. For the sample drawn from the normal distribution with an un-

known mean g and a fixed variance o, statistic 52 = n=' Y " (X; — X,,)? is
ancillary.

Theorem 8.7 (Basu theorem). If a statistic T(X7') is complete and sufficient
whereas a statistic S(X7') is ancillary then T(X]) and S(X7') are independent.

Proof. For simplicity we present the proof only for discrete T' = T(X7") and
S = S(X7). We may write

= 5(0) ZP =s|T =1,0)P(T = t|0)

Probability P(S = s|f) = P(S = s) does not depend on 8 by ancillarity, whereas
P(S =s|T =t,0) = P(S = s|T =t) does not depend on 6 by sufficiency. We
may write thus

Y [P(S=s|T =t) - P(S=s)|P(T =t|0) = 0.
t
Quantity [P(S = s|T =t) — P(S = s)] is a random variable which is a function of
t and not of . Hence by completeness we obtain that P(S = s|T =t) = P(S = s)
for all ¢ such that P(T = t|¢) > 0. That is the requested claim.

Ezample 8.11. For the sample drawn from the normal distribution with an un-
known mean p and a fixed variance o, statistics X,, and S? are independent.



78

8 Sufficient statistics

Exercises

1. Consider a random sample X7" drawn from the uniform distribution

Loo0o<ua <0,
plxilf) =170 '
0, else.

Find a one-dimensional sufficient statistic.

. Show that Poisson distributions

o A\Tip—A
P(x7T=a27N) =]] P (8.8)
i=1
where z; € NU {0} and X\ > 0, form an exponential family.
. Show that geometric distributions
n
P(xp=atlp) = [[(1 - p)"p, (8.9)

i=1

where z; € NU {0} and 0 < p < 1, constitute an exponential family.

. Show that negative binomial distributions

Pt =atlrn) =TT (7,7 a0

i=1

where z; € NU {0}, » > 0, and 0 < p < 1, form an exponential family.

. Show that gamma distributions

p(z|a, B) = Fﬁ(z)xa‘le‘m, (8.11)

where x > 0 and «, 8 > 0, constitute an exponential family.

. Show that beta distributions

F(OL+B) a—1

—_— —a:[#l
More” 797

plxle, B) =

where z € (0,1) and «, 8 > 0, form an exponential family.

. Suppose X7 are a sample from a beta distribution. Find the minimal

sufficient statistic if @ = 2.

. Show that Pareto distributions

[0
. z>1,
pz|a) = {93"“ 3y (8.12)

0, r<l1,

where a > 0, form an exponential family.
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. Show that inverse Gauss distributions

[ A Mz — p)?
p(x|p, A) = ﬁexp {_(21&17)} )

where x > 0 and u, A > 0, constitute an exponential family.
Let X7 be a random sample drawn from distribution

2z;

2L 0< i 07
plade) =4 770 =S

0, else.

(a) Find a one-dimensional sufficient statistic 7T

(b) Determine the density of T'.

(¢) Show that T is complete.

Consider a sample drawn from the normal distribution with an unknown
mean p and a fixed variance o. Show that statistic S2 =n=!>"" (X, —
X,,)? is ancillary.

Let X7 be a sample drawn from exponential distribution

p(z;|B) = Be= P,

where x; > 0 and 8 > 0.

(a) Find the density of Y; = X;.

(b) Let X, = n~tY" | X;. Show that X,, and > ;" | X?/X?2 are inde-
pendent.

Consider EX* =" 2*P(X = x), the k-th moment of variable X. Show

that EX € [-VE X2, VE X2].

Hint: Use Jensen inequality.






Estimators

Maximum likelihood estimator. Consistent estimators. Fisher informa-
tion. Cramér-Rao inequality.

In the previous chapter, an arbitrary function of the data was called a statis-
tic, whereas a statistic that is designed to approximate the unknown parameter
was called an estimator. An important example of an estimator is the maximum
likelihood estimator.

Definition 9.1 (maximum likelihood estimator). Let argmaxycg f(0) be
the argument 6 € @ for which the function f attains the mazximal value. The
maximum likelihood estimator (MLE) is the statistic defined for discrete random
sample T as

O () = argmaxyco P(XT = 27(0), (9.1)
whereas for real random sample x it is defined as
One (2]) == argmaxycg p(a7]6).

The name MLE is motivated by that probability P(X]* = z7|0) or density
p(27]6) as a function of parameter 6 are called the likelihood function.

In some simple cases we can evaluate the maximum likelihood estimator
analytically.

Ezxample 9.1. Consider a sample of length n drawn from Bernoulli distribution.
We have (8.4). Thus

Oln P(X7] = 270)

0= 00

ooy, OML 1 —6mr

T n— o

Hence

HML 371 E X

Ezxample 9.2. Consider a sample of length n drawn from normal distribution.
We have

n 2
n T —p n
Inp(at|p,0) = — E % ~3 In(27o?).

=1
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Thus
ALY CH )| B i)
8“ H=PML,0=0ML i=1 2O-ML
o= Onp(tln o) _y @)’ n
9o H=PML,0=0ML i=1 OML
Hence
HML xl Z T,
2 n 1 . n\\ 2
omL(27) = - Z(xz — pur(27))”. (9.2)

=1

Now we will discuss a few ideas how to understand the quality of an estimator.
It seems plausible to accept that the deviation of a good estimator from the true
parameter should converge to zero for the sample size tending to infinity. Thus
consistency is a typically required condition.

Definition 9.2 (consistent estimator). Estimator T'(X7") is called consistent
in probability if T(X7") converges to 6 in probability, i.e., for each ¢ > 0 we have

nh—>H;o P(|T(XT) — 0] > €|6) = 0.

Applying Kullback-Leibler divergence we can prove that the maximum likeli-
hood estimator is indeed consistent. First we will exhibit the proof for a discrete
parameter, which is simpler. We denote the Kullback-Leibler divergence as

P(XZ- = z|0)
D(0||w P =z 0 —_ .
(6l) Z 9) P(Xi = z|w)
zeX
In the formula above we use the natural logarithm rather than the binary one
since it appears more convenient in statistical applications.

Theorem 9.1. Let X}* be a random sample drawn from distribution P(X; =
x;10) or p(x;|0), where 6 takes values in a finite set ©. If 0 # 0" implies P(X;|0) #
P(X;|0") or p(:|0) # p(-|0") then the mazimum likelihood estimator is consistent.

Proof. We give only the proof for discrete X7* since the proof for real X7 is
analogous. Let © = {6,04,...,0,,}. Assume that X} is a random sample drawn
from distribution P(X;|6). By the strong law of large numbers (1.4), we have
with probability 1 that

P(Xil0)
J;H;ong Pix, 0 ~ PO >
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since P(X;|0) # P(X;|0k). Denoting L, () = P(X{]0), we obtain

P(L,(0) < L, (01)|0) = < Zl ;;wi <0’9>1i3°+0.

Using this result we derive

P(Oun(X7) # 010) < P(L(6) < Ly (6) for some k = 1, ..., m|6)

<Y P(La(6) < La(04)]6) === 0.

Hence the maximum likelihood estimator is consistent.

To discuss consistency of the maximum likelihood estimator for a real param-
eter, we need to introduce a generalization of the Kullback-Leibler divergence in
which the second argument is a set of parameters. For simplicity, let us restrict
ourselves to discrete random variables and put

P(X; = fln —————.
D(0||S) = % = z|0) 12 n PX, = o)

The idea of the theorem on consistency for a real parameter rests on the fact
that D(6||S) is usually positive if S is sufficiently small.

Theorem 9.2 (Wald theorem). Let X7 be a random sample drawn from dis-
tribution P(X; = x;|0), where 6 takes values in the set of real numbers © = R.
Suppose that for any 0 the following conditions hold:

1. For every w # 0, there is a neighborhood S,, of w such that D(8||S,) > 0
2. For some constant a > 0, D(0||{w : |w — 8] > a}) > 0.

Then the maximum likelihood estimator is consistent.

Remark: A similar result may be formulated for a real random sample. Moreover
conditions 1-2 may be reformulated so that checking them is easier for particular
parametric families. This, however, involves some additional technicalities which
we want to avoid for brevity of exposition.

Proof. Assume that X7 is a random sample drawn from distribution P(X;|6).
By the strong law of large numbers (1.4), we have with probability 1 that

ol P(Xil0)
nlinéoﬁ;ﬂéfsl (X, ~ DUl
Denoting L, (6) = P(X7|6), we obtain for D(6||S) > 0 that
P(Xil0)
< —
P(Ln(o) < sup Ly, (w) ’9) (uljrelf = 21 P <O ‘ 9)

weS
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To use the above result, let € > 0 and define set
A={w:e<|w—-90] <a}.

Set A is compact (for it is closed and bounded) and the family of sets
{S, :w € A} forms an open cover of A. From the definition of compactness,
there must exist a finite subfamily {S1, ..., Sy, } that covers 4, i.e., A C -, Sk.
Let us define Sy = {w : |w — 6] > a} so

{w:lw—0]>¢€}C USk.
k=0

In the following we will use the fact that D(6||S) > 0.
Define event

F,L:(L,L(Q)g sup Ln(w)>.

jw—b]>c

Consistency of the maximum likelihood estimator will be established by show-
ing that P(F,|#) — 0 as n — oo because on the complement of F,, we have
|Omr (XT) — 0] < €. Indeed we obtain

P(ENO) < P(L0) < _swp  Lo)]0)
wEUk=0 Pk

P(Ln(ﬁ) < sup L, (w) for some k =0,...,m ’ 9)

wESk

< éP(Ln(H) < ;ggk L, (w) ’0) 27,

which completes the proof.

Whereas consistency is a desired condition, the behavior of an estimator for
small samples is also important. We may rank estimators according to their bias
and mean square error.

Definition 9.3 (bias). The bias of an estimator T'(X7) is defined as the ex-
pectation E¢T(X7]) — 0. The estimator is called unbiased if E¢T(X}) = 6.

Definition 9.4 (mean square error). The mean square error of an estimator
T(X7) is defined as Eo [T(X}) — 0]2. We say that estimator T(X7]') dominates
estimator T' (X} if
B [T(X}') — 6" < Bo[T'(X]) — )"
The mean square error for an unbiased estimator equals its variance. A few
interesting estimators such as (9.2) are, however, biased. Unbiasedness can be

considered a too strong condition. For instance, to guarantee consistency, it
suffices that the mean square error tends to zero.
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Theorem 9.3. Suppose that lim,_,o Eg [T(X1) — 6] = 0. Then the estimator
T(X7) is consistent in probability.
Proof. The claim follows by Markov inequality (Theorem 1.5)

B, [T(X7) -0

P(IT(X]) 0] > 6) < :

€

Ezxample 9.3. Consider a sample of length n drawn from Bernoulli distribu-
tion P(X7 = 27]0) =[], 0°(1 — 6)'~". Both X; and X,, = OuL(X]) =
n~1Y" | X; are unbiased estimators of §. The variance of X; equals 6(1 — ),
whereas the variance of X, is (1 — #)/n. Hence X,, is consistent whereas it can
be checked that X; is not.

The considerations above raise the question what is the minimal variance
of an estimator. The question is answered by the Cramér-Rao theorem. Sub-
sequently, we will show that the maximum likelihood estimator achieves the
Cramér-Rao bound asymptotically. In both theorems there appears a quantity
called Fisher information.

Definition 9.5 (expected Fisher information). For a discrete random sam-
ple, the expected Fisher information is defined as

7,0) = By | L P(x] |e>] ,

= 2

whereas, for a real random sample, we put

Jn(0) := E, [860 In p(X7 |9)r.

If the parameter @ = (01,04, ...,05) is a vector then, for a discrete random sample,
the expected Fisher information is defined as matriz
(Jn(6))ij = E 0 In P(XT0) - 0 In P(X7'0) (9.3)
n TR0 By 100, ] '

while, for a real random sample, we put

(a0 = Bo | g (X110 5y np(X710)]

26,

Example 9.4. Consider a sample of length n drawn from Bernoulli distribution.
We have

P = o) = [0 -0y~ =5 m oS

Hence

J1(0) =0 {aae 1n9] g (1-06) [;)9 In(1 — 9)} g . (9.4)
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Fisher information has a few properties that are worth mentioning in the
beginning. First, there is an alternative formula for this quantity.

Theorem 9.4. For a discrete random sample, we have

) wal
E, [aa In P(X! |9)] =0
2

E, [ (;992 In P(X" |9)] Jn(6).

Remark: Random variable V = (9/00) In P(X7|0) is called score.

Proof. Let us write L(2}|0) = P(X] = «7|0) as in the previous proof. First we
obtain

> Laf \9) 5Lz Zae %ZL 21_0

Hence the first claim follows. Second, we have

ZL { In L(z } +ZL 892 lnL( "16)
B . 1 aL(xme) 8 1 OL(zV|9)
- ; La110) HL(@«W) 06 ] T 20 T@e) 00

1 92L(z7|0)
- ZL n|9) 902 392 ZL

Thus we have established the second claim.

Using the previous proposition we can show that Fisher information is a linear
function of the sample length.

Theorem 9.5. For a discrete random sample, we have
In(0) = nJy(6).
Proof. Observe

Jn(e):Eg[ 80221nPX|9] ZEQ[ aQQInP(XW) =nJ.(6).

Moreover, we can show that Fisher information is the second derivative of
Kullback-Leibler divergence with respect to the parameter.

Theorem 9.6. For a discrete random sample, we have

2
D)

w=0
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Proof. Let us write L(z|0) = P(X; = z|f). Observe that

O pllw) = 2 3 L) 9 - i 6.2 1 L(zw)
W) w 8 ) x wlo) 210) 55 z|w),

zeX zeX
which equals J; (0) for w = 6.

Subsequently, we demonstrate the Cramér-Rao bound.

Theorem 9.7 (Cramér-Rao theorem). The mean square error of an esti-
mator is bounded by the inverse of Fisher information multiplied by the squared
deriative of the estimator’s expectation,

By[T(X}) - b(0)]” >

where b(0) = E¢T(X7"). In particular, for an unbiased estimator we have b/ (0) =
1.

Proof. Let us write the estimator T' = T(X7") and score V = (9/960) In P(X7|0).
By Schwarz inequality we have

(Bo[(V —EgV)(T —E4T)])° <Eo(V —E4V)’Ey(T —E,T)".
Notice that E gV = 0 as derived in Theorem 9.4. Thus
(Eo[VT])® < Ju(0)Eo(T — b(6))*.

Some further algebra yields
= S PR <5110 g KT =0T ()
= Z %Pm = a7|6)T (X7)
6 n n n /
~ o0 ZP(XI =T |9>T(X1) =b'(0).

Hence the claim follows.

We say is that an unbiased estimator T'(X7) is efficient when it satisfies the
Cramér-Rao bound with equality, i.e., if

Eo[T(XT) *0]2 = %W)

In the following we show a simple example of an efficient estimator.
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Example 9.5. Let X' be a random sample from the normal distribution with
expectation p and variance o2. For parameter p we obtain

= f [T e [ o
:n/ = 1 0 [—(x_“q = (9.5)

ot o2 202 o2

On the other hand estimator X,, = puy(X7) =n~! Yo, X, satisfies E o Xn =
and

— 2 — —
Eg[X, —p]  =EpX2 —2uE X, + 4°
1 n—1 o?
= —(0® +p?) + ——p’ =2+t = —.
n n n

Hence estimator X, is efficient.

An important property of the maximum likelihood estimator is that it is
asymptotically unbiased and efficient. To state the respective theorem we need
the concept of convergence in distribution.

Definition 9.6 (convergence in distribution). We say that a series of ran-
dom real variables (Y;)$2, converges to the distribution of a random variable Y,
when lim, oo P(Y, < r) = P(Y < r) for every real number r at which the
distribution function P(Y < r) is continuous.

Theorem 9.8. Let X}' be a random sample drawn from distribution P(X; =
x;|0), where 0 takes values in a subset of real numbers © C R. Suppose that:

1. Set A={x € X: P(X; = x|0) > 0} is independent of 6.

2. For every x € A, (0%/00%)P(X; = x|0) exists and is continuous in 0.
3. Fisher information Jy(0) exists and is finite.

4. For every 6 in the interior of © there exists € > 0 such that

2

ilnP(Xi = w|w)” < 00.

E
o |fd€[ upb an

9—6,9-‘,—5]

5. The mazimum likelihood estimator Oy, (X7Y) is consistent.

Then for any 0 in the interior of @ statistic \/n(Omr(X7]) — 0) converges under
P(:|0) to the normal distribution with expectation 0 and variance 1/J1(0).

Proof. The exact proof can be found in Keener (2010, Section 9.3). Here we give
only a sketch. Let us denote [,,(0) = In P(X7'|0) and 6,, = Onr, (XT'). The Taylor
expansion of I/, () around the maximum likelihood estimator yields

0= 0, (B) = 1,(6) + 11(6) (B — 6) + 3117 (63) (6, — )%



9 FEstimators 89

where 6} is an intermediate value between 6,, and 6. Solving this equation, we
obtain

J=ln(0)

Tn
0, —0) = .
Viln =0 = T = L6, )

Considering the numerator

!/

ol IZ%
we observe that its summands are independent identically distributed variables
with expectation 0 and variance Ji(6). So, by the central limit theorem, expres-
sion (9.6) converges in distribution to a random variable Z which has the normal
distribution with expectation 0 and variance J(6). On the other hand, the left
part of the denominator

In P(X;]6), (9.6)

1 9?
51’,{(9) === 5 In P(X;|6)

is an average of independent identically distributed variables converging in prob-
ability to the common expectation, which is J;(#). Using consistency of 6,, and
other assumptions of the theorem, the right part of the denominator

1 n *
can be shown negligible. Hence /n(6, — 0) converges in distribution to the
random variable Z/.J;(6), which has the normal distribution with expectation 0
and variance 1/.J;(0).

Exercises

1. Consider an exponential family (8.5)—(8.6). What is the maximum likeli-
hood estimator?

2. Find the maximum likelihood estimator for the sample drawn from Pois-
son distribution (8.8).

3. Show that the mean square error decomposes into the sum of variance
and the square of the bias,

Eo[T(X]) - 0> =E4[T(X]) - EoT(XP)]* + [EoT(X]) — 0],

4. Let X' be a random sample from the normal distribution with expecta-
tion p and variance 2. Define X,, =n~* """ | X;. Show that
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is a biased estimator of o2, whereas

is an unbiased estimator.
Remark: Although estimator Ss is biased, it has a smaller mean square
error than S2. The estimator which has the smallest mean square error is

- 1 S\ 2
sganZ(Xi—Xn).

=1

. For a discrete random sample show that

82

WD(WHQ)

w=0

Remark: In Theorem 9.6 we have considered the second derivative of
D(0||w).

. For a discrete random sample and a multidimensional parameter, show

that

0? n

. Consider an exponential family (8.5)—(8.6). What is the Fisher informa-

tion?

. Consider the exponential family as in the previous task. We have learned

that function ¢(0) = In Z(0) is convex. Let us introduce function p;(6) =
EoT;(X1) = 0¢(0)/00;. This function is an injection and we may define
its inverse 0(u(0)) = 6. Consider the Legendre transform ¢(u), defined as

¢(u) = [Z 0 (1) — w(ew))] :
=1
Show that 6;(u) = d¢(u)/Ou; and
P(X7 = a716) = ] p(e) exp (=dy (T(w:), 1(0)) + 6(T(x1)) ),
=1

where dy4 is the Bregman divergence for function ¢.

Hence we see that there is a one-to-one correspondence between Breg-
man divergences and exponential families. The parametrization of the
exponential family in terms of 6 is called the canonical parametriza-
tion. The parametrization in terms of u = p(6) is called the mean value
parametrization.
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What exponential family corresponds to the Bregman divergence equal
squared Euclidean distance? What exponential family corresponds to the
Bregman divergence equal Kullback-Leibler divergence?

Consider the mean value parametrization for an exponential family. Show
that:

9*p(1)

(Jl (,U))ij = aﬂia,uj

and Ji(p) = [J1(0(n))] "
What is the Fisher information, the expectation EyX; and variance
Var X; for a sample drawn from Poisson distribution (8.8)7
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Bayesian inference

Bayes theorem. Posterior distribution. Jeffreys prior. Improper priors.
Laplace integral. Conjugate priors.

So far we have considered the setting of non-Bayesian statistics, where the
parameter is a fixed unknown value. In contrast, in Bayesian statistics, it is
assumed that the parameter is a random variable with a certain distribution,
called the prior distribution. The random parameter will be denoted as © and
the prior distribution as II(B) = P(6© € B) = [, n(0) df, where 7(6) is the prior
density. When we have the prior distribution, the inference about the parameter
is done using the Bayes theorem. Putting P(X}* € B|© = 0) = P(X}" € B|9),
we obtain the posterior distribution

P(6 € BIX] € A) = / (6]X7 € A)do,
B

where the posterior density w(6| X" € A) is given by

P(X7 e Al0)m(0)
0| X7 e A) = . 10.1
0T € 4) = Th0 € Apee) ao (10-1)
The posterior density is usually more concentrated around the correct value
of the parameter than the prior density. This intuition can be substantiated by
the following theorem.

Theorem 10.1 (Doob consistency theorem). Let X' be a random sample
drawn from distribution P(X;|0), where P(X;|0) # P(X;|0) for 6 # 6'. Then
for any prior distribution I = P(© € -) and for every 0 belonging to a set G
such that II(G) = 1, the sequence of posterior distributions P(© € | X7') (being
a sequence of random wvariables) converges under P(-|0) in distribution to dg,
which is a measure concentrated on 0 (i.e., d9({0}) = 1).

The proof of this theorem can be found in van der Vaart (1998, Theorem 10.10).
We omit it since it makes a heavy use of measure theory.

Knowing that the posterior is consistent, it is sensible to consider an estimator
of the parameter given by maximizing the posterior density.

Definition 10.1 (maximum posterior estimator). For a discrete random
sample, the maximum posterior estimator (MAP) of the parameter is defined as
the value for which the posterior density is the largest, i.e.,
Onap(2]) = argmax, 7 (0| XT = 27)
= argmax, P(X] = 27|0)7(6).
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Observe that if 7(#) does not depend on 6 then Oyap(z]) = Omr(z]) where
the maximum likelihood estimator Oy, (z7) is defined in (9.1). We have shown
in Chapter 9 that the maximum likelihood estimator is consistent under mild
conditions. Hence we may argue that the uniform distribution () x 1 is a rea-
sonable choice of the prior. (We write a o b if a is proportional to b.)

Differently than in the non-Bayesian setting, in Bayesian statistics we do not
need to estimate the parameter to predict the next observation. First, in many
cases we can compute the marginal probability

P(X} € A) = /P(X{‘ € Al0) () do

and hence we may compute

P(X]T e AxO)

P(Xnp1 €CIX] € A) = PR e A)
1

In particular, for X; conditionally independent given ©, we obtain

JP(X7*' € Ax Clo)r(0)do
P(X, Xied)=
(Xnt1 € CIXT € A) [ P(X{ € Alo)r(0) do

- /p(xn+1 € 010)n(61X7 € A) db.

This principle may be illustrated on the following example.

Example 10.1. Consider a random sample of length n drawn from Bernoulli
distribution with the prior 7(0) = 1. We have

P(X] =a7) = /P(X? = 2710) o
= / i T (1 — )i T dg

= Loz + DI (n— 300, 2 +1) 1 [(Z n )]1

= n

I'(n+2) Cn+1 "
Hence
iz + D (=30 z)!(n+1)!
(n+2)' (3, @) (n — 200, @)

_ Z?ﬂxi"‘l
o n+2

P(Xpsr = 1|X] = af) =

)

which is called the Laplace rule.

We can see that Bayesian inference is simple if we have a prior and the
posterior can be computed efficiently. Now a few words should be devoted to
the appropriate choice of the prior. We have seen in Theorem 10.1 that almost
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any choice of prior leads asymptotically to the same, correct inference. The
inference can be, however, very different for finite samples. Taking the uniform
prior is not the only reasonable choice. In general, the prior distribution should
resume all information about the parameter that we have. If we do not have
such information, the prior distribution should be chosen taking three criteria
into account:

1. symmetry,
2. invariance with respect to reparametrization,
3. computational simplicity.

Each of these criteria leads to a different kind of inference.
Some interesting option is given by the Jeffreys prior. As we will see, the
inference using this prior is invariant with respect to reparametrization.

Definition 10.2 (Jeffreys prior). The Jeffreys prior is defined as

o) det J,,(0)
Tr erreys == N T
Jeffrey [ \/det J,(8) do

where J,(0) is the expected Fisher information, given in formula (9.3).

(10.2)

If variables X7, X5, X3, ... are independent given @ and have identical distribu-
tion then J,(0) = nJ;(0) and the Jeffreys prior does not depend on n.

Ezxample 10.2. Consider a random sample of length n drawn from Bernoulli
distribution. From (9.4) we obtain

971/2(1 _ 0)71/2

™

T Jeffreys (9) =

Hence

PO =) = [ PO = 090 = ("))

nm

and

22;1 T; + 1/2

P(Xp41 =1X! =2a}) = 1

)

which is called the Krichevski-Trofimov estimator.

The appeal of Jeffreys prior comes from the following fact.

Theorem 10.2. The inference using Jeffreys prior does not depend on param-
etrization, i.e., the marginal distribution

P(X] € 4) = / P(X} € A0) 7 setreys (6) d6

is invariant with respect to a one-to-one differentiable reparametrization.
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Proof. Let us introduce parameter ¢ = ¢(6), which is a one-to-one differentiable
function of #. We have

/ PX] € Al6) mptreys(6) 6 = / P(X7 € Alg)n(¢) do.

where
7(6) = Tetiveys(6) |det gi
\/det S det B [mnggw mnz;gfme)} 1 20
. [T i
Hence

/P(Xf € A|0) Tyetiveys(0) df = /P(X{L € A|) Tyetireys (@) do.

Sometimes in Bayesian reasoning there appear improper priors, which are
prior densities such that [ 7(6)df = co. These priors may be used for inference
if [P(X} € Al6)7(0)df < oo. Then the posterior distribution 7(9|X] € A)
and the conditional probability P(X,,+1 € C|X7]* € A) are properly defined. We
illustrate this phenomenon on an example of a Jeffreys prior.

FEzample 10.3. Consider a random sample drawn from the normal distribution

n

27 |p, o) H

19

o[ G2 ey

If 11 is the only unknown parameter then by (9.5) we have

7TJeffreys X/ Jl \l o 1.

Hence

ny _ Pt |p,0)
7TJeffreys(N’lxl) = p(x?\o)

and

o ]o)
x xn7 = T a0
P( n+1| 1 J) p(mﬂa)
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where
patlo) = [ platluo)
/ 1 exp E?:l ‘rZQ MZZ*I Li :[1“27” d,u
(oV/2m)" 202 o2 202

202

o] (e (5

Practical applications of Bayesian inference are limited by the difficulty of
computing the posterior for complicated statistical models. The difficulty lies
in computing the denominator in (10.1), which is an integral. In many cases
the only possibility is to estimate this integral consists in using Monte Carlo
methods or using the Laplace approximation. The latter approach rests on the
following theorem.

,(21 L@/ — /) ]

Theorem 10.3. Let X[' be a random sample drawn from an s-parameter expo-
nential family (8.5)—-(8.6). Let Oy be a subset of © = {w € R® : Z(w) < oo} such
that

1. ©q is a compact subset of the interior of ©;
2. The interior of ©q in nonempty.

Moreover, let m be a prior density that is continuous on @ and strictly positive on
O,, i.e., infgeg, T(0) > 0. Finally, let a sequence (x;)2, be such that Oy, () €
O, for sufficiently large n. Then

In P(X{ = 27|0mL(z7])) —ln/P(X1 = 27|0)7 () df

det Jl (HML (l‘?))
m(OmL(21))

+o(1), (10.4)

S n
511’15"‘11’1

where the convergence is uniform in ©y.

Remark: Formula (10.4) becomes particularly simple for the Jeffreys prior (10.2).
Namely, we obtain

In P(X] = 270m(XT)) — ln/P(Xf = 27|0) Tyefireys (0) df

=im —i—ln/\/det T1(6)d0 + o(1)
Y3
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Proof. We give only a sketch of the proof. The full proof can be found in
Griinwald (2007, Appendix 8.A). Write L(z}]0) = P(X} = 27|0) and 0,, =
Onr (27). First, we observe that

1 02

1 _ 92 Z(9)
n 8918(%

10U

equals the expected Fisher information matrix. Because (9/00;) In L(x}|0) van-
ishes for 6 = Oy, («}), we may approximate

In L(27|0) ~ In L(z7(6,) — g(a —0,)TJ1(00)(0 — 6,)

using the Taylor expansion. In the following, it can be shown that this approxi-
mation is so good that we obtain

/ L(2710)7(6) A0 ~ L(2]0,)(6n)

X /exp [—%(9 —0,)TJ1(0,)(6 — 6,)] d9

T s/2 .
— L(2710,)7(0) [H [det 1 (6)] 2.

Hence the claim follows.

Using the Laplace approximation is not the only trick used to make the
Bayesian inference feasible. In certain special cases, it is possible to find an
analytic formula for the posterior. Such a case arises for conjugate priors, which
are specially designed to make the computation simple.

Definition 10.3 (conjugate prior). A conjugate prior for the parametric fam-
ily P(X70) is defined as a family of prior distributions w(0) = w(0|a) such that
m(0| X7 = 2) = n(0| X} = a2, ) = w(0|a)) for some o = o/ (o, xY). Whereas 0
is called a parameter, « is called a hyperparameter.

In our first example, the Jeffreys prior is a special case of a conjugate prior.

Example 10.4. Consider a random sample drawn from Bernoulli distribution.
Let the prior

_ I'(a+p)
o5 = Fayr(p)

where a, 8 > 0, be the beta distribution. Then

[ ) Lt (10.5)

n n 92?:1 mi+a_l(1 — 0)
77(9|X1 = 1‘1 , O /8) = felzzl:l ;E,i-‘,-a—l(l _ 9/)

(s

n—>, zi+B-1
n—y " xi+B8-1 do’

n

n
Za:i—i—a,n—z:xi—l—ﬁ)
i=1 i=1
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and
P(X] = a7|a )—-;ﬁ;;égl/Gleiﬁﬂ—lu gyr—Sis witA—1 g
_ Tla+8) (i wi+ o) (n =30 @i+ )
I'(a)I(B) I'(n+a+pB)
Hence

P(X =1 X! =27, a,8) = .
( n+1 ‘ 1 1 ﬁ) n+ o+ 5

In the second example, we will see that conjugate priors can be different to
Jeffreys priors.

Ezxample 10.5. Consider a random sample drawn from the normal distribution
(10.3). For the unknown parameter ;1 we choose the conjugate prior as the normal
distribution

(o, 00) = (“_“)} 7

exp |:— 20(2)

2m
where (19 € (—00,00) and o¢ € (0,00). Then we obtain

p(@} |, o)m(p|po, o0)

m(plat, . B) =
et T o3l o) (i, 00)
- (zi — p)? (1 — po)?
O‘(Hexp[‘w exp |~
anlxi 0 /Lz n 1
mexp[u[ 102 +OT% o2t
N 2
Zlgéx1+%§
xXp | —3 %4_% — K 02+J§
0
szlml+Z§ (’]’L 1)1
xX T N1+ =
HTEAE \F T

Exercises

1. (Jeffreys prior) Consider an exponential family (8.5)—(8.6). Find the Jef-
freys prior.

2. (Conjugate priors) Consider a random sample drawn from Poisson distri-
bution (8.8). Find the conjugate prior, the posterior and the distribution
of X7
Hint: The conjugate prior is gamma distribution (8.11).
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. Consider a random sample drawn from geometric distribution (8.9). Find

the conjugate prior, the posterior and the distribution of X7'.
Hint: The conjugate prior is beta distribution (10.5).

. Consider a random sample drawn from negative binomial distribution

(8.10). Find the conjugate prior, the posterior and the distribution of
X7
Hint: The conjugate prior is beta distribution (10.5).

. Consider a random sample drawn from gamma distribution (8.11). Find

the conjugate prior, the posterior and the distribution of X7'.
Hint: The conjugate prior is gamma distribution (8.11).

. Consider a random sample drawn from Pareto distribution (8.12). Find

the conjugate prior, the posterior and the distribution of X7
Hint: The conjugate prior is gamma distribution (8.11).

. (Hypothesis testing) To compare the likelihood of two discrete hypotheses,

Bayesians use the posterior ratio

P(H1|D)  P(D|H1) P(H1)

P(Ho|D)  P(D|Ho) P(Ho)’

where P(H;) are the prior probabilities of the hypotheses, and P(D|H;)
are the probabilities of obtaining data D given each hypothesis. If the
ratio above is greater than 1 then hypothesis H; is more likely, otherwise
we prefer hypothesis Hg. If there is no reason to prefer any hypothesis
a priori, we accept P(H1) = P(Ho).

Task: A certain disease attacks 0.01% population. A certain test for de-
tecting this disease commits 0.01% errors both for healthy and ill persons.
What is the probability of being ill if one receives a positive outcome of
the test?
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EM algorithm and K-means

EM algorithm. K-means algorithm. Baum-Welch algorithm.

Consider a likelihood function p(y|6), where y is an observed value and 6 is
an unknown parameter. As we know from Chapter 9, the maximum likelihood
estimator of 6 given y is

OnL(y) = argmaxg p(y|0). (11.1)

Sometimes the direct maximization in (11.1) is analytically intractable. In cer-
tain of these cases we may consider an approximate procedure introduced by
Dempster et al. (1977), called the expectation-maximization (EM) algorithm.

The EM algorithm may be used when there exists a latent discrete variable
Z such that distributions p(y|Z = z,0) and P(Z = z|#) are particularly simple.
For instance, p(y|Z = z,0) may be a single-peaked distribution and P(Z = z|0)
may be the probability of that peak. We have then a mixture model

p(yl0) = ZP =2|0)p(y|Z = 2,0),

which is a mixture of several peaks.
Ezample 11.1 (K Gaussian peaks). Let y = yN, Z = ZN, p(y|Z,0) =

[L p(vilZi, 0), and P(Z|0) = [, P(Z;|0), where 0 = (71, 1,01, ..., Tk, s, Ok )-
The conditional likelihood is given as the normal distributions

1 (yi _,Uk)Z]
2 = k,0) = S Wi R
Pl ) orV2m P [ 207

and the mixture coefficients are P(Z; = k|6) = 1, where 7, > 0 and Zk 1Tk = 1.
For a given sample we want to find the location and variance of the K peaks and
the peak to which a given individual observation belongs. Formally, we seek for
a local maximum likelihood estimate of (71, u1, 071, ..., Tk, i, Ok ) given sample
yi and the conditionally most likely value of Z; for each y;.

It is important to observe that we are not looking for the global maximum
of the likelihood function. The global maximum is quite uninteresting. Namely,
we obtain p(y|f) = oo if pu; = y; and o1 = 0 for some i. Thus we are rather
interested in finding a finite local maximum.

Now let us describe the EM algorithm. For a given mixture model, we intro-
duce the conditional probability of the latent variable

P(Z = 20)p(y|Z = 2,0)
p(yl0)

P(Z = z|y,0) = (11.2)
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and we consider function

Q0)10") = Inp(y|0’) + ZP(Z =z|y,0) In P(Z = z[y,0")
= P2 =2l ) [P(Z = 2W)plol 2 = =00,

which is a difference of the likelihood and a cross entropy function. The EM
algorithm consists in setting an initial parameter value 6; and iterating

011 = argmaxy Q (0,,|0) (11.3)

until a sufficient convergence of 6, is achieved. The EM algorithm is worth
considering only if maximization (11.3) is easy—for instance, if it can be done
analytically. Once we have a sufficiently good approximation of the maximum
likelihood estimator then using formula (11.2) we may also compute the con-
ditionally most likely values of the latent variable, i.e., the mixture component
which is most likely for a given observation.

The soundness of the EM algorithm follows from the fact that the likelihood
grows as a function of the iteration.

Theorem 11.1. We have

P(Y|On+1) = p(y]0y).- (11.4)

Proof. By (11.3) and nonnegativity of Kullback-Leibler divergence, we obtain
0< Q (9n||9n+1) - Q (en”en)
=Inp(y|0n+1) + ZP = zly, Gn) lnP(Z = zly, 9n+1)

—1n p(y|0,) ZP 7z|y,t9n) lnP(Z:z\y,Hn)

])(27:: z\y,@n)
P(Z = z|y,0n+1)

=Inp(y|On+1) — Inp(y|6r) Z P(Z = zly,60,) In

<Inp(ylfni1) —Inp(y|0n).

It is worth noting that the EM algorithm can be generalized also to the case
when the latent variable Z is continuous (the probabilities should be replaced
for densities and the sums for integrals). Then inequality (11.4) stems from
nonnegativity of Kullback-Leibler divergence for densities, which was discussed
in Chapter 7.

It happens that the mixture of K Gaussians may be solved using the EM
algorithm.

Ezample 11.2 (K Gaussian peaks continued). Consider the model from Example
11.1. The cross entropy takes form

éﬁz ;i
Q016" ZZZ“&“ Nor3

i=1 j=1
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where we denote

L 2

Now we maximize the cross entropy to obtain explicit formulae for the EM
iteration. Using Lagrange multipliers, we first obtain

o—ai[ (0.116) - (Zmlﬂ

Hence

o K o(n) _(nt1)
0=0p41 i=1 Zk:1 Eni Tj

N 5(")

(n+1) Z Ji
Tj - K n)’
i=1 EkZI g](cl)

Second, we have

NoogY 2@y -l

n n+1
=0 T 6 200D

0
= Q0,0
0= 5 @0u110)

Thus
(n) )

N
(n+1) _ §ii Yi
s - § (11.5)
! Mzkls @/ z“e

Third, we obtain

N (n) o (n+1)\2
0= ;Q(%HQ) = zfji o) <_ (n1+1) +2(yl (Zjﬂ) ik )
93 0=0ns1 i1 k1 Ski g; 2(0; )?
Therefore

N n n+1 N n
o = IS & (i — "y 3 &0
K n K n)’
! =1 Zk:l 5](%) =1 Zk:l gl(cz)

To guarantee that the EM algorithm converges to a local maximum p(y|f) < oo,
it is necessary to set u 7& y; and O'( ) # 0 for all 4.

The EM algorithm for K Gaussian peaks is a soft assignment version of a
very popular algorithm for clustering, called the K-means algorithm. The setting
of the K-means algorithm is as follows. We are given some data points y = yi¥
and we are interested in partitioning them into K clusters. By r;; we will denote
whether y; is in the j-th cluster (rj; = 1 if it is, rj; = 0 if it is not). By p; we
will denote the center of the j-th cluster. Both quantities will be computed in
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iteration as r ) and ,u respectively. The K-means algorithm consists in the
iteration

e . o (n))2
T§?+1) _ 1 if j = argmin, (yz 1, , (11.6)
0 else,
n n+1
(nt1) _ iz ’"a(‘i 'y 11.7
J - n (n+1) -~ ( . )
2o Tji

We can see that we obtain (11.7) from (11.5) in the limit of a,in) — 0.
Convergence of the K-means algorithm is guaranteed by this proposition.

Theorem 11.2. Let

N K 5
3 ()
i=1 j=1
We have Jyp41 < Jp.

Proof. By (11.6) we have

N K 9
S5 )

Subsequently, we find the minimum of the latter function with respect to u§"),

ZZ n+1 . :_QZT(nJrl i—Mj)7

8’”11;1

(n+1)

which implies that p; = p; . Hence we have

N K 2
n+1
§ :§ :TJ(';JF ) (yz - u§")) > Jny1-

Another important application of the EM algorithm concerns computing pa-
rameters of a hidden Markov chain given the observed states. The respective
instance of the EM algorithm is called the Baum-Welch algorithm.

Ezample 11.3 (Baum-Welch algorithm). Consider a hidden Markov chain with
known observed states and unknown hidden states and parameters. Namely, we
put P(Z,Y0) = [T._, P(Zi,Yi|Zi_1,0), where P(Z; = k,Y; = 1|Z;_y = j,0) =
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k1, Ok > 0, and >, 051 = 1. The cross entropy takes form

Q)16 ZP =2|Y =y,0) nP(Z = 2,Y = y|¢)

- —zY—y|9) o _ /
ZZ Pz _Z’Y_yw)lnP(Z—z,Y—yW)

Zz Hz 1 Zt 1,%i,Yi ]n@’zm 1,Zm, Ym
m=1 Z Hz 1 Zi_1,25:Yi

To obtain explicit formulae for the EM iteration, we maximize the cross
entropy. We compute

0= M‘jkl [ Q(0,10) — (Zajkl—1)]

N n .

Z Zz sz\il 921)1721,%1{(2771 1 2my Ym) = (4, 6,0} 1 Y
n n+1 :

m=1 Z H’L 19£ 9% oj(kl-‘r)

0=0,+1

Hence

N N n
RUTSCRND DD 1) | MY SR § (TN 7 el L)
kl n
! Zm 122 Hz 19; vz Hzm—1 = j}

The above expression can be computed efficiently. Let us introduce forward and
backward probabilities

m

Z Hea(z?—)hzmyil{zm = k})

21.0.2m 1=1

Z H ezz Zit1, yz+11{zm = J}

Zm---ZN 1=m

Then we have

a(k) =1, (k) =30 (),
By (k) =1, Bro1(G) =305 Bun(k),
k

and

gn+1) _ Zan 1 @m—1(j) jkzl{ym Z}Bm(k’).

i S 1 ()Br1(3)
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Exercises

1. Assuming P(Z,Y|0) =[], P(Z;,Y;|0), find the EM iteration for the mix-
ture of Bernoulli distributions P(Y; = y|Z; = 1,0) = 67(1 — 61)!7¥ and
P(Y; = y|Z; = 2,0) = 05(1 — 62)7Y, where P(Z; = 1|) = 7, and
P(Z, :2|0) :T2:177'1.

2. We are given a sample of m male twin pairs, f female twin pairs, and
o opposite sex twin pairs. Estimate the probability p that a twin pair is
identical and the probability g that a child is male.

Hint: The observed data are Y = (m, f,0) and 6 = (p, q) is the parameter.
If we knew which pairs of same-sex were identical then it would be easy
to estimate p and ¢g. Thus we may postulate the complete data (Y, Z) =
(m1, ma, f1, fo,0) where my (f1) is the number of male (female) identical
twins and ms (f2) is the number of male (female) non-identical twins.
The complete likelihood function is

m+f+o

_ my _ 21m2 _ 11
Pz =, "0 Yoo - e - ol

x [(1—p)(1—q)*)2[(1 - p)2¢(1 - )]°

since identical twins involve one choice of sex and nonidentical twins two
choices of sex. The conditional expectations of m; and f; given Y are

Bofmly] =m s,
BofmalY] =

Eo[fY] = U s ﬁ(if—qﬁm —q)*’
Bo[ply] = /LD

pl—q)+ (1 -p)1-q?>

3. Suppose that the lifetimes Y; of lightbulbs follow exponential distribution
p(Y;]0) = 6~ 1exp(—Y;/0). We conduct two experiments: In the first ex-
periment, with N bulbs, the exact lifetimes Y7, ..., Y are recorded. In the
second experiment, with M bulbs, the experimenter enters the laboratory
at some time ¢ > 0 and all that he registers is that Z bulbs are burn-
ing while M — Z have expired. Having this data, what is the maximum
likelihood estimator of 8 given by the EM algorithm?
Hint: Let F; = 1 when the ¢-th bulb from the second experiment
is burning and E; = 0 when the light is out. The observed data is
(Y1,...Yn, By, ..., Ep), whereas the latent variables are (Xi,..., X)
with X; being the unknown lifetime of the lightbulb in the second
experiment. The conditional expectation of X; given E; is

t+6 if B =1,
g — e it B —0.

1—e—t/0

E,[Xi|Ef] = {
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4. Let Z1,Zs, ..., Zyr, with Z; : 2 — J, be a sequence of discrete random
variables and let Y7, Y5, ..., Y3 be a random sample of sets, where each set
Y,: 2 — 2"\@ contains the actual value of Z;, i.e., Z; € Y;. The objective
is to guess the conditional distribution of Z; given an event (Y; = Ai)ij‘il,
A; C J. In particular, we would like to know the conditionally most likely
values of Z;.

For this task we adopt the following probability model. First, we assume
that the likelihood factorizes into P(Z,Y'|0) = [, P(Z;,Y;|0). Second, we
assume that

. g(A), jeA,
HE=M&=%®:{J) olse (11.8)

P(Z;=j|0) =p;

for parameter 6 = (p;) ;. ; and a parameter-free function g(-) satisfying

d 1{jeAlg(A) =1, Vjel. (11.9)

Ae27

card A—1 (1 _ )card J—card A

For example, let g(A) = ¢ q , where card A stands
for the cardinality of set A and 0 < ¢ <1 is a fixed number not incorpo-
rated into 6. Then the cardinalities of sets Y; are binomially distributed,
i.e., P(cardY; —1|0) ~ B(card J—1, q). This particular form of g(A), how-
ever, is not necessary to satisfy (11.9). In fact, assumption (11.8) leads to
an EM algorithm which does not depend on the specific choice of function
9(-). Find this EM algorithm.
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Maximum entropy

Boltzmann H-theorem. Maximum entropy modeling.

In Chapter 8 we introduced exponential families of distributions and subse-
quently we showed that they have many nice properties. Now we will show that
exponential families have another interesting property, namely, they maximize
entropy given linear constraints on the sufficient statistic. Before we discuss the
maximum entropy distributions, we want, however, to make a digression and ex-
plain where the principle of maximum entropy comes from. In fact, this principle
originated in physics. We will exhibit Boltzmann’s H-theorem, which states that
entropy of the ideal gas is a nondecreasing function of time.

Ludwig Boltzmann (1844-1906) considered time evolution of the ideal gas
and in 1872 he derived an equation which implies that the entropy of the gas
density does not decrease in time. This effect holds under a certain apparently
intuitive assumption about the number of colliding gas particles. Here we will
study a simplified version of Boltzmann’s equation for which the H-theorem
holds.

We will assume that the gas fills some volume and its space density is con-
stant. In contrast, the velocity distribution in a space element will be inhomoge-
neous and evolving. The velocity distribution evolves because of collisions of gas
particles of different velocities. To simplify the description of collision effects,
we will assume that particles are ideal balls. Yet we need to assume something
about the probability of collisions. It is intuitive to assume that gas particles
remain in a state of a molecular chaos. Thus, following Boltzmann, we will make
an important assumption that the number of collisions in a time unit is pro-
portional to the product of densities of the colliding particles. This assumption
about the number of collisions is called Stosszahlansatz.

Let us introduce the necessary notation. Symbol p;(v) will denote the density
of particles with velocity v at while t. Moreover, v and v’ will denote the veloc-
ities of particles before the collision whereas v” and v’ are the velocities of the
particles after the collision. For u being the vector that joins the centers of the
particles at the while of collision, v”" and v"” are the functions of v, v/ and u. In
the time evolution of p;(v) there are two effects. First, p;(v) increases when two
particles of velocities v” and v and vector u collide. Second, p;(v) decreases
when a particle of velocity v collides with another particle. The aforementioned
assumption about the number of collision, Stosszahlansatz, implies that the num-
ber of the first type collisions is proportional to p:(v")p:(v"")7(v,v’,u) and the
number of the second type collisions is proportional to p:(v')p:(v)7(v,v’, u),
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where 7(v,v’,u) is a certain function called cross-section. This yields equation

20— [ [0 nw") = (o1 (0)] (0.0 ) @0 d

This equation is called the Boltzmann equation.

By the principles of classical mechanics, the collisions are invertible. That is,
for a fixed u, if —v"” and —v"" are the velocities before the collision then —v
and —v’ are the velocities after the collision. Further analysis of the collision
mechanics leads to these symmetry conditions for the cross-section 7(v,v’, u):

/f('u,v’,v”,v”’)T('v,'u’,u)dvdv’du
:/f(v’,v,v’”,fv”)r(v,fv’,u)d’ud'u'du
:/f('v",'v'”,v,v')T(v,v’,u)dvdv’du
:/f(v/”,v”,v’,v)T(v,v’,u)dvdv'du, (12.1)

where f(v,v’,v”,v") is an arbitrary function of velocities. These equalities will
be used further.

For example, we note first that the total number of particles remains constant.
Denote the number of particles at while ¢ as

N(t) = /pt(v) dv.

In the following we shall assume that the density p;(v) is sufficiently regular
(namely, its derivative is continuous) so that the order of integration and differ-
entiation can be switched.
Theorem 12.1. We have
dN(t
®) =0.
dt

Proof. Observe that

dN(t) _ [ 9pi(v)
dt ot dv

= / [pe(0")pe (V") = pe(v")pe(v)] 7 (v, ', ) dv dv’ du.

Using equality (12.1), we may symmetrize this expression as
dN(t 1
% = 5/ [pe(v")pe (V") = pi(v')pe(v)] 7 (v, v, w) dv dv’ du

+ %/ [pe(©)pe (V") = pe (V") e (v")] 7 (v, ', w) dv dv’ du = 0.
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Now, let us introduce the entropy of the velocity distribution:

H(t) = —/pt(v) In p;(v) dw.

We can show that the entropy grows.
Theorem 12.2 (H-theorem). We have

dH (t)
@ - 0
Proof. Notice that
B~ [ o) + 1282
== / [In p¢(v) + 1] [Pt('UN)Pt(’UW) - Pt("’l)Pt(’l’)]T(’Uavlvu) dv dv’ du.

(12.2)

Now using equality (12.1), we may symmetrize the expression on the right hand
side of (12.2). Namely, we obtain

T 2 [ 1 o) 10 [0 (6" = @) u(0)] (0,0, ) dw e’ d

dt 4

1

-7 / [ pi(v) + 1] [pe(0")pe(0"") = po(0 )1 (0)] (v, 0 ) dv do’ du

- %/[ln pe(v") +1] [pe(v)pe (V') — pr(v")pe(v")] (v, v, w) dv dv’ du
- i/[ln pe(v"") +1] [pe(v)pe (V") = pr (") pe(v")] 7 (v, v, w) dv dv’ du
= i/ﬂt(v")m(vm)(lnx)(x —1)7(v,v',u) dv dv’ du > 0,

where © = p(v')pr(v)/pr(v")pr(v"") and (Inz)(z — 1) > 0.

The fact that entropy grows is paradoxical in view of the assumptions that
particle collisions are invertible. The reason for the entropy growth lies, however,
in the adopted assumption about the number of collisions. The Stosszahlansatz
holds true only for a particular initial state of the gas. This state is likely enough
and the Boltzmann equation is a very good approximation of the time evolution
of gases that we observe in nature.

The time evolution of the ideal gas density can be linked with the next
problem, which is the maximum entropy modeling. Namely, we know that the
entropy of the ideal gas grows but a few other statistics remain constant. We may
thus suppose that the system tends to an equilibrium state p(v) = lim;—, oo pi(v)
where the entropy is maximal given other constraints. Formally, we have

—/p(v) In p(v) dv = max (12.3)
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given some additional conditions. By the principles of classical mechanics, there
are three constraints for the ideal gas. First, the total number of particles is
constant. Thus let the density be normalized as

/p(v) dv=1. (12.4)

Second, the total momentum (i.e., the sum of velocities) is constant. Assuming
that the gas does not move globally, we obtain

/p(v)v dv =0. (12.5)

Third, the total kinetic energy is constant. Assuming that the average kinetic
energy per particle is o2, we have

/p(v)172 dv = o2 (12.6)

We assume that there are no other constraints. As we will prove, the solution
of equation (12.3) given conditions (12.4)—(12.6) is unique and is given by the
three-dimensional Gauss distribution

mm=[1}wle;Q.

2mo?

Let us show where this equation comes from. The general problem of maxi-
mum entropy modeling is as follows:

Problem 12.1 (mazimum entropy). Find the probability density p that maxi-
mizes entropy

H(p) =~ [ pla) nplz) da (12.7)

given constraints:

/p(az) de =1, (12.8)
/p(m)ﬂ(m) dr=q;, 1<1<m. (12.9)
Similar problems of maximizing entropy given some constraints appear in many
applications, in machine learning in particular. The solution is this.
Theorem 12.3. If there exists density
m
p*(z) = exp [/\3 +> /\;‘Ti(x)} ,
i=1

where A} are chosen so that p* satisfies conditions (12.8)-(12.9), then p* max-
imizes entropy (12.7) on the space of probability densities that satisfy (12.8)-
(12.9).
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Remark 1: We can see that the solution of the maximum entropy problem is an
exponential family with T; being minimal sufficient statistics.

Remark 2: In problems of machine learning, we encounter discrete rather than
continuous distributions. The solution of the maximum entropy problem in that
case is analogous, with probabilities replacing probability densities.

Remark 3: In certain maximization problems, there exists no p* that satisfies
(12.8)—(12.9). In such cases there is no distribution having the maximal entropy.
This happens for example for constraints [ 2*p(z)dz = oy, where k = 0,1,2,3.
In that case we would obtain

p(z) = exp [Ao + Mz + Xoz? + A32?]

which cannot be normalized for any A3 # 0 because p(z) tends to infinity for
either for x+ — oo or z — —o0.

Proof. Let p satisfy constraints (12.8)—(12.9). We observe that Kullback-Leibler
divergence D(p||p*) is nonnegative and equals 0 if and only if densities p and p*
are equal. Hence we obtain

H(p)

- / o) In p(z) d
—D(pllo") - / plz) In p* () da
- [ ) np @)z

f/p(x) [)\3 + i )\Z‘Tz(x)] dz
- [r@|+ Xinj N i) do
- [ # @) @) do = H(E).

IN

with the equality if and only if p and p* are equal. This proves the claim.

The remaining problem is to find the suitable A\}. The computation involves
a few steps. The first step is to consider a Lagrangian function.

Theorem 12.4. Consider the density px and the Lagrangian function L(\) de-
fined as

px(z) = exp Z)\iTi(x) -z, (12.10)
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where the canonical sum Z(\) is

ﬂm=/m{2&mm
=1

Function L(X\) has a single minimum and the vector \* = (A}, ..., \}) for which
density (12.10) satisfies conditions (12.9) is the solution of the equation

A" = argmin L(\). (12.12)
A

Proof. We have

OL(N) 1 S
Ry /Tj(x) exp Lz_; AT ()

~ [ @) do -

Hence the Lagrangian has an extremum if and only if p, satisfies conditions
(12.9). Further analysis shows that there is only one extremum and it is a mini-
mum because the Lagrangian is convex. Indeed we obtain

9?L(\ 0 1
() ()\) / T) exp [Z)\ T (x
dx]

ONON, 0N
x]

1
— “ZOT [/Tk(x) exp [Z AiTi(z)

dr — o

X AiTi(x

1=1

1
+ m /Tk exp [Z )\ZT‘Z

i=1

l—|

3

Writing E \T = [ px(2)T'(x) dz, we have
9?L(\)
OXjON

We observe that the second derivative of the Lagrangian is a covariance matrix,

which is nonnegative definite, i.e.,

" 9%L()N)
Z ajmak = E)\

= E\(T;Ty) — E\T,E T, = E, [T} — EAT}] [T — E T}

> 0.

> a; [T — ENTY)

j=1

J,k=1
Hence the Lagrangian is convex and the there is only one extremum.

The final step to find Af is to minimize the Lagrangian L(A). In many problems
of machine learning this can be only done numerically. The suitable minimiza-
tion can be performed using generic minimization algorithms, e.g. minimization
by conjugate gradients, or algorithms dedicated for function (12.11), e.g. the
iterative scaling (Berger et al., 1996).
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Exercises

1.

(Entropy growth) Show that H(X,|X;) > H(X,-1|X1) for a stationary
Markov chain.

. Let the value of X be an ordered n-tuple and let T" be a random per-

mutation of an n-tuple, probabilistically independent from X. Show that
H(TX) > H(X).

(Differential entropy) Let p(x) be a probability density limited to a certain
volume V', i.e, p(x) = 0 for = ¢ V. Show that

- [ pa)np(e) < V.
s

where the equality holds if and only if p(z) = 1/V for almost all x € V.
(Mazimum entropy) Show that every probability density is a maximum
entropy density under a certain constraint.

Hint: Show that p* is the maximum entropy density under constraint
[ p(z)In p*(z) dz = «. Find the appropriate «.

. Let p(x) be a probability density of a nonnegative random variable with

mean p. What is the maximum value of entropy H(p) in that case?
Prove Lemma 6.3.
Consider cross entropy

H(pllo):= - [ pla) o(w)dz = H(p) + Do)
Let p satisfy conditions (12.8)—(12.9) and let py be of form (12.10). Show

that cross entropy H(p||px) achieves minimum for py = p* where p* is
the maximum entropy distribution for problem (12.8)—(12.9).
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Kolmogorov complexity

Kolmogorov complexity. The information-theoretic Gédel theorem. In-
compressibility method. Oscillations of Kolmogorov complexity.

In Shannon’s information theory, the amount of information carried by a ran-
dom variable depends on the ascribed probability distribution. Andrey Kol-
mogorov (1903-1987), the founding father of modern probability theory, re-
marked that it is extremely hard to imagine a reasonable probability distri-
bution for utterances in natural language but we can still estimate their infor-
mation content (Kolmogorov, 1965). For that reason Kolmogorov proposed to
define the information content of a particular string in a purely algorithmic way.
A similar approach has been proposed a year earlier by Ray Solomonoff (1926
2009), who sought for optimal inductive inference (Solomonoff, 1964). The newly
emerged research paradigm has been called algorithmic information theory. In
the following chapters we will be occupied with rudiments of that theory.

The fundamental object of algorithmic information theory is Kolmogorov
complexity of a string. The Kolmogorov complexity constitutes an algorithmic
analogue of Shannon entropy. It is defined as the length of the shortest program
for a Turing machine such that the machine prints out the string and halts. The
Turing machine itself is defined as a deterministic finite state automaton which
moves along one or more infinite tapes filled with symbols from a fixed finite
alphabet and which may read and write individual symbols. The automaton has
a distinct start state, from which the computation begins, and a distinct halt
state, at which the computation ends. The concrete value of Kolmogorov com-
plexity depends on the used Turing machine but many properties of Kolmogorov
complexity are universal.

Formally, a Turing machine is defined as a 6-tuple T' = (Q, s, h, I, B,J),
where

1. @ is a finite, nonempty set of states,

2. s € @ is the start state,

3. h € @ is the halt state,

4. I' is a finite, nonempty set of symbols,

5. B € I' is the blank symbol,

6. §: Q\{h} xI' - QxI'x{L, R} is a function called a transition function,
where L is the left shift and R is the right shift.

This formal description translates to machine operation in the following way.
The machine is given an infinite tape (X;);cz filled with symbols from I'. In
this chapter we will assume that I" = {0, 1, B}. The initial state of the tape is
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XW‘H = pB, where p € {0,1}", and X; = 0 for other X;. The initial machine
state is s and the machine reads symbol X;. Subsequently, the machine shifts in
discrete steps along the tape in the way prescribed by the transition function.
Namely, if the machine is in state a and reads symbol b then, for (a,b) =
(a’, b, M), the machine writes symbol " on the tape, moves along the tape one
symbol to the left or to the right if M = L or M = R, respectively, and assumes
state @/ in the next step. This procedure takes place until the machine reaches
the halt state h. Then the computation stops.

The set of such Turing machines will be denoted as 7. In the following we
will say that machine T' € T halts on input (program) p € {0,1}" and returns
string w € {0, 1} if:

(A) The head in the start state reads symbol X7, and the initial state of the
tape is lelﬂ =pB. We put X; =0 for i <1 and i > |p| + 1.

(B) The head in the halt state reads symbol X;, and the final state of the
tape is le-wlﬂ = wB.

Assuming that condition (A) is satisfied, we write

T(p) = w, if condition (B) is satisfied,
Pr= o0, if condition (B) is not satisfied for any w € {0,1}"

The initial and the final state of machine T is depicted in Figure 7.

iO 0|00 0 1 1| B |0 0;

iO 1| B|1|0]0 1 0| B O;

Fig. 7. The initial and the final state of machine T for 7'(011) = 10010.

Definition 13.1 (Kolmogorov complexity). Kolmogorov complexity Cp(w)
of a string w € {0,1}" with respect to machine T € T is defined as

Cr(w) = min {lp|:T(p) = w}.

In the following, we will discuss Kolmogorov complexity with respect to a
universal machine.
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Definition 13.2 (universal Turing machine). Machine U € T is called uni-
versal if for each machine T € T there exists a string u € {0,1}" such that

U(up) = T(p)
for all p € {0,1}".

Universal machines exist. The proof is not complicated but tedious. For a sketch
of the proof we refer to Li and Vitdnyi (2008, Example 1.7.4). Briefly speaking,
machine U operates in this way: Given u it first enumerates descriptions of
machines in set 7 until it finds a description of machine T identified by index
u. Then, having the description of machine 7', machine U simulates machine T’
on input p.

The reason for considering universal machines is that Kolmogorov complexity
for a universal machine is almost invariant up to an additive constant.

Theorem 13.1 (invariance theorem). For any two universal machines U
and U’ there exists a constant ¢ such that

[Cu(w) = Cur(w)| < e
for any string w € {0,1}".

Proof. We have U(up) = U’(p) and U’ (u'p) = U(p) for certain strings u and u’.
Hence Cy(w) < Cy/(w) + |u] and Cyr (w) < Cy(w) + |u'].

Thus for further considerations we will choose a certain universal machine U as
a reference machine to determine Kolmogorov complexity.

Definition 13.3 (Kolmogorov complexity II). Let U € T be a selected
universal machine. We will put

C(w) := Cy(w).
This quantity will be called (plain) Kolmogorov complexity.

Besides complexity of strings, we will also discuss complexity of arbitrary
discrete objects such as rational numbers or automata. Those objects are for-
mally defined as finitely nested n-tuples of binary strings and natural numbers.
Thus, let A be the set of finitely nested n-tuples of binary strings and natural
numbers. Moreover let E(n) be the Elias omega code of natural number n. We
will write w := E(Jw|)w for strings w € {0,1}". Notation (ay,az,..,an_1,an)
denotes an n-tuple, where a; € A. By recursion, we define the coding function
¢:A—{0,1}" as

¢ ({(a1,a2, .., an—1,a,)) := 101¢(a1)04(az)0...0¢(a,—1)0¢(a,)100,
é(w) == 110w, if w € {0,1}7,
¢(n) := 111w, if n € N, and w is the binary expansion of number n.

Moreover, we put ¢(co0) := oo, where co denotes the indefinite value. Kolmogorov
complexity of an object a € A\ {0,1}" will be defined as Cr(a) := Cr(¢(a))
and C(a) := C(¢(a)), respectively.

It is also important to introduce the concept of a computable function.
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Definition 13.4 (computable function). We say that machine T or pro-
gram p computes partial function f: A — AU {oo} if T(¢(a)) = ¢(f(a)) or
U(po(a)) = ¢(f(a)), respectively, for all a € A. A function that can be computed
by a program is called recursive or computable.

Having all these definitions, we may prove a few interesting theorems. First,
we will give a simple bound for Kolmogorov complexity of a string.

Theorem 13.2. There exists a constant ¢ such that C(w) < |w| + ¢ for any
string w.

Proof. A certain program that generates string w has form “print w”.

The second result states that Kolmogorov complexity cannot be computed in
general. Some people consider this property a drawback. We would like however
to put forward an alternative interpretation, namely, that incomputability of
Kolmogorov complexity is just yet another interesting property.

Theorem 13.3. Kolmogorov complezity C(-) is not a computable function.

Proof. Assume that there exists a program ¢ which computes C'(w) for any w.
Then there exists a program p which uses g as a subroutine to print out the
shortest string w such that C(w) > |p|. Namely, such a program p inspects
strings w sorted according to their length, computes C'(w) using subroutine g
and checks whether C(w) > |p|. It is obvious that this inequality will hold for
a certain w because C(w) is unbounded. But by the definition of Kolmogorov
complexity, we have C'(w) < |p| for the same string. Hence our assumption about
the existence of program ¢ was false.

A similar search for the shortest element appears in the proof of the
information-theoretic Godel theorem, another fundamental result in the algo-
rithmic information theory. A formal inference system is a finite collection of
axioms and inference rules. The system is called consistent if it is not possible
to prove both a statement and its negation, whereas the system is called sound
if only true propositions can be proved. (Thus a sound system is consistent.)
According to the information-theoretic Godel theorem, in any sound formal
inference system it is not possible to prove incompressibility of any string which
is substantially longer than the definition of this formal system. A binary string
is called incompressible if C(x1) > n. The following theorem is due to Chaitin
(1975b).

Theorem 13.4 (information-theoretic Goédel theorem). For any sound
formal inference system, there exists a constant K such that propositions
“C(w) > K7 are unprovable in that system.

Proof. Let us assume that for any number K there exists a proof of proposition
“C(w) > K”. Then we may construct a program of length of L which searches
all proofs of the formal system to find the first proof that a certain string w has
the complexity greater than K and then prints out that string. Then we have
C(w) < L. Since L < ¢+ log K, we obtain a contradiction for sufficiently large
K’s.
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Although incompressibility is unprovable, there are infinitely many in-
compressible strings because there are not so many short enough programs.
A string «7 will be called c-incompressible if C(x}) > n — c. In particular,
a 0-incompressible string will be called incompressible.

Theorem 13.5. There exist at least 2" — 2"~¢ + 1 distinct c-incompressible
strings of length n.

Proof. There exist at most 2"~ ¢ — 1 distinct programs of length strictly smaller
than n — ¢ and there exists 2™ distinct strings of length n. Subtracting the latter
from the former, we obtain the desired bound.

In particular, there is at least one incompressible string of length n and at least
a half of strings of length n is 1-incompressible.

The existence of incompressible strings may be used for nonconstructive
proofs of a few asymptotic bounds. This technique is called incompressibility
method. The first example will concern the density of prime numbers.

Theorem 13.6. Let w(n) be the number of primes that do not exceed n. For
infinitely many n we have w(n) > logn/(loglogn + c).

Proof. Let p1,p2, ..., Px(n) be the primes that are smaller than or equal n. We may
€r(n)
m(n)
of the shortest description of n is upper bounded by 7(n)loglogn + O(1). If n
has an incompressible binary representation then logn < 7(n)loglogn + O(1).

Hence we obtain the desired bound.

represent n = pi*pst...p where e; < logn because p; > 2. Thus the length

The given bound is not very good because we have lim m(n) =
n—oon/lnn

The second example of incompressibility method concerns language and au-
tomata theory. A formal language L is a subset of the set of strings I'*, i.e.,
L C I'*. We say that a formal language L is regular if it is recognized by a cer-
tain deterministic finite state automaton, i.e., when w € L holds if and only
if the automaton accepts w. The formal definition of the latter concept is as
follows. A deterministic finite state automaton is a 5-tuple M = (Q, s, h, I, 9),
where

Q@ is a finite, nonempty set of states,

s is the start state,

. h is the halt state,

. I' is a finite, nonempty set of symbols,

. 0:Q\{h} x I' = @ is a function called a transition function.

We say that the automaton M accepts a word z7 € I'* if there exists a sequence
of states r§ € Q* such that ro = s, 1341 = §(rs, xi41) for ¢ € {0,1,...,n — 1},
and r, = h.

Theorem 13.7. Language {Oklk ke N} is not reqular.
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Proof. Assume that language {0’“1’C ke N} is regular. Then the language is
recognized by a certain deterministic finite state automaton. The number k or
the string 1% can be encoded by specifying this automaton and the state of
the automaton after reading the string 0¥. We obtain a contradiction if C'(k) is
greater than the double Kolmogorov complexity of the automaton plus a con-
stant.

The technique used in the above proposition may be generalized to a lemma
that characterizes regular languages.

Lemma 13.1. Let language L C {0,1}" be reqular and L, = {y : xzy € L}. Then
there exists a constant ¢ such that for each x we have C(y) < C(n)+c if y is the
n-th element of L,. (We assume that the elements of L, are sorted according to
length if they are of different length and lexicographically if they have the same
length.)

Proof. Let y be the n-th element of L,. String y can be described by (i) specifying
the deterministic finite state automaton that recognizes L, (ii) giving the state
of the automaton after reading x, and (iii) giving the number n. The first two
parts require ¢ bits, whereas the third part requires C'(n) bits. Hence we obtain
Cly) <C(n)+ec.

Using this lemma we can obtain another known result.

Theorem 13.8. Language {17 : p is prime} is not regular.

Proof. Assume that L = {17 : p is prime} is regular. Let us consider zy = 1?7
where p is the (k + 1)-st prime. Put = 17" where p is the k-th prime. Then
y = 1P=7' is the first element of L,. Hence by Lemma 13.1 we have Clp—9p) <
C(y) + O(1) < O(1). But differences p — p’ are unbounded hence C(p — p’) is
also unbounded. We obtained a contradiction so our assumption was false.

Finally, let us consider properties of incompressible strings again. Although
there are infinitely many incompressible strings, there is no such infinite sequence
(x;)$2, that C(z}) = n — ¢ for each n. This phenomenon is called oscillations of
Kolmogorov complexity.

Theorem 13.9. Let (x;)$2, be an infinite binary sequence. For infinitely many
M we have C(zM) < M —log M + O(1).

Proof. Consider an arbitrary m. Let 7 be the binary expansion of a number
n stripped of the initial digit 1. Then we have C(z]"*™) < O(1) + C(a]n1}) <
O(1) + n because we may compute z7* given (the length of) z/nf}. Put M =
m+n. We have m > logn + O(1) = log(M —m) + O(1) > log M + O(1). Hence
CEM)<n+0(1) < M —logM + O(1).
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Exercises

1.

10.

(Continuity of Kolmogorov complexity) Show that for natural numbers
z,y we have |C(z +y) — C(x)| < 2logy +c.

. Let string x satisfy C(x) > n — ¢, where n = |z|. Show that C(y), C(z) >

n/2 —c for x = yz and |y| = |z|.

Assume that the elements of {1, ..,n} are uniformly distributed with prob-
ability 1/n. Compute the expected value of C'(z), 1 <z < n.

Prove that language L = {zx : € X*} is not regular.

. Let 28 = x,2,_1...x1 be the reflection of string * = zjx9...x,. Prove

that language L = {me rx € X*} is not regular.

Hint: Consider w = (01)™.

Let # denote a symbol out of the alphabet which is used to write down
strings x, y, and z. Prove that language L = {x#y#z : xy = z} is not
regular.

Hint: Consider w = 0" #+#.

Prove that language L = {z+#ty : © appears in a discontinuous way in y}
is not regular.

Hint: Consider w = 0™+.

Prove that language L = {0"1™ : m > n} is not regular.

Hint: Consider w = 0.

Prove that language L = {ax#uy : at least half of x appears in y} is not
regular.

Hint: Consider w = 0?"#.

Let GCD(4,5) be the greatest common divisor of ¢ and j. Prove that
language L = {017 : GCD(4, j) = 1} is not regular.

Hint: Consider w = 0?~Y'11, where p is the n-th prime number.
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Prefix-free complexity

Prefix-free Kolmogorov complexity. Links between Kolmogorov complex-
ity and entropy. Algorithmic probability. Symmetry of algorithmic infor-
mation.

In Chapter 13, we have discussed the so called plain Kolmogorov complexity.
A bit different definition of Kolmogorov complexity is convenient to discuss
links between complexity and entropy. This complexity is called the prefix-free
Kolmogorov complexity. The difference to the plain complexity lies in using
a different Turing machine. The fundamental idea is to force that the accepted
programs form a prefix-free set. This can be done in a few ways. Here we will
use the construction by Gregory Chaitin (1947-), described in his seminal paper
Chaitin (1975a).

Thus we will consider a machine that has two tapes: a bidirectional tape
(X;)iez filled with symbols 0, 1, and B (blank symbol) and a unidirectional
tape (Yi)ren filled with symbols 0 and 1. The head of the machine may move in
both directions along tape (X;);cz and only in the direction of growing k along
tape (Yi)ren. Tape (X;);cz can be both read and written, tape (Yi)ren is read
only. The set of such machines is denoted S. We say that machine S € S halts
on input (p,q) € {0,1}* x ({0,1}* U {0,1}") and returns string w € {0,1}" if:

(A) The head in the start state matches symbols Y7 and X, and the initial
state of the tapes is Yl‘p‘ = p and X{qlﬂ =¢gB or X{° = qif ¢ is an
infinite sequence. Besides we put X; =0 fori <1 and ¢ > |¢| +1if q is
finite.

(B) The head in the halt state matches symbols Y},| and X, and the final

state of the tape (X;);cz is Xj‘.“"“ = whB.

Assuming that condition (A) is satisfied, we write

S(plg) = w, if condition (B) is satisfied,

(pla) = oo, if condition (B) is not satisfied for any w € {0,1}".
In other words, S(plg) = oo, if the machine does not reach the halt state or
reaches the halt state with the head matching symbol Yy, where k # |p|. The
initial and the final state of machine S is depicted in Figure 8. It can be easily
seen that for a given ¢ the set of strings p such that machine S halts on input
(p, q) is prefix-free. Such strings are called self-delimiting programs.
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iO 0]0(01]0 1|1 |B |0 0;

1 110 110 1}

Fig. 8. The initial and the final state of machine S for S$(11010|011) = 01.

Definition 14.1 (prefix-free complexity). Prefix-free conditional Kol-
mogorov complexity Kg(w|q) of a string w € {0,1}" given string q € {0,1}"
and machine S € S is defined as

Kg(wlq) := pe%irll}* {lpl - S(plg) = w}.

Analogously as in Chapter 13, we introduce universal machines.

Definition 14.2 (universal machine). Machine V € S is called universal if
for each machine S € S there exists a string u € {0,1}" such that

V(uplg) = S(plg)

for all p € {0,1}" and q € {0,1}" U {0, 1}N.

Such universal machines exist. Again, we will assume this fact without proof.
We also have the invariance theorem as for the plain complexity.

Theorem 14.1 (invariance theorem). For any two universal machines V
and V' there exists a constant ¢ such that

|Kv (wlg) — Ky (wlg)| < ¢
for any string w € {0,1}* and ¢ € {0,1}* U {0,1}".

Proof. We have V(up|q) = V'(plq) and V'(u'p|lq) = V(p) for certain strings u
and v'. Hence Ky (w|q) < Ky (wl|q) + |u| and Ky (w|g) < Ky (w|qg) + |v/].
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Thus for further consideration we will choose a certain universal machine as a
reference to determine prefix-free complexity.

Definition 14.3 (prefix-free complexity II). Let V € S be a certain uni-
versal machine. We put

K(wlq) := Kv (w|q).
This quantity is called prefix-free conditional Kolmogorov complexity.

Moreover, unconditional complexities are defined as

Ks(w) := Kg(w[A),
K(w) := K(w|)\),

where ) is the empty string. Similarly, we will use shorthand V' (p) := V(p|A) for
any other function V.

Now let us discuss complexities of objects different to strings. Let A be the
set of discrete objects and ¢ : A — {0,1}" be the coding function defined in
Chapter 13. In this chapter we allow Turing machines that also process infinite
binary sequences. Such sequences can be identified with tuples of both discrete
objects and real numbers. Let B be the set of such objects and let ¢ : B —
{0,1}*U{o, 1}N be the appropriate coding function, respectively. The complexity
of objects a € A\ {0,1}* and b € B\ ({0,1}* U {0,1}") will be defined as

Ks(alb) == Ks((a)|1(D)),
K(alb) := K(¢(a)[y(b)).
Analogous convention is used if one of the objects is a string from {0,1}" or an
infinite sequence from {0, 1}N. To increase readability, the notation of functions
¢ and v in any similar contexts will be also suppressed.

We will also define complexity of functions. First, the Kolmogorov complexity
of a discrete partial function f : {0,1}* U {0,1}" — {0,1}* U {oo} is defined as

K (f) = min {[p] e 0,1y 0g0,1pV (plu) = F(u) }

In the above definition, we assume that the minimum of the empty set is infinity.
In a similar way, we also define

K(f):=K(¢o foy™)

for other discrete-valued partial functions f : B — A U {oc}. Hence we may
extend the definition of a computable function from Chapter 13 as follows.

Definition 14.4 (computable discrete function). A discrete-valued func-
tion f: B — AU {oo} is called computable if K(f) < oc.

The more interesting case is that of real-valued functions. Let Q C A be the set
of rational numbers. We have three important cases:
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Definition 14.5 (lower semicomputable real function). A real-valued
function f : B — R is called lower semicomputable if there is a computable
function A : B x N — Q which satisfies A(x,k+ 1) > A(z, k) for any k > 1 and

Veep lim Az, k) = f(z).
k—o00

Definition 14.6 (upper semicomputable real function). A real-valued
function f : B — R is called upper semicomputable if there is a computable
function A : B x N — Q which satisfies A(z,k+1) < A(z, k) for any k > 1 and

Veep lim Az, k) = f(z).
k—o0

Definition 14.7 (computable real function). A real-valued function f :
B — R is called computable if there is a computable function A : B x N — Q
which satisfies

VienVeer | f(z) — A(z, k)| < 1/E.
In all three cases we put

K(f):= mjnK(A).

An important example of an upper semicomputable function is Kolmogorov
complexity. A function which is both upper and lower semicomputable can be
shown computable. It can be shown that prefix-free Kolmogorov complexity is
not computable, as in the plain case.

In further considerations, machines from set 7 will be called plain and ma-

+ +
chines from set S will be called prefiz-free. We will also write p < g and p > ¢ if
there exists a constant ¢ such that p < g+ ¢ and p > ¢+ ¢ holds respectively for

+ +
all p and gq. We will write p = q when we have both p < ¢ and p > ¢. Thus the
claim of Theorem 14.1 may be restated as

Ky (wlq) £ Ky (wlq).

Now let us discuss a few theorems that concern prefix-free complexity. The
first is a bound for the prefix-free complexity which is analogous to Theorem 13.2.
Let us remind that E(n) is the Elias omega code for number n and w = E(|w|)w.

Theorem 14.2. We have
+
K(wlg) < |w|.

Proof. There is a prefix-free machine S which satisfies S(w|q) = w. It generates
w as follows. First it reads the Elias omega code for number n = |w| from
the unidirectional tape. Then it copies string w to the bidirectional tape. After
copying the last symbol of w the machine halts because it knows its length from
reading code E(n). Hence we have the desired bound.
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The second bound links prefix-free complexity and plain complexity.

Theorem 14.3. Let C(-) be the plain Kolmogorov complexity and let K(-) be
the prefiz-free Kolmogorov complexity. We have

C(w) < K(w) £ C(w) + K(C(w)).

Proof. The left bound follows because if S(p) = w for a certain prefix-free ma-
chine S then T(p) = w for a certain plain machine T. The proof of the right
bound is as follows. Let p be the shortest program that satisfies U(p) = w for
the plain universal machine U and let p’ be the shortest program that satis-
fies V(p') = ¢(|p|) for the prefix-free universal machine V. Then S(p'p) = w for

+
a certain prefix-free machine S which does not depend on w. Hence K (w) < |p'p|.

In contrast to the plain Kolmogorov complexity, the prefix-free complexity
is close to entropy. The following theorem is the first step to see it.

Theorem 14.4. We have inequalities:

wlu) < K(w) < K (), .

ww) < K((u,w)) < K(u) + K(wlu) < K(u) + K(w),
fw)) < K(w) + K(f),

w) I logp(w) + K(p) for a distribution ), p(w) < 1.

+
Proof. 1. K(w|u) < K(w) because a certain program that computes w given
u has form “ignore u and execute the shortest program that computes w”.

+
K(w) < K({u,w)) because a certain program that computes w has form
“execute the shortest program that computes (u, w) and compute w from
(u, w)”.

+
2. K(uw) < K({(u,w)) because a certain program that computes uw has
form “execute the shortest program that computes (u,w) and compute
uw from (u, w)”.

+
Similarly, K ({u,w)) < K(u) + K(w|u) because a certain program that
computes (u, w) has form “execute the shortest program that computes u
and the shortest program that computes w given v and from that compute
(u,w)”.

The last inequality follows from K (w]|u) IK (w).

3. The inequality follows from the fact that a certain program that computes
f(w) has form “execute the shortest program that computes w and to the
result apply the program that computes f(w) given w”.

4. The inequality follows from the fact that a certain program that com-
putes w has form “having a program that computes w — p(w), take the
Shannon-Fano code word for w with respect to p and compute w from
it.”
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Now we can demonstrate the exact link between prefix-free Kolmogorov com-
plexity and entropy. Namely, the expectation of prefix-free complexity is close
to entropy for computable probability distributions.

Theorem 14.5. We have

H(p) <3 plw)K (w) < H(p) + K(p),

where H(p) = = p(w)logp(w) is the entropy of a distribution p.
Proof. The left inequality follows because K(w) is the length of a prefix-free
code. The right inequality follows by inequality K (w) b log p(w) + K (p).

The parallels between prefix-free complexity and entropy can be drawn fur-
ther. The following theorem is an analogue of the chain rule H(X,Y) = H(X) +
H(Y|X).
Theorem 14.6. We have

+
K((u,w)) = K(u) + K(wl (u, K(u))).

In the proposition above, it is easy to show that the left hand side is smaller
than the right hand side. The proof of the converse inequality is harder but it
rests on an interesting use of Kraft inequality and algorithmic probability. Thus
we will demonstrate the entire reasoning.

Definition 14.8 (recursively enumerable function). For a subset S C A x
A let us denote projections St := {a: (a,b) €S}, S; := {a: Iy(a,b) €S}, and
Se :={b:3u(a,b) € S}. A function W(-|-) : S — N will be called conditionally
recursively enumerable, if there exists a computable function f(-|-) : N x Sy —
S1U{¢&}, where & € A\'S; and

card {m € N: f(m|b) = a} = W(a|b)

for each b € Sy and a € St, where card A is the cardinality of set A. We say
respectively that f(|-) enumerates W(-|-).

Function f(-|-) may return a value £ out of set Sq, but because there is only one
such value, we may effectively identify that it does not belong to S;.

Now let us introduce a generalization of Theorem 3.6 for codes that can be
effectively decoded, but not necessarily effectively encoded.

Theorem 14.7 (effective Kraft inequality). If a function W : S — N,
where S C ({0,1}" x N) x {0,1}", is conditionally recursively enumerable and
satisfies

> 27"W(w,nlg) <1 (14.1)
(w,n)eS?

then there exists a prefiz-free machine S € S such that for all ¢ € So we have
card {p € {0,1}" : S(plq) = w, [p| = n} = W(w, n|q). (14.2)
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Proof. The proof is analogous to the proof of Theorem 3.6. The subtle difference
is that the ordering of code values is now chosen as the order of pairs (w,n)
produced by the computable function that enumerates function W(-|-). In this
way, we obtain a computable function that enumerates triples (p, w,q) where p
are prefix-free code words. Subsequently, the function is used for the construction
of machine S. Namely, machine S on input (p’,q’) enumerates triples (p,w, q)
until it finds triple (p’,w’,¢’) and then it outputs w’.

The second ingredient for the proof of Theorem 14.6 are algorithmic proba-
bilities.
Definition 14.9. We define algorithmic probabilities as
Os(wlg) == > 27 P1{S(plg) = w}.
pe{0,1}*
By Kraft inequality (Theorem 3.8), we have
Z Is(wlq) = 2s(q) < 1,
we{0,1}*
where
2s(q) = Y 27"P1{S(plg) # oo}
pE{O,l}*
is called halting probability.
By definition, we have ITg(w|q) > 2~ K519 5o

—log Ig(w|q) < Kg(w|q).

In contrast, Theorem 14.7 implies the converse inequality for a universal machine.

Theorem 14.8 (coding theorem). For any prefiz-free machine S’ € S,

K (wlq) < —log s (wl).

Proof. Define function W (w, n|q) = 1{IIs/(w|q) > 27"}, Function W (w,n|q)
is conditionally recursively enumerable because, by simulating all programs in
parallel, we can determine that ITg: (w|q) > 27" for any n for which it is true.
Moreover, we have

> 27 W (w,nlq) = 2717 e s (DT < 17 (w)g).
neN

Thus function W (w, n|q) satisfies (14.1). In consequence, there exists a machine
S € S such that (14.2) is satisfied. The smallest n for which ITs/(w|q) > 277!
holds is [—log IIs/(w|q)] + 1. Hence we obtain Kg(w|q) = [—log ITg:(w|q)] + 1

Therefore the claim follows by inequality Kg(w|q) Ik (wlq).
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Denoting IT(wl|q) := ITy (wl|q) for a universal machine V', we have
K(wlg) = —log I (wlg). (14.3)

Since we know that Kolmogorov complexity is close to algorithmic probability,
let us inspect properties of the latter.

In the following, we will write p 2 q and p ; q if there is a constant ¢ > 0
such that p < cq and p > cq holds respectively for all p and gq. We will write

p = ¢ when we have both p < q and p S q. By Theorem 14.8 we have

(wlg) > s(wlg),

an important fact concerning algorithmic probability. Another important fact is
that algorithmic probability behaves almost like a usual probability distribution.

Theorem 14.9. We have

I (ulq) = Z T ((u, w) |q). (14.4)
we{0,1}*

Proof. On the one hand, there exists a machine S such that S(p|¢) = w if

V(plg) = (u,w). Hence II(ulq) > Is(ulg) = >, eq0,13- 1 ({u,w)[g). On the
other hand there exists a machine S such that S(p|lq) = (u,u) if V(plq) = u.

Hence 3¢ 0,1y 1 ((u, w) [q) = I ({u, w) |q) > s ((u, u) |q) = 1 (ulg).
Now we may prove the chain rule for Kolmogorov complexity.

Proof of Theorem 14.6: First we will prove the easier inequality

K((u,w)) < K (u) + K (w] (u, K (u))).

Let p be the shortest program that satisfies V(p) = u and let p’ be the short-
est program that satisfies V(p’| (u, K(u))) = w. Then there exists a prefix-free
machine S that satisfies S(pp’) = (u, w). Hence we obtain the claim.

Next, we will show the harder inequality

+
K((u,w)) = K(u) > K(w| {u, K(u))).
By (14.3) and (14.4) we know, that there exists a constant ¢ such that for all u

and w we have
oK (w)=e Z IT({u, w)) < 1.
we{0,1}"
Define function W’ (p) = 1{V(p) # oc}. It is conditionally recursively enumer-

able. Let it be enumerated by function f’(-). Subsequently, let us put ¢ =
(u, K (u)) and define function

F(nlq) = {(U% Ip| — K(u) +¢), if f/(n)=pand V(p) = (u,w),

&, otherwise.
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This function is computable and enumerates a certain function W(:|-) which
satisfies (14.1). Thus there exists a prefix-free Turing machine S which satisfies

(14.2). Hence we obtain K(w|q) z Kg(wlq) < K({u,w)) — K(u) + c. O

The parallel between the chain rule H(X,Y) = H(X) 4+ H(Y|X) and The-
orem 14.6 remains incomplete because in the algorithmic version there appears
term K (w]| (u, K(u))) rather than K(w|u). Although K(w|(u, K(u))) differs
from K(w|u), in the next theorem we can see that K({u, K(u))) and K(u) are
approximately equal.

Theorem 14.10. We have
K ((w, K(w))) £ K(w).

Proof. From the shortest program that computes w, we may reconstruct both w

and K (w). Hence K ((w, K (w))) b K(w). On the hand, we have K ({(w, K (w))) <
K(w) from Theorem 14.4.1.

We may also define an algorithmic analogue of mutual information.

Definition 14.10. We define algorithmic information between strings u and w
as

I{u;w) = K(w) = K(w] {u, K(u))).
By Theorem 14.6 algorithmic information is symmetric.
Theorem 14.11. We have
I(u;w) = I(w;w).

Proof. Observe that

=
£
£
I
=
E
I
=
B
=
=
=

Exercises

1. Let n = |w|. Show that:
(a) K(w) Snt 2logn;
(b) K(w|n) o

2. Define K+(z) = max{K(y):y <a}. Show that K*(z) = logz +
K([logz]).

3. Let n = |w| and let w and n be incompressible. Show that K (w,n)
K(w) + K (nJw) = K(n) + K (w|n).

*
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. Having (u, K (u)) we may effectively enumerate all programs of the short-

est length that compute u. Let 4™ be the first program in the enumeration.
Prove that K (w| (u, K (u))) £ K (w|u*) and K (w*) £ |w*| = K (w).

. Show that K(w|p) z —logp(w) and H(p) = > wP(w)K(w|p) for any

probability distribution p.

. Information distance is defined as

ID(u, w) = K({u,w)) — min { K (u), K (w)}.

Show that this quantity satisfies the axioms of a distance up to a constant.

. Show that K (K (K (u))|u, K (u)) = 0.
. Normalized information distance is defined as

K({(u,w)) — min {K(u), K(w)}

NID(u, w) = max {K (u), K (w)}

Show that this quantity satisfies the axioms of a normalized distance up
to a constant. A distance d is called normalized if 0 < d(u,w) < 1.

Hint: To prove the triangle inequality, consider three cases: (a) K(z) <
max {K (), K (w)}, (b) K (=) > max {K (), K(w)}, K (ul=")+ K (z}u) <
K(u) > K(w), (¢) K(z) > max{K(u), K(w)}, K(u|z") + K(zjw") >
K(u) > K(w).

. We have 3,ci01}+ 9~ K(ulw) < 1 by the Kraft inequality. Show that

Zwe{071}* 27K(u|w) = OQ.



15

Random sequences

Barron theorem. Various characterizations of Martin-Lo6f random se-
quences. Halting probability. Optimality of Bayesian inference for ran-
dom parameters.

In this chapter we will consider infinite sequences that are typical outcomes
of a probability measure in an intuitive sense. We will show that the set of such
sequences, called (Martin-Lof) random sequences, has probability one, whereas
random sequences for a uniform measure are incompressible. Subsequently, we
will exhibit a few other characterizations of random sequences. Moreover, we will
show that Bayesian inference is optimal if and only if the parameter is random
with respect to the prior. The last result proves that the concept of Kolmogorov
complexity is highly relevant for statistics.

To begin, the sequences will be written down in boldface as x* =
(z1, 22,23, ...), where x; € {0,1}. The boldface symbol P will denote a proba-
bility measure on infinite sequences. We will write P(w) = P({w : xllwl = w})
and \ will denote the empty string as previously. Thus P satisfies

P)\) =1,

P(w) >0,

P(w) = Z P(wa)
a€{0,1}

Moreover, by a computable measure we will understand a measure such that
function P : {0,1}" 2 w +— P(w) € R is computable.

Now we want to discuss typical outcomes of a computable probability mea-
sure. Using the Borel-Cantelli lemma, we can show that the length of a prefix-free
code asymptotically always exceeds pointwise entropy. This can be interpreted
as a strengthening of the source coding inequality—Theorem 3.4.

Theorem 15.1 (Barron theorem). Let B: {0,1}" — {0,1}" be a prefiz-free
code. Then for any probability measure P we have

P({z: hm [|B(z")] +log P(z}")] = o0}) = 1. (15.1)

Proof. Let us write
9~ IB(z1")]

M= Pl
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The Markov inequality (Theorem 1.5) asserts that

P({z:W(z) >1}) ZP )W (xT).

Thus by Kraft inequality (Theorem 3.3) we obtain

Z P({z: |B(z")| + log P(z7*) < n})
=1

tnqg

P({z: W) > 1})

3
I

Pz )W (z7")

3
Il

M

9—IB@=")|+n < 2" < 0.

3
Il

x

=3

Hence from the Borel-Cantelli lemma (Theorem 1.4) we obtain
P({z: |B(z1")| + log P(z]") < n for infinitely many m}) =
The n in this statement is arbitrary so we get

P({z: 1}3333 [|B(z1")| + log P(27")] < o0}) =

In consequence, the claim (15.1) follows.

Considering the concept of a random sequence, it is intuitive to require that
the set of random sequences has probability one. Guided by Barron’s theorem,
let us adopt the following definition, in which K (w) is the prefix-free Kolmogorov
complexity of string w.

Definition 15.1 (random sequence). We say that a sequence x is (Martin-
Lof) random for a computable probability measure P when

lim [K(z7") +log P(z7")] = cc. (15.2)

m—o0

The set of Martin-Léf random sequences is denoted as
Rp:={x: hm [K (z1") + log P(z]")] = oo}.

Since the prefix-free Kolmogorov complexity is a length of a prefix-free code,
the set of Martin-Lof random sequences has measure one, ie., P(Rp) = 1,
by Theorem 15.1. In the definition of random sequences we have restricted to
computable measures because expression K (z1") + log P(z7") grows too fast for
noncomputable measures and a different definition of a random sequence is more
appropriate then.
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Ezample 15.1 (uniform measure). Let P(a]*) = 27™ be the uniform measure.
Then the respective Martin-Lof random sequences satisfy
. my_ o1 —
mlgnoo [K(z]") —m] = <.

This means that random sequences for a uniform measure are exactly those that
are incompressible.

Ezample 15.2 (point measure). Let probability measure P be concentrated on
a sequence y, i.e., P(y") = 1. Then the set of Martin-Lof random sequences is
the singleton {y}.

Historically, the concept of a random sequence was developed by Per Martin-
Lof (1942-) by means of algorithmic tests. It was proved later by Claus-Peter
Schnorr that this approach is equivalent to the definition motivated by Barron’s
theorem. Let us inspect this piece of theory.

Definition 15.2 (recursively enumerable set). Set S C {0,1}" is called
recursively enumerable if there exists a computable function f : N — {0,1}"
such that f(N) = S.

Definition 15.3 (Martin-L6f test). Let U C N x {0,1}" and U, :=
{w: (n,w) € U}. Set U is called a Martin-Lof test for a measure P if

1. U is recursively enumerable,

2. P(U,) <27, where
U, = {a: tw is a prefiv of x and w € Un}.

In the informal motivation, sets U, are sets of sequences that approximate non-
random sequences. As we will see, a sequence is random if it is not contained in
the intersection of these sets.

We will also need another concept, Solovay’s tests, which are a slight relax-
ation of Martin-Lof tests.

Definition 15.4 (Solovay test). Let V C Nx{0,1}" andV,, := {w : (n,w) € V}.
Set V is called a Solovay test for a measure P if

1. 'V is recursively enumerable,

2.5 P(V,) < oo, where
V,, = {ac cw is a prefiz of x and w € Vn}.

As the next theorem states, a sequence is random if it does not pass any
Martin-Lof or Solovay test. The concept of passing a test is made precise in the
proposition.

Theorem 15.2 (Schnorr theorem). If measure P is computable then the
following conditions are equivalent:



138 15 Random sequences

1. Sequence x is Martin-Lof random. R
2. For any Solovay test V, x is contained in finitely many V;,.
3. For any Martin-Léf test U, we have & & (\o—; Up.
4. Sequence x is weakly Martin-Lof random, i.e., it satisfies
ian (K (27") + log P(z]")] > —oc. (15.3)
me
Remark: Equivalence of (15.2) and (15.3) reveals a gap in the “randomness
deficiency”. Namely, expression K (z7") + log P(z]") either tends to infinity or
goes arbitrarily negative.

Proof. We will demonstrate that 1. — 4. — 3. = 2. = 1.

1. = 4.: Obviously, K(«7") + log P(z}") is bounded below if it tends to
infinity.

4. = 3.: Suppose that z € 2, U, for a certain Martin-Lof test U. We
will show that x is not weakly Martin-Lof random. Without loss of generality,
assume that sets U,, are prefix-free. Then we have

i Z 2n+LlogP(w)J Si Z 2n+logP(w)

n=2weU, 2 n=2weU, 2
0o o
n=2 n=2

Hence in view of Theorem 14.7 there exists a prefix-free Turing machine S such
that

card {p € {0,1}" : S(p) = w, |p| = m}
=card{n >2:m = —|log P(w)] —n,w € Up2}.

(The function on the right hand side is recursively enumerable.) In consequence,
Ks(w) < — [log P(w)] — n

for any w € U,2 and n > 2. Since x € (), U.,, there are infinitely many prefixes
mzn(") such that x;n(") € U,2. This yields

K(2]"™) +10g P(a]"™) £ K (27'™) + [log P(s]'™) | < =n

for an arbitrary n. Thus x is not weakly Martin-Lof random.
3. = 2.: Suppose that z is contained in infinitely many V,, for a certain
Solovay test V. We will show that € (2, U, for a certain Martin-Lof test U.

For Y77 | P(V,) < C, the test U is constructed as
U, = {y : y is at least in 2" C' of VZ}

Then x belongs to all U, and P(U,) < 27" so U is a Martin-Lof test.
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2. = 1.: Suppose that x is not Martin-Lof random. We will show that
x belongs to infinitely many V;, for a certain Solovay test V. We know that
K(z7") 4 log P(x}") < n for a certain n and infinitely many m. Thus it belongs
to infinitely many V,, if we set

Vi = {w € {0,1}" : K(w) + log P(w) < n}.

For this choice of V,,, set V is recursively enumerable. It suffices to prove the
second condition for the Solovay test. Denote
- 2—K(w)
W) = ————.
(w) P(w)2—n

Then by the Markov and Kraft inequality, we obtain

S P() =)

m=

N

({y: W) >1})

3
l‘

o0

<SS PumW)

(o]

S Yy ca

as required.

Having Schnorr’s theorem, we can show that the binary expansion of the
halting probability is Martin-Lof random with respect to the uniform measure.
First, let us formulate a useful lemma.

Lemma 15.1. Consider halting probability

o= Y oW

p: V(p)#oo

Let 27 be the first n digits of £2 and let p be a string of a length smaller than
n. Given 27 we may decide whether machine V' stops on input p.

Proof. We have 0.027 < 2 < 0.2} +27". Let us simulate the computation of
machine V on all inputs shorter than n. Namely, in the i-th step we execute
the j-th step of computations for all k-th inputs which satisfy j + & = 4. In
the beginning of the simulations, we set the approximation of {2 as 2 := 0.
When V halts for a certain input p, we improve the approximation by setting
2" := ' + 2Pl At a certain instant, 2 becomes equal or greater than 0.7
Then it becomes clear that machine V' will not halt on any other input shorter
than n and we may decide on the halting problem.

In view of Lemma 15.1, the number {2 encodes the solution of the halting
problem in the most dense way. Now we will show that this implies that the
binary expansion of {2 is random.
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Theorem 15.3. We have K(027) Lo

Proof. By Lemma 15.1, we can enumerate, given (27, all programs shorter than n
for which machine V halts. For any w which is not computed by these programs
we have K(w) > n. We can construct a computable function ¢ which computes
one of these w given 27'. Hence K (¢(f27")) > n, which implies K({27") > n — ¢

for a certain c.

Another important way of defining Martin-L6f random sequences leads
through so called impossibility levels. This characterization is useful in stating

some further properties of random sequences.

Definition 15.5 (impossibility level). We define the impossibility level of a

sequence x with respect to a computable measure P as

9—K(z")
T P) =0 e

Theorem 15.4. We have I(x; P) < oo if and only if x is Martin-Lof random.

Proof. The claim follows by Schnorr’s theorem (Theorem 15.2).

As we will see, the impossibility level is an example of a unit integrable function.

Definition 15.6 (unit integrable function). We say that function [ :

{071}N — R is a unit integrable function for a computable measure P if f is

lower semicomputable, nonnegative, and

/fdPgL

Theorem 15.5. Impossibility level Z(x; P) is a unit integrable function.

Proof. 1t is easy to see that Z(x; P) is nonnegative and lower semicomputable.

As for the third property, we obtain
[t par@ - [ | TW)} 1P()
x; xT) = sup ———— x
g~ 2 dP
< -
</ 3 ey | 4P@

> 9-K(a") "
X
n=1 P(:L. )
=y 2786 <
n=1

Moreover, the impossibility level dominates all other unit integrable functions.
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Theorem 15.6. We have Z(x; P) S f(x) for any unit integrable function f.

The proof can be found in Li and Vitdnyi (2008, Theorem 4.5.5).

In view of Theorem 15.6 we may define Martin-Lof sequences as such that
f(x®) < oo for any unit integrable function f. This characterization plays an
important role in the derivation of the following remarkable property. Namely,
Martin-Lof sequences are exactly those sequences for which measure P is the
optimal compressor in the pool of all semicomputable semimeasures.

Definition 15.7 (semimeasure). A semimeasure M is a function that satis-
fies
M(A)

>0,
Mw)> Y M(wa).
ae{0,1}

IN

1

)

V

We have two important theorems.

Theorem 15.7. There exists a lower semicomputable semimeasure M, such
that U (z]) < M (z}) for any lower semicomputable semimeasure U .

The proof can be found in Li and Vitanyi (2008, Theorem 4.5.1)

Theorem 15.8. Let M be the lower semicomputable semimeasure as in the
previous theorem. For an e > 0 and a computable measure P, we have

py Eqoso o M(@y) «  M(af) s . pypite
I(m,P) <lgggf Pt <i1é§ P < [I(w,P)] .

The proof can be found in Vovk and V’yugin (1994, Theorem 1 and Lemma 3).
By Theorem 15.8, we have

M (z7)
sup -
neN P(x1 )

if and only if the sequence x is random with respect to the measure P. Since

U(z") <M (z™) for any semicomputable semimeasure U, this result states
that Martin-Lof random sequences are exactly those sequences that are opti-
mally compressed by a computable measure P in the pool of all semicomputable
semimeasures (up to a multiplicative constant).

Finally, we will show how the concept of Martin-Lof randomness sheds light
on the power and perils of effective Bayesian inference. Suppressing a few tech-
nically difficult proofs to references, let us report the general ideas since they
are highly interesting. The framework is as follows. Let 8 = (61, 02, 03, ...), where
0; € {0,1}, denote the parameter, which is equivalently interpreted as a bi-
nary expansion of a real number, also denoted as 6. The notion of computable
probability measures can be generalized to families of probability measures via
probability kernels.
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Definition 15.8 (probability kernel). Function P(-|-) : {0,1}*x{0,1}" - R
is called a probability kernel if P(-|0) is a probability measure for each 6.

A probability kernel P will be called computable if function P(-|-) : {0,1}" x
{O,l}N 3> (w,0) — P(w|@) € R is computable. Let us observe that, even for
a computable kernel, the conditional measure P(:|@) need not be computable if
we fix a particular value of the parameter 6. Typically this measure is not com-
putable if the parameter is Martin-Loéf random. Hence the optimal computable
compressor of data that are typical of a conditional measure P(-|0) is different
to this conditional measure.

To find the optimal compressor of data typical of a noncomputable measure,
let us introduce the setting of Bayesian inference. Let @ be a computable measure
called the prior and let P be a computable probability kernel. Measure

Y (w) = /P(w|0) dQ(0) (15.4)

is computable and will be called the Bayesian measure. Subsequently, we will
show that, whenever the parameter can be effectively estimated, Bayesian mea-
sure Y is the optimal computable compressor of data typical of conditional
measure P(-|0) if and only if the parameter 0 is typical of the prior Q.

First, let us recall that the set of Martin-Lo6f random sequences Ry is the
maximal set of sequences that are optimally compressed by measure Y in the
pool of all semicomputable semimeasures. The following theorem states that for
almost all parameters 6, typical outcomes of conditional measures P(:|0) are
also optimally compressed by measure Y.

Theorem 15.9. For (15.4), we have
Q({0: P(Ry|0) =1}) = 1.
Proof. Let G, = {0 : P(Ry|0) > 1—1/n}. We have
1=Y(Ry) = / P(Ry|0) dQ(0) + / P(Ry|0) dQ(6)
n {0,13"\Gn
< Q(6n) +Q({0,11\ Gu) (1 — 1/n)
=1-n"'Q({0,1}"\ Gy).
Hence Q({0, 1}N \ Gn) <0s0 Q(G,) = 1. Denote
G={0:P(Ryl0) =1} = () G-
neN
By continuity, we obtain Q(G) = inf,,eny Q(G,) = 1.

In the following, we want to show that for certain probability kernels Theorem
15.9 can be strengthened as

1 if 0 e€Rg,

: (15.5)
0 if0¢Reo.

P(Ryl0) = {
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Let us observe that (15.5) need not hold for an arbitrary probability kernel.
For instance if P(-|@) does not depend on @, we obtain P(Ry|0) = 1 for all 6
regardless of the prior. We will show that a sufficient condition to obtain (15.5)
is that the probability kernel admits an effective estimator.

Definition 15.9 (effectively strictly consistent estimator). An estimator
T(x) is called effectively strictly consistent if there exists a computable function
N(e,d) such that for each 0 and for all € and § we have

P({xz: sup [T(a})—6|>¢€}|0) <0
n>N (€,8)

Now we have to introduce Martin-Lof random sequences with respect to a
computable probability kernel. In the respective definition, K (w|0) stands for
the prefix-free Kolmogorov complexity of string w given the infinite sequence 6.

Definition 15.10 (conditionally random sequence). We say that a se-
quence x is conditionally (Martin-Lof) random for a computable probability ker-
nel P with a parameter @ when

lim [K(27]0) + log P(a7'|0)] = .

m— o0

The set of Martin-Lof random sequences for a given parameter 0 is denoted as
Rpjo == {z: mlgnOO (K (z7"]0) + log P(27'|6)] = oo}

Since the prefix-free Kolmogorov complexity is the length of a prefix-free code,
the respective sets of conditionally Martin-Lof random sequences have measure
one, i.e., P(Rp|p|#) = 1, by Theorem 15.1. Moreover, analogues of Theorems
15.2, 15.6, and 15.8 can be also established for conditionally random sequences.

Some useful property of a conditionally random sequence is that an effectively
consistent estimator converges to the right value of the parameter.

Theorem 15.10. If a computable probability kernel P admits an effectively
strictly consistent estimator T(x}) then

lim T(x}) =6

n—oo
for each © € Rpjq-

The proof can be found in V’yugin (2007, Proposition 1).

Another fact that we shall use is a decomposition of the set of sequences
which are random for the Bayesian measure. This set decomposes into sets of
sequences which are random for the conditional measures. It is remarkable that
the decomposition ranges only over parameters which are random with respect
to the prior.
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Theorem 15.11. For a computable probability kernel P and a computable prior
Q, define the Bayesian measure (15.4). We have

Ry = |J Rpe (15.6)
QERQ

Proof. Define the conditional impossibility level

I( P|9) 9—K(z"|0)
x; =Sup — -
neh P(z7]6)

By the analogue of Theorem 15.2 for conditionally random sequences, impossi-
bility level Z(x; P|@) is finite if and only if sequence x is conditionally random
for parameter 8. This should be combined with the following fact. By Vovk and
V’yugin (1993, Corollary 4), impossibility levels satisfy an analogue of the chain
rule for Kolmogorov complexity (Theorem 14.6). Namely, for an ¢ > 0, we have

inf [Z(2; P|6) Z(0; Q)] < Z(2;Y) < inf [Z(x; PI6) [1(6; Q)] ™| (15.7)

Hence Z(x;Y) is finite if and only if Z(x; P|@) and Z(0;Q) are finite. This
implies the claim.

Remark: Vovk and V’yugin proved (15.7) using the analogue of Theorem 15.6
for conditionally unit integrable functions. Independently, decomposition (15.6)
has also been proved by Takahashi (2008, Theorem 4.2 and 5.3) using a different
method.

Now we may state the optimality result.

Theorem 15.12. For a computable probability kernel P and a computable prior
Q, define the Bayesian measure (15.4). If the probability kernel admits an effec-
tively strictly consistent estimator, then we have dichotomy

1 if6 R,

, (15.8)
0 if6¢Ro.

P(Ry|0) = {

Proof. In view of Theorem 15.10, sets Rpjg are disjoint. We also have
P(Rpjg|@) =1 for each 6. Hence (15.8) follows from (15.6).

Thus we have demonstrated that whenever the parameter can be effectively
estimated then the Bayesian measure gives the optimal compression of data that
are random with respect to a conditional measure if and only if the parameter is
random with respect to the prior. This statement is useful when the conditional
measure is not computable for a fixed parameter. Moreover, once we know where
Bayesian compression fails, we should systematically adjust the prior to our
hypotheses about the algorithmic complexity of a parameter in an application.
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Exercises

1. Let sequence = x1x2x3... be Martin-Lof random with respect to the
uniform distribution P(z}) = 27™. Show that for any n, sequences y,
where y; = x;4, for ¢ > 1, and z, where 2,4, = z; for ¢ > 1, are also
random.

2. A sequence « is called computable if there exists a computable function
¢ such that ¢(n) = x, for each n. Show that for a computable sequence
2N we have K (z7) < K(n) + c.

3. Using Kraft inequality, show that K(n) > logn + loglogn for infinitely
many 7n.

4. Show that a real function f is computable if it is both lower and upper
semicomputable.






Solutions of selected exercises

Chapter 1

out of the set of three doors equals 1/3. In particular, we

1. The probability that the car remains behind a randomly selected door
can assume
that the initially chosen door, say door A, was selected at random. Thus
the probability that the car is behind the door A equals 1/3. Now let
us compute the probability p that the car remains behind the other door
that was not opened by Monty Hall, say door B. Door B is not selected at
random so we cannot assume that p = 1/3. In fact, the car is either behind
the door A or door B so 1/3+4p = 1. Hence p = 2/3. Thus, in the second

phase of the quiz, it is advisable to choose door B rather than door A.

. Let A® = 2\ A denote the complement of set A. We have

P(limsup A,) = nILHéOP(UnA’“) =1 nlggop(ﬂn

In the following, we obtain

p(fj A;) - ]O_‘O[p(A;) - ﬁ (1— P(Ay))

k=n

Ac>

Sﬁexp(—P( —exp< iPAk) 0.

. By Markov inequality, we have

1 E(EYr, Xi—p) _ no’
P(‘ni_lei—M’>€> = eé T n2e

which tends to 0 as n — oo.

10. Let € > 0. By Markov inequality, we obtain

4
1 — EXY" X, —p) m 4
Pl=N " x, - < D An fui= - S

Hence
o0 1 n
ZP(‘nZXi _u’ > ) <o
n=1 i=1

Thus Borel-Cantelli lemma yields

(hmsup‘ ZX ‘ ):o.

n— oo

In consequence, (1.4) follows since € was chosen arbitrarily.
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Chapter 2

8. The mutual information between X and (Y, Z) can be written in two ways
I(X;Y,2)=1(X;Z)+1(X;Y|Z)
=I(X;Y)+1(X;Z]Y).

Because X and Z are conditionally independent given Y, we have
I(X;Z|Y) = 0. On the other hand, I(X;Y|Z) > 0. Hence I(X;Y) >
I(X;2).

16. Let p(i) = P(X = i). Because —logp is decreasing, whereas —plogp is
increasing for p < 1/4, we have

H(X)=— Y p()logpi)— Y pli)logp(i)

ip(3)>2—1 irp(i) <21

< ip(i) + Y27 < 0.

Chapter 3

2. For a finite X, let I be the maximal length of B(z). If the Kraft inequality
is strict then some string of length [ does not contain any prefix in set
{B(x) : € X}. Hence we may enlarge {B(z) : x € X} with that string.
For an infinite code the situation is different. Consider for instance set
W = {www cw € {0, 1}+} and let us delete from W all strings whose

proper prefixes belong to W. The so obtained set is maximal prefix-free

and its Kraft sum is less than >°, 2710 =3, 2273 =% 477 =

1/3. Hence the set is not complete.

9. The decoding algorithm is as follows:

(a) Begin with N = 1.

(b) Read the next block of digits, which can be 0, or 1 followed by N
digits. If the read block is 0 then return N, being the encoded number,
and stop. If the read block is 1 followed by N digits then let N be
the value of the block interpreted as the binary expansion.

(¢) Apply the previous step for the next block.

Chapter 4

2. We have

n k
Fn) = £(0) + <Af(0) " ZA2f(j)>
k=1 j=1
n k n
=nAf(0)+ D) A%f(j) = nAf0)+ Y (n—k+1)A%f(k).

k=1j=1 k=1
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Then
f(n) + f(m) = f(n+m)

i n—k+DI{k<n}+(m—-k+1)1{k <m}
k=1

—(n+m—k+1)1{k <n+m}]A*f(k) > 0.

3. The term n~'a,, is the arithmetic mean of the first n increments. Averages
of a decreasing sequence decrease to the same limit, so (a) implies (b) and
the equality of the respective limits. If a,, were not increasing, there would
be a negative increment and all following increments would be negative,
leading eventually to negative values of a,, (assumed to be nonnegative).
Further (b) implies (m + 1) 'ap4n < min {m='a,,,n " a,}, hence

am+n< m am+ n an_am—l—an
m+n - m+nm m+nn  mtn’

which yields (c).

Next, assume (c). If m = kn +r with 0 < r < n then

m m  m - n m
Hence for every n, limsup,, ,.. m ‘a, < n~'a,. This implies (d).
4. We have
f(pin+ pam) = p1f(n) — p2f(m)
o0

[(pln +pom — k+ D1{k < pin + pam}
k=1
—pi(n—k+1)1{k <n} —pa(m—k+ 1)1{k < m}|A*f(k) > 0.

Chapter 5
2. We have

n 2 n n

1 1 . 0 2

E[ZXZ-M} ==Y > alli—j) = ”—)+—2 > o(l—k)

"= [ K " <k<i<n
_0o(0 ~ko(n—k—1) ! [an] 3 B
_n+kz_1712_/0 Ta(n [zn] —1)dz

We have @a(n— [xn]—1) < 0(0) for x € (0,1), where (0) is integrable
on the section (0, 1). If o(n) tends to 0 for n — oo, then by the dominated
convergence theorem (Theorem 1.8),

1
lim Ma(n — [zn] — 1) dz

_/01 lim [M:]U(n[xn}l) dz = 0.

n—oo
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3. Let Ay, Ao, A3, ..., A,, be the maximal closed sets of states. Process

(X:)2_, would be ergodic if X; € A; for a fixed [. Hence we obtain
nlLH;OEZXk—;]_{Xl GA[ /dep |X1€Al)
m
= Z 1{X1 S Al} ZQJP X1 = l“Xl S Al)
=1

4. The increase of our capital is W, /Wy = ], bk,zk,, which may be
written down as

n n
log W, /Wy = Zlogb;{i + Zlogw;{i.

Applying the ergodic theorem, we obtain
q q
nh_}rrgo — 1og W, /Wy = Zpk log by, + Zpk log zy,.

The only possibility of maximizing the capital increase lies in minimizing
cross entropy

H(p|[b) : ZPklOgbk = H(p) + D(p|[b) = 0

Entropy H(p) is out of our control. In contrast, Kullback-Leibler diver-
gence D(pl||b) is minimized for by = pi. Thus we see that by = py is the
optimal strategy and it does not depend on bookmakers’ stakes xx. The
return of our capital does depend on xj, however. In the limit, we get
2—nHP)+H(pll2)] dollars in n races from each invested dollar.

Chapter 7

1. By stationarity,

..... X1 = Zﬂ% 1,5 X415 Py oy Xnt1 = Z¢n71,an+1fj'

The best linear predictor Py . ) Xn41 may be decomposed as the sum
of the best linear predictor Pp 3 Xny1 and a term proportional to
innovation X; — Pra . ;3 X1. In view of this we have

P, oy Xng1 = Py X1 +a(X1 — P,y X1),
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where
~ Cov(Xpt1, X1 — Ppa a3 X1)
|| X1 = P,y Xal| 2
_ COV(Xn+1 - P{Q,...,n}Xlﬂ Xy — P{Zw-vn}Xl) — a(n)
X1 = Ppo oy Xa| 2 '
Hence

p(’I’L) - E?:_ll ¢n—1,jp(n - .7)
a(n) - Up—1 ’

which is (7.8). Besides,

P,y Xng1 = a(n) Xy + Z(qsnfl,j —a(n)bn—1,n—j) Xn+1-j,
j=1

so we obtain (7.9)—(7.10). It remains to derive (7.11). Indeed we have

[[ X1 — Pra,oy Xng | 2
|| Xl [2
[ Xnt1 — Ppo,.ny Xnt1 — a(n) (X1 — P, 3 X1)| 2
[ Xnta] [?

= vy 1 — 20(n) v 1 + a(n)?v,_, = [1 - a(n)Q] Uy 1.

Up =

.....

. Observe that (a(n)),en defined in (7.21) satisfies |a(n)| < 1forn > 1 and
d € (—o00,1/2) and therefore is a PACF of a Gaussian process. PACF de-
termines the coefficients ¢, and p(k) through iterations (7.9) and (7.18)
uniquely given the initial conditions ¢,0 = —1, ¢p nt1 = 0, and p(0) = 1.
These initial conditions are clearly satisfied. Hence to demonstrate that
(7.20) and (7.19) are the appropriate coefficients pertaining to the process,
it suffices to check that (7.9) is satisfied for n > 1 and 0 < j < n given
(7.20)—(7.21) and that (7.18) is satisfied for n > 1 given (7.19)—(7.20).
Indeed, for (7.20) and (7.21) we obtain (7.9):

d
(bnfl,k - m (bnfl,nfk

(-]
:_(“>n—k d (k- 1)'(n—1—d k)!
k) n—d (d Di(n—1-4d)!
|

_Cv(k—d—n%?—d k)!

k) md—Dim—ay Ok
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On the other hand, for (7.19) and (7.20) we obtain (7.18):

. n k .
S bupn—k) = -3 (:) [ G—d—1) T Fi+d—1)
k=0 =0

EG
[0 2

)
]:O (k: d—1) <n—:+z—1>

[ 2O e

(") =o

where we used the upper negation formula (}) = (—l)k(]%,:*l) and the
Cauchy formula > (7)(,,° ) = (). Both formulae hold for all r, s €
R (Graham et al., 1994, Chapter 5, Table 202).

In the sequel, let us establish the asymptotics for the autocorrelations.
For —d+1 ¢ N we have p, = (—d)!(n +d — 1)I/(n — d)!(d — 1)!. By
the Stirling approximation lim,, |, I'(2)[e *2*"1/2y/211] 7! = 1 we have
lim, n®I'(n)/I'(n + x) =1 so lim,, p,/n~172¢ = (—d)!/(d — 1)!.

Finally, we inspect the sum of autocorrelations. Notice that Y ;_ . pp =
[1"_,(i+d)/(i — d) follows by induction on n. Hence > po.___ pj = oo for
d>0andZ;°:_oopk:Oford<O.

Chapter 9

1.

0=

4.

We have

dln P(XT = 27|6)
do,

dln Z(G)
(Z Ty () )

9:0ML (:1:?)) .

= E GML(IiL)ﬂ(X1)7
9:01V[L (I;L)

GIQML (Zl )
Hence

1< _ dInZ(0)
o 2 Tilei) = a6,

which gives the maximum likelihood estimator in an implicit form.
We have

EQXi:,uv E9X§:U2+,u2a

_ _ 1 —
Eo X, = 1, EoX2= (0% + ) + 2.
n n

Hence

E,S; = %ZEO(XZ' — X)) =E¢X2—2E,(X,X,) + E¢X2
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2 2(n—1 1 —
:02+,u2—7(02+u2)fMu2+f(02+u2)+L
n n n
_n-1,
on
5. Let us write L(z|0) = P(Xi = z|0). Observe that
0 L(z|w)
—D(w||8) = ZL
Ow w = L(x[0)
Z OL( x|w L(J:|w) N OL(z|w)
r€eX L(£L'|9) zeX Ow
OL( ac|w L(m|w) 0
= + — L(x|w
% L(:c|9) Ow = (z]w)
OL(x|lw) , L(z|lw) 0
= 1 +—1
% Ow L(z|f)  Ow
Z OL(x|w) In L(z|w)
B Ow L(z]0)"

Differentiating again, we obtain

0? 0 OL(x|w) I L(z|w)

gz PWllo) =55 20w Il

zeX

O?L(z|w) . L(z|w) 1 [0L(z|w)]?
:Z Ow? lnL(x|9)+%L(ac|w)[ Ow }

153

In the formula above, the first term vanishes for w = 6, whereas the

second one equals J; (6).

7. We have
0%In Z(6
() = T 2Oy 1 0x0) ~ BT (1)) [15(%0) — BTy (1)
00
where
_ 0InZ(0)
EoTi(X1) = =55
Hence In Z(0) is a convex function.
Chapter 10
1. We have
02In Z(9)

WJeﬂreys(Q) o< /1 (6) = 4/ det 39189]
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2. Let

(M, B) = Fﬁ(;))\a—le_ﬁ’\

be the gamma distribution. We have

)\Z?Zl zip—nA ya—1,—BA
f N 2img Tig—nX Na—=1o—BX q)\/

—7T<)\ in+a,n+,8)

(>‘|X1 - .131, aﬁ)

i=1
and
Br [ AT e e
( 1 xl‘aaﬁ) F(a) 1—[:7,:1 :L'Z' e
_ 1 B T'(Yi wi+a)
[T, z! I'(a) (n+ 5)2?:1 zita’
7. We have

P(illlpositive) P(positivelill) P(ill)
P(healthy|positive)  P(positive|healthy) P (healthy)
~0.9999-0.0001
~ 0.0001-0.9999

Hence P(ill|positive) = 1/2.

Chapter 11

4. Let us compute the EM iteration. Cross entropy Q(¢’,0) takes form
=3"N"P(2Z; = jIY; = A;,0) m P(Z; = j,Y; = A;6).

Moreover, (11.8) assures that P(Y; = A;|0) = g(A4;)P(Z; € A;|0) and
Let us write pg-?) = P(Z; = j|Z; € A;,0,). Recalling constrained min-

imization using Langrange multipliers, we have that iteration (11.3) is
equivalent to

(n)
0 i s
0= |: enae ( g bjr — 1>:| = ﬁ - A

dp;
J .
et 0=0,11 J
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If the Lagrange multiplier A is assigned the value that satisfies constraint
> jespjr =1, we obtain iteration

(n) (n)
p(n) _ pj /Z]"eAi pj’ , J€ Aia (159)
7 0, else,

p Y = Zpﬂ . (15.10)

As an initial value we may take p' ) = = [card J] "
TIteration (15.9)—(15.10) maximizes locally the log likelihood

M
o1 P(Z; € A|0)

L) == P((Y; = A)M,10) = 9(A)

, (15.11)

i=1

or simply L1 > L for

LM .= +Zlng Zln{Zp(”)}7 n>2

JEA;

Moreover, there is no need to care for the initialization of iteration (15.9)—
(15.10) since the local maxima of function (15.11) form a convex set M,
ie, 0,00 e M = ¢80+ (1—q)0 € M for 0 < g < 1. Hence that function
is, of course, constant on M. To show this, observe that the domain of log-

likelihood (15.11) is a convex compact set P = {9 1> pi=1,p; > 0}.
The second derivative of L reads

PLO) i 1{j € A}1{j’ € A}
Op;9ps = Creari)

Since matrix {L;; } is negative definite, i.e., >, a;L;j (6)a; <0, func-
tion L is concave. As a general fact, a contmuous function L achieves its
supremum on a compact set P (Rudin, 1974, Theorem 2.10). If addition-
ally L is concave and its domain P is convex then the local maxima of L
form a convex set M C P, where L is constant and achieves its supremum
(Boyd and Vandenberghe, 2004, Section 4.2.2).

Ljj(0) ==

Chapter 12

1 H(Xn|X1) > H(Xn| X1, Xo) = H(Xn|X2) = H(Xn_1]X1).

9. H(TX) > H(TX|T) = H(T~'TX|T) = H(X|T) = H(X).

6. Entropy of a variable U is maximized for the fixed expectation when
the variable has geometric distribution P(U = k) = (1 — p)*p. The ex-
pectation for that distribution is 4 = (1 — p)/p and the entropy equals
H{U) = —logp — lp%p log(1 — p). Substituting p = 1/(p + 1), we obtain

H(U) = (p+ 1) log(p + 1) — plog p.
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7. By formulae (12.10)—(12.11) we have

Hipllps) = [ ot [ZAT —mZ()| e = LY

if p satisfies (12.8)—(12.9). Hence from (12.12), H(p||px) achieves mini-
mum for py = p*.

Chapter 13

4. Consider language L,, = {u: wu € L}. For w = 0™1 the first element of
Ly, is uw=0"1. If L were regular, we would have C'(u) = O(1) by Lemma
13.1. In this way we obtain a contradiction for an incompressible n.

Chapter 14
6. We have
K (uw*) < K ((u,2) [w*) £ K({u, 2,w)) - K (w)
LK)+ K@l|e*) + K (w]2) — K (w)
L K((w,2)) — K(w) + K (u|z")
L K(ulz") + K (z|w").

Hence we obtain the triangle inequality
ID(u, w) = max { K (u|w*), K (w|u*)}
< max { K (u|2*) + K (2|w"), K (w]z") + K (2[u*)}
< max { K (u|z*), K(z|u*)} + max { K (z|w*), K (w|z*)}
=1ID(u, z) + ID(z, w).

7. Let k = K(u). We have

K(K(K)u) £ K(KWRIR) + K (ku*) £ 0

Chapter 15
3. Let f(n) =logn + loglogn. If we had K(n) < f(n) for all n > N then

Z 2-f(n) < Z 2~ KM <1

n>N n>N

But > 275 = 3 (nlogn)™! = 0o s0 Y., -n2 ™ = oco. Hence
K(n) < f(n) for infinitely many n. -
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autocorrelation function, 65 dominated convergence theorem, 12
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beta distribution, 78 143
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block, 42 entropy rate, 43
block entropy, 42 ergodic dynamical system, 48
Boltzmann equation, 110 ergodic stationary process, 48
Borel-Cantelli lemma, 11 ergodic theorem, 48
Bregman divergence, 26, 90 excess entropy, 44

exchangeable process, 70
chain rule, 25 expectation, 8
Chebyshev inequality, 14 expectation-maximization algorithm, 102
code, 27 expected Fisher information, 85
code tree, 33 exponential distribution, 79
coding theorem, 131 exponential family, 75
comma-separated code, 28
complete code, 32 Fano inequality, 25
complete statistic, 76 Fatou lemma, 12
computable function, 120, 127, 128 filtration, 13
concave function, 18 Fisher factorization theorem, 73
conditional entropy, 19 fixed-length code, 28
conditional expectation, 10 formal language, 121
conditional independence, 22
conditional mutual information, 21 gamma distribution, 78
conditional probability, 10 Gauss distribution, 72
conditionally Martin-L6f random Gaussian process, 65

sequence, 143 generalized Pythagoras theorem, 26

conjugate prior, 98 generalized variance, 68

consistent estimator, 82 generated o-field, 39
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geometric distribution, 78

H-theorem, 111

Hahn-Jordan decomposition, 10
halting probability, 131, 139
Herglotz theorem, 68

Huffman code, 34

impossibility level, 140

improper prior, 96
incompressibility method, 121
independent random variables, 15
information distance, 134
information-theoretic Godel theorem, 120
injection, 27

innovation, 65

innovation variance, 68
invariance theorem, 119, 126
invariant algebra, 47

invariant measure, 39

inverse Gauss distribution, 79

Jeffreys prior, 95
Jensen inequality, 18

Kolmogorov complexity, 118, 119
Kolmogorov formula, 69

Kraft inequality, 29
Krichevski-Trofimov estimator, 95
Kullback-Leibler divergence, 18, 64

Lagrange multipliers, 103

Lagrangian function, 113

Laplace rule, 94
Lebesgue-Radon-Nikodym theorem, 9
Lempel-Ziv code, 58

Levy law, 13

lower semicomputable function, 128

Markov chain, 22

Markov inequality, 12
Martin-Lof random sequence, 136
Martin-Lof test, 137

martingale, 13

maximal ergodic theorem, 49
maximum entropy modeling, 112
maximum likelihood estimator, 81
maximum posterior estimator, 93
mean square error, 84
measurable function, 9

measure, 9

minimal sufficient statistics, 74
monotone convergence theorem, 12
Monty Hall paradox, 13

moving average representation, 70
mutual information, 20

mutually singular measure, 9

negative binomial distribution, 78
normal distribution, 72
normalized information distance, 134

oscillations of Kolmogorov complexity,
122

parametric family of distributions, 71

Pareto distribution, 78

partial autocorrelation function, 65

path, 33

Poisson distribution, 78

posterior distribution, 93

prefix-free code, 30

prefix-free Kolmogorov complexity, 126,
127

prior distribution, 93

probability kernel, 142

probability measure, 7, 135

probability space, 7

process theorem, 40

random sample, 71

random variable, 8

real random sample, 71

recursive function, 120

recursively enumerable function, 130
recursively enumerable set, 137
regular language, 121

relative entropy, 18

Schnorr theorem, 137
self-delimiting program, 125
semimeasure, 141
Shannon-Fano code, 32
Shannon-McMillan-Breiman theorem, 52
Solovay test, 137

source coding inequality, 30
stationary process, 40
statistic, 72

Stirling approximation, 25
stochastic process, 8
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strong law of large numbers, 14, 47
subadditive function, 46

sufficient statistic, 72

suffix-free code, 30

triple information, 24
Turing machine, 117, 125

unbiased estimator, 84

uniquely decodable code, 27

unit integrable function, 140
universal code, 57

universal Turing machine, 119, 126

Index

upper semicomputable function, 128
Venn diagram, 24

Wald theorem, 83

weak law of large numbers, 14
weakly ergodic stationary process, 54
weakly stationary process, 54
weighted code tree, 34

Yule-Walker equations, 69

Ziv inequality, 59
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