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Introductory exercise

Please:

1. Grab two pencils, one in each hand.

2. With one eye closed, try to touch the erasers together. Was that difficult?

3. Now try it with both eyes open. Was that easier?

Humans are quite unusual in that both their eyes face forward and that they
have overlapping visual fields. This kind of sensor redundancy and the nature
of the information fusion process applied by the human brain makes 3D stereo
vision possible. Readers who found touching two pencils much harder with an
eye shut already got an impression of the importance of data fusion and may
proceed to page 27. Otherwise, in the Preface we shall explore the role of data
fusion in various real-world applications.





Preface

Appropriate fusion of large, complex data sets is necessary in the infor-
mation era. Having to deal with just a few records already forces the
human brain to look for patterns in the data and to make its overall

picture instead of conceiving a reality as a set of individual entities, which are
much more difficult to process and analyze. Quite similarly, the usage of ap-
propriate methods to reduce the information overload on a computer, may not
only increase the quality of the results but also significantly decrease algorithms’
run-time.

It is known that information systems relying on a single information source
(e.g., measurements gathered from one sensor, opinions of just a single authori-
tative decision maker, outputs of one and only one machine learning algorithm,
answers of an individual social survey taker) are most often neither accurate nor
reliable.

The theory of aggregation is a relatively new research field, even though
various particular methods for data fusion were known and used already by the
ancient mathematicians. Since the 1980s, studies of aggregation functions most
often focus on the construction and formal, mathematical analysis of diverse
ways to summarize numerical lists with elements in some real interval I = [a, b].
This covers different kinds of broadly-conceived means, fuzzy logic connectives
(t-norms, fuzzy implications), as well as copulas. Quite recently, we observe an
increasing interest in aggregation on partially ordered sets – in particular, on
ordinal (linguistic) scales.

Among the seminal monographs on the applied mathematics-oriented clas-
sical aggregation theory there are Aggregation Functions: A Guide for Practi-
tioners [49] by Beliakov, Pradera, and Calvo and Aggregation Functions [230] by
Grabisch, Marichal, Mesiar, and Pap. We note that the typical mathematical
arsenal used by aggregation theoreticians consists of a very creative combination
of approaches known from, among others, algebra, calculus, order and measure
theory (in fact, aggregation theory results strongly contribute to these subfields
as well). What is more, particular subclasses of aggregation functions are stud-
ied in-depth in the following textbooks: Triangular norms [277] authored by
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Klement, Mesiar, and Pap, Fuzzy implications [18] by Baczyński and Jayaram,
Handbook of means and their inequalities [87] by Bullen, as well as – very re-
cently – A Practical Guide to Averaging Functions [39] by Beliakov, Bustince,
and Calvo. We shall also mention the book by Torra and Narukawa (Modeling
Decisions: Information Fusion and Aggregation Operators [449]), which perhaps
is the most computer science-oriented work of the ones listed. However, in [49]
and [39] numerous interesting algorithms and computational issues are discussed
too.

During the 2013 AGOP – International Summer School on Aggregation
Operators – conference in Pamplona, Spain, Prof. Bernard De Baets in his ple-
nary lecture [137] pointed out the need to convey research on the so-called Ag-
gregation 2.0. Of course, Aggregation 2.0 does not aim to replace or in any
terms depreciate the very successful and important classical aggregation field,
but rather to attract the investigators’ attention to new, more complex domains,
most of which cannot be properly handled without using computational meth-
ods. From this perspective, data fusion tools may be embedded in larger, more
complicated information processing systems and thus studied as their key com-
ponents.

A proper complex data fusion has been of interest to many researchers in di-
verse fields, including computational statistics, computational geometry, bioin-
formatics, machine learning, pattern recognition, quality management, engineer-
ing, statistics, finance, economics, etc. Let us note that it plays a crucial role
in:

— a synthetic description of data processes or whole domains,

— creation of rule bases for approximate reasoning tasks,

— consensus reaching and selection of the optimal strategy in decision support
systems,

— missing values imputations,

— data deduplication and consolidation,

— record linkage across heterogeneous databases,

— automated data segmentation algorithms’ construction (compare, e.g., the
k-means and hierarchical clustering algorithms).

We observe that many useful machine learning methods are based on a proper
aggregation of information entities. In particular, the class of ensemble methods
for classification is very successful in practice because of the assumption that no
single “weak” classifier can perform as well as their whole group. Interestingly,
many of the winning solutions to data mining competitions on Kaggle and similar
platforms base somehow on the random forest and similar algorithms. What is
more, e.g., neural networks – universal approximators – and other deep learning
tools can be understood as hierarchies of individual fusion functions. Thus, they
can be conceived as kinds of aggregation techniques as well. We should also
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mention that an appropriate data fusion is crucial to business enterprises. For
numerous reasons, companies are rarely eager to sell large parts of the data sets
they posses to their clients. Instead, only carefully pre-processed and aggregated
data models are delivered to the customers.

This monograph is a first attempt to integrate the spread-out results from
different domains using the methodology of the well-established classical aggre-
gation framework, introduce researchers and practitioners to Aggregation 2.0, as
well as to point out the challenges and interesting directions for further research.
It is organized as follows.

— In Chapter 1 we review classical aggregation results which deal with ag-
gregation of numeric tuples with elements in some real interval I = [a, b] or
]a, b[. We list some interesting properties of fusion functions on such a do-
main which may be crucial in various practical applications. Even though
the described data model seems to be quite simple at a first glance, it
shall provide us with a deep insight on the nature of more complex data
fusion processes. In particular, we pay special attention to the notion of
monotonicity.
Then we discuss general construction methods that may be used to de-
rive new fusion functions from simpler ones. Additionally, we present the
connection between aggregation functions and monotone (fuzzy) measures
and integrals as well as introduce the notion of a penalty-based and an
extended fusion function.
Further on we present different ways which can aid in an appropriate tool
selection for diverse tasks. This includes characterization theorems, syn-
thetic numerical characteristics, as well as algorithms to learn fusion func-
tions from empirical data.
Moreover, the topic of aggregation of data on an ordinal scale and – more
generally – bounded partially ordered sets, as well as on a nominal scale
is presented.

— Chapter 2 deals with aggregation of d-dimensional data, this time for d > 1.
Our point of departure consists of data fusion tools which are studied
in fields such as computational statistics and computational geometry.
Among their important properties we find, e.g., equivariances to partic-
ular geometrical transformations, as well as generalizations of some of the
properties studied in the previous chapter. We note that the simplest fu-
sion functions may be constructed by means of componentwise extensions
of one-dimensional mappings. Other ones are based on the concept of data
depth or penalty minimizers.
We are also interested in aggregation on product lattices and character
sequences, especially in connection with the Hamming distance.

— In Chapter 3 we focus on the topic of strings’ aggregation, that is tuples of
not necessarily conforming lengths. In this case, various ordering relations
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may be defined, e.g., the lexicographic order. The data types of our in-
terest include numeric strings which represent informetric data, as well as
character strings, like DNA and protein sequences. It turns out that the
most influential data fusion methods on such a domain may be expressed
as minimizers of various string distance-based penalties. Because of that,
we include a comprehensive overview of character string metrics. This
embraces the notion of a generic edit, q-gram, and Dinu rank distance.

— Chapter 4 deals with aggregation of much more complex data types: direc-
tional data, real intervals, fuzzy numbers, random variables, graphs and
relations, as well as heterogeneous data sets. We shall observe that some
of the key ideas in data fusion can be extrapolated to these kinds of data
models.

— Finally, in Chapter 5, we discuss various numerical characteristics of dif-
ferent objects. This topic is inevitably connected to data aggregation. In
particular, we are interested in a synthetic description of probability dis-
tributions, spread of numeric lists, decision makers’ consensus, economical
inequity, informetric data, fuzzy numbers, and fusion functions themselves.
We end the chapter with a discussion on the so-called checksums, which –
as it shall turn out – require a quite different treatment than other mea-
sures.

— In the Appendix, following the excellent approach from [49], we provide the
implementations of the most interesting algorithms. For that, we use the
R [397] and C++11 programming language. In the latter case, the Rcpp
package classes [177] are used as a link between these two languages.

Apart from the provision of a global and concise view on fusion functions
across different domains (“Aggregation 2.0”), original contributions in this mono-
graph, which were not yet published at the time of its writing, include, but are
not limited to:

— Chapter 1: The idea of incremental fusion functions as a generalization of
recursive aggregation tools (Definition 1.121); new methods for learning
aggregation operators from empirical data, including the least Chebyshev
metric fitting tasks in Section 1.6.1, the least squares error fitting with
output ranking preservation in Section 1.6.2.B, applications of weights’
regularization to prevent model overfit, fitting weights to quasi-arithmetic
means (without variables’ linearization); some notes on aggregation of el-
ements on nominal scale in Section 1.8.

— Chapter 2: Extension of results published in [208] concerning aggregation
of d-dimensional real tuples, including Propositions 2.13, 2.14, 2.19, 2.24,
2.32, and 2.30; a construction of SVD-based similarity transform equivari-
ant fusion functions in Sec. 2.2.3; proposal of a framework for penalty-based
multidimensional fusion functions in Sec. 2.5.5 and their general proper-
ties (in particular, Proposition 2.54); a new evolutionary algorithm for
approximating the Hamming distance-based 1-center character sequence.
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— Chapter 3: New results concerning aggregation of informetric data (Propo-
sition 3.8 and 3.14), proposal for a list of desirable properties that such data
fusion tools should fulfill, new aggregation methods for numeric strings in
Section 3.2.3, including the 1-median for informetric data under assump-
tion that I = [0,∞]; an exact algorithm to compute a centroid of two
character strings as well as an evolutionary algorithm for 1-median of arbi-
trary number or character strings with respect to the Levenshtein distance,
a list of desirable properties of fusion functions for character sequences and
strings in Section 3.3.

— Chapter 4: Fast approximate set exemplar search algorithm in arbitrary
finite semimetric spaces in Section 4.6.

— Chapter 5: A generalization of a spread relation [209] in Section 5.2.3 for
multidimensional numeric lists and a list of new spread measures’ construc-
tion methods.

The author would like to thank Prof. Gleb Beliakov, Prof. Radko Mesiar,
and Dr. Simon James for the useful, in-depth comments on the manuscript
and to Prof. Olgierd Hryniewicz who encouraged him to write this book in
November 2014. Moreover, he wishes to thank Prof. Bernard De Baets and
Prof. Janusz Kacprzyk for motivating him to convey research on Aggregation
2.0. Also, the help of his Ph.D. students Anna Cena and Maciej Bartoszuk while
dealing with early versions of this work is much appreciated. He is also indebted
to Prof. Martin Štěpnička and other researchers with the Institute for Research
and Applications of Fuzzy Modeling for their great hospitality during a research
visit at the University of Ostrava, Czech Republic during which he has written
some key parts of this monograph.

The study was cofounded by the European Union from resources of the Euro-
pean Social Fund, Project PO KL “Information technologies: Research and their
interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00
as well as by the research task A4.1.2/2015, “Algorithms for data aggregation
and fusion”, Systems Research Institute, Polish Academy of Sciences and by
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Notation convention and R basics

In this book we roughly follow the conventions used in [230], which are to some
degree consistent with the way the R [397] environment handles vector and
matrix computations. In particular:

— The set of natural numbers, {1, 2, . . . }, is denoted by N, by N0 we mean
the set N∪{0}, and the set of all integers is denoted with Z. Additionally,
R is the set of reals, R+ =]0,∞[, and R0+ = [0,∞[. Where it is needed,
R̄ = [−∞,∞] denotes the set of extended reals. By default, we assume
that +∞+ (−∞) = −∞ and 0 · ∞ = 0 (unless stated otherwise).

— The interval closure of the set S ⊆ R, i.e., the smallest closed interval that
contains S, is denoted with intclS. For any x ∈ R, bxc = max{y ∈ Z : y ≤
x} and dxe = min{y ∈ Z : y ≥ x} denote the floor and ceiling function,
respectively.

— For any natural number n, let [n] = {1, 2, . . . , n}, with convention [0] = ∅.
Moreover, [i : j] = {i, i+ 1, . . . , j} for any i ≤ j. Thus, [n] = [1 : n]. Here
is a corresponding R code:
seq_len (0) # [0]
## integer (0)
seq_len (5) # [5]
## [1] 1 2 3 4 5
0:4 # [0:4]
## [1] 0 1 2 3 4

— Given a set X, let X∗ =
⋃∞
n=2X

n denote the set of all sequences with
elements in X of length at least (if not stated explicitly otherwise) two.

— Each sequence is denoted with a bold symbol, e.g., x = (x1, . . . , xn). Note
that in each case we use 1-based indexing (like in the R programming
language). Having that in mind is crucial when it comes to implementing
algorithms to perform computations on vectors: for instance, languages
like C++, Java, and Python use 0-based indexing.
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x <- c(2, 4, 6, 8)
n <- length(x) # n == 4
x[1] # the first element in x
## [1] 2
x[n] # the last element in x
## [1] 8

— Given arbitrary x ∈ X, by (n ∗ x) we denote an n-tuple (a sequence
of length n) (x, x, . . . , x) ∈ Xn. More generally, (n ∗ (x1, . . . , xk)) =
(x1, . . . , xk, . . . , x1, . . . , xk) ∈ Xnk denotes the fact that (x1, . . . , xk) is re-
peated exactly n times, with recycling.
rep(1, 5) # (5 * 1)
## [1] 1 1 1 1 1
rep (1:2, 3) # (3 * (1, 2))
## [1] 1 2 1 2 1 2

— Given, say, x ∈ Xn,y ∈ Xm, t ∈ X, (x,y, t) ∈ Xn+m+1 denotes their
concatenation into a single vector.
x <- c(1, 2, 3)
y <- c(4, 5)
t <- 6
c(x, y, t) # (x, y, t)
## [1] 1 2 3 4 5 6

— Binary operations like +,−, ·, /,∧ (minimum), and ∨ (maximum) on vec-
tors of equal lengths n are applied elementwise and thus output a vector
of length n too. On the other hand, if one of the operands is a scalar, then
it is extended to a vector of length n in such a way that x + t = x + (n∗ t).
c(-1, 1, -2, 2) * c(1, 2, 3, 4) # vector * vector
## [1] -1 2 -6 8
2 * c(1, 3, 5) # scalar * vector
## [1] 2 6 10

Note that in fact in R there are no separate scalar data types: single values
are represented as vectors of length 1.

— If A ∈ Rd×n is a matrix with d rows and n columns and t ∈ Rd, then by,
e.g., A + t we mean A + [t t · · · t], i.e., t is treated as a column vector.
Moreover, A + t = A + (d ∗ t) = A + [(d ∗ t) · · · (d ∗ t)].
d <- 2
n <- 3
A <- matrix(byrow=TRUE , nrow=d, ncol=n,

c(1, 2, 3,
4, 5, 6))

A
## [ ,1] [ ,2] [ ,3]
## [1 ,] 1 2 3
## [2 ,] 4 5 6



Notation convention 23

A * c(-1, 1)
## [ ,1] [ ,2] [ ,3]
## [1 ,] -1 -2 -3
## [2 ,] 4 5 6

A / 2
## [ ,1] [ ,2] [ ,3]
## [1 ,] 0.5 1.0 1.5
## [2 ,] 2.0 2.5 3.0

— Regarding evaluation of n-argument functions, we interchangeably use no-
tations: F(x1, . . . , xn) = F((x1, . . . , xn)) = F(x). If F is defined on a do-
main X, then for Y ⊂ X, F|Y denotes the projection of F onto Y (domain
restriction).

— If a function F is defined on X, then we implicitly assume that it may be
extended onto Xn by vectorization: F(x1, . . . , xn) = (F(x1), . . . ,F(xn)).
sign(c(-2, 1, 0, 0.5))
## [1] -1 1 0 1

On a side note, if vectorization is not an R function’s inherent feature,
we can assure it manually by calling a functional programming construct
called sapply().
sapply(c(-2, 1, 0, 0.5), sign)
## [1] -1 1 0 1

— 1(p) denotes the Boolean indicator function, 1(p) = 1 whenever a logical
statement p is true and 0 otherwise. Moreover, the characteristic function
is denoted with 1X(x) = 1(x ∈ X) for any set X. Of course, these
functions may be vectorized if needed.
x <- c(-2, 1, 0, 0.5)
as.integer(x > 0)
## [1] 0 1 0 1

— For any finite set X, |X| denotes its cardinality. If x is a sequence, then
the same notion, |x|, is used to denote its length.

— Let SY denote the set of all permutations of a finite set Y . Given x ∈ Xn

and σ ∈ S[n] let xσ := (xσ(1), . . . , xσ(n)). Additionally, let x(i) denote the
ith order statistic in a vector x ∈ Xn, i.e., the ith smallest value in that
vector. The term “smallest” is of course relative to some linear order ≤
on X. For instance, if X = R, we use (if not stated otherwise) standard
ordering of reals. Thus, it holds:

x(1) ≤ x(2) ≤ · · · ≤ x(i) ≤ · · · ≤ x(n)

Of course, x(i) = xσ(i), where σ is a so-called ordering permutation of x.
Generally (if there are tied observations in x) such a permutation might
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be ambiguous, so we assume that σ is the stable ordering permutation: for
x = (1, 2, 1, 2, 1) we always get σ = (1, 3, 5, 2, 4). The linear order v used
here is such that xi v xj whenever xi < xj or (xi = xj and i ≤ j).
x <- c(13, 11, 12, 11, 11)
o <- order(x) # a ( stable ) ordering permutation
o
## [1] 2 4 5 3 1
x[o[1]] # the smallest value in x
## [1] 11
x[o[5]] # the largest value in x
## [1] 13

— The uniform distribution on a set A is denoted with UA, e.g., U[0, 1] or
U{−1, 1}. The normal distribution with expected value of µ and standard
deviation of σ is denoted with N(µ, σ).

Regardless of the differences in vector indexing in the Python programming lan-
guage, similar code chunks could have been provided for ndarrays defined in the
NumPy package.

Let us also note that how C++ code can seamlessly be integrated in R (for
instance, to speed up computations, access external libraries, or make use of
lower-level programming concepts, like dynamic data structures). For that, we
use the Rcpp package [177].

C++ source files may be turned into a dynamically linked library (automat-
ically loaded by R) via a call to:
Rcpp:: sourceCpp(’filename.cpp’)

For quite simple functions, their C++ code may be provided inline in the R
console. Here is an exemplary function which takes a single numeric argument
and returns a single numeric value:
Rcpp:: cppFunction(’

double square(double x) {
return x*x;

}
’)

Equivalently, a complete C++ source file may be written:
# include <Rcpp.h>
// [[ Rcpp :: plugins (" cpp11 ")]]
using namespace Rcpp;

// [[ Rcpp :: export ]]
double square(double x) {

return x*x;
}

Usage in R:
square (2)
## [1] 4
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Moreover, the following function takes a vector as input and returns a vector
of the same size:
Rcpp:: cppFunction(’

NumericVector square_vec(NumericVector x) {
int n = x.size ();
NumericVector y(n);
for (int i=0; i<n; ++i)

y[i] = x[i]*x[i];
return y;

}
’)

square_vec(c(-1, 2.5, 0))
## [1] 1.00 6.25 0.00

In this book we use R and C++ to implement the discussed algorithms. As
a Python alternative to Rcpp, we suggest, e.g., Cython or boost::python.





Chapter 1

Aggregation of univariate data

Classically, the theory of aggregation discusses methods to summarize
n ≥ 2 numeric quantities in some real interval I = [a, b] or ]a, b[, a < b. It
is assumed that these quantities represent the results of measurements of

the same process, for instance decision makers’ preference degrees towards some
alternative, or outputs gathered from sensors of the same kind (thermometers,
traffic speed guns, personality questionnaires in psychology, and so forth). Of
course, further on we shall discuss more complex methods, e.g., aggregating an
arbitrary number of elements (so-called extended fusion functions), elements on
discrete scales (nominal or ordered, like character strings), more complex objects
(like vectors in Rd for d > 1 or DNA sequences), as well as determining numeric
characteristics of entities. Before this happens, our universe of discourse appears
to be quite simple at first glance, both from the mathematical and computational
perspective. However, the kind reader should not be misled by that impression:
the purpose of this introduction is not only to establish basic notation and key
ideas. It shall turn out that even in such an uncomplicated domain a practitioner
is faced with many challenges and interesting issues.

1.1 Preliminaries
To get a general idea of objects that are of our interest in this chapter, let us
introduce the following definition.

Definition 1.1 ([93, 94]). A fusion function is a mapping F : In → I.

The notion of a fusion function reflects the abstract aim of data fusion: we
take n numbers from some domain and, as a result result, get one value of the
same type. For instance, in decision making and fuzzy logic we often suppose
that I = [0, 1] or I = [−1, 1] and in statistics that I =] −∞,∞[. We shall see
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that the choice of interval I = [a, b] may be crucial; some of the results presented
below may hold only if, e.g., a = 0 or b =∞ but not otherwise.

Example 1.2. Consider a mapping defined as:

Sum(x) =
n∑
i=1

xi.

It is a fusion function if, e.g., I = [0,∞] or [−∞,∞], but not if I = [0, 1] or
[−1, 1].

Let us review some general cases where fusion functions in In are applicable
and introduce some well-known data aggregation tools.

Example 1.3. Assume that we are given a realization (x1, . . . , xn) of a random
sample of independent random variables following a common distributionD with
support I. This may denote the results of an IQ test that was taken by a group
of students. Knowing that D is symmetric around some value t, how can we
estimate t so that one group of pupils may be compared to some reference value?
Among examples of fusion functions applicable in this case we find:

— AMean(x) = 1
n

n∑
i=1

xi, (arithmetic mean)

— Median(x) =
{
x((n+1)/2) if n is odd,(
x(n/2) + x(n/2+1)

)
/2 if n is even. (median)

Note that the sample median may be written as:

Median(x) =
xb(n+1)/2c + xd(n+1)/2e

2

and that it is defined using order statistics, which are also types of fusion func-
tions. Namely, for any k ∈ [n], we may define:

OSk(x) = x(k).

As we shall see in Section 1.7.3, the two following instances of order statistics
are particularly noteworthy:

— Min(x) = OS1(x) =
n∧
i=1

xi, (minimum)

— Max(x) = OSn(x) =
n∨
i=1

xi. (maximum)
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Also, apart from the arithmetic mean, the reader is possibly familiar with
two other types of means:

— GMean(x) =
(

n∏
i=1

xi

)1/n

, (geometric mean)

— HMean(x) = 1
1
n

∑n
i=1

1
xi

. (harmonic mean)

It is well-known that for a > 0 we have:

Min(x) ≤ HMean(x) ≤ GMean(x) ≤ AMean(x) ≤ Max(x).

This is in fact one of the first results in the theory of aggregation – the Greek
mathematicians studied its simplest case (n = 2) over 2000 years ago.

Example 1.4. Let us go back to Example 1.3. Knowing that some of the input
observations were contaminated and that now outliers possibly occur in our
data set (e.g., because the students were not focused enough while performing
the tasks), how can we choose a fusion function F so that F(x1, x2, . . . , xn) is a
plausible estimator of D’s center point? Among possible choices we find:

— TriMeank(x) = 1
n− 2k

n−k∑
i=k+1

x(i), (trimmed mean)

— WinMeank(x) = 1
n

n−k∑
i=k+1

x(i) + k

n
x(k+1) + k

n
x(n−k),

(Winsorized mean)

for some k ∈ {0, 1, . . . , bn/2c − 1}.

Example 1.5 ([49]). Suppose that we have a rule-based system with rules of the
form:

IF o1 is O1 AND o2 is O2 AND . . . AND on is On THEN . . . ,

and that xi denotes the degree of satisfaction of the predicate “oi is Oi”, xi ∈
[0, 1]. At this point, 0 may be interpreted as “no satisfaction”, 1 as “complete
satisfaction”, and intermediate values can depict partial degrees of compliance.
Then the overall degree of satisfaction of all the rules may be referred to as
F(x1, x2, . . . , xn). For the sake of this purpose the following fusion functions are
sometimes used:

— Prod(x) =
n∏
i=1

xi, (product)

— Min(x), (sample minimum)
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— TŁ(x) = 0 ∨
(

n∑
i=1

xi − n+ 1
)
. (Łukasiewicz t-norm)

Example 1.6. Now let us assume that we have a rule-based system with rules of
the form:

IF o1 is O1 OR o2 is O2 OR . . . OR on is On THEN . . . .

Assuming that xi ∈ [0, 1], as in the previous example, we may take into account
the fusion functions:

— Max(x), (sample maximum)

— SŁ(x) = 1 ∧
(

n∑
i=1

xi

)
, (Łukasiewicz t-conorm, bounded sum)

— SD(x) =
{
x(n) if x(n−1) = 0,
1 otherwise. (drastic t-conorm)

Example 1.7. Similarly, in group decision making problems, xi may designate
the degree of preference of the ith expert towards an alternative. Here, F may be
used to combine individual evaluations to obtain a global score, F(x1, x2, . . . , xn).
Then, e.g., a bipolar scale (see [169] for discussion), I = [−1, 1], may be used,
where −1 stands for “strongly disagree”, and 1 for “strongly agree”.

Additionally, suppose that the experts have different “esteem”, i.e., some of
them have stronger impact on the final decision than the others (this is the case
of, e.g., stockholders in a company’s board). Assuming that the ith expert is
assigned weight wi ≥ 0,

∑n
j=1 wj = 1, F is often set to be a convex combination

of input values, that is:

— WAMeanw(x) =
n∑
i=1

wixi. (weighted arithmetic mean)

FP arithmetic. Before going any further let us make a remark concerning the
representation of values in I ⊆ R on modern computers.

Definition 1.8. For some s,m ∈ N and N 3 b ≥ 2 let:

Fbs,m =
{
±
s−1∑
i=0

dib
j−i : di ∈ [0 : b− 1], j ∈ [−m : m]

}
⊆ R (1.1)

denote the set of signed floating point numbers with precision of s significant
digits, base b, and exponent ranging in {−m, . . . ,m}.
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In particular, if b = 2, then we have numbers in the binary representation
(e.g., 1.01012 · 24 = 2110), and if b = 10, then we get decimal numbers (e.g.,
3.141510 · 100). Equation (1.1) may be rewritten equivalently as:

Fbs,m =
{
±(d0.d1d2 . . . ds−1)b

· bj , di ∈ [0 : b− 1] : j ∈ [−m : m]
}
.

In order to assure that each number Fbs,m has an unambiguous representation,
we may assume that d0 6= 0 (normalized form).

For some fixed b, s,m, let F̄bs,m = Fbs,m∪{±Inf, NaN}, i.e., the set of extended
floating point numbers that also includes signed infinities (representing values so
small or so large that they do not fit in Fbs,m) and a not-a-number (an erroneous
value, for results of operations like

√
−1, log(−1), 0/0 6∈ R).

Definition 1.9. For fixed b, s,m, let fp : R → F̄bs,m be such that for arbitrary
x ∈ R we have:

fp(x) =


Inf if x > maxFbs,m,
−Inf if x < minFbs,m,
arg∗miny∈Fb

s,m
|x− y| otherwise.

(1.2)

Thus, if x ∈ range(Fbs,m), then fp(x) rounds x to the closest value in Fbs,m. Of
course, such a rounding scheme may be ambiguous if b is even, e.g., in F10

3,2 the
value 1,00510 ∈ R can be represented as 1,0010 and 1,0110. In order for the func-
tion to be well defined, we should introduce some tie-breaking rule (and hence
the informal notation arg∗min). Here we shall rely on the IEEE-754 standard
which suggests the round half to even scheme, that is, ds−1 should always be
even.

Definition 1.10. For fixed b, s,m, the machine epsilon is the greatest value
εM > 0 such that fp(1 + εM) = 1.

Proposition 1.11. In any Fbs,m it holds that εM = b−s+1/2.

For example, in F10
3,2 we have εM = 5×10−3 = 0.005: it holds fp(1+0.005) =

fp(1.005) = 1 as well as fp(1.005 + 0.0 . . . 1) = 1.01.
The machine epsilon gives us an upper bound for the relative rounding error.

This is because for each 0 6= x ∈ range(F) we have:∣∣∣∣x− fp(x)
x

∣∣∣∣ =
∣∣∣∣1− fp(x)

x

∣∣∣∣ ≤ εM.

Also, please note that there always exists δ ∈ [−εM, εM] such that fp(x) =
x(1 + δ).

It turns out that the double type, most often used for floating point com-
putations on modern computers, is roughly equivalent to F̄2

52/53,1023 according
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to IEEE-754 (we omit issues concerning, among others, subnormal numbers). In
this case, the machine epsilon is equal to 2−53.

Remark 1.12. Fbs,m is not closed with respect to the standard addition operation:
(Fbs,m,+) is not a subalgebra of (R,+). For instance, in F10

3,2 we have 0.00110 +
110 = 1.00110 6∈ F10

3,2. In other words, even if two values are representable in
Fbs,m exactly, the result of applying “+” is might not necessarily be exact.

Let ⊕ : F̄bs,m × F̄bs,m → F̄bs,m be such that for x, y ∈ R and fp(fp(x) +
fp(y)), fp(x), fp(y) ∈ Fbs,m, it holds:

fp(x)⊕ fp(y) = fp(fp(x) + fp(y)). (1.3)

Moreover, let NaN⊕ z̃ = z̃ ⊕ NaN = NaN for z̃ ∈ F̄bs,m, Inf⊕ z̃ = z̃ ⊕ Inf = Inf,
and −Inf⊕ z̃ = z̃⊕−Inf = −Inf for z̃ ∈ Fbs,m, as well as Inf⊕−Inf = −Inf⊕
Inf = NaN. This is a typical redefinition of the ordinary addition operation so
that it acts on elements in F̄bs,m. Other arithmetic operations, e.g., 	,⊗,�, may
be introduced in a similar manner.

Remark 1.13. The ⊕ operation is not necessarily associative, i.e., for x̃, ỹ, z̃ ∈
F̄bs,m we may have (x̃⊕ ỹ)⊕ z̃ 6= x̃⊕ (ỹ ⊕ z̃). For example, in F̄10

3,2 it holds that:

(0.00510 ⊕ 0.02510)⊕ 1.0010 =
0.0310 ⊕ 1.0010 =

1.0310 6= 0.00510 ⊕ (0.02510 ⊕ 1.0010)
= 0.00510 ⊕ 1.0210

= 1.0210.

Remark 1.14. Let us study the absolute error of the ⊕ operation. Let x̃ ⊕ ỹ ⊕
z̃ = (x̃ ⊕ ỹ) ⊕ z̃, where 0 < x̃, ỹ, z̃ ∈ Fbs,m and x̃ ⊕ ỹ ⊕ z̃ ∈ Fbs,m. For some
δ1, δ2 ∈ [−εM, εM] we have:

x̃⊕ ỹ ⊕ z̃ − (x̃+ ỹ + z̃) = fp(fp(x̃+ ỹ) + z̃)− (x̃+ ỹ + z̃)
= δ1x̃+ δ1ỹ + δ2(x̃+ ỹ + δ1x̃+ δ1ỹ + z̃)
≤ εM((2 + εM)(x̃+ ỹ) + z̃).

The relative error of ⊕ is not greater than εM(1 + (x̃+ ỹ)(1 + εM))/(x̃+ ỹ + z̃).
However, we observe that this upper bound depends on the relative magnitude
of the inputs: z̃ ≥ x̃ and z̃ ≥ ỹ leads to the largest error. From that we may
imply that, e.g., the Sum fusion function imposes the smallest relative error if
we add up nonnegative values in an increasing order.

We see that even though the fusion functions studied so far seemed to be
very uncomplicated, special care should be taken when they are implemented on
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a computer. In such a setting, they of course are mappings like F̄ : Īn → Ī, where
Ī = [a, b]∩ F̄bs,m, a, b ∈ F̄bs,m. For the sole Sum function there exists a number of
algorithms; one of them is the Kahan (compensated) summation routine [266],
see also [247].

Remark 1.15. The ⊕ and ⊗ operations are not distributive in general: For ex-
ample in F̄10

3,2 we have:

(0.00110 ⊗ 0.110)⊕ (0.00110 ⊗ 1.0010) =
0.00010 ⊕ 0.00110 =

0.00110 6= 0.00110 ⊗ (0.110 ⊕ 1.0010)
= 0.00110 ⊗ 0.110

= 0.00010.

The reader is suggested to refer, e.g., to [282, Section 4.2], [246], or [226] for
further discussion and issues on the topic.

Remark 1.16. There are a few libraries for performing floating point compu-
tations with higher precision, for instance MPFR (Multiple Precision Floating-
Point Reliable) and GMP (GNU Multiple Precision) libraries. Unfortunately,
the errors in numerical computations are inherent, they may only be reduced.
This of course comes at a cost of slowing down the computations.

As an alternative, one may consider computer algebra systems performing
symbolic computations, e.g., Mathematica, Maxima, Maple, or Sage.

Example 1.17. The only discussed so far fusion functions F̄ : Īn → Ī that produce
exact values are OSk for arbitrary k ∈ [n] (but not Median for arbitrary n) and
SD. Generally, among precise operations in F̄ we find ∧ and ∨, which are the basis
for the class of weighted lattice polynomial functions discussed in Section 1.7.5,
see also Equation (1.32).

1.2 Properties of fusion functions
The definition of a fusion function we presented above is very general. Thus,
we would like to narrow it down and identify some crucial properties that must
always be fulfilled in order to say that F might at least be potentially interesting
to us. This, however, is relative to the nature of the practical problem we are
faced with.

In the following subsections we therefore explore some noteworthy frame-
works, which include nondecreasingness, symmetry, idempotence, different types
of equivariances, additivity and so forth.
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1.2.1 Nondecreasingness and preservation of end points
In Examples 1.5, 1.6, and 1.7 it seems that it is reasonable to require that if
we increase the degree of satisfaction of a predicate or the degree of preference
stated by the ith expert, then the new overall valuation should not be smaller
than the previous one. Such a property may be formalized as follows. Let ≤n
be a binary relation on In such that x ≤n y if for all i ∈ [n] we have xi ≤ yi.

Definition 1.18. A fusion function F : In → I is called nondecreasing (in each
variable), whenever for all x,y ∈ In it holds that if x ≤n y, then F(x) ≤ F(y).

Remark 1.19. All the fusion functions reviewed so far are nondecreasing.

We may also define a strictly increasing function by assuming that x <n y⇒
F(x) < F(y), where x <n y if and only if x ≤n y and x 6= y. Moreover, unan-
imous increasingness (compare [230]), also known as joint strict monotonicity,
can be defined by considering the cases in which for all i ∈ [n] it holds xi < yi.

Example 1.20. Among strictly increasing fusion functions we find, e.g., AMean.
Moreover, Min and Max are unanimously increasing.

Moreover, we may require that F should at least be normalized in such a way
that it preserves the endpoints of I.

Definition 1.21. We say that a fusion function F is endpoint-preserving, when-
ever it holds that F(n ∗ a) = a and F(n ∗ b) = b.

In other words, e.g., in a decision making problem, if the criteria are not
satisfied at all or each expert finds an alternative totally plausible, then in such
extreme cases the result should be concordant with the inputs. Note that if
I is an open interval, then by, e.g., F(n ∗ a) would of course mean F(n ∗ a) =
limx→(n∗a) F(x).

Example 1.22. Prod is an endpoint-preserving fusion function for input elements
in [0, 1], but not when I = [0, 0.5] or I = [−1, 1] and even n is considered.
Moreover, it is not nondecreasing, e.g., in the [−1, 1] case. Hence, we see that
some properties indeed depend on the choice of I = [a, b] as well as n.

On the other hand, F(x) = b ∧ Prod(x) is endpoint-preserving in the case
I = [0, b] for any b ≥ 1. We shall often observe that some fusion functions may
be “tuned up”: by applying particular transformations they start to fulfill a
given property which is of interest in a particular domain.

Properties given in Definitions 1.18 and 1.21 lead us to the classical definition
of an aggregation function, as in [39, 49, 230].
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Definition 1.23. F : In → I is an aggregation function whenever it is nonde-
creasing in each variable and it is endpoint-preserving.

Note that if F is nondecreasing, then it is endpoint-preserving if and only if
infx∈In F(x) = a and supx∈In F(x) = b.

1.2.2 Idempotence and internality
From another standpoint, fusion functions to be used in application domains
like those mentioned in Examples 1.3 and 1.4, might not necessarily be nonde-
creasing. For example, already Kolmogorov and Nagumo [292, 370], compare
also Aczel’s paper [4], were interested in discussing various kinds of means. One
of the properties they required is the so-called idempotency (unanimity, com-
pensativity), which is well-known from algebra, where we say that element x
is idempotent with respect to a binary operator ∗, if we have x ∗ x = x. The
following definition extends this property to n-ary aggregation functions, see
[230].

Definition 1.24. A fusion function F is called idempotent, whenever:

(∀x ∈ I) F(n ∗ x) = x. (1.4)

Intuitively, if we aggregate n equal inputs, the resulting value should fully
agree with them. Note that each idempotent fusion function is also endpoint-
preserving. Among idempotent aggregation functions we find WAMean and OSk,
but not TŁ and SD.

Remark 1.25. Let n = 10, HMean(x) = n�((1�x1)⊕· · ·⊕(1�xn)) (the floating
point equivalent to the harmonic mean with respect to the double type), and x
be equal to:

+1.11011101100001111011110011001111101000111001111011112 × 20,

that is x ' 1.86535244054141080560810. Then HMean(n ∗ x) is equal to:

+1.11011101100001111011110011001111101000111001111100002 × 20,

i.e., x 6= HMean(n∗x) ' 1.865352440541411010. Even if – algebraically – HMean
is idempotent, its “computer version” is not. Therefore, one should be careful
when comparing results of floating point computations, especially with the =
operator. A much more reliable way to do so is to test whether |F(n∗x)−x|/|x| ≤
ε for some small ε being a function of the machine epsilon, e.g., ε = √εM.

Another significant property – internality (as named in [230, Definition 2.53]),
also known as compensativity – requires that a fusion function’s output value
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must lie “somewhere in-between” the input values (see page 106 for an alternative
setting).

Definition 1.26. A fusion function F is internal whenever (∀x ∈ In) we have:

Min(x) ≤ F(x) ≤ Max(x). (1.5)

In other words, F(x) ∈ intcl x.

We see that each internal F is idempotent too. We often consider fusion
functions which are both idempotent and nondecreasing. Actually, idempotent
aggregation functions are sometimes called averaging functions in the literature,
compare [230]. It turns out that in such a case idempotency and internality
coincide, see [230, Proposition 2.54] for the proof.

Proposition 1.27. If F if nondecreasing and idempotent, then it is internal.

Please observe that nondecreasingness is appealing from the mathematical
perspective: it turns out that many other properties can be simplified owing to
this property. Though, in some applications it may not be fully desirable.

Remark 1.28. According to [230], already Cauchy in 1821 considered under a
name mean an internal, but not necessarily nondecreasing fusion function. Sim-
ilarly, compare [39], Gini in the 1950s required only this very property when
discussing various means.

Remark 1.29. A class of idempotent, but not necessarily nondecreasing fusion
functions may be useful in the case of aggregating data in the presence of outliers:
we might sometimes want to allow that F (0, 0, . . . , 0, 1) > F (0, 0, . . . , 0, 109), just
as in Example 1.4. For instance, it is not uncommon to define outliers (e.g., when
building box-and-whisker plots) as observations xi such that xi < Q0.25(x) −
1.5(Q0.75(x)−Q0.25(x)) or xi > Q0.75(x) + 1.5(Q0.75(x)−Q0.25(x)), where Q0.25
and Q0.75 stand for the 1st and the 3rd quartile, compare Example 1.83. Then,
having F defined as “the arithmetic mean of all non-outlying observations”, we
get, e.g., 0.4 = F(−2,−1, 0, 1, 4) 6≤ F(−2,−1, 0, 1, 5) = −0.5. In Section 1.2.8 we
shall make a review of other types of monotonicities.

Remark 1.30. The mode, well known in exploratory data analysis, is defined as
an observation that appears most often in the input data set. Of course, such
a definition is not strict in the case of multimodal vectors. What is important
here, however, is that it is an idempotent yet not monotone (at least with respect
to ≤n) fusion function. It is because we have, e.g., 3 = Mode(1, 1, 2, 2, 3, 3, 3) <
Mode(2, 2, 2, 2, 3, 3, 3) = 2.
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1.2.3 Conjunctivity and disjunctivity
One may well ask if also idempotence or internality might not be desirable in
certain contexts. The answer is of course positive.

Remark 1.31. In an AND-based rule aggregation system from Example 1.5, small
values of xi may be treated as “noise” and may be cut down by F to 0. What is
more, in Example 1.6 quite an opposite fusion functions’ behavior is expected.

Actually, Dubois and Prade (see [165, 166, 169]) propose to distinguish the
following four main classes of fusion functions:

— internal (averaging),

— conjunctive (AND-like, e.g., t-norms),

— disjunctive (OR-like, e.g., t-conorms),

— mixed.

This distinction is based on the relationship between these functions and Min or
Max.

Definition 1.32. A fusion function F : In → I is conjunctive, whenever for all
x ∈ In we have:

F(x) ≤ Min(x). (1.6)

Definition 1.33. A fusion function F : In → I is called disjunctive, whenever
for every x ∈ In it holds:

Max(x) ≤ F(x). (1.7)

Note that Min and Max are internal as well as conjunctive and disjunctive,
respectively, at the same time. On the other hand, mixed fusion functions are
neither internal, conjunctive, nor disjunctive (for all input vectors). We shall see
in Section 1.5.3 that this is the case of uninorms (among others).

Example 1.34. Assuming that I = [0, 1], the so-called 3-Π function, given by:

3Π(x) = Prod(x)
Prod(x) + Prod(1− x) ,

is an example of a mixed-type fusion function, with convention 0/0 = 0. Yager
and Rybalov [483] showed that it is conjunctive on [0, 0.5]n, disjunctive on
[0.5, 1]n, and internal otherwise.

Even though the focus of this book is generally on functions that are idempo-
tent, mappings from other classes are anyway noteworthy, have influenced, and
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continue to be a very important part of the theory of aggregation. For instance,
the notion of a copula (a conjunctive – among others – fusion function, e.g.,
Min or TŁ) will be useful in Chapter 2 when we discuss various methods for
generating random observations from Rd for d > 1. Hence, from time to time,
we shall refer back to them.

1.2.4 Symmetry. Permutations of inputs
Another useful property is called symmetry. It may be a sine qua non condition
in statistics, where all the observations are treated just as “points in the real
line”. Moreover, it may be useful in decision making, in a case when all of the
experts are of the same “esteem” or all of them are anonymous.

Definition 1.35. We say that a fusion function F : In → I is symmetric, if:

(∀x,y ∈ In) x ∼= y =⇒ F(x) = F(y), (1.8)

where x ∼= y if and only if there exists a permutation σ of [n] such that x =
(yσ(1), . . . , yσ(n)).

In other words, the output value of a symmetric function does not depend on
the ordering of inputs. Of course, each F that is defined as a function of x(1), . . . ,
x(n), i.e., order statistics, is symmetric by definition, see also Section 1.3.1.C.

Example 1.36. Among instances of symmetric aggregation functions we find the
sample median, all order statistics, or trimmed and Winsorized means (see Ex-
ample 1.4). Specifically, the 1-trimmed mean is used in ski jumping competitions
organized by the International Ski Federation, where each of 5 experts provide
scores based on a jumper’s balance, body position, and landing style. In such a
case, one lowest and highest score is neglected.

Remark 1.37. For a given k, x(k) may be computed in O(n) time by using the
BFPRT (median of medians, [66]) algorithm without actually sorting the input
vector. Note that often the Quickselect [250] or the Floyd-Rivest [194] schemes
are preferred, though; they have O(n) time complexity only on average but, when
implemented, tend to run faster than BFPRT. See also std::nth_element()
function in the C++ Standard Library.

Remark 1.38 ([38]). As WinMeank(x) = 1
n

∑n
i=1
(
(xi ∨ x(k+1)) ∧ x(n−k)

)
=

1
n

∑n
i=1 Median(x(k+1), xi, x(n−k)), the computation of a Winsorized mean has

O(n) time complexity. Moreover, the same holds for a trimmed mean, because:

TriMeank(x) = 1
n− 2k

(
nWinMeanα(x)− kx(n−k) − kx(k+1)

)
.
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Another interesting result concerning algorithmic aspects of symmetric fusion
functions is due to J. Rotman, see [230, Proposition 2.33]. It states that we need
to compute the value of F only three times in order to determine if this property
holds for a fixed x.

Proposition 1.39. A fusion function F : In → I is symmetric if and only if for
all x ∈ In:

F(x1, x2, x3, . . . , xn−1, xn) = F(x2, x1, x3, . . . , xn−1, xn) and
F(x1, x2, x3, . . . , xn−1, xn) = F(x2, x3, x4, . . . , xn , x1)

Permutations of input objects play an important role in data fusion theory.
Thus, let us recall an algorithm for generating a random permutation of a given
vector. By “random” we of course mean a situation in which every possible
permutation is assigned the same probability measure, i.e., the distribution is
uniform. Generating a random permutation is not necessarily straightforward:
in particular, a procedure like “n times swap two randomly selected elements
of x” does not lead to a uniform distribution. To achieve this goal, we should
rather rely, e.g., on the following algorithm.

Algorithm 1.40. Generation of a random permutation of elements of a given
vector x = (x1, . . . , xn) with the Fisher-Yates shuffle [193] as formulated by
Knuth [282, Algorithm P] is done as follows:

1. Let σ be such that σ(i) = i for all i ∈ [n];

2. For j = n, n− 1, . . . , 2 do:

2.1. Let i be a random number uniformly distributed in {1, 2, . . . , j};
2.2. Swap σ(i)↔ σ(j);

3. Return xσ.

It is easily seen that the above procedure runs in O(n) time. Moreover,
note that with Algorithm 1.40 we do not only get a random rearrangement of
elements of x but also a random σ ∈ S[n] itself.

Moreover, later on we need the notion of comonotonicity. As it is somehow
related to the topics discussed in this subsection, let us introduce it now.

Definition 1.41. According to [230, Definition 2.123], x,y ∈ In are comono-
tonic, denoted by x t y, if and only if there exists a permutation σ ∈ S[n] such
that:

xσ(1) ≤ · · · ≤ xσ(n) and yσ(1) ≤ · · · ≤ yσ(n). (1.9)

Thus, σ orders x and y simultaneously. It is easily seen that the t binary
relation is reflexive and symmetric.
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Remark 1.42. Equivalently, x and y are comonotonic, if and only if for every
i, j ∈ [n] it holds that:

(xi − xj)(yi − yj) ≥ 0.

It is easily seen that in order to generate two random comonotonic vectors x,y
we may generate the two vectors independently (from some desired probability
distribution on In), sort them separately, generate a random permutation σ with
Algorithm 1.40, and then return (xσ,yσ).

If all the elements of x are unique, then to determine if two vectors are
comonotonic it is sufficient to take the (unique) ordering permutation of x and
then verify if yσ is sorted. On the other hand, if there are tied observations in
x, we seek the longest possible sequence (xσ(i), xσ(i+1), . . . , xσ(i+k)) such that
xσ(i) = xσ(i+k), where σ is an ordering permutation of x. Then we try to
update σ so that it also sorts the corresponding observations in y, see [207] for
discussion. An exemplary implementation is given in Figure A.1. Here we use
a sorting routine from the C++11 Standard Library, with guaranteed run-time
of O(n logn). Note that the provided implementation also generates a common
ordering permutation for x and y. What is more, at some step an ordering
permutation of x is given. To guarantee that σ is unique and such that for i < j
and xi = xj we have σ(i) ≤ σ(j), one may use std::stable_sort() instead of
std::sort().

1.2.5 Continuity and convexity
The notion of continuity is very attractive from the perspective of mathematical
analysis.

Definition 1.43. F : In → R is continuous if for all x∗ ∈ In we have:

lim
In3x→x∗

F(x) = F(x∗). (1.10)

It may be shown that if F is nondecreasing, then F is continuous if and
only if it is continuous in each variable, see [230, Proposition 2.8] for a proof.
This corresponds to the so-called intermediate value property: for each x,y
with x ≤n y and c ∈ [F(x),F(y)] there exists z such that F(z) = c. In fact,
z = αx+ (1−α)y for some α ∈ [0, 1], i.e., it is a convex combination of x and y.

Remark 1.44. A mean in the sense of Kolmogorov [292] and Nagumo [370] is a
fusion function F that is nondecreasing, continuous, symmetric, and idempotent.

Let us recall the definition of a norm on an abstract vector space V over a
subfield R.
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Definition 1.45. A norm on V is a function ‖ · ‖ : V → [0,∞] such that:

(a) ‖v‖ = 0 if and only if v ≡ 0,

(b) for any a ∈ R and v ∈ V it holds ‖av‖ = |a| ‖v‖ (homogeneity of the first
degree), and

(c) for all u,v ∈ V we have ‖u + v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality).

Moreover, we call ‖ · ‖ a pseudonorm if condition (a) is replaced with:

(a’) ‖v‖ = 0 if v ≡ 0.

Informally, a norm is often used to measure the “size” of an object and is a
type of its numeric characteristic, compare Chapter 5. Also, we further on recall
that norms may be used to generate various distance metrics, that is functions
to measure dissimilarities between pairs of objects. It shall turn out that such
a notion is meaningful in aggregation theory (and data fusion and mining), as
many fusion functions may be written as minimizers of some penalty function.

Remark 1.46. Here are some notable norms on Rn:

— Euclidean norm, ‖x‖2 =

√√√√ n∑
i=1

x2
i =
√

xTx,

— Manhattan (Taxicab) norm, ‖x‖1 =
n∑
i=1
|xi|,

— maximum (Chebyshev) norm, ‖x‖∞ =
n∨
i=1
|xi|,

or, more generally:

— p-(Minkowski-)norm, p ≥ 1, ‖x‖p =
(

n∑
i=1
|xi|p

)1/p

.

R. Lipschitz [322] also considered the following condition.

Definition 1.47. We say that a fusion function F : In → I is Lipschitz contin-
uous if for any norm || · || on In there exists a finite constant K ≥ 0 such that
for all x,y ∈ In it holds:

|F(x)− F(y)| ≤ K||x− y||. (1.11)
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Of course, K depends on the choice of the norm. If no norm is mentioned
explicitly, the Manhattan one is assumed. In such a case, the smallest constant
in the above equation such that the Lipschitz condition is still fulfilled is called
the (best) Lipschitz constant. In particular, we call a function 1-Lipschitz if:

|F(x)− F(y)| ≤
n∑
i=1
|xi − yi|.

For example, this is the case of the arithmetic mean, with best K being equal
to 1/n in the case of the 1-norm.

Generally, if the best K is not greater than 1 we call F non-expansive, and
if K < 1 then F is a contraction.

It might be shown that if F is a Lipschitz function, then it is continuous. On
the other hand, GMean is an example of a continuous aggregation function on
[0,∞[n which is not Lipschitz.

Further on we shall see that, e.g., copulas, widely used in probability and
mathematical modeling (hydrology, finance, risk, etc.) are Lipschitz functions.
In this regard, note that a continuous fusion function F acting on a list with
elements in a real closed interval fulfills the property that for each ε, there exists
δ > 0 such that |F(x)− F(y)| ≤ ε if x,y are such that ‖x− y‖ ≤ δ.

Remark 1.48. As the set of floating point numbers F is countable, the notion
of continuity is rather of theoretical interest. The Lipschitz condition is even
stronger: it guarantees that an arbitrarily small change of input elements does
not lead to uncontrolled behavior of the output. Nevertheless, its milder ver-
sion is useful from the computational perspective, where it is called numerical
stability and concerns “small” perturbations of values in x.

The next property is important, e.g., when dealing with optimization tasks.

Definition 1.49. We say that a fusion function F is convex whenever for all
x,y ∈ In and λ ∈ [0, 1] it holds that:

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y). (1.12)

Moreover, F is called concave, if (b+ a)− F is convex.

Example 1.50. Max is an example of a convex function and GMean is a concave
one if a > 0. WAMean is both convex and concave at the same time. Moreover,
by definition, every norm on Rn is convex.

Note that if F is continuous and twice differentiable, then it is convex if
and only if its Hessian is positive semidefinite. Also, if F and G are convex
fusion functions, then all of their convex combinations (cF + dG for any c, d ≥ 0,
c+ d = 1) are also convex.
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1.2.6 Equivariance to translation and scaling
In the practice of data analysis, transformations of input variables such as stan-
dardization:

x 7→ x− AMean(x)
SD(x) ,

robust standardization:
x 7→ x−Median(x)

MAD(x) ,

or normalization:
x 7→ x−Min(x)

Range(x) ,

where 0/0 = 0, are often applied. Here SD(x) =
√

1
n−1

∑n
i=1(xi − AMean(x))2

is the sample standard deviation, MAD(x) = 1.4826Median(|x −Median(x)|) is
the median absolute deviation, and Range(x) = Max(x) −Min(x) is the range,
see also Section 5.2.

The classic standardization implies that the transformed vector is of mean 0
and standard deviation of 1 and normalization assures that the output values
are in [0, 1]. The three transformations retain relative distances between the
observations.

Additionally, it is not that uncommon to convert the measurement units
(e.g., Fahrenheit to Celsius, feet to meters, etc.). Note that standardization and
normalization result in unitless values.

Taking the above into account, sometimes it would be useful to assure that
a fusion function is equivariant to translation (shifting) and/or scaling.

Definition 1.51. We say that a fusion function F is translation (shift, difference
scale) equivariant if for all t ∈ R and x ∈ In such that t+ x ∈ In it holds:

F(t+ x) = t+ F(x). (1.13)

Note that translation invariance would imply that for all t and x it held
F(t+ x) = F(x).

Remark 1.52. Notably, Bullen in his seminal monograph [87] defines a mean
as a nondecreasing, symmetric, idempotent, and translation equivariant fusion
function. Interestingly, he assumes that means are most often computed on
elements in the interval I = [0,∞[.

Definition 1.53. A fusion function F is called (ratio) scale equivariant if for all
s > 0 and x ∈ In such that sx ∈ In it holds that:

F(sx) = sF(x). (1.14)
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Similarly to the translation or scale equivariance, ∧- and ∨-equivariance may
be defined: it suffices to replace the addition or multiplication operation with
the minimum and maximum, respectively. In this regard, translation and scale
equivariance may be combined as follows.

Definition 1.54. A fusion function F is interval scale equivariant if for all s > 0,
t ∈ R, x ∈ In with t+ sx ∈ In we have:

F(t+ sx) = t+ sF(x). (1.15)

Remark 1.55. Note that if 0 ∈ I and F is at least scale equivariant, then for
every s we have that sF(0) = F(s0) = F(0). Thus, F(0) = 0. If F is additionally
translation equivariant, then for any t we have that F(n∗t) = F(t1) = tF(0+1) =
t. Thus, F is idempotent.

Remark 1.56. It is worth noting that Pitman in 1939 [392] considered estimators
of a location parameter l ∈ R under the transformation:

f(x) 7→ 1
s
f

(
x− l
s

)
of a density function f with s > 0. We see that it is a simple translate-scale
model. He posed that A : Rn → R, being the estimator of l, should fulfill:

A
(
x1 + λ

µ
, . . . ,

xn + λ

µ

)
= A(x1, . . . , xn) + λ

µ

for all λ ∈ R and µ > 0, and be independent of l. The definition of the A
function is a very appealing, early approach to aggregation as we know today:
“any function of this type will be called an estimate of l”, see [392, page 409].
He also wrote on page 420: “any function of the sample values whose value
may be used as an estimate of an unknown parameter is called an estimator of
that parameter”. Moreover, he pointed out that there are many estimators, each
of which may fulfill different properties (e.g., one that minimizes the minimum
mean absolute error or the minimum mean square error).

Sometimes we might be interested in the following, much stronger version of
interval scale equivariance (compare Proposition 1.67):

Definition 1.57. A fusion function F is said to be ordinal scale equivariant if
for all increasing bijections ϕ : I→ I and every x ∈ In it holds that:

F(ϕ(x1), . . . , ϕ(xn)) = ϕ(F(x)). (1.16)
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1.2.7 Additivity
Recall that the “+”, “∧”, and “∨” operations on vectors are applied elementwise.

Definition 1.58. A fusion function F is said to be additive, whenever:

F(x + y) = F(x) + F(y), (1.17)

for all x,y ∈ In such that x + y ∈ In.

It is easily seen that each idempotent and additive fusion function is also
translation equivariant.

Definition 1.59. A fusion function F is said to be modular, whenever for all
x,y ∈ In:

F(x ∧ y) + F(x ∨ y) = F(x) + F(y). (1.18)

Due to the fact that x∧y+x∨y = x+y, each additive function is necessarily
also modular.

Definition 1.60. A fusion function F is said to be maxitive, whenever for all
x,y ∈ In:

F(x ∨ y) = F(x) ∨ F(y). (1.19)

Definition 1.61. A fusion function F is said to be minitive, whenever for all
x,y ∈ In:

F(x ∧ y) = F(x) ∧ F(y). (1.20)

1.2.8 Other types of monotonicity
Over history, there have been different approaches to define the concept of a
mean. In the Pitman sense (see Remark 1.56), a mean is meant to be translation
and scale equivariant, in the Cauchy or Gini sense (see Remark 1.28) it is just an
internal fusion function. Classical aggregation theory focuses on fusion functions
that are monotone with respect to all their arguments. However, it is known
that some classes of broadly conceived means are nonmonotone. One example of
such a fusion function is the mode, defined as an observation that occurs most
often in a data sample (in the case of unimodal data sets), see Remark 1.30.
Some other examples of nonmonotone fusion functions may be found in the
class of Bajraktarević means (see [87] and Equation (1.25)) or density-based
fusion functions (see [13] as well as [51]).

As Beliakov, Calvo, and Wilkin in [43] note, unexceptional monotonicity
with respect to ≤n also might not be desirable in certain contexts. For example,
it can reduce the robustness of an averaging method in the case of outliers
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(compare Remark 1.29). Moreover, as we shall see in further chapters, there
are indeed many issues in regard to defining order preserving transformations in
more complex domains than In.

Due to the fact that a kind of monotonicity in the In space is nevertheless
very appealing, quite recently, some researchers in aggregation theory introduced
mappings that preserve orders other than ≤n. Therefore, in this section we
review a few of them.

The concept of weak monotonicity has been introduced by Wilkin and Be-
liakov in [468], see also [470]. It requires that the output of an aggregation
function surely does not decrease whenever we increase all the input values by
the same amount.

Definition 1.62. A fusion function F : In → I is weakly monotone whenever
F(x + t) ≥ F(x) for any t ≥ 0 and x ∈ In such that x + t ∈ In.

Of course, each fusion function that is nondecreasing, is also weakly mono-
tone. The same is true for any translation equivariant mapping.

In [43] it is noted that the standard nondecreasingness and weak monotonicity
are two extremes of a more general situation called monotonicity with respect to
coalitions or quantiles (α-monotonicity).

Definition 1.63. A fusion function F : In → I is monotone with respect to the
α-quantile of the inputs, α ∈ [0, 1[, whenever F(x + tu) ≥ F(x) for any t ≥ 0,
u ∈ {0, 1}n such that {i : ui = 1} ≥ bαn+ 1c, and x ∈ In such that x + tu ∈ In.

What is more, Bustince, Fernandez, Kolesárová, and Mesiar introduced in
[93, 94] another concept – directional monotonicity.

Definition 1.64. For a given n-dimensional vector ~r 6= 0 a fusion function F is
called ~r-nondecreasing, whenever for all t > 0 such that x + t~r ∈ In it holds:

F(x) ≤ F(x + t~r). (1.21)

Clearly, (n∗1)-nondecreasing fusion functions are weakly monotone and vice
versa. This concept is interesting if one wants to study in which directions a
function is monotone: please notice that ≤n-monotonic fusion functions are also
~r-nondecreasing for all ~r ≥n 0. Lucca et al. in [330] called a fusion function
F a pre-aggregation mapping, whenever it is ~r-nondecreasing for some ~r and
endpoint-preserving.

1.3 Construction methods
Let us discuss a few notable fusion function construction methods. Firstly, we
focus on functions that are created by a fusion (composition) or modification
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of other, perhaps simpler mappings. Due to that we may try to obtain data
aggregation tools that start to fulfill originally missing properties or behavior.

Further on we note that many interesting fusion functions are related to uni-
versal integrals with respect to monotone measures, tools known from – among
others – decision making. An appropriate choice of a monotone measure and/or
integral provides us with new ways to aggregate data.

Finally, we study the concept of fusion functions which can be expressed as
minimizers of some penalty.

1.3.1 Compositions and transforms of fusion functions
New fusion functions may be obtained by a proper composition of simpler ones.
It turns out that under certain circumstances some of the properties of the
underlying mappings may be preserved.

Proposition 1.65. Let F : Ik → I, G1, . . . ,Gk : In → I, and H : In → I be given
by H(x) = F(G1(x), . . . ,Gk(x)) for x ∈ In.

— If F is ≤k-nondecreasing and G1, . . . ,Gk are ≤n-nondecreasing (respec-
tively, idempotent, internal, translation equivariant, scale equivariant),
then H is ≤n-nondecreasing (respectively, idempotent, internal, and so
forth).

— If F is ≤k-nondecreasing and idempotent and G1, . . . ,Gk are ≤n-
nondecreasing and conjunctive (disjunctive) then H is also ≤n-
nondecreasing and conjunctive (respectively, disjunctive).

— If F is ≤k-nondecreasing and G1, . . . ,Gk are ~r-nondecreasing, then H is
~r-nondecreasing, [94].

— If F is weakly monotone and G1, . . . ,Gk are translation equivariant, then
H is weakly monotone, [468].

Example 1.66. The Median function for even n is defined as an arithmetic mean
(nondecreasing, idempotent, internal, translation, and scale equivariant) of two
order statistics (which also fulfill these properties).

In particular, in Section 1.3.1.D we study an exemplary hierarchy of fusion
functions, which leads us to the concept of an artificial neural network.

In certain contexts, it may be desirable to apply a fusion function on trans-
formed inputs or to remap the produced outputs. For instance, we may note
that nondecreasingness is a very mild condition. Because of this, we have what
follows.
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Proposition 1.67. If ϕ : I → I is a nondecreasing univariate function with
ϕ(a) = a and ϕ(b) = b, then for each aggregation function F, G = ϕ ◦ F, i.e.:

G(x1, . . . , xn) = ϕ (F(x1, . . . , xn))

is an aggregation function too. A similar result holds for a function given by:

H(x1, . . . , xn) = F(ϕ(x1), . . . , ϕ(xn)).

In Section 1.3.1.A we study the notion of a ϕ-isomorphism of a given fusion
function. This shall lead us to the class of quasi-arithmetic means.

Sometimes it is also possible to transform a fusion function in such a way
that its modified version starts to fulfill a desired property which was missing in
the original setting.

Let δF : I → I denote the so-called diagonal section of a fusion function F,
that is δF(x) = F(n∗x). The following result allows us to generate an idempotent
fusion function G having been given F whose diagonal section is strictly increasing
and such that range(δF) = range(F). Such a process is called idempotization.

Proposition 1.68 ([97]). If F is such that δF is strictly increasing and there
exists a fusion function G such that F = δF ◦ G, then G is idempotent.

For instance, the arithmetic mean and the geometric mean are results of
idempotentization of the sum and the product, respectively.

We may also assure internality in the following way. Let F be a fusion func-
tion. Then G given for example by:
— cut-off:

G(x) = Min(x) ∨ (F(x) ∧Max(x)),
or

— normalization (by, e.g., [230, Proposition 2.55]):

G(x) = Min(x) + (Max(x)−Min(x))ψ(F(x)),

where ψ : I → [0, 1] is some strictly increasing mapping, e.g., ψ(x) =
(x− a)/(b− a) in the case of a bounded I = [a, b],

is internal (recall that I = [a, b]). Note that in both cases if F is nondecreasing,
G is nondecreasing too.

Additionally, in Section 1.3.1.C we shall illustrate the concept of symmetriza-
tion.

What is more, in some applications it is useful to assume that not all the
input observations have the same impact on the resulting value. In order to take
this into account, in Section 1.3.1.B we introduce the concept of fusion functions’
weighting.

Bullen [87, page 60] notes:
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[The arithmetic mean] is the simplest mean and by far the most common;
in fact for a non-mathematician this is probably the only concept for av-
eraging a set of numbers. The arithmetic mean of two numbers a and b,
(a+ b)/2, was known and used by the Babylonians in 7000 B.C., and oc-
curs in several contexts in the works of the Pythagorean school, sixth-fifth
century B.C. [. . . ] Aristotle, [. . . ] used the arithmetic mean but did not
give it this name. [. . . ] The idea of arithmetic mean is also found in the
concept of centroid used by Heron, and earlier by Archimedes in the third
century B.C. [. . . ]

In the sequel we consecutively modify AMean so that we approach more and
more complex (and thus interesting) fusion functions. Despite its first-glance
simplicity, we shall notice that the arithmetic mean is in fact a “sleeping beauty”.

A. ϕ-isomorphisms: Quasi-arithmetic means

Let us first introduce the notion of a ϕ-isomorphism.

Definition 1.69. Let I = [a, b], J = [a′, b′], and ϕ : I→ J be a strictly monotone
bijection. Then the ϕ-isomorphism of a fusion function F : Jn → J is a fusion
function F[ϕ] : In → I defined as:

F[ϕ](x1, . . . , xn) = ϕ−1 (F(ϕ(x1), . . . , ϕ(xn))) . (1.22)

For instance, on I = J = [a, b], we have Max(x) = b + a −Min(b + a − x).
Thus, Max is a (x 7→ b+ a− x)-isomorphism of Min.

We have the following result, compare also Proposition 1.67.

Proposition 1.70. If ϕ : I→ J is a strictly monotone bijection and F : Jn → J
is an idempotent aggregation function, then F[ϕ] : In → I is an idempotent
aggregation function too. Moreover, in the case of a weakly monotone fusion
function F the same is true whenever ϕ is linear (but not in general), see [468].

This serves as a basis for the definition of quasi arithmetic means, which have
already been studied in the 1930s [292, 370] by, e.g., Kolmogorov and Nagumo.

Definition 1.71. Let ϕ : I → R̄ be a continuous and strictly monotonic
function. Then a quasi-arithmetic mean generated by ϕ is a fusion function
QAMeanϕ : In → I given by:

QAMeanϕ(x) = ϕ−1

(
1
n

n∑
i=1

ϕ(xi)
)
. (1.23)

In other words, a quasi arithmetic mean is a ϕ-isomorphism of (the nonde-
creasing and idempotent) AMean : R̄n → R̄. We have QAMeanϕ = AMean[ϕ].
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Table 1.1. Examples of quasi-arithmetic means
under the assumption that I = [0, b] for some b > 0.

ϕ(x) name QAMeanϕ(x)

x arithmetic mean AMean(x) = 1
n

n∑
i=1

xi

x2 quadratic mean QMean(x) =

√√√√ 1
n

n∑
i=1

x2
i

1/x harmonic mean HMean(x) = 1
1
n

∑n
i=1

1
xi

xr, r 6= 0 power mean PMeanr(x) =
(

1
n

n∑
i=1

xri

)1/r

log x geometric mean GMean(x) =
(

n∏
i=1

xi

)1/n

eγx, γ 6= 0 exponential mean EMeanγ(x) = 1
γ

log
(

1
n

n∑
i=1

eγxi

)

Table 1.1 lists notable instances of quasi-arithmetic means. Like in [87, 230],
we assume that a = 0, i.e., I = [0, b] for some b > 0. Note that among power
means we have the arithmetic, quadratic, and harmonic means and that power
means for r ≥ 1 are actually norms.

Example 1.72. Suppose that a driver uses a cruise control device while driving
a freeway. He/she always drives with the same speed at a fixed distance. As-
suming that the consecutive speeds are x1, . . . , xn, the average speed is equal to
HMean(x).

Example 1.73. The exponential mean with γ = 1 (the so-called LogSumExp
function) is used in certain optimization tasks (e.g., in some machine learn-
ing algorithms) as a smooth, strictly increasing, and convex approximation to
the Max function. It is because for any x ∈ In it holds Max(x) ≤ EMean1(x) ≤
Max(x) + logn.

Remark 1.74. Each quasi-arithmetic mean is, among others, nondecreasing, con-
tinuous, idempotent, and symmetric, see, e.g., [4]. Moreover, the arithmetic
mean and all the exponential means are translation equivariant and the geomet-
ric mean as well as all the power means are scale equivariant, compare Theorems
1.131 and 1.132.
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B. Weighting: Weighted quasi-arithmetic means

It is not unusual for the observations in an input vector to have a non-equal
impact on data fusion results. For instance, in a decision making context, the
opinions of some agents may be of greater importance than of the other ones,
just as in Example 1.7. Also in physics, when there is a need to calculate the
center of mass of a system of particles, we may need to take into account different
“amounts of matter” constituting the objects of concern.

To quantify the degrees of importance of the aggregated entities, we may
associate with each observation xi its weight, wi. Most commonly, a weighting
vector, which must be of the same length as x, is assumed to satisfy the following
conditions.

Definition 1.75. We call w = (w1, . . . , wn) a weighting vector if for all i it
holds wi ≥ 0 and

∑n
j=1 wj = 1.

Remark 1.76. Of course, if we are given nonnegative degrees of importance
d1, . . . , dn that do not sum up to 1, we may always create a weighting vector as
w = d/

∑n
i=1 di, under the assumption that (∀i) di = 0 =⇒ wi = 1/n.

A weighted version of quasi-arithmetic means (also known as quasi-linear
means) was introduced by Kitagawa in [274].

Definition 1.77. Let ϕ : I→ R̄ be a continuous and strictly monotonic function
and w be a weighting vector. Then a weighted quasi-arithmetic mean generated
by ϕ and w is a fusion function WQAMeanϕ,w : In → I given by:

WQAMeanϕ,w(x) = ϕ−1

(
n∑
i=1

wiϕ(xi)
)

= ϕ−1 (wTϕ(x)
)
. (1.24)

Clearly, if for all i it holds wi = 1/n, then a weighted quasi-arithmetic mean
reduces to a quasi-arithmetic mean. Among examples of such fusion functions
we have, e.g.:

— WAMeanw(x) =
n∑
i=1

wixi = wTx,

(weighted arithmetic mean, convex combination of inputs)

— WHMean(x) = 1∑n
i=1 wi/xi

, (weighted harmonic mean)

— WGMean(x) =
n∏
i=1

xwi
i , (weighted geometric mean)
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and so forth. Note that WQAMeanϕ is a ϕ-isomorphism of the fusion function
WAMean : R̄n → R̄.

Remark 1.78. If ϕ−1 is convex, then by the Jensen inequality we have that for
all weighting vectors w:

WQAMeanϕ,w(x) ≤
n∑
i=1

wixi = WAMean(x).

Weights may also be dependent on the order of magnitude of inputs. An in-
tuitively appealing generalization of weighted quasi-arithmetic means (and other
weighted fusion functions) may be obtained by replacing a weighting vector in
Equation (1.24) with a vector of weighting functions. This leads to the concept
of Bajraktarević means (compare [87]):

BajMeanϕ,w(x) = ϕ−1


n∑
i=1

wi(xi)ϕ(xi)

n∑
i=1

wi(xi)

 , (1.25)

where w = (w1, . . . ,wn) is a vector of weighting functions, wi : I→ [0,∞[ for all
i ∈ [n], and ϕ : I→ R̄ is a strictly monotone bijection.

Remark 1.79. The case ϕ(x) = x and (∀i ∈ [n]) wi = w for some function w
generates the so-called mixture operator. Also note that if wi are constant
functions for all i, then a Bajraktarević mean reduces to a weighted arithmetic
mean. Other particular cases may be formed by, e.g., setting wi to be power
functions. In such a way we get the Gini means:

GiniMeanp,qw (x) =


(∑n

i=1
wix

p
i∑n

i=1
wix

q
i

)1/(p−q)
if p 6= q,(∏n

i=1 x
wix

p
i

i

)1/
∑n

i=1
wix

p
i if p = q,

where w is a weighting vector and p, q ∈ R. The case p = q − 1 generates the
so-called Lehmer means. Note that if q = 0, then a Gini mean reduces to a
nondecreasing power mean.

All the Bajraktarević means are of course idempotent. On the other hand,
it is quite easy to find many examples of Bajraktarević means that are not
nondecreasing. More generally, Beliakov, Wilkin, and Calvo in [44, 469] studied
sufficient conditions for Gini means and some other Bajraktarević means to be
weakly monotone.
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C. Symmetrization: OWA operators

Note that if there exists i 6= j such that wi 6= wj , then a weighted quasi-
arithmetic mean is no longer symmetric. However, it turns out that each sym-
metric fusion function F may be generated by using another function G applied
to an input vector’s consecutive order statistics.

Proposition 1.80 ([230]). F : In → I is symmetric if and only if there exists
a function G : In → I such that:

F(x1, . . . , xn) = G(x(1), . . . , x(n)).

Technically, note that in fact the domain of G might be set to {x ∈ In : x1 ≤
· · · ≤ xn} ⊆ In here. In other words, each fusion function may be symmetrized
by replacing all xi’s with x(i)’s, i.e., ith order statistics, in its definition.

For instance, a symmetrized version of a weighted arithmetic mean is called
in decision making an OWA operator:

OWAw(x) =
n∑
i=1

wix(i). (1.26)

Its name – ordered weighted averaging – is due to Yager [478], see also [481, 482].

Example 1.81. Weighting and symmetrization naturally occurs in a case when
we aggregate elements of a multiset: identical values may occur multiple times
in an input data set and we do not pay attention to their order. Let us consider
a multiset {(1, 3), (2, 1), (3, 4)} over N, i.e., such that we have 3 ones, 1 two, and
4 threes. Then the corresponding weighting vector may be created according to
the number of occurrences of elements:

value #occurrences weight

1 3 0.375
2 1 0.125
3 4 0.5
Σ 8 1.0

Example 1.82. Median, WinMean, and TriMean are in fact OWA operators – they
are used as robust, i.e., less sensitive to the presence of a few outliers, estimators
of an underlying probability distribution location parameters.

Example 1.83. Let us also recall the notion of a sample quantile of order
α ∈ [0, 1]. Although there are many various definitions in the literature and
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implementations in statistical software packages, see [255] for a review, it is gen-
erally accepted that this kind of an aggregation function is an OWA operator
given by:

Qα(x) =


Min(x) for α = 0,
Median(x) for α = 0.5,
Max(x) for α = 1,
γ x(k) + (1− γ)x(k+1) otherwise,

for some γ = γ(α, k) ∈]0, 1] and k ∈ {bnα− 1c, bnα+ 1c} such that for each
fixed x it is a nondecreasing function of α.

More precisely, Hyndman and Fan in [255] list nine quantile function types,
see Table 1.2. The first three types are discontinuous functions of α. The
other types (IV-IX) define continuous quantile functions. Each of the types may
exhibit different properties, either algebraic or probabilistic. For instance, type
VIII is approximately median-unbiased regardless of the distribution of input
data (in an i.i.d. model). R by default uses type VII. Types I, III, and IV
are not nondecreasing functions of α, therefore and not appropriate from our
perspective.

D. Hierarchies of fusion functions

Being inspired by Torra’s [443] paper, let us consider the concept of a general
fusion function hierarchy, see Figure 1.1.

Definition 1.84. A hierarchy of fusion functions is a tuple F = (l,m,F), where
l ∈ N denotes the number of layers, m = (m0,m1, . . . ,ml) ∈ Nl, where mi gives
the number of fusion functions in layer i ∈ [l], ml = 1 and m0 = n is the
number of inputs, and F = (F(i)

j )i∈[l],j∈[mi] is a sequence of fusion functions like
F(i)
j : Imi−1 → I.

A hierarchy of fusion functions F determines in fact a new fusion function,
F, whose output is determined as follows.

Algorithm 1.85. To determine the output of a hierarchy of fusion functions
F = (l,m,F), do:

1. Let y(0)
j := xj for j ∈ [n];

2. For i = 1, 2, . . . , l do:

2.1. For j = 1, 2, . . . ,mi do:

2.1.1. Let y(i)
j := F(i)

j (y(i−1)
1 , . . . , y

(i−1)
mi−1 );

3. Return y(l)
1 as result;
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Table 1.2. Different quantile functions listed in [255], see Example 1.83.

method parameters

I* k = bnαc γ =
{

1 if k = nα
0 otherwise

II k = bnαc γ =
{

0.5 if k = nα
0 otherwise

III* k = bnα− 0.5c γ =
{

1 if k = nα− 0.5 and k is even
0 otherwise

IV* k = bnαc γ = k + 1− αn
V k = bnα+ 0.5c γ = k + 1− αn− 0.5
VI k = bnα+ αc γ = k + 1− αn− α
VII k = bnα+ 1− αc γ = k − αn+ α

VIII k = bnα+ p+1
3 c γ = k + 1− αn− p+1

3

IX k = bnα+ p
4 + 3

8c γ = k + 5
8 − αn−

p
4

F

x1

x2

...

xn

inputs

F(1)
1

F(1)
2

...

F(1)
m1

layer 1

F(l−1)
1

...

F(l−1)
ml−1

. . .

. . . layer l-1

F(1)
l

y

layer l output

Figure 1.1. A hierarchy of fusion functions.
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Surely, l = 1 gives the case of an ordinary, “single fusion function” setting.
Please note that if F(i)

j consequently fulfills certain properties, then by recur-
sively applying Proposition 1.65 we may deduce the implied properties of the
outcoming F.

Example 1.86. Let I = [−1, 1]. A feedforward neural network (l,m,p), see [242],
is a particular hierarchy of fusion functions (l,m,F) with:

F(i)
j (x1, . . . , xmi−1) = f

(
mi−1∑
k=1

p
(i)
k,jxk + p

(i)
0,j1
)
,

where f : R→ I is the so-called activation function, typically:

f(x) = 1
1 + exp(−x) ,

i.e., the sigmoidal function, and p
(i)
k,j ∈ R are arbitrary coefficients, i ∈ [l],

j ∈ [mi], k ∈ [0 : mi−1]. Here, y(i)
j are called neurons. Note that p(i)

0,j may
be treated as a coefficient standing near a so-called bias neuron, whose value is
fixed at 1.

Artificial neural networks are widely used in (deep) machine learning for
automated data classification.

Example 1.87. Torra in [443] showed that a feedforward neural network is iso-
morphic to a hierarchy of quasi-arithmetic means. Here is a sketch of its possible
construction. First of all, every input element is copied with sign changed so
that only nonnegative coefficients may from now on be taken into account. Then,
another artificial neuron is added and the coefficients are accordingly normal-
ized – now they are indeed weights (thus, they sum up to 1). Further on, by an
appropriate choice of the generator function ϕ, closely related to the activation
mapping, we may note that in fact only functions of quasi-arithmetic means are
used.

1.3.2 Monotone measures and integrals
It turns out that some fusion functions are tightly related to monotone measures
and respective integrals – tools known from decision making, social choice theory,
as well as engineering. Here we shall present the notion of a universal integral,
which gives a common framework to the famous Choquet [122], Sugeno [437], and
Shilkret [424] integrals. Due to this, we may not only explore new interpretations
of already introduced data fusion tools, but also generate new ones.

First we shall review some basic definitions and concepts, see also, e.g., [230,
Chapter 5] or [39, Chapter 4]. Let (Ω,F) be a measurable space, i.e., a nonempty
set Ω equipped with a σ-algebra.
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Definition 1.88. We call µ : F → [0,∞] a monotone measure (a capacity) on
(Ω,F), if:

(a) µ(∅) = 0,

(b) µ(Ω) > 0, and

(c) µ(U) ≤ µ(V ) for U ⊆ V , U, V ∈ F .

Note that a monotone measure is not necessarily (σ-)additive. A normalized
monotone measure, i.e., one which has µ(Ω) = 1 from now on shall be called a
fuzzy measure.

Denoting by B([0,∞]) the σ-algebra of Borel subsets of [0,∞], we say that
a function X : Ω → [0,∞] is F-measurable, if for each T ∈ B([0,∞]) its inverse
image X−1(T ) is an element of F .

Let M(Ω,F) denote the set of all monotone measures on (Ω,F) and R(Ω,F)

designate the set of all F-measurable functions X : Ω→ [0,∞].

Remark 1.89. Please note that for bothM(Ω,F) and R(Ω,F) natural partial or-
ders �M and �R, respectively, may be constructed. This is because we have,
e.g., X �R Y if and only if for all ω ∈ Ω it holds X(ω) ≤ Y(ω). Moreover, the
spaces (M(Ω,F),�M) and (R(Ω,F),�R) are lattices (see Section 1.7).

For further discussion we shall also need the notion of a pseudomultiplication
operation.

Definition 1.90. A bivariate fusion function ⊗ : [0,∞]2 → [0,∞] is called
a pseudomultiplication operation, whenever:

(a) it is nondecreasing in each variable, i.e., for 0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2,
we have x1 ⊗ y1 ≤ x2 ⊗ y2,

(b) it has 0 as the annihilator element, i.e., for all x ∈ [0,∞], x⊗0 = 0⊗x = 0,

(c) it has a neutral element e > 0, i.e., for all x ∈ [0,∞], x⊗ e = e⊗ x = x.

Note that ⊗ is neither necessarily associative nor commutative. Standard
multiplication · (e = 1) and minimum ∧ (e = ∞) are particular examples of
pseudomultiplication operations. On the other hand, e.g., maximum ∨ does not
annihilate at 0, thus does not fall into this class.

What is more, let {ω ∈ Ω : X(ω) ≥ t} ∈ F be the so-called t-level set of X,
t ∈ [0,∞].
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Example 1.91. Let (Ω,F) = ([n], 2[n]) and take any x ∈ In, I = [0, b]. By setting
X(i) = xi we have that for any t ≥ 0 the t-level set of X fulfills {ω : X(ω) ≥ t} =
{i : xi ≥ t}, i.e., there is a one-to-one correspondence between x and X.

It is easily seen that {ω : X(ω) ≥ t}t∈[0,∞] forms a left-continuous, nonin-
creasing chain (with respect to t). Thus,

S(µ,X)(t) := µ({ω ∈ Ω : X(ω) ≥ t}) (1.27)

is a nonincreasing function of t.

Example 1.92. Let (Ω,F , P ) be a probability space, i.e., a measurable space
equipped with a probability measure (a σ-additive fuzzy measure) P , see [61].
In this setting, Ω is called a sample space, any X ∈ R(Ω,F) is named a (non-
negative real-valued) random variable, and S(µ,X)(t) = P ({ω ∈ Ω : X(ω) ≥ t})
is often shortened as P (X ≥ t) and called a survival function. It might also be
observed that a cumulative distribution function is tightly connected to it: we
have F(µ,X)(t) = P (X ≤ t) = 1− S(µ,X)(t) + P ({ω ∈ Ω : X(ω) = t}).

Note that in probability theory it is customary to say just “letX be a random
variable with c.d.f. F” – to some degree the definitions of all the underlying
objects may be inferred implicitly.

Example 1.93. In Example 1.91, if µ(U) = |U | for U ∈ F is the counting mea-
sure, S(µ,X)(t) gives us an appealing graphical representation of xσ (in the form
of a step function), where σ is a permutation that orders observations in x non-
increasingly, see Figure 1.2. Here, a choice of a different symmetric monotone
measure, i.e., one such that µ(U) = ϕ(|U |) for some nondecreasing ϕ, ϕ(0) = 0,
ϕ(n) > 0, corresponds to some transformation of the plot’s y axis. Also, please
refer, e.g., to [229] for a review of basic classes of discrete fuzzy measures.

As noted in [276], which function shall be called an integral of X ∈ R(Ω,F) is
still a disputable issue. Generally, it is agreed that an integral:

— should map the spaceM(Ω,F) ×R(Ω,F) into [0,∞],

— should be at least nondecreasing with respect to each coordinate, and

— for X ≡ 0 it should return the value 0.

In this book, we rely on the notion of a universal integral, introduced by
Klement, Mesiar, and Pap. The following characterization (for the purpose of
this book, we use it as a definition) was provided for it in [276, Proposition 2.7],
see also [232] for an alternative setting in the discrete (thus, particular) case.
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Figure 1.2. A graphical representation of an ordered version of the numeric list
(1, 6, 4.5, 1, 0, 5, 2, 4).

Definition 1.94. A universal integral corresponding to a pseudomultiplication
operation ⊗ is a function I :M(Ω,F) ×R(Ω,F) → [0,∞] given by:

I (µ,X) = J
(

S(µ,X)
)
, (1.28)

where J : R([0,∞],B([0,∞])) → [0,∞] is nondecreasing and such that for each
c, d ∈ [0,∞] we have J (d1(0,c]) = c⊗ d.

Please note that I (µ, e1U ) = µ(U) for all U ∈ F , where e is the neutral
element of ⊗. Given a measurable space (Ω,F), below are a few well-known ex-
amples of universal integrals of X ∈ R(Ω,F) with respect to a monotone measure
µ ∈M(Ω,F):

Definition 1.95. The Choquet integral [122] is given by:

Ch(µ,X) =
∫

[0,∞]
S(µ,X)(t) dt. (1.29)

Here we have ⊗ = · (standard multiplication). Note that this integral
is defined in the same way as the one by Lebesgue, but with respect to
an arbitrary monotone measure. In this regard, for brevity, we often write∫

[0,∞] S(µ,X)(t) dt. =
∫

X dµ.

Example 1.96. Referring back to the setting from Example 1.92 (a probability
space), the Choquet integral corresponds to the expected value of a nonnegative
random variable X. This is because EX =

∫∞
0 P (X ≥ t) dt =

∫
X dP .
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Example 1.97. In example 1.91, if σ ∈ S[n] is an ordering permutation of x,
assuming that xσ(0) = 0, it holds:

Ch(µ,X) =
∫

[0,∞]
S(µ,X)(t) dt =

=
n∑
i=1

(
xσ(i) − xσ(i−1)

)
µ({σ(i), . . . , σ(n)})

=
n∑
i=1

xσ(i)
(
µ({σ(i), . . . , σ(n)})− µ({σ(i+ 1), . . . , σ(n)})

)
.

Thus, if µ is a symmetric fuzzy measure, then the Choquet integral corresponds
to some OWA operator – here a monotone measure in fact generates a weighting
vector. Moreover, if µ is an additive fuzzy measure, then we get the case of a
weighted arithmetic mean, WAMean, see, e.g., [334].

Definition 1.98. The Shilkret integral [424] is given by:

Sh(µ,X) = sup
t∈[0,∞]

{t · S(µ,X)(t)}, (1.30)

with convention 0 · ∞ = 0.

In this case we have ⊗ = · as well. Following is a very intuitive example of
the usefulness of the introduced concepts which we attribute to Mesiar [360].

Example 1.99 ([360]). Suppose that Ω = {a, b, c} represents the set of three
blue-collar workers and F = 2Ω. Let µ : F → [0,∞] give their per-hour overall
performance when they work either alone or in teams.

U ∈ F ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
µ(U) 0 2 3 4 7 4 5 8

We see that, due to various reasons, working together on the same task does not
necessarily increase their performance additively. Hence, µ is not a measure in
the classical sense.

Now let X : Ω → [0,∞] be a function denoting each worker’s availability –
how many hours they can work in a certain day:

ω ∈ Ω a b c

X(ω) 5 4 3

The corresponding t-level sets and X(µ,X)(t) are as follows:

T [0, 3] ]3, 4] ]4, 5] ]5,∞]
{ω ∈ Ω : X(ω) ≥ t}, t ∈ T {a, b, c} {a, b} {a} ∅

S(µ,X)(t), t ∈ T 8 7 2 0
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For instance, only a and b may work for no less than 3.5 hours that day.
Here the Shilkret integral yields the result equal to 4 · 7 = 28 – this is the

best total performance under the constraint that only one group may work this
day. On the other hand, the Choquet integral gives 3 · 8 + 1 · 7 + 1 · 2 = 33 – all
the workers start their work at the beginning of the time period, and then once
one of them stops, he/she goes home and does not continue that day.

Example 1.100. In Example 1.93 the two integrals have an appealing graphical
interpretation: the Choquet integral corresponds to the area below the step
function representing a vector x, and the Shilkret integral is the area of the
largest rectangle that can be fitted under such a function.

Let us consider an example of a universal integral that uses a different pseu-
domultiplication operation, ⊗ = ∧. Hence, its value has a quite different inter-
pretation. Even if its present form is due to Sugeno – as noted in [230] – some
of its aspects were already studied by Ky Fan in the 1940s [183].

Definition 1.101. The Sugeno integral [437] may be expressed as:

Su(µ,X) = sup
t∈[0,∞]

{t ∧ S(µ,X)(t)}. (1.31)

Example 1.102. In the setting established in Examples 1.91 and 1.93 the graph-
ical interpretation of the discrete Sugeno integral is as follows: it is the side of
the largest square that can be fitted under the step function. Here, this universal
integral may be expressed as:

n∨
i=1

xσ(i) ∧ µ({σ(i), . . . , σ(n)}),

where σ ∈ S[n] is the ordering permutation of a given vector x, see, e.g., [335].
Let v ∈ In be such that

∨n
i=1 vi = b = sup I, and A = {Aj}j∈[k], ∅ 6= Aj ⊆ [n]

for some k. This integral generalizes all order statistics as well as the following
fusion functions:

— WMaxv(x) =
n∨
i=1

vi ∧ xi, (weighted maximum, see [170])

— WMinv(x) =
n∧
i=1

(b− vi) ∨ xi, (weighted minimum)

— OWMaxv(x) =
n∨
i=1

vi ∧ x(i), where v1 ≥ · · · ≥ vn,

(ordered weighted maximum, see [168])
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— OWMinv(x) =
n∧
i=1

(b− vi) ∨ x(i), where v1 ≤ · · · ≤ vn,

(ordered weighted minimum)

— LPFA(x) =
∨k
j=1

∧
i∈Aj

xi. (lattice polynomial function)

Note that the class of OWMax and OWMin fusion functions coincide and for
each LPFA there exists B = {Bj}j∈[l], ∅ 6= Bj ⊆ [n] for some l such that
LPFA(x) =

∧l
j=1

∨
i∈Bj

xi, see [230, Proposition 5.55].
Due to the fact that this integral is defined only using ∧ and ∨ operations, it

can be applied on purely ordinal data – we will refer back to it in Section 1.7.5.
As a matter of fact, the discrete Sugeno integral may also be written as, see
[230, Proposition 5.63]:

Su(µ,X) =
∨

A⊆[n]

(∧
i∈A

xi ∧ µ(A)
)
.

Hence, it is a special case of the so-called weighted lattice polynomial functions,
given by:

WLPFv,A(x) =
k∨
j=1

 ∧
i∈Aj

xi ∧ vj

 , (1.32)

for some k, A = {Aj}j∈[k], ∅ 6= Aj ⊆ [n], and v ∈ Ik.

Remark 1.103. Many interesting applications of discrete Sugeno integrals have
been reported in decision making, please refer, e.g., to [448]. Moreover, it is also
used in the problem of multiple significance testing in statistics, as a measure of
false discovery rate, see [52] and the issue of measuring performance of scientists,
see Section 5.4 and [216, 450].

Note that not all the classes of integrals known in the literature are universal
integrals. For example, decomposition integrals introduced by Even and Lehrer
[182], see also [364], include the non-universal Yang’s PAN [486] and Lehrer’s
concave [312] integral as well as the discussed above Choquet and Shilkret inte-
gral.

1.3.3 Penalty-based aggregation functions
Firstly, we shall recall the notion of a metric and a pseudometric.

Definition 1.104. A metric on a set Z is a function d : Z × Z → [0,∞] such
that for any x,y, z ∈ Z:

(a) d fulfills the triangle inequality d(x,y) ≤ d(x, z) + d(z,y),
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(b) d is symmetric, i.e., d(x,y) = d(y,x),

(c) it holds d(x,y) = 0 if and only if x = y.

Moreover, a pseudometric is a function d′ : Z × Z → [0,∞] that fulfills the
triangle inequality, is symmetric, and such that for x = y we have d′(x,y) = 0.

If d(x,y) = d, then it is customary to say that “the distance between x and
y is d”.

Notably, metrics themselves may be aggregated: if F : [0,∞]k → [0,∞] is
nondecreasing, subadditive, and such that F(k∗0) = 0, then given arbitrary met-
rics d(1), . . . , d(k) we have that d(x,y) = F(d(1)(x,y), . . . , d(k)(x,y)) is a metric
too, see, e.g., [69, 349]. Moreover, if ‖ · ‖ is a norm on a vector space Z, then
d(x,y) = ‖x− y‖ is a metric. In particular, for given p from now on we denote
with dp the p-norm-based metric (Lp metric). Note that all Lp metrics coincide
on the vector space R, and thus on any Z = I ⊆ R: they may be expressed as
d(x, y) = |x− y|.

The fusion functions studied in this section may be expressed as minimizers
of some kind of penalty or dissimilarity measure between the observations in an
input sample and the resulting value. Intuitively, this represents the idea behind
widely conceived averaging: we seek the y that is a good “compromise”, on the
whole being not “far away” from the inputs.

In this section we deal with idempotent aggregation functions. To measure
the overall (aggregated) dissimilarity, here we rely on the concept of a penalty
function which was introduced by Yager and Rybalov in [484] and then extended
in the works of Calvo and others, see, e.g., [96, 99]. The general idea behind
them is well explained, e.g., in [41]: if we have equal values on input, then the
output y is the same value, we have a unanimous vote. On the other hand, if
some input xi 6= y, then we impose a kind of “penalty” for such a disagreement.
The larger the disagreement, then the more the inputs disagree with the output
and the larger the penalty.

Definition 1.105 ([96]). The function P : I×In → [0,∞] is a penalty function,
whenever:

(a) P (y; x) = 0 if x = (n ∗ y),

(b) for every fixed x, the set of minimizers of P (y; x) is either a singleton or
an interval.

Definition 1.106 ([96]). Given a penalty function P , a P -based function is
defined as:

F(x) = arg min
y

P (y; x) (1.33)

if y is the unique minimizer of P (y; x), and y = (u+v)/2 if the set of minimizers
is an (open or closed) interval ]u, v[.
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Based on the fact that we may always take P (y; x) = (F(x) − y)2, we have
the following simple yet appealing result, which states that every idempotent
fusion function is a penalty-based one.

Theorem 1.107 ([96]). Let F : In → I be an idempotent function. Then there
exists a penalty function P such that F(x) = arg miny P (y; x) for all x.

As a particular class of penalty functions, we may consider, e.g., one that
consists of mappings given by:

P (y; x) =
n∑
i=1

wip(y, xi), (1.34)

where w is a weighting vector and p : I × I → [0,∞] is a dissimilarity function
that fulfills:

— p(y, x) = 0 if and only if x = y,

— p(y, x) ≥ p(y, x′) whenever x ≥ x′ ≥ y or x ≤ x′ ≤ y.

Faithful penalty functions [99] are defined via p(y, x) = K(h(y), h(x)) where h
is continuous monotone and K is convex.

Among faithful penalty-based aggregation functions we have, e.g., the weighted
arithmetic mean:

WAMean(x) = arg min
y

n∑
i=1

wip(y, xi) = arg min
y

n∑
i=1

wi(xi − y)2

and median (again note that the minimizer might not be unique):

Median(x) = arg min
y

n∑
i=1
|xi − y|.

According to [41], these two results were already known to Laplace.
On the other hand, if, e.g., p(y, x) = (ϕ(x) − ϕ(y))2, then we obtain a

weighted quasi-arithmetic mean with generator ϕ, and if we use p(y, x(i)) in-
stead of p(y, xi) in Equation 1.34, then we obtain a symmetric function which,
unfortunately, might not always be monotonic and well-defined, see [41]. Yet, in
this way it is possible to obtain, e.g., OWA operators. Other classes of (non nec-
essarily faithful) penalty-based aggregation functions include, e.g., deviation and
entropic means, see [41] and functions generated by so-called restricted [92, 95]
dissimilarity functions, see also [361].

Viewing idempotent fusion functions as minimizers of some penalty function
is a very inspiring concept, especially when we shall deal with aggregation of
more complex objects in the following chapters. In particular, soon we are
going to consider the concept of a centroid (minimizer of the sum of squared
distances), 1-median (minimizer of sums of distances), and 1-center (minimizer
of maximums of distances), among others.
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1.4 Extended aggregation functions
Sometimes we do not know in advance the value of n (an input vector’s length)
or we just would like to be “prepared” to aggregate any number of observations.
Here is the definition of a data fusion tool that reflects this need.

Definition 1.108. An extended fusion function is a mapping F∗ : I∗ → I.

Recall that if X is a set, then X∗ =
⋃∞
n=2X

n designates the family of all
the vectors with elements in X of length at least 2. This is because aggregation
of a single value is not particularly interesting, we usually set F(x) = x if it is
indeed necessary.

Thus, an extended fusion function may be treated as a family of 2, 3, . . . -ary
fusion functions, each acting on a vector of fixed arity. This may be written as:

F∗ =
(

F(2),F(3),F(4), . . .
)
,

where F(n) = F∗|In , i.e., a projection of F∗ onto In. According to [98], the
concept of extended aggregation functions has been introduced by Mayor and
Calvo in [355].

Example 1.109. Let us go back to the definition of the arithmetic mean. Up to
now, we assumed that n is fixed. Thus, formally, we have introduced:

AMean(n)(x) = 1
n

n∑
i=1

xi.

However, this definition may naturally be extended so that input vectors of any
length are accepted:

AMean∗(x) = 1
|x|

|x|∑
i=1

xi,

which we may simply write as AMean∗(x1, . . . , xn) =
∑n
i=1 xi/n (but now keep-

ing in mind that we may provide a vector of any length n on input). Note that
this indeed may be expressed as a family of aggregation functions,

AMean∗ =

 (x1, x2) 7→ 1
2 (x1 + x2),

(x1, x2, x3) 7→ 1
3 (x1 + x2 + x3),

. . .
. . .

 .

1.4.1 Weighting

Now let us go back to the definition of a weighted arithmetic mean, WAMean(n)
w (x)

=
∑n
i=1 wixi, where w is a weighting vector of length n. The question in this
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very context is of course how to extend it to the domain of tuples of arbitrary
length? For that we need the following definition.

Definition 1.110. A weighting triangle (see [101, 355]) is a sequence 4 =
(wi,n ∈ [0, 1] : i ∈ [n], n ∈ {2, 3, . . . }) with

∑n
i=1 wi,n = 1 for all n ≥ 2.

A weighting triangle can be represented graphically as:

4 =


w1,2 w2,2

w1,3 w2,3 w3,3
w1,4 w2,4 w3,4 w4,4

. .
.

. . .
. . .

 (1.35)

Based on the notion of a weighting triangle, we are now able to define, e.g.,
an extended weighting arithmetic mean:

WAMean∗4(x1, . . . , xn) =
n∑
i=1

wi,nxi,

and extended OWA (see [101, 355]) operators:

OWA∗4(x1, . . . , xn) =
n∑
i=1

wi,nx(i).

Example 1.111. A weighting triangle which corresponds to the (extended) sam-
ple median generated by an OWA operator is given by:

4 =


0.5 0.5

0 1 0
0 0.5 0.5 0

0 0 1 0 0

. .
.

. . .
. . .

 .

Another example is the normalized Pascal triangle with wi,n =
(
n−1
i−1
)
/2n−1,

see [49]:

4 =


1/2 1/2

1/4 2/4 2/4
1/8 3/8 3/8 1/8

1/16 4/16 6/16 4/16 1/16

. .
.

. . .
. . .

 .

Generally, there are a few possible schemes to generate weighting triangles
like 4 = (wi,n ∈ [0, 1] : i ∈ [n], n ∈ {2, 3, . . . }).
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— Let c = (c1, c2, . . . ) with ci ≥ 0 for i = 1, 2, . . . and c1 + c2 > 0. Then we
may set (see, e.g., [258]):

wi,n = ci∑n
j=1 cj

.

— Let w : [0, 1] → [0, 1] be a nondecreasing function with w(0) = 0 and
w(1) = 1. In such a case we can set (see, e.g., [68, 479]):

wi,n = w
(
i

n

)
− w

(
i− 1
n

)
.

More generally, triangles of coefficients like 4 = (wi,n : i ∈ [n], n ∈
{2, 3, . . . }) (with different constraints on wi,n) may be considered when extend-
ing, e.g., WMax or OWMax operators. In a similar way we may define a triangle
weighting of functions like 4 = (wi,n : I→ [0,∞[: i ∈ [n], n ∈ {2, 3, . . . }) for the
purpose of defining extended Bajraktarević means.

We shall refer back to these concepts when considering the so-called α- and
β-orderings in Section 3.1.2 and when studying asymptotic properties of fusion
functions applied on random data in Section 4.4.

1.4.2 Arity-dependent vs arity-free properties
Formally, an abstract property P of a fusion function is a kind of logical pred-
icate: the statement “F fulfills P” might be true or false. There is a semantic
equivalence (one to one correspondence) between such a predicate and the class
of fusion functions that fulfill it. By defining:

P = {fusion function F : F fulfills P} ,

the statements “F fulfills P” (e.g., symmetry) and “F ∈ P” (e.g., the class of all
symmetric fusion functions) coincide.

Having said that, we may introduce the following classification of extended
fusion functions’ properties, see [212]. A property P may either be:

— an arity-free (weak) property, if it deals only with n-ary mappings. More
precisely, it is such that for all n,m, n 6= m and some G(n) ∈ P|In it holds:{

F∗|Im : F∗ ∈ P, F∗|In = G(n)
}

=
{

F∗|Im : F∗ ∈ P
}
,

equivalently:(
∀F(2) ∈ P|I2 ,F(3) ∈ P|I3 , . . .

) (
F(2),F(3), . . .

)
∈ P,

— or an arity-dependent (strong) property otherwise.
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Remark 1.112. All the properties we considered up to now are arity-free. This
concerns: nondecreasingness, symmetry, translation and scale equivariance, con-
tinuity, idempotence, etc.

1.4.3 Some arity-dependent properties
Let us make a review of a few interesting arity-dependent properties. We shall
begin with a stronger version of idempotency.

Definition 1.113. An extended fusion function F∗ is said to be strongly idem-
potent, whenever: for all x ∈

⋃∞
n=1 In and k > 1 it holds:

F∗(k ∗ x) = F∗(x). (1.36)

Each strongly idempotent extended fusion function is of course idempotent.
Also note that Ghiselli-Ricci [222, 223] studied the concept of asymptotic idem-
potency.

The following property is well known from algebra, see also [230, Definition
2.63].

Definition 1.114. We say that F∗ is associative, if and for any x,y ∈
⋃∞
n=1 In

it holds:
F∗(x,y) = F∗

(
F∗(x),F∗(y)

)
, (1.37)

with assumption F∗(x) = x.

Remark 1.115. In order to define an associative fusion function, it is sufficient
only to provide a formula/algorithm that deals with an input vector of length 2.
The following recursive formula may be used to compute the value of an asso-
ciative function:

F∗(x1, . . . , xn) = F∗(F∗(x1, . . . , xn−1), xn).

In other words, to compute F∗(x1, . . . , xn), we may use the following algorithm:

1. Let y := x1;

2. For i = 2, 3, . . . , n:

2.1. Set y := F∗(y, xi);

3. Return y as result;
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Example 1.116. In functional programming, the above scheme is called fold,
reduce, or accumulate. Among associative fusion functions we find, e.g., Prod,
Min, Sum, and TŁ – it appears as a sine qua non condition in the definitions
of t-norms and t-conorms in Section 1.5.2. Below we compute the two latter
functions in R by using a call to the Reduce() built-in.
Reduce("+", c(1, 2, 3, 4)) # the same as sum (c(1 ,2 ,3 ,4))
## [1] 10
x <- c(0.6, 0.8, 0.7, 1)
Reduce(function(x, y) # Lukasiewicz t- norm

max(0, x+y-1), x) # i.e., max (0, sum(x)- length (x )+1)
## [1] 0.1

Example 1.117. Apache Hadoop Streaming API (at least as far as version 2.6 is
concerned) allows to run scalable Map-Reduce (see [141]) jobs with any programs
acting as the mapper and/or the reducer.

By default, an input file is processed line-by-line. Mapper programs receive
appropriate chunks of the input file and their aim is to convert them to key-value
pairs. Such pairs should be output to stdout using a form like:
key1 \t val1
key2 \t val2

Then the mappers’ outputs are sorted and merged so that the reducer receives
a sequence of key-value pairs (on stdin) which are sorted with respect to keys.
Thus, a Hadoop Streaming job acts like a scalable version of:
cat input | mapper | sort | reducer > output

In particular, a simple word count job (a Hadoop “hello world”-like program)
may be implemented as follows.

— Mapper:

1. For each text line l read from stdin:
1.1. Split l into separate words;
1.2. For each word w:
1.2.1. Write "w \t 1 \n" to stdout;

Exemplary input (stdin):
Hello world.
World , wonderful world , hello.

Desired output (stdout):
hello \t 1
world \t 1
world \t 1
wonderful \t 1
world \t 1
hello \t 1
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— Reducer:

1. Count the number c of consecutive key-value pairs with the same
key w;

2. Write "w \t c \n" to stdout;

Exemplary input (stdin):
<stdout of the above exemplary mapper job >

Desired output (stdout):
hello \t 2
wonderful \t 1
world \t 3

By default, the number of mappers is set to be a function of the input file’s size
– the mapper jobs are executed in parallel on each available cluster node. On
the other hand, most often only a single reducer job is run to collect the output
of all the mappers, which often creates a performance bottleneck.

However, if an aggregation function computed by the reducer is symmetric
and associative, then we may set up an additional job called combiner, which
is performed directly on the outputs generated by mappers. Its aim is to pre-
aggregate chunks of data so that the single-threaded reducer has less work to do
(in our word count example the combiner is exactly the same program as the
reducer). It may be observed that in such a way some significant speed ups may
be obtained. An exemplary work flow is graphically depicted in Figure 1.3

Remark 1.118. Assume that we have a bivariate fusion function F : X2 → X,
where X = {a1, . . . , ak} is a finite set. To check whether its extension is associa-
tive, we may compute a matrix which stores the results of F(ai, aj), i 6= j, and
then apply Light’s associativity test algorithm, see, e.g., [30]. Moreover, e.g.,
Rajagopalan and Schulman in [401] give an approximate randomized algorithm
which runs in O(k2 log(1/p)) with error probability p.

Hello world.

World, wonderful
world, hello.

hello \t 1
world \t 1

world \t 1
wonderful \t 1
world \t 1
hello \t 1

hello \t 1
world \t 1

hello \t 1
wonderful \t 1
world \t 2

hello \t 2
wonderful \t 1
world \t 3

Input Mappers’ outputs Combiners’ outputs Reducer’s output

Figure 1.3. An exemplary Map-Combine-Reduce word count procedure.
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A generalization of the associativity property is due to Montero and others
[142] (compare also the notion of a quasi-associative fusion function – a function
of k associative mappings [477]).

Definition 1.119. An extended fusion function F∗ is (left)-recursive, whenever
there exist binary functions ψ2, ψ3, · · · : I× I → I such that for all x ∈

⋃∞
n=2 In

it holds:
F∗(x1, . . . , xn) = ψn(F∗(x1, . . . , xn−1), xn), (1.38)

with assumption F∗(x) = x.

In other words, we have:

F∗(x1) = x1,

F∗(x1, x2) = ψ2(F∗(x1), x2),
F∗(x1, x2, x3) = ψ3(F∗(x1, x2), x3),

...
...

...

F∗(x1, x2 . . . , xn) = ψn(F∗(x1, x2, . . . , xn−1), xn).

Note that an associative fusion function is recursive. It is generated by setting
ψ2 = ψ3 = · · · = F∗|I2 .

Recursive fusion functions are suitable for on-line processing of input data
streams. It is only necessary to read an input stream sequentially, without the
need to have it in its entirety available from the very beginning (hence, there
are memory savings).

Example 1.120. The arithmetic mean is a recursive fusion function. It is because
we have:

AMean∗(x1, . . . , xn) = 1
n

(
(n− 1)AMean∗(x1, . . . , xn−1) + xn

)
.

Hence, in this case the generating functions are of the form:

ψn(x, y) = (n− 1)x+ y

n
.

In a similar manner we may define a class of functions that need to have access
only to the k last elements of the input sequence and/or intermediate aggregation
results, for some fixed k. This leads, e.g., to the notion of aggregation of “bags”
of data, as discussed by Kolesárová, Mesiar, and Montero in [291]. Here, we
assume that data come in groups of a few observations.

This idea may be elaborated even further as follows. We may consider func-
tions which require only a constant number of auxiliary variables and consecutive
observations from an input data stream and thus operate in O(1) memory.
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Definition 1.121. We say that a function F∗ : R∗ → R is k-incremental, k ∈ N,
if there exists p(0) ∈ Rk and a function ψ : Rk × I→ Rk × I such that F∗(x) for
any x ∈ I∗ may be computed as follows:

1. Let p = p(0) ∈ Rk; (initialize auxiliary variables)

2. For i = 1, 2, . . . , |x|:

2.1. Set (p, y) := ψ(p, xi);

3. Return y as result;

Of course, a k-incremental fusion function is also k′-incremental for k′ > k.
Every associative fusion function is 1-incremental (store previous y), and each
recursive fusion function is 2-incremental (store previous y and n).

Example 1.122. Here are some exemplary k-incremental functions (some of them
are not necessarily fusion functions according to Definition 1.1):

— Sum∗, Prod∗, Max∗, Min∗ are 1-incremental,

— AMean∗ is 2-incremental,

— sample variance and standard deviation is 3-incremental,

— OSk is k-incremental.

Moreover, in practice we may also be interested in fusion functions which
may be computed using online algorithms, i.e., ones for which F∗|⋃n

i=2
Ii is O(n)-

incremental. Such functions need to examine each observation only once – this
is the case of the Median function, among others. The C++ Boost accumulators
library includes a set of such tools.

A concept somehow related to associativity is called decomposability and was
already studied in the 1930s by Kolmogorov [292] and Nagumo [370].

Definition 1.123. We call an extended fusion function F decomposable if for
all x ∈ I∗ and k ∈ [0 : |x|] it holds:

F∗(x1, . . . , xk, xk+1 . . . , xn)
= F∗(k ∗ F∗(x1, . . . , xk), (n− k) ∗ F∗(xk+1, . . . , xn)), (1.39)

with assumption F∗(x) = x.
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Example 1.124. It is known (see, e.g., [4]) that quasi-arithmetic means are de-
composable. However, as it is noted in [230, Remark 2.70], decomposability
(unlike associativity) does not determine the relationship between the result of
aggregation of n− 1 elements and n elements.

Sometimes we may also be interested in a property called (strong) bisymme-
try, see [343].
Example 1.125 ([49]). Suppose that there are n decision makers that express
their opinions on m criteria. Let xij represent the score given by the ith expert
to the jth attribute. Let us suppose that we would like to compute the global
score. How should we do that? There are at least three possibilities:

— Use an (nm)-ary fusion function.

— For each expert, aggregate his/her opinions on all the criteria, and then
aggregate n intermediate results to obtain the global score.

— Aggregate the experts’ opinions separately for each criterion. Then use
another fusion function to combine such values to get a single number.

Definition 1.126. We call an extended fusion function strongly bisymmetric,
if for all n,m, and x = (xi,j) ∈ In×m it holds:

F∗(x) = (1.40)

= F∗
(

F∗(x1,1, . . . , x1,m), . . . , F∗(xn,1, . . . , xn,m)
)

= F∗
(

F∗(x1,1, . . . , xn,1), . . . , F∗(x1,m, . . . , xn,m)
)
.

This may be represented graphically as:

x1,1 x1,2 . . . x1,m → f1,·
x2,1 x2,2 . . . x2,m → f2,·
...

...
. . .

...
...

xn,1 xn,2 . . . xn,m → fn,·
↓ ↓ ↓ ↓
f·,1 f·,2 . . . f·,m → f·,·

Moreover, we may introduce weak bisymmetry of an n-ary fusion function
F(n) (an arity-free property) by considering only the condition that for all x =
(xij) ∈ In×n it holds:

F(n)
(

F(n)(x1,1, . . . , x1,n), . . . , F(n)(xn,1, . . . , xn,n)
)

= F(n)
(

F(n)(x1,1, . . . , xn,1), . . . , F(n)(x1,n, . . . , xn,n)
)
.

(1.41)
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1.5 Choosing an aggregation method (I):
Desired properties
Contrary to popular belief, aggregation is “not only about applying the arith-
metic mean”. We already explored (uncountably) many interesting fusion func-
tions. One of the crucial questions is thus of course: Which one shall be chosen
to reflect one’s needs arising in a particular application domain?

In this section we briefly indicate a few general selection methods – each
of them is based on an expected functions’ behavioral specification (set up a
priori). One of the possible schemes relies on known characterization theorems,
which aim to provide a concrete definition of a class of fusion functions that
fulfill a given set of properties. For instance, if we need a mapping which is
symmetric, strictly increasing, continuous, idempotent, and decomposable, then
by the famous Kolmogorov-Nagumo theorem (1.128) we shall conclude that we
are in fact interested in one of the quasi-arithmetic means. On the other hand,
if a conjunctive and – at the same time – disjunctive function is desired, then –
unfortunately – it turns out that our needs are contradictory.

We shall also discuss a few notable subclasses of fusion functions, especially
useful in approximate reasoning and statistics, e.g., t-norms, copulas, and fuzzy
implications. These do not indicate concrete aggregation tools, but at least
narrow the “search space” down.

Moreover, we sketch some numerical characteristics of fusion functions, which
can also aid in the selection process. Their aim is to quantify the degree to which
a function characterizes itself with a kind of behavior, what is its “typical”
outcome, etc. Please keep in mind that this topic shall be significantly extended
in Chapter 5.

Note that in this section we make use of a few “classical” assumptions in
aggregation theory, namely that all the considered (extended) fusion functions
are:

— defined for I = [0, 1],

— nondecreasing, and

— endpoint-preserving.

In other words, we focus on (extended) aggregation functions.

Example 1.127. Table 1.3 summarizes some of the fusion functions and their
classes discussed so far along with the properties they fulfill (marked with “•”).
Wherever “Y” appears in the table, there are cases in which a behavior is present
as well as cases where the opposite is true. This is exactly a situation in which
characterization theorems are useful.

To complete the discussion, in Section 1.6 we introduce methods for fitting
fusion functions (from some classes which can be established by applying results
presented in this part of the book) to empirical data.
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Table 1.3. Exemplary fusion functions (I = [0, 1]) and some basic properties they
fulfill: ND – nondecreasingness, SM – symmetry, ID – idempotency, CJ –
conjunctivity, DJ – disjunctivity, TE – translation equivariance, SE – scale

equivariance, OE – ordinal scale equivariance.

function ND SM ID CJ DJ TE SE OE

AMean • • • ◦ ◦ • • ◦
QMean • • • ◦ ◦ ◦ • ◦
HMean • • • ◦ ◦ ◦ • ◦
GMean • • • ◦ ◦ ◦ • ◦
Median • • • ◦ ◦ • • Y
Max • • • ◦ • • • •
Min • • • • ◦ • • •
TŁ • • ◦ • ◦ ◦ ◦ ◦
SŁ • • ◦ ◦ • ◦ ◦ ◦
3Π • • ◦ ◦ ◦ ◦ ◦ ◦
WMeanw • Y • ◦ ◦ • • ◦
OWAw • • • Y Y • • Y
WMaxv • Y Y ◦ Y Y Y Y
WMinv • Y Y Y ◦ Y Y Y
OWMaxv • • Y Y Y Y Y Y
QAMeanϕ • • • ◦ ◦ Y Y ◦
BajMeanϕ,w Y Y • ◦ ◦ Y Y ◦

1.5.1 Internal functions
First let us explore a few noteworthy results that concern internal (idempotent)
aggregation functions. The following characterization of quasi-arithmetic means
was obtained independently by Kolmogorov and Nagumo in 1930.

Theorem 1.128 ([292, 370]). An extended fusion function F∗ is symmetric,
strictly increasing, continuous, idempotent, and decomposable if and only if there
exists a continuous strictly monotonic function ϕ : I → R such that F∗ is an
extended quasi-arithmetic mean generated by ϕ.

Here is a theorem by Aczel in which weak bisymmetry is substituted for
decomposability.

Theorem 1.129 ([4]). An n-ary fusion function F(n) is strictly increasing, con-
tinuous, idempotent, and weakly bisymmetric if and only if there exists a contin-
uous strictly monotonic function ϕ : I → R and a weighting vector w > 0 such
that F(n) is a weighted quasi-arithmetic mean generated by ϕ and w.
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Corollary 1.130 ([4]). An n-ary fusion function F(n) is symmetric, strictly
increasing, continuous, idempotent, and weakly bisymmetric if and only if there
exists a continuous strictly monotonic function ϕ : I → R such that F(n) is an
quasi-arithmetic mean generated by ϕ.

According to [230], here is how Nagumo [370] characterized all the quasi-
arithmetic means that fulfill translation and scale equivariance.

Theorem 1.131. A n-ary quasi-arithmetic mean QAMean(n) is translation
equivariant if and only if it is either the arithmetic mean or it is an exponential
mean.

Theorem 1.132. A n-ary quasi-arithmetic mean QAMean(n) is scale equivari-
ant if and only if it is either the geometric mean or it is a power mean.

Recall that among power means we have the arithmetic, quadratic, and har-
monic means. Taking the two above results into account we imply that the only
quasi-arithmetic mean that is interval scale equivariant is the arithmetic mean.

Let us now discuss additivity and related concepts.

Theorem 1.133. An n-ary fusion function F(n) is additive, nondecreasing, and
idempotent if and only if F(n) is a weighted arithmetic mean.

See [230, Proposition 4.21] for a proof. As a corollary, we have that an n-ary
fusion function F(n) is additive, nondecreasing, idempotent, and symmetric if and
only if it is the arithmetic mean. Moreover, please note that nondecreasingness
can be replaced with continuity in this theorem.

Theorem 1.134 ([362]). An n-ary fusion function F(n) is modular, nonde-
creasing, and idempotent if and only if:

F(n)(x) =
n∑
i=1

fi(xi)

for any nondecreasing f1, . . . , fn : I→ I such that (∀x ∈ I)
∑n
i=1 fi(x) = x.

Let us consider two variants of additivity. The first one assumes that the
vectors on which the addition operation is applied on comonotonic vectors (see
Definition 1.41).
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Definition 1.135. An n-ary fusion function F(n) is said to be comonotonic ad-
ditive, whenever:

F(n)(x + y) = F(n)(x) + F(n)(y),

for all comonotonic x,y ∈ In such that x + y ∈ In.

Theorem 1.136. An n-ary fusion function F(n) is comonotonic additive, non-
decreasing, and idempotent if and only if F(n) is a discrete Choquet integral with
respect to a fuzzy measure.

We may also deal with a symmetrized version of the additivity property.

Definition 1.137. An n-ary fusion function F(n) is said to be symmetric addi-
tive, whenever:

F(n)(x
S
+ y) = F(n)(x) + F(n)(y),

for all x,y ∈ In such that x+y ∈ In, where x
S
+ y = (x(1) +y(1), . . . , x(n) +y(n)).

Clearly, each symmetric additive fusion function is necessarily symmetric.

Theorem 1.138. An n-ary fusion function F(n) is symmetric additive, nonde-
creasing, and idempotent if and only if F(n) is an OWA operator.

For a different characterization of OWA operators, see, e.g., [196]. Let us
now present a characterization concerning associativity.

Theorem 1.139. [195, 336] An extended fusion function F∗ is nondecreasing,
continuous, idempotent, and associative if and only if there exist α, β ∈ I such
that:

F|I2(x1, x2) = (α ∧ x1) ∨ (β ∧ x2) ∨ (x1 ∧ x2).

Together with symmetry the above result restricts itself to the so-called α-
median, F|I2(x1, x2) = Median(x1, α, x2) for some α ∈ I, see [166]. Moreover,
Czogała and Drewniak in [133] presented one of the possible characterizations
of the Min and Max functions.

1.5.2 Conjunctive and disjunctive functions
Another set of tools in which aggregation theory is interested in consists of fuzzy
logic connectives (useful in, e.g., approximate reasoning, preference modeling,
etc.) and copulas (very important in probability and statistics, compare Re-
mark 2.12), see [18, 281, 373]. Most of them are considered as binary operations
on members of I = [0, 1], but they may be extended to I∗ easily.

The two properties provided below are well-known from algebra.
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Definition 1.140. We say that F(n) has an annihilator element h ∈ I, whenever
for all x ∈ In and i ∈ [n] we have:

F(n)(x1, x2, . . . , xi−1, h, xi+1, . . . , xn) = h. (1.42)

Definition 1.141. F(n) has a neutral element e ∈ I, if for all x ∈ In and i ∈ [n]
it holds:

F(n)(e, e, . . . , e, xi, e, . . . , e) = xi. (1.43)

This property may be extended as follows.

Definition 1.142. Given an extended fusion function F∗, we call e ∈ I its strong
neutral element, whenever for all n and x it holds:

F(n+1)(x1, x2, . . . , xi−1, e, xi, . . . , xn) = F(n)(x). (1.44)

T-norms. Triangular norms were first introduced by Schweizer and Sklar in the
context of probabilistic metric spaces (see [421]) and are used, among others,
for defining intersections of fuzzy sets and modeling the conjunction operation
in fuzzy logic.

Definition 1.143. An aggregation function T(2) : [0, 1] × [0, 1] → [0, 1] is a
t-norm if for all x, y, z ∈ [0, 1] it holds:

(a) if y ≤ z, then T(2)(x, y) ≤ T(2)(x, z), (nondecreasingness)

(b) T(2)(x, y) = T(2)(y, x), (symmetry)

(c) T(2)(x,T(2)(y, z)) = T(2)(T(2)(x, y), z), (associativity)

(d) T(2)(x, 1) = x. (neutral element 1)

Thus, a t-norm is a symmetric conjunctive aggregation function on [0, 1]2. It
is easily seen that the restriction of any t-norm to {0, 1}2 gives us the conjunction
operation known from classical Boolean logic. Moreover, each t-norm has 0 as
its annihilator element, i.e., T(2)(x, 0) = T(2)(0, x) = 0 for all x.

Table 1.4 lists some seminal t-norms. For any t-norm T(2) and all x, y it
holds T(2)

D (x, y) ≤ T(2)(x, y) ≤ Min(2)(x, y). Moreover, we have T(2)
Ł (x, y) ≤

Prod(2)(x, y).
Recall that in Proposition 1.70 we stated that for every nondecreasing fusion

function F(n), its ϕ-isomorphism is also nondecreasing.
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Proposition 1.144. For any strictly increasing and continuous function ϕ :
I→ I, if F(n) is conjunctive, then F(n)

[ϕ] is conjunctive too. Moreover, if F(n) is a
t-norm, then F(n)

[ϕ] is also a t-norm.

T-conorms. First of all, let us note what follows.

Proposition 1.145. For any strictly decreasing and continuous function ϕ :
I→ I, F(n) is disjunctive if and only if F(n)

[ϕ] is conjunctive.

Triangular conorms generalize the notion of the classical Boolean logic alter-
native operator. They are defined as (x 7→ 1− x)-isomorphisms of t-norms.

Definition 1.146. A function S(2) : [0, 1]× [0, 1]→ [0, 1] is a t-conorm if for all
x, y, z ∈ [0, 1] it holds:

(a) if y ≤ z, then S(2)(x, y) ≤ S(2)(x, z), (nondecreasingness)

(b) S(2)(x, y) = S(2)(y, x), (symmetry)

(c) S(2)(x,S(2)(y, z)) = S(2)(S(2)(x, y), z), (associativity)

(d) S(2)(x, 0) = x. (neutral element 0)

It is evident that all t-conorms are disjunctive. Table 1.5 lists a few note-
worthy t-conorms – all of them are dual to respective t-norms in Table 1.4. For
any t-conorm S(2) and all x, y it holds Max(2)(x, y) ≤ S(2)(x, y) ≤ S(2)

D (x, y).
Moreover, we have S(2)

P (x, y) ≤ S(2)
Ł (x, y).

Please refer to the seminal monograph of Klement, Mesiar, and Pap [277]
and their so-called position papers [278–280] as well as to [230, Chapter 3] for
more details on t-norms and t-conorms.

Copulas. Copulas form another group of interesting and useful aggregation func-
tions. They may be used in probability and statistics to model dependencies
between random variables, see, e.g., [373] and also Remark 2.12.

For given n, each n-copula C(n) : [0, 1]n → [0, 1] is a cumulative distribu-
tion function of an n-dimensional random variable having uniform margins. In
particular, for n = 2 we have what follows.

Definition 1.147. A function C(2) : [0, 1]× [0, 1]→ [0, 1] is a 2-copula if for all
x, y, x′, y′ ∈ [0, 1] it holds:

(a) if x ≤ x′ and y ≤ y′, then: (2-increasingness)

C(2)(x, y) + C(2)(x′, y′)− C(2)(x, y′)− C(2)(x′, y) ≥ 0,
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(b) C(2)(x, 0) = C(2)(0, x) = 0, (annihilator element)

(c) C(2)(x, 1) = x. (neutral element)

Note that each t-norm fulfills conditions (b) and (c). Moreover, each 2-copula
is nondecreasing and 1-Lipschitz. There are 2-copulas that are not t-norms and
vice versa (see [277]). However, e.g., associative copulas are exactly 1-Lipschitz
t-norms.

TŁ and Min are particular examples of such fusion functions. By the famous
Fréchet-Hoeffding theorem (compare [373]), these are the smallest and the largest
copulas, respectively. Hence, copulas are conjunctive.

An important class of associative copulas consists of Archimedean ones. Let
ϕ : [0, 1]→ [0,∞[ be a continuous, convex, and decreasing function with ϕ(1) =
0. Then we may define:

C(2)
ϕ (x, y) = ϕ−1 (ϕ(x) + ϕ(y)) , (1.45)

where ϕ−1, ϕ−1(y) = inf{x ∈ [0, 1] : ϕ(x) ≥ y}, denotes the pseudoinverse of ϕ.
Table 1.6 lists a few particular subfamilies of Archimedean copulas. Note that
the Gumbel copula with θ = 1 is equivalent to the Prod fusion function, which
models the case of independent random variables. What is more, C(2)

C,−1 ≡ T(2)
Ł .

Another noteworthy class consists of Gaussian copulas. If Φ denotes the stan-
dard normal cumulative distribution function (note that no analytical closed-
form expression exists for it) and ΦV denotes the joint cumulative distribution
function of the bivariate normal distribution with expectation 0 and covariance
matrix V, then:

C(2)
Gauss,V(x, y) = ΦV

(
Φ−1(x),Φ−1(y)

)
. (1.46)

1.5.3 Mixed, non-aggregation, and other functions
In a quite similar manner to comonotonic additivity (compare Definition 1.135),
we may introduce the comonotonic maxitivity (among others).

Theorem 1.148 (see [230, Theorem 5.81]). An n-ary fusion function F(n)

is comonotonic maxitive, ∧-equivariant, and such that F(n)(n∗1) = 1 if and only
if F(n) is a discrete Sugeno integral with respect to a fuzzy measure.

Please observe that a different characterization (using nondecreasingness, ∧-
and ∨-equivariance) of the discrete Sugeno integral was proposed by Marichal
in [335].

On the other hand, we may also introduce symmetrized versions of modu-
larity, maxitivity, and minitivity (compare also Definition 1.137). Each of them
implies nondecreasingness and symmetry, at least in the case I = [0, 1] (which is
fixed in this section).
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Table 1.4. Exemplary t-norms.

name definition

minimum Min(2)(x, y) = x ∧ y

product Prod(2)(x, y) = xy

Łukasiewicz T(2)
Ł (x, y) = (x+ y − 1) ∨ 0

drastic T(2)
D (x, y) =

{
0 if x, y ∈ [0, 1[
x ∧ y if x = 1 or y = 1

Fodor T(2)
F (x, y) =

{
0 if x+ y ≤ 1
x ∧ y if x+ y > 1

Table 1.5. Exemplary t-conorms.

name definition

maximum Max(2)(x, y) = x ∨ y

product S(2)
P (x, y) = x+ y − xy

Łukasiewicz S(2)
Ł (x, y) = (x+ y) ∧ 1

drastic S(2)
D (x, y) =

{
1 if x, y ∈]0, 1]
x ∨ y if x = 0 or y = 0

Fodor S(2)
F (x, y) =

{
1 if x+ y ≥ 1
x ∨ y if x+ y < 1

Table 1.6. Exemplary Archimedean 2-copulas.

name,
parameter

definition,
generator

Clayton,
θ ≥ −1, θ 6= 0

C(2)
C,θ(x, y) =

(
(x−θ + y−θ − 1) ∨ 0

)−1/θ,
ϕ(t) = (t−θ − 1)/θ

Gumbel,
θ ≥ 1

C(2)
G,θ(x, y) = exp

(
−
(
(log 1/x)θ + (log 1/y)θ

)1/θ),
ϕ(t) = (log 1/t)θ

Frank,
θ 6= 0

C(2)
F,θ(x, y) = − 1

θ log
(

1− (1−exp(−θx))(1−exp(−θy))
1−exp(−θ)

)
,

ϕ(t) = − log
(

1−exp(−θt)
1−exp(−θ)

)
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Theorem 1.149 ([205], see also [362]). An n-ary fusion function F(n) is
symmetric modular if and only if:

F(n)(x) =
n∑
i=1

fi(x(i))

for any nondecreasing f1, . . . , fn : [0, 1] → [0, 1] such that (∀x ∈ [0, 1])∑n
i=1 fi(x) ≤ 1.

Idempotent symmetric modular aggregation functions are called OMA oper-
ators (ordered modular averages) in the Mesiar and Mesiarová-Zemánková paper
[362].

Theorem 1.150 ([205], see also [230]). An n-ary fusion function F(n) is
symmetric minitive if and only if:

F(n)(x) =
n∧
i=1

fi(x(i))

for any nondecreasing f1, . . . , fn : [0, 1]→ [0, 1].

A particular subclass of minitive fusion functions, so-called effort dominating
operators, see [204], shall be referred to in Section 5.4.

Theorem 1.151 ([205], see also [230]). An n-ary fusion function F(n) is
symmetric maxitive if and only if:

F(n)(x) =
n∨
i=1

fi(x(i))

for any nondecreasing f1, . . . , fn : [0, 1]→ [0, 1].

The following result is due to Gagolewski [205].

Theorem 1.152 ([205]). For an n-ary fusion function F(n) the following con-
ditions are equivalent:

— F(n) is both symmetric minitive and symmetric maxitive,

— F(n) is both symmetric minitive and symmetric modular,

— F(n) is both symmetric modular and symmetric maxitive,

— F(n) is given by:

F(n)(x) =
n∨
i=1

f(x(i)) ∧ vi,
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for some nondecreasing f : [0, 1] → [0, 1] and v ∈ [0, 1]n such that 0 ≤
f(0) ≤ vn ≤ · · · ≤ v1 ≤ 1.

As a corollary, the only idempotent as well as symmetric modular, mini-
tive, and maxitive fusion function is an ordered weighted maximum (OWMax)
operator.

We already considered some characterizations which takes translation, scale,
interval scale, ∧-, or ∨-equivariance into account. Let us mention the remaining
property of this kind.

Theorem 1.153 ([344]). A fusion function F is nondecreasing and ordinal
scale equivariant if and only if F is a lattice polynomial function.

Under ordinal scale equivariance, nondecreasingness and continuity coincide,
see, e.g., [230, Proposition 8.13]. Note that, as showed by Marichal in [337],
the only symmetric lattice polynomial functions are exactly the order statistics,
OSk, k ∈ [n].

Here is a whole family of functions which falls into the class of “mixed” type
aggregation.

Uninorms. Recall that a t-norm is a symmetric and associative aggregation
function with neutral element 1. A t-conorm, on the other hand, has the neutral
element 0. Here is a class of fusion functions which have a neutral element, but
such that it is neither equal to 0 nor to 1.

Definition 1.154. A fusion function U(2) : [0, 1]× [0, 1]→ [0, 1] is a uninorm if
for all x, y, z ∈ [0, 1] it holds:

(a) if y ≤ z, then U(2)(x, y) ≤ U(2)(x, z), (nondecreasingness)

(b) U(2)(x, y) = U(2)(y, x), (symmetry)

(c) U(2)(x,U(2)(y, z)) = U(2)(U(2)(x, y), z), (associativity)

(d) for some e ∈]0, 1[ it holds U(2)(x, e) = x.
(neutral element e 6∈ {0, 1})

Here is an important result on representation of uninorms, see [230, Propo-
sition 3.95].

Proposition 1.155. Let U(2) : [0, 1]× [0, 1] → [0, 1] be a uninorm with neutral
element e. Then there exists a t-norm T(2), a t-conorm S(2), and a symmetric,
idempotent aggregation function A(2) such that for any x ∈ I2 it holds:

U(2)(x) =


T(2)(x) if x ∈ [0, e]2,
S(2)(x) if x ∈ [e, 1]2,
A(2)(x) otherwise.
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Table 1.7. Exemplary fuzzy implications.

name definition

minimal I(2)
0 (x, y) =

{
1 if x = 0 or y = 1
0 otherwise

maximal I(2)
1 (x, y) =

{
0 if x = 1 and y = 0
1 otherwise

Kleene-Dienes I(2)
KD(x, y) = (1− x) ∨ y

Łukasiewicz I(2)
Ł (x, y) = (1− x+ y) ∧ 1

Reichenbach I(2)
RB(x, y) = 1− x+ xy

Fodor I(2)
F (x, y) =

{
1 if x ≤ y
(1− x) ∨ y if x > y

Goguen I(2)
GG(x, y) =

{
1 if x ≤ y
y/x if x > y

Gödel I(2)
GD(x, y) =

{
1 if x ≤ y
y if x > y

Rescher I(2)
RS(x, y) =

{
1 if x ≤ y
0 if x > y

Weber I(2)
W (x, y) =

{
1 if x < 1
y if x = 1

Yager I(2)
Y (x, y) =

{
1 if x = 0 and y = 0
yx otherwise

Thus, a uninorm is neither internal, conjunctive, nor disjunctive. The 3Π
function is an exemplary uninorm.

Fuzzy implications. As it was noted earlier, even if the nondecreasingness prop-
erty is very influential in aggregation theory (many of the results presented so far
would not be possible to obtain without such an assumption), it should not be
treated dogmatically (compare the notion of weak monotonicity, among others).
Here is a useful class of functions that generalizes the concept of the Boolean
logic implication operator.

Definition 1.156. A function I(2) : [0, 1] × [0, 1] → [0, 1] is a fuzzy implication
if for all x, y, x′, y′ ∈ [0, 1] it holds:

(a) if x ≤ x′, then I(2)(x, y) ≥ I(2)(x′, y), (nonincreasingness w.r.t. x)

(b) if y ≤ y′, then I(2)(x, y) ≤ I(2)(x, y′), (nondecreasingness w.r.t. y)
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(c) I(2)(1, 1) = 1,

(d) I(2)(0, 0) = 1,

(e) I(2)(1, 0) = 0.

It is easily seen that I(2)(x, 1) = 1 and I(2)(0, y) = 1 for all x, y. Table 1.7 lists
some exemplary fuzzy implications. The reader is referred to the monograph by
Baczyński and Jayaram [18] and, e.g., to [19, 402] for a comprehensive overview
of this class of fusion functions as well as its relation to t-norms, t-conorms, and
other aggregation tools.

1.5.4 Andness, orness, and other numerical characteristics
In Section 5.5 we shall discuss methods for “measuring” the degree to which a
fusion function obeys some particular behavior. This may be used to aid in the
aggregation tool selection process too.

To get a general intuition standing behind these numerical characteristics,
let us at least list a few of them here.

— Let F(n) be an averaging aggregation function on [0, 1]n. Its orness [172]
is given by:

orness(F(n)) =
∫

[0,1]n F(n)(x) dx−
∫

[0,1]n Min(n)(x) dx∫
[0,1]n Max(n)(x) dx−

∫
[0,1]n Min(n)(x) dx

.

Of course, orness(Min(n)) = 0 and orness(Max(n)) = 1. In a dual manner,
andness may be defined.

— The average orness [185] of F(n) is given by:

aveorness(F(n)) =
∫

[0,1]n

F(n)(x)−Min(n)(x)
Max(n)(x)−Min(n)(x)

dx,

where we assume that 0/0 = 0.

— For the arithmetic mean, it suffices to contaminate a single point and set
it to ±∞ to obtain an infinite value. Yet, it is known that, e.g., the
sample median serves as a robust estimate for the center of an empirical
distribution – it needs up to roughly 50% of the data to be contaminated
to change its output value drastically. The so-called breakdown value
measures a fusion function’s sensitivity to the presence of outliers, compare
[159].
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1.6 Choosing an aggregation method (II):
Fitting fusion functions to data
Let us presume that we have established our favorite class of fusion functions
(e.g., by stating a desired set of properties that must be fulfilled and then by
choosing it according to one of the characterization theorems from the previous
section). For simplicity, first we are going to assume that a fusion function of our
interest, Fw, is parametrized via a weighting vector (or, more generally, a vector
of some parameters) w. For instance, it may be a weighted quasi-arithmetic
mean with a fixed generator function ϕ (further on we shall discuss methods
for automated ϕ selection as well). Our main concern in this section is how to
choose w.

Of course, one may rely on experts’ knowledge at this point. This was the case
of the aggregation method used in Ski jumping competitions, see Example 1.36.
However, if the experts are unavailable, another common option is based on
a methodology widely used in data mining/machine learning (see, e.g., [446]).
Namely, we may obtain an (empirical) data set of input points somehow and
then:

— if we have access to desired output values for corresponding input cases
provided, we may rely on supervised learning-like algorithms; the weight
fitting methods discussed in this section assure consistency of the obtained
fusion function’s outputs with prototypes at hand;

— if we do not have initial preferences towards desired output data, unsuper-
vised learning-like techniques may be used, see, e.g., [286, 287]; note that
this task is much more vague than the previous one.

Note also that other approaches may be useful, for example reinforcement
learning-based ones. Nevertheless, in this monograph we are interested in exam-
ining the first scenario.

More formally, we would like to fit a fusion function Fw parametrized via
a vector w to empirical data, see, e.g., [33]. We observe m ≥ n input vectors
x(1), . . . ,x(m) ∈ In together with m desired output values y(1), . . . , y(m) ∈ I.
Our task is to compute the weighting vector w that best “fits” the given data
set. Assuming that desired input and output data are represented as matrices
X ∈ In×m,Y ∈ I1×m, and that Fw(X) = [Fw(x(1)) · · · Fw(x(m))] ∈ I1×m, we
are faced with a constrained optimization problem:

minimize E (Fw(X),Y) w.r.t. w

subject to some conditions on w that guarantee monotonicity, idempotency, or
any other valuable property, where E : Im × Im → [0,∞] is some loss func-
tion (typically a function of some metric) that we shall use as a goodness-of-fit
measure.
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Remark 1.157. If there exists a fusion function that interpolates a set of pro-
totypical observations provided (Fw(X) = Y), algorithms like those in [35, 36],
where very general Lipschitz aggregation functions are fit to data, may be used.
In our case, we presume that there is a kind of “noise” in the data set and it may
not always be possible to find a function that goes through all the observations.
In other words, we are faced with a discrete approximation task.

1.6.1 Fitting weighted arithmetic means
Let us start by examining a quite simple case of weighted arithmetic means.
At this point, only some simple linear algebra and mathematical programming
tools are involved in the computations. As it shall turn out below, optimization
problems utilizing the most common goodness of fit measures: squared Eu-
clidean (least squares error, LSE), Manhattan (least absolute deviation, LAD),
and Chebyshev (least maximal absolute deviation, LMD) metrics reduce them-
selves to quadratic and linear programming tasks (see, e.g., [377]).

Remark 1.158. The discussed algorithms may also be easily modified to fit OWA
operators’ weights (by ordering elements in X appropriately). Also note that
fitting WAM weights to data is a more difficult problem than performing linear
regression, as in our case weights must fulfill some additional constraints.

A. Least squares fitting

Most often, we would like to find the least squares error (LSE) solution to a
weight fit problem:

minimize
m∑
j=1

(
n∑
i=1

wix
(j)
i − y

(j)

)2

w.r.t. w (1.47)

subject to w ≥n 0 and 1Tw = 1. This task is a quadratic programming (QP)
problem, see, e.g., [49, Chapter 5] or [444].

Definition 1.159. A quadratic programming problem may be expressed as:

minimize 0.5 vTDv + cTv + c0 w.r.t. v = (v1, . . . , vn)

subject to:

Av Rn b,
v ≤n u,
v ≥n l,

where D ∈ Rn×n is symmetric and positive semidefinite, c ∈ Rn, c0 ∈ R, l ∈ R̄n,
u ∈ R̄n, l ≤n u, and A ∈ Rk×n,b ∈ Rk for some k ≥ 0.
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Remark 1.160. Figure A.2 and A.3 gives the source code of an R language in-
terface to the quadratic programming solver from the open source CGAL [442]
library. The implemented algorithm is based on a generalized simplex method,
see also [220, 419]. This solver has a particularly good performance for tasks
with a small number of variables but large number of constraints or a large
number of variables and small number of constraints. Other R QP solvers (e.g.,
the solve.QP() function from the quadprog package) either assume that D is
(strictly) positive definite or require additional commercial software installed,
e.g., CPLEX, MOSEK, or LocalSolver.

The optimization problem given by Equation (1.47) may be rewritten in
terms of a QP task as follows:

minimize 0.5 wTXXTw− (XYT )Tw w.r.t. w (1.48)

with 1 linear equality constraint under the assumption that w ≥n 0, see Fig-
ure A.4 for an exemplary R implementation. Note that XXT is surely at least
positive semidefinite, see also [444] for discussion on linearly dependent rows
in X.

B. Least absolute deviation fitting

Beliakov in [37] (see also [49, Chapter 5]) considered methods for fitting ag-
gregation operators to observed input data using the least absolute deviation
(LAD, i.e., L1 metric) criterion, which is less sensitive to outliers than the least
squares error. Nevertheless, we shall note that in this setting the solutions may
be ambiguous and unstable.

We aim to find a weighting vector w that is a solution to the optimization
problem:

minimize
m∑
j=1

∣∣∣∣∣
n∑
i=1

wix
(j)
i − y

(j)

∣∣∣∣∣ w.r.t. w (1.49)

subject to w ≥n 0 and 1Tw = 1.
It turns out that our LAD minimization task may be translated to a linear

programming (LP) problem.

Definition 1.161. A linear programming problem may be expressed as:

minimize cTv + c0 w.r.t. v = (v1, . . . , vn)

subject to:

Av Rn b,
v ≤n u,
v ≥n l,

where c ∈ Rn, c0 ∈ R, l ∈ R̄n, u ∈ R̄n, l ≤n u, and A ∈ Rk×n,b ∈ Rk for some
k ≥ 0.
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Remark 1.162. The simplex or interior-point methods, among others, may be
used to solve LP tasks. Note that in some LP software, like lp_solve, the con-
dition v ≥n 0 is always implicitly assumed. Interestingly, LP tasks may also
be computed by using the mentioned-above CGAL library QP solver by simply
assuming that D = 0.

Let us introduce 2m auxiliary variables r+
j , r

−
j , j = 1, . . . ,m, such that r+

j −
r−j =

∑n
i=1 wix

(j)
i − y(j) and r+

j , r
−
j ≥ 0. With this, the optimization problem

given by Equation (1.49) may be rewritten, see [65, Chapter 6], [76, Chapter 6],
and [63, Chapter 6], as:

minimize
m∑
j=1

(
r+
j + r−j

)
w.r.t. w, r+, r− (1.50)

subject to:
n∑
i=1

wix
(j)
i − r

+
j + r−j = y(j), j = 1, . . . ,m

n∑
i=1

wi = 1,

(w, r+, r−) ≥n+2m 0.

Figure A.5 presents an R implementation of this LP task setup, which again is
based on the CGAL QP solver.

C. Least Chebyshev metric fitting

Let us now suppose that we would like to find the least maximum absolute
deviation (LMD) solution to a weight fitting problem, i.e., one that minimizes
the Chebyshev L∞ metric:

minimize
m∨
j=1

∣∣∣∣∣
n∑
i=1

wix
(j)
i − y

(j)

∣∣∣∣∣ w.r.t. w (1.51)

subject to w ≥n 0 and 1Tw = 1. It turns out that, see [76, Chapter 6] or [63,
Chapter 6], the Chebyshev metric minimization task may also be represented as
an LP problem. Thus, by rewriting Equation (1.51), we get what follows:

minimize t w.r.t. w, t

with linear constraints of the form:
n∑
i=1

wix
(j)
i − t ≤ y(j), j = 1, . . . ,m
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n∑
i=1

wix
(j)
i + t ≥ y(j), j = 1, . . . ,m

n∑
i=1

wi = 1,

(w, t) ≥n+1 0.

Figure A.6 gives an exemplary R language implementation for least Chebyshev
metric fitting.

Example 1.163. Suppose that n = 5 and we are given m = 9 toy data points as
follows:

j 1 2 3 4 5 6 7 8 9

x
(j)
1 0.12 0.48 0.65 0.07 0.37 0.22 0.29 0.57 0.84
x

(j)
2 0.73 0.41 0.45 0.79 0.92 0.23 0.90 0.40 0.57
x

(j)
3 0.43 0.84 0.70 0.96 0.81 0.86 0.72 0.53 0.42
x

(j)
4 0.52 0.75 0.48 0.40 0.62 0.28 0.80 0.92 0.79
x

(j)
5 0.69 0.70 0.24 0.22 0.92 0.34 0.15 0.50 0.50
y(j) 0.58 0.56 0.70 0.40 0.78 0.50 0.64 0.62 0.73

Y was generated in such a way that firstly w = (0.33, 0.43, 0.10, 0.08, 0.06)
was assumed and then some random white noise was added (σ = 0.05). Here
are the results of applying the above-presented algorithms (weights and corre-
sponding errors).

E w1 w2 w3 w4 w5 d1 d2 d∞

LAD 0.1131 0.3324 0.0000 0.3460 0.2085 0.6764 0.3618 0.2608
LSE 0.2349 0.2026 0.2235 0.2500 0.0890 0.7654 0.2882 0.1583
LMD 0.1747 0.0996 0.2719 0.4538 0.0000 0.9276 0.3243 0.1335
— 0.3300 0.4300 0.1000 0.0800 0.0600 0.8773 0.3360 0.1997

Remark 1.164. If given exemplars have different degrees of importance, weighted
goodness of fit measures can straightforwardly be incorporated into the three
above optimization tasks.

1.6.2 Preservation of output rankings
Beliakov et al. in [49], see also, e.g., [37], point out that sometimes a decision
modeler may be interested in preserving the ranking of outputs. To do so, we
find a permutation σ ∈ S[m] such that y(σ(1)) ≤ · · · ≤ y(σ(m)). With that, we
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introduce additional constrains into our optimization task:

Fw(x(σ(j+1)))− Fw(x(σ(j))) ≥ 0 for j = 1, . . . ,m− 1.

Let X(−k) = (xi,j)i∈[n],j∈[m],j 6=k denote the X matrix with the kth column omit-
ted. If Fw is again a weighted arithmetic mean, we get further linear inequalities
of the form:

wT
(
X(−1) −X(−m)

)
≥ 0.

However, let us note that some input data may lead to optimization problems
that are inconsistent, i.e., that have no feasible solutions. In order to overcome
this limitation we may try to incorporate an additional term into our goodness
of fit measure which acts as a penalty for violating the desired output ranking:

minimize E
(
wTX,Y

)
+ P

(
wT (X(−m) −X(−1)) ∨ 0

)
w.r.t. w

Typically, we set P (z) = p
∑m−1
i=1 z2

i or P (z) = p
∑m−1
i=1 |zi| for some tuning

parameter p > 0 that must be set up empirically, e.g., by further numeric exper-
iments. For instance, we may try to seek the smallest p such that the Kendall
correlation coefficient between Y and wT

p X is as large as possible.

A. LAD fit with P being the L1 norm

In the case that E is the L1 metric and P (z) = p
∑m−1
i=1 |zi| we get an LP

problem, see [49, page 267], which is a version of Equation (1.50) with m − 1
additional (n+ 3m− 1 in total) variables and exactly n+ 5m− 1 constraints:

minimize
m∑
j=1

(
r+
j + r−j

)
+ p

m−1∑
j=1

qj w.r.t. w, r+, r−,q

subject to:

n∑
i=1

wix
(j)
i − r

+
j + r−j = y(j), j = 1, . . . ,m

n∑
i=1

wi = 1,

(w, r+, r−,q) ≥n+3m−1 0,
n∑
i=1

wi

(
x

(σ(j+1))
i − x(σ(j))

i

)
+ qj ≥ 0, j = 1, . . . ,m− 1

where σ is an ordering permutation of (y(1), . . . , y(m)).
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B. LSE fit with P being the squared L2 norm

It turns out (in [49] only the case of P being the L1 norm is considered) that
the case of least squared error fitting with P (z) = p

∑m−1
i=1 z2

i is quite similar
to the previous one. We may incorporate m − 1 additional variables into the
quadratic programming task given by Equation (1.48) and approach the follow-
ing optimization problem:

minimize 0.5 vTDv + cTv w.r.t. v = (w,q)

subject to:
n∑
i=1

wi = 1,

(w,q) ≥2n−1 0,
n∑
i=1

wi

(
x

(σ(j+1))
i − x(σ(j))

i

)
+ qj ≥ 0, j = 1, . . . ,m− 1

where:

D =


XXT 0

p · · · 0

0 0 . . . 0
0 · · · p


, c =


−XYT

0

 .

Example 1.165. Let us go back to the data set studied in Example 1.163. Below
are the results of finding the best fitting WAM weights, together with Kendall’s
τ correlation coefficient between Y and the output generated by the computed
model. Parameters p were selected so that τ is maximized and then the error
metric of interest is minimized.

E P (z) d1 d2 d∞ τ

LAD 0 0.6764 0.3618 0.2608 0.28
LSE 0 0.7654 0.2882 0.1583 0.56
LMD 0 0.9276 0.3243 0.1335 0.33
LAD 1.2

∑
i |zi| 0.8059 0.3775 0.2575 0.72

LSE 2.8
∑
i z

2
i 0.8914 0.3339 0.2063 0.72

We see that we were able to match the output ranking quite well, however, at
the cost of increasing the minimized goodness-of-fit measure. Also please keep
in mind that there are data sets for which we cannot increase the initial τ .

1.6.3 Regularization
A well-known fact from machine learning is that even if we establish “good”
weights on a given input sample, we do not necessarily obtain a model which
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exhibits satisfactory behavior on other data that come from the same source.
For instance, an estimated fusion function may be overfitted. For this reason, in
regression analysis the concept of parameter regularization is sometimes used.
It has a form of an additional penalty term dependent on some norm (or its
function) of the vector of parameters. And so, e.g., ridge regression aims to
minimize the squared prediction error plus a properly scaled, squared L2 norm
of the variables.

In our case we may consider, for some λ, an optimization task:

minimize E (Fw(X),Y) + λ‖w‖ w.r.t. w

subject to 1Tw = 1 and w ≥n 0, where ‖ · ‖ is some norm (or its function),
typically squared L2. Note that due to the usual constraints on w, the use of
the L1 norm (like, e.g., in Lasso regression) does not make much sense at this
point.

Incorporating the penalty term ‖ · ‖22 in optimization tasks discussed above
is relatively easy, therefore it is left to the kind reader.

Remark 1.166. Regularization in the case of WAM weights estimation works
quite well if n or m is relatively small. If this is not the case, we often do
not observe positive effects of introducing the mentioned penalty. Unlike in
regression problems, where we always presuppose that λ ≥ 0, in our framework
we are bounded with the constraint

∑
i wi = 1 which, for large λ, tends to

generate weighting vectors such that wi → 1/n. On the other hand, in the
current framework the case of λ < 0 may also lead to useful outcomes. Yet, we
should note that for λ→ −∞ we observe that wj → 1 for some j ∈ [n].
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Figure 1.4. Three error measures on a test data set from Example 1.167 as a
function of regularization penalty λ.
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Example 1.167. Let us consider a data set generated randomly with R as follows:
set.seed (321)
n <- 10
m <- 100
realw <- runif(n)
realw <- realw/ sum(realw)
X <- t(round(matrix(runif(n*m, 0, 1), nrow=m), 2))
Y <- t(realw) %*% X + rnorm(m, 0, 0.05)

train <- sample (1:m, m*0.8)
X_test <- X[,-train ,drop=FALSE] # test sample
Y_test <- Y[,-train ,drop=FALSE]
X <- X[,train ,drop=FALSE] # training sample
Y <- Y[,train ,drop=FALSE]

The set is divided into two parts: a training sample (80% of the observations,
used to compute the weights) and a test sample (20%, used to estimate the
error). Here we consider a QP task:

minimize 0.5 wT (XXT + λI)w− (XYT )Tw w.r.t. w (1.52)

subject to w ≥n 0, 1Tw = 1, which optimizes the squared error plus a λ‖w‖22
penalty term. Figure 1.4 depicts three goodness of fit measures as a function
of λ. We see that in this example we are able to improve the least squares error
measure (which was minimized in this case).

E λ d1 d2 d∞

— (using realw) 0 0.8113 0.2256 0.1009
LAD 0 0.8525 0.2315 0.0956
LSE 0 0.7589 0.2098 0.0935
LMD 0 0.9137 0.2384 0.0975
LSE −1.03 0.6492 0.1944 0.0970

1.6.4 Fitting weights of weighted quasi-arithmetic means

Let us now consider the case of Fw = ϕ−1(wTϕ(x)), i.e., weighted quasi-
arithmetic means, for an arbitrary but known and fixed continuous, strictly
increasing generator function ϕ. Note that the case of fitting ϕ to empirical
data is discussed later on.

Torra in [444, 445] discussed weighted quasi-arithmetic mean fitting using
the L2-metric minimization criterion. Yet, he noted that the problem is difficult
in general, so he assumed that the exemplars are not subject to errors. In such
a case, noting that ϕ is surely invertible, we have for all j:

n∑
i=1

wiϕ(x(j)
i ) = ϕ(y(j)).
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Using this assumption, instead of minimizing:

‖ϕ−1 (wTϕ(X)
)
−Y‖2

one can minimize a quite different (in general) goodness of fit measure:

‖wTϕ(X)− ϕ(Y)‖2.

A similar approach, this time concerning the L1 metric, was utilized by Beliakov
et al. in, e.g., [37, 45, 49]. For this task, exactly the methods presented in the
previous subsection can be applied, but this time on appropriately transformed
X and Y. Such an approach is often called linearization of inputs.

Let us suppose, however, that we would like to solve the original weight
fit problem and not the simplified one. This leads (in general) to a nonlinear
optimization task.

Example 1.168. Let n = 5,m = 9, and x(1), . . . ,x(m) be the same as in Exam-
ple 1.163. This time, however, ϕ(x) = x2 and y(1), . . . , y(m) is as follows:

j 1 2 3 4 5 6 7 8 9

y(j) 0.65 0.58 0.70 0.51 0.82 0.56 0.70 0.64 0.75

Here are the true d1 and d2 errors in the case of linearized and optimal goodness-
of-fit measure minimization tasks. The differences are quite small, but not negli-
gible. Yet, we may observe that often the linearized and “exact” E minimization
tasks lead to solutions which are very close to each other.

E d1 d2 d∞

LAD – linearization 0.7385 0.4120 0.2798
LSE – linearization 0.7423 0.2859 0.1626
LAD – optimal 0.7157 0.3170 0.2044
LSE – optimal 0.7587 0.2817 0.1501

A. LSE fit of WQAMean weights

We aim to:

minimize
m∑
j=1

(
ϕ−1

(
n∑
i=1

wiϕ
(
x

(j)
i

))
− y(j)

)2

w.r.t. w (1.53)

subject to w ≥n 0 and 1Tw = 1. By homogeneity and triangle inequality of ‖·‖2
we have that this is a convex optimization problem. To drop the constraints on
w, let us use an approach considered by Filev and Yager [186], see also [445] (a
barrier function could also be used for that, among others). We take a different
parameter space, λ ∈ Rn, such that:

wi = exp(λi)∑n
k=1 exp(λk) .
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Assuming that ϕ−1 is differentiable, let us determine the gradient ∇E(λ). For
any k ∈ [n] it holds:

∂

∂λk
E(λ) = 2 exp(λk)∑n

i=1 exp(λi)

m∑
j=1

ϕ−1

∑n
i=1 exp(λi)ϕ

(
x

(j)
i

)
∑n
i=1 exp(λi)

− y(j)


· (ϕ−1)′

∑n
i=1 exp(λi)ϕ

(
x

(j)
i

)
∑n
i=1 exp(λi)


·

ϕ(x(j)
k

)
−

∑n
i=1 exp(λi)ϕ

(
x

(j)
i

)
∑n
i=1 exp(λi)

 .

Assuming that Z = wTϕ(X) and w = exp(λ)/1T exp(λ), we have:

∇E(λ) = 2 ·w ·
(((

φ−1(Z)− Y
)
· (ϕ−1)′ (Z)

)
×
(
ϕ(X)T − Z

))
,

where ·,− stand for elementwise vectorized multiplication and subtraction, re-
spectively, × denotes matrix multiplication, and ϕ(X)T − Z means that we
subtract Z from each column in ϕ(X)T (this is in fact how matrix and vector
arithmetic operations are vectorized in R). Figure A.7 gives an R implementation
of a weight fitting procedure which is based on a quasi-Newton nonlinear opti-
mization method by Broyden, Fletcher, Goldfarb and Shanno (the BFGS algo-
rithm, see [377]). Please note that while using the mentioned reparametrization,
the BFGS algorithm may occasionally fail to converge.

B. LAD fit of WQAMean weights

Now let us:

minimize
m∑
j=1

∣∣∣∣∣ϕ−1

(
n∑
i=1

wiϕ
(
x

(j)
i

))
− y(j)

∣∣∣∣∣ w.r.t. w (1.54)

subject to w ≥n 0 and 1Tw = 1. This case is problematic to nonlinear solvers, as
our goodness-of-fit measure is not differentiable at 0 and we observe that methods
like BFGS (using numeric finite-difference approximation of the gradient) may
return results that are not close enough to the optimum.

In order to overcome this limitation, we propose the following heuristic. In-
stead of minimizing

∑m
j=1 |zj |, we may consider

∑m
j=1

√
z2
j + ε2 for some ε > 0,

typically ε = 10−12. This is because |x| ≤
√
x2 + ε2 and

√
x2 + ε2 →ε→0 |x| for

all x. Thus, our task is now to:

minimize
m∑
j=1

√√√√√ϕ−1

∑n
i=1 exp(λi)ϕ

(
x

(j)
i

)
∑n
i=1 exp(λk)

− y(j)

2

+ ε2 w.r.t. λ

(1.55)
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where again we use the reparametrization wi = exp(λi)∑n

k=1
exp(λk)

, which enables us
to drop any additional constraints. In such a case we have:

∂

∂λk
E(λ) = exp(λk)∑n

i=1 exp(λi)

m∑
j=1

(
ϕ−1

(∑n

i=1
exp(λi)ϕ

(
x

(j)
i

)∑n

i=1
exp(λi)

)
− y(j)

)
√(

ϕ−1
(∑n

i=1
exp(λi)ϕ

(
x

(j)
i

)∑n

i=1
exp(λk)

)
− y(j)

)2

+ ε2

· (ϕ−1)′
∑n

i=1 exp(λi)ϕ
(
x

(j)
i

)
∑n
i=1 exp(λi)


·

ϕ(x(j)
k

)
−

∑n
i=1 exp(λi)ϕ

(
x

(j)
i

)
∑n
i=1 exp(λi)

 .

Assuming that Z = wTϕ(X) and w = exp(λ)/(1T exp(λ)), we have:

∇E(λ) = w ·
( (

φ−1(Z)− Y
)
· (ϕ−1)′ (Z)√

(ϕ−1(Z)−Y) · (ϕ−1(Z)−Y) + ε2
×
(
ϕ(X)T − Z

))
.

Remark 1.169. In Figure A.8 we provide an implementation of the aforemen-
tioned weight fitting procedure. It is based on the BFGS algorithm available via
the optim() function in R. For testing purposes, we set up convergence criteria
to be reltol = 1e− 16, maxiter = 10000.

It is well-known that LAD optimization using nonlinear solvers does not
guarantee that the output result is the global optimum: the BFGS algorithm may
sometimes get stuck in a suboptimal solution or fail to converge in a predefined
number of iterations.

For instance, suppose that ϕ(x) = x2, n = 5, m = 25, ε = 10−12 and that X
and Y are generated randomly like in Example 1.167. The presented procedure
gives median relative L1 error (as compared to the optimal solution determined
by the routine in Figure A.5) of 1× ' 10−12 (M = 10000 MC iterations). On
the other hand, the BFGS algorithm applied directly on an absolute value-based
error function gives median relative error of ' 6× 10−4. The 99%-quantiles are,
respectively, around 3×10−7 and 0.5. Thus, the suggested approximation works
far better than the direct approach.

Sometimes it may be advisable to run the optimization routine a few times,
starting each time from a different initial point and then choose the best (in
terms of L1 error) solution. For instance, in the current experiment setting,
using 10 trials reduces the median error of the “exact method” to ' 6 × 10−5,
i.e., by a factor of 10. However, in the case of the approximate method, we did
not get any significant improvement in terms of the median error, which already
is close to the accuracy limits of computers’ floating point arithmetic. Yet, the
99% quantile is now 10 times lower and we detected only 1 outlier case (instead
of 11 – out of 10000) in which the relative error is greater than 1%. The 10-
fold procedure failed to converge 76 (instead of 825) times within the presumed
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reltol and maxit settings – in such circumstances one may try to rerun the
BFGS algorithm from different random initial points until convergence criteria
are satisfied.

1.6.5 Fitting weighted power means
Up to now we studied a case of weighted power means where ϕ was fixed (e.g.,
to an identity function which lead to the weighted arithmetic means). Let us
now assume that we have a suspicion that ϕ might be an instance of some
parametrized class of functions, e.g., ϕ(x) = xp, p > 1. In other words, we are
interested in fitting weighted power means to data.

In the case of the squared error, our task now becomes a bi-level optimization
problem:

minimize E(p) w.r.t. p
subject to p ∈ [pmin, pmax] where E(p) is a solution to:

minimize
m∑
j=1

 p

√√√√ n∑
i=1

wi

(
x

(j)
i

)p
− y(j)

2

w.r.t. w

subject to w ≥ 0, 1Tw = 1. On a side note, Beliakov in [34] and Torra [444]
consider a similar problem, however using the linearization technique. The L1
error may be incorporated accordingly. Note that most often we observe that E
is a quite well-behaving, unimodal function, therefore one-dimensional nonlinear
solvers (like the Brent method [80]) may be utilized.

Example 1.170. Let us consider the data set generated as follows:
set.seed (132)
n <- 2
m <- 9
X <- t(matrix(runif(n*m, 0, 1), nrow=m))
p <- 2
realw <- runif(n)
realw <- realw/ sum(realw)
Y <- matrix(as.numeric ((t(X^p) %*% realw )^(1/p))+

rt(m, 5)*0.05, ncol=m)

For least squares fitting we use the function in the mentioned Figure A.9.
which relies on the already discussed solver for an optimization task given by
Equation (1.53). The obtained L1 and L2 errors as a function of p are depicted
in Figure 1.5. Here, the minimum was obtained for p∗ = 1.928388, giving the
total L2 error of 0.1041785.

1.6.6 Determining generator functions of quasi-arithmetic means
What happens, however, if we would like to fit a weighted quasi-arithmetic mean
to empirical data but we have no knowledge on how a ϕ generating function
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Figure 1.5. Approximation error (L1 and L2) as a function of p, see Example 1.170.

might be defined? In such a case, Beliakov et al. suggest to rely on the notion
of spline functions, see, e.g., [32, 34, 49, 50]. Namely, we are now interested in a
method that uses B-splines to construct the ϕ generator functions that are the
basis of weighted quasi-arithmetic means.

Suppose that p ≥ 1, I = [a, b] and let t = (t1, . . . , tk) be an increasingly
ordered knot vector of length k for some k ≥ 0 such that a < ti < ti+1 < b
for all i ∈ [k]. For brevity of notation we assume that ti = a for i < 1 and
ti = b whenever i > k. Let us define B-spline basis functions for j = 0, . . . , p
and θ ∈ [a, b] recursively as:

N t
i,j(θ) =

{
1 if θ ∈ [ti−1, ti[,
0 otherwise, (j = 0)

N t
i,j(θ) = θ − ti−1

ti+j−1 − ti−1
N t
i,j−1(θ) + ti+j − θ

ti+j − ti
N t
i+1,j−1(θ), (j > 0)

with convention ·/0 = 0.

Example 1.171. Figure 1.6 depicts B-spline basis functions N t
i−p,p for i =

1, . . . , p+ k+ 1 in the case of k = 2 equidistant internal knots and p = 1 as well
as p = 3 with I = [0, 1]. Note that for all θ ∈ I it holds

∑p+k+1
i=1 N t

i−p,p(θ) = 1.

Let v ∈ Iη be a vector of control points, where η = p+k+1. Then Bt
v : I→ I

given by:

Bt
v(θ) =

η∑
i=1

viN
t
i−p,p(θ) (1.56)

is a nonperiodic B-spline of degree p based on a knot vector t, see, e.g.,
[420]. In particular, for p = 1 we get a piecewise linear function interpolat-
ing (a, v1), (t1, v2), . . . , (tk, vη−1), (b, vη). On the other hand, for p = 3 we get a
cubic B-spline.
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Figure 1.6. B-spline basis functions in the case of k = 2 equidistant internal knots

and p = 1 (left) as well as p = 3 (right).
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Figure 1.7. B-splines in the case of k = 2 equidistant internal knots and p = 1 (left,
v = (0, 0.25, 0.8, 1)) as well as p = 3 (right, v = (0, 0.1, 0.15, 0.2, 0.95, 1)).

Remark 1.172. De Boor’s algorithm (see, e.g., [309, 420]) may be used to com-
pute B-splines. In R, this may be done using, for instance, the splineDesign()
function from the splines package.

Example 1.173. Figure 1.7 depicts two exemplary B-splines: a piecewise linear
one and a cubic one; we assume I = [0, 1].

Remark 1.174. The derivative of a B-spline of degree p is itself a B-spline of
degree p− 1. It might be easily shown that if v is ordered increasingly, then its
corresponding B-spline is strictly increasing. It is worth noting that if v1 = a
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and vη = b, then Bt
v is a function onto I. Of course, if p = 1, then the inverse of

an increasing B-spline is a B-spline of degree 1 (piecewise linear spline) as well.
However, to the best of our knowledge, for p > 1 there are no analytic methods
to determine (Bt

v)−1. Yet, the inverse may easily be computed numerically
using, e.g., a root finding algorithm. Also, it may be approximated with other
B-splines.

Assume that t is fixed (see, e.g., [243] and references therein for a discussion
on knot selection) and that ϕ(x) = Bt

v(x) =
∑η
i=1 viN

t
i−p,p(x) for some increas-

ing v ∈ Iη such that v1 = a and vη = b. If w is given a priori and we rely on
the linearization technique (see page 95), our WQAMean fitting procedure may
be expressed as:

minimize
m∑
j=1

(
η∑
k=1

vkuj,k

)2

w.r.t. (v2, . . . , vη−1)

in the case of the squared error, or:

minimize
m∑
j=1

∣∣∣∣∣
η∑
k=1

vkuj,k

∣∣∣∣∣ w.r.t. (v2, . . . , vη−1)

in the case of the absolute error, subject to:

v2 > a

vi − vi−1 > 0 for i = 3, . . . , η − 1
vη−1 < b,

where:
uj,k =

n∑
i=1

wiN
t
k−p,p(x

(j)
i )−N t

k−p,p(y(j)),

see, e.g., [31, 37, 49]. If w is also unknown, then a two-stage optimization
procedure may be used, see, e.g., [34, 37]. Alternatively, one may rely on a
“global” optimization routine like CMA-ES [240]. Note that assuring that v1 <
v2 < · · · < vη may be done via reparametrization: one may use variables like v′i
with boundary constraints on v′i > 0 for i = 2, . . . , η, where vi =

∑n
j=1 v

′
i. In

is also worth noting that Beliakov and James in [45] also considered B-splines
fitting in the case of a LAD task and Bonferroni means.

1.6.7 A note on hierarchies of quasi-arithmetic means
Recall that in Example 1.86 we considered the case of feedforward neural net-
works, which were isomorphic to a hierarchy of quasi-arithmetic means.

It is well known that a neural network serves as a universal approximator: for
instance, many successful applications of such machine learning algorithms were
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reported in classification problems. To train a neural network, the Widrow-Hoff
“backpropagation” (backward error propagation) algorithm, see, e.g., [467] may
be used (among others) – it is based on stochastic gradient descent techniques;
the updating algorithm is applied until weights no longer change significantly
under the mean square error minimization criterion.

1.7 Aggregation on bounded posets
It turns out that in some intelligent systems and other applications, elements
we aggregate are non-numeric or although they are represented as numbers,
albeit cannot be treated as being defined on the so-called interval scale. In
such a context operations like +,−, ·, /, as well as

√
·, exp ·, sin · may not be

meaningful at all.
In this section, we relax our (strong up to now) assumptions on the input

domain and suppose that the aggregated elements may only be somehow ordered.
This is the case of, for example, linguistic information: values of some attributes
may be represented as labels like “low”, “medium”, “high” or “bad”, “good”,
“excellent”, etc., compare also the Zadeh computing with words methodology
[488]. It is clear that here statements like “3·bad” or “warm+10” make no sense.
This implies that most of the previously defined data fusion techniques, e.g.,
OWA and weighted averaging, must be replaced with some more elaborated
solutions.

1.7.1 Basic order theory concepts
Assume that elements we aggregate come from a set P (possibly uncountable)
and a preordering relation has been established. Recall that a preorder over P
is a binary relation v⊆ P × P which is:
(a) reflexive, i.e., (∀p ∈ P ) it holds p v p,

(b) transitive, i.e., (∀p, q, r ∈ P ) p v q and q v r =⇒ p v r.
A set P equipped with a preorder v, i.e., (P,v), is called a preordered set.

Moreover, any antisymmetric preorder v, that is, a binary relation such that
(∀p, q ∈ P ) if p v q and q v p, then p = q, is called a partial order and then
(P,v) is called a poset (partially ordered set). In such a case, we sometimes
write p < q to indicate the fact that p v q and p 6= q.

Example 1.175. Let P = {beautiful, rich, famous,wise}. A decision maker intro-
duces the following partial order v over P , expressing his/her “life desires”:

v=

 (beautiful,beautiful), (rich, rich), (famous, famous), (wise,wise),
(beautiful, rich), (beautiful, famous), (rich,wise), (famous,wise),
(beautiful,wise).

 ,

Note that, actually, the pairs in the second row above are the most “informative”.
The elements in the first row are implied by reflexivity and in the third row – by
transitivity. Also please notice that rich and famous are not comparable with v.
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Remark 1.176. If P is finite, then from the formal (syntactic) perspective each
preordered set may be represented as a directed graph (there is a one-to-one
correspondence between directed graphs and binary relations). Thus, instead of
writing p v q we may presume that there is an edge from p to q, where p, q ∈ P .
A simplified version of the poset (directed graph) from Example 1.175 may be
depicted as in Figure 1.8.

What we see there is a Hasse diagram. An arrow (edge) from p to q, p, q ∈ P ,
means that p v q. Loops, i.e., edges from each p to p itself, are not included
in the diagram for readability. Moreover, please notice that edges implied by
transitivity are also hidden. In other words, an ordering relation may be obtained
from a Hasse diagram by calculating its reflexive and transitive closure. Also
please observe that, e.g., the Warshall algorithm [463] may be used to find a
transitive closure of a graph represented as a 0-1 matrix in O(|P |3) time. The
opposite operation, transitive reduction, may be obtained by a method by Aho,
Garey, and Ullman [6], who additionally showed that this problem is of the
same computational complexity as that of finding the corresponding closure.
It might be shown that both tasks may be efficiently solved via binary matrix
multiplication, i.e., in at most O(|P |2.3728639)-time [308].

Additionally, a total partial order v, i.e., such that (∀p, q ∈ P ) it holds p v q
or q v p, is called a linear order.

Example 1.177. Let P = {tiny, small,normal, large,huge} denote the set of TEX
font sizes. We may establish a linear order v over P with the Hasse diagram
below:

tiny −→ small −→ normal −→ large −→huge.
By transitivity, we of course have small < large, etc.

wise

rich famous

beautiful

Figure 1.8. An illustration for Example 1.176.
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Remark 1.178. If (P,v) is a finite chain, then it may be represented as a real
interval I (with standard ordering of reals) by means of an order-preserving
utility function f : P → I, which is defined up to a strictly increasing bijection
ϕ : I → I, see, e.g., [337, 343] for discussion. For instance, in Example 1.177
f may be such that f(tiny) = 1, f(small) = 2, f(normal) = 3, f(large) = 4,
f(huge) = 5.

Given a poset (P,v), if there exists 0 ∈ P for which (∀p ∈ P ) it holds 0 v p,
then we call such 0 the least element of P . Similarly, the greatest element of P
is defined as 1 ∈ P such that (∀p ∈ P ) we have p v 1 (if it exists). (P,v, 0, 1)
is called a bounded poset, if the poset (P,v) has the least element 0 and the
greatest element 1.

Example 1.179. In Example 1.175 we presented a bounded poset with 0 =
beautiful and 1 = wise.

A lattice (P,v,u,t) is a poset in which every pair of elements has a unique
infimum (meet, u, the greatest element of common lower bounds) and supremum
(join, t, the smallest element of common upper bounds). If v is a linear order,
then a lattice is called a chain.

A lattice (P,v,u,t) is called distributive whenever for all p, q, r ∈ P

p t (q u r) = (p t q) u (p t r) (1.57)

or, equivalently,
p u (q t r) = (p u q) t (p u r), (1.58)

which is exactly the same as requiring:

p u r = q u r and p t r = q t r =⇒ p = q. (1.59)

Additionally, it may be shown that a lattice is distributive if and only if none of
its sublattices is isomorphic to any of the two simplest non-distributive lattices
depicted in Figure 1.9.

Moreover, we call a lattice (P,v,u,t) complete, whenever every subset P ′ ⊆
P has a unique supremum (denoted with

⊔
P ′ =

⊔
p′∈P ′ p

′) and infimum ( ⊔P ′).
Clearly, every complete lattice is bounded.

1.7.2 Aggregation functions on bounded posets
We have established the three most common scenarios, from the most to the
least general:

1. bounded posets,

2. bounded lattices,

3. chains.
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Figure 1.9. The two simplest non-distributive lattices.

By the term fusion function we now mean any mapping F(n) : Pn → P .
In order to reintroduce the concept of an aggregation function, this time in a
bounded poset setting, we follow the definition given, e.g., in [145].

Definition 1.180. Let (P,v, 0, 1) be a bounded poset. A mapping F(n) : Pn →
P , is called an aggregation function if:

(a) (∀x,y ∈ Pn) if (∀i ∈ [n]) xi v yi, then F(n)(x) v F(n)(y),

(b) F(n)(n ∗ 0) = 0, (lower boundary condition)

(c) F(n)(n ∗ 1) = 1. (upper boundary condition)

Remark 1.181. Using the introduced notion, we may define extended aggrega-
tion functions like F∗ : P ∗ → P by assuming that for all n the restriction F∗|Pn

is an aggregation function.

Remark 1.182. Let I = [a, b] and ≤ denote the standard ordering of reals. In the
case of the bounded chain (I,≤, a, b,∧,∨), the above definition coincides with
the classical one as given in [230]. An example of such an aggregation function
is the sample minimum. On the other hand, the arithmetic mean cannot be
given as an instance of this class, as in its definition some “illegal” arithmetic
operations occur.

Komorníková and Mesiar note in [293] that some properties of “ordinary”
aggregation functions may be straightforwardly transformed to the case of fusion
functions on bounded posets. This happens, e.g., in the case of:

— symmetry (see Definition 1.35),
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— idempotency (Definition 1.24),

— associativity (Definition 1.114),

— decomposability (Definition 1.123),

— bisymmetry (Definition 1.126),

— annihilator (Definition 1.140) and neutral (Definition 1.141) element.

Internality is sometimes defined as (see [293, 382, 383]):

F(n)(x1, . . . , xn) ∈ {x1, . . . , xn} (1.60)

or, if we act on a complete lattice, alternatively as (see [382]):
n⊔

i=1
xi v F(n)(x1, . . . , xn) v

n⊔
i=1

xi. (1.61)

In this regard, the former one naturally arises when we require that a fusion
function is comparison meaningful (preserves relative output order under any
inputs’ order automorphism) and the latter one stands for a basis of means in
the Ovchinnikov sense.

Both cases may lead to undesired consequences if the aggregated elements are
incomparable. Thus, in the following section we review an appealing proposal
on how to solve this issue. As a side effect, we also present a categorization of
aggregation functions on bounded posets.

1.7.3 Classes of fusion functions
Recall that we distinguished four main classes of nondecreasing fusion functions
(see [169]):

— internal (averaging),

— conjunctive (AND-like, e.g., t-norms),

— disjunctive (OR-like, e.g., t-conorms),

— mixed.

On the interval scale, the distinction was based on their relationship to Min
and Max. If we act on chains, we may replace Min and Max with inf and sup,
respectively. Yet, on more general (bounded) posets the situation is somehow
more complicated.

At this point, let us follow the classification proposed by Komorníková and
Mesiar in [293], which was inspired by the notion of k-intolerance introduced in
[339]. Given an aggregation function F(n) : Pn → P , let:

γ(F(n)) = inf
{∣∣∣i : F(n)(x) v xi

∣∣∣ : x ∈ Pn
}
, (1.62)

σ(F(n)) = inf
{∣∣∣i : xi v F(n)(x)

∣∣∣ : x ∈ Pn
}
. (1.63)
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Definition 1.183 ([293]). We call F(n) : Pn → P strongly conjunctive, when-
ever F(n) ∈ γ−1(n). What is more, F(n) : Pn → P is strongly disjunctive, if
F(n) ∈ σ−1(n).

Remark 1.184. In other words, F(n) is strongly conjunctive, if for all x ∈ Pn

and all i ∈ [n] it holds F(n)(x) v xi. Recall that on an interval scale we called
F(n) conjunctive, whenever for all x it held F(n)(x) ≤ Min(x), or equivalently
F(n)(x) ≤ xi for all i ∈ [n].

Definition 1.185 ([293]). We call F(n) : Pn → P weakly conjunctive, when-
ever F(n) ∈

⋃n−1
i=1 γ

−1(i). Moreover, we say that F(n) : Pn → P is weakly
disjunctive, if F(n) ∈

⋃n−1
i=1 σ

−1(i).

Based on the above notion, we may introduce the concept of an averaging
aggregation function.

Definition 1.186 ([293]). We call F(n) : Pn → P weakly averaging, whenever
it is weakly conjunctive or weakly disjunctive. Moreover, it is strongly averaging
if it is both weakly conjunctive and weakly disjunctive.

Intuitively, a weakly averaging function outputs values that are greater than
or less than some elements we aggregate, but definitely not greater than or less
than all such elements in every possible case. Each weakly/strongly averaging
function is idempotent. Moreover, if P is a bounded lattice, the only strongly
conjunctive (disjunctive) and idempotent aggregation function is the Min (re-
spectively, Max).

Having said that, aggregation functions on bounded posets may be classi-
fied as:

(a) weakly averaging (
⋃n−1
i=1 γ

−1(i) ∪
⋃n−1
i=1 σ

−1(i)),

(b) strongly conjunctive (γ−1(n)),

(c) strongly disjunctive (σ−1(n)),

(d) mixed (γ−1(0) ∩ σ−1(0)).

This is what was called in [293] a weak classification. Its strong version assumes
that the class of weakly averaging functions may additionally be considered as
consisting of aggregation functions that are either:

(a′) strongly averaging (
⋃n−1
i=1 γ

−1(i) ∩
⋃n−1
i=1 σ

−1(i)),

(a′′) weakly conjunctive but not weakly disjunctive
(
⋃n−1
i=1 γ

−1(i) \
⋃n−1
i=1 σ

−1(i)),
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(a′′′) weakly disjunctive but not weakly conjunctive
(
⋃n−1
i=1 σ

−1(i) \
⋃n−1
i=1 γ

−1(i)).

Both classification schemes are complete in the sense that any function falls
exactly into one category.

Remark 1.187. If we act on a bounded chain, then the weak and strong classifi-
cation in the Komorníková-Mesiar [293] sense and the “classical” Dubois-Prade
classification [169] are equivalent.

1.7.4 Idempotent fusion functions
Please note that triangular norms and conorms on a bounded poset (P,v, 0, 1)
may be defined via a straightforward generalization of the case presented in
Definitions 1.143 and 1.146, see [138, 139]. This is because none of their sine
qua non properties are specific to [0, 1] and a natural linear order ≤. Moreover,
e.g., Karaçal and Mesiar [267] studied uninorms on bounded lattices.

Nevertheless, our main focus in this book is on the study of fusion functions
that are at least idempotent. Various authors also translate some well-known
classical averaging aggregation functions to the framework of aggregation on
posets. Here are a few examples.

Example 1.188. Let P = {p1, . . . , pk} be a finite set equipped with a total order-
ing relation v and assume that p1 v · · · v pk. Moreover, let w be a weighting
vector of length n and suppose that wi is a weight corresponding to pi. Then
the Yager [480] weighted median is defined as pl with the smallest possible l
such that

∑l
i=1 wi ≥ 0.5. Input data of this kind naturally occur when elements

come from a multiset over a totally ordered set (see Example 1.81). It is easily
seen that the input median is idempotent, averaging, symmetric, and monotone.
Noteworthily, an iterative algorithm for weights fitting was also provided in this
case, see [480, Section 4].

Example 1.189. Let P = {p0, p1, . . . , pk} be a finite set equipped with a total
ordering relation v and suppose p0 v · · · v pn. The linguistic OWA operator
introduced by Herrera, Herrera-Viedma, and Verdegay in [245] is generated by a
weighting vector w and is defined for a given x ∈ Pn, n ≥ 2 as follows. Assume
that σ ∈ S[n] is such that xσ(1) v · · · v xσ(n). Then:

LOWAw(x) = Cn(w,x),

where the “convex combination” of elements in P operator [143] Cn is defined
for n > 2 recursively as:

Cn(w,x) = C2

(
(1− wn, wn),
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(
Cn−1

((
w1

1− wn
, . . . ,

wn−1

1− wn

)
,
(
xσ(1), . . . , xσ(n−1)

))
, xσ(n)

))
,

and for n = 2 – under assumption k ≥ j ≥ i ≥ 0 and w + w′ = 1 – as:

C2((w,w′), (pj , pi)) = pk∧(i+round(w(j−i))).

We see that in fact we map elements in P to the set of nonnegative integers.
It can be shown that the linguistic OWA operator is monotonic, averaging,
idempotent, and symmetric. The above idea was enhanced by Godo and Torra
[225] who introduced the so-called qualitative OWA operators. Such operators
utilize the notion of the t-norm instead of the C function. Moreover, Kolesárová,
Mayor, and Mesiar in [290] study a different approach for constructing weighted
ordinal means based on divisible discrete t-norms.

Example 1.190. Lizasoain and Moreno [326] note that the original OWA opera-
tor for x ∈ [0, 1]n:

OWAw(x) =
n∑
i=1

wix(i)

generated by a weighting vector w may be rewritten as:
OWAw(x) = SŁ

(
TP(w1, x(1)), . . . ,TP(wn, x(n))

)
with assumption SŁ(w1, . . . , wn) = 1, where TP and SŁ denote the product
t-norm and Łukasiewicz t-conorm, respectively. Assuming that we act on a
complete lattice and substituting arbitrary t-norms and t-conorms valid there
for TP and SŁ, we may introduce OWA-like lattice operators as long as we are
able to order the input observations. Of course, if we are on a chain, this task
is trivial. In other cases, the authors propose to follow the approach of, e.g.,
Ovchinnikov [382], and compute an OWA operator on inputs like yi (instead of
x(i)), where:

y1 = x1 u · · · u xn,
...

yi =
⊔

{j1,...,jn−i+1}⊆[n]

xj1 u · · · u xjn−i+1 ,

...

yn−1 =
⊔

{j1,j2}⊆[n]

xj1 u xj2 ,

yn = x1 t · · · t xn,

which fulfill:
y1 v y2 v · · · v yn.

It can be noted that if we are on a chain, then yi = x(i). All OWA-like lattice
operators are idempotent.
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1.7.5 Lattice polynomial functions
Let us generalize the notion of a (weighted) lattice polynomial function, see
Equation (1.32), to the case of a complete distributive lattice (P,v,u,t, 0, 1).
Assume that

⊔
x∈∅ x = 0 and ⊔x∈∅ x = 1. Lattice polynomial functions are

formed as expressions that consist of variables in P which are linked by the u,
t lattice operations applied in any order, see [62].

Example 1.191. Here is an exemplary lattice polynomial function of four vari-
ables: F(n)(x1, x2, x3, x4) = (x1 u x2) t (x3 u x4).

Definition 1.192. The class of n-argument lattice polynomial functions (n-
LPF) from Pn to P is defined by applying the following rules finitely many
times:

(a) F(n)(x1, . . . , xn) = xi is an n-LPF for any i ∈ [n],

(b) If F(n) and G(n) are n-LPFs, then F(n) u G(n) and F(n) t G(n) are n-LPFs.

Remark 1.193. Each lattice polynomial function is nondecreasing with respect
to v.

Example 1.194. A ternary median on a bounded distributive lattice is given by:

Median(3)(x1, x2, x3) = (x1 u x2) t (x2 u x3) t (x3 u x1)
= (x1 t x2) u (x2 t x3) u (x3 t x1).

It turns out that each n-LPF may be written in a simpler form. We have
what follows, see [62].

Proposition 1.195. Let F(n) be an n-LPF. Then there exist k, l ≥ 1 and fam-
ilies A1, . . . , Ak, B1, . . . , Bl of nonempty subsets of [n] such that:

F(n)(x1, . . . , xn) =
k⊔
j=1

⊔

i∈Aj

xi =
l ⊔

j=1

⊔
i∈Bj

xi. (1.64)

Example 1.196. Fix t ∈ [n]. Let k =
(
n
t

)
and A = {A1, . . . , Ak} =

{{i1, . . . , it} ⊆ [n]}. If we are on a chain, then for any x ∈ Pn it holds that
x(n−t+1) =

⊔k
j=1 ⊔i∈Aj

xi, i.e., the tth order statistic, see [382, 383]. In fact, see
[337], any symmetric n-LPF on a chain is an order statistic.
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The class of weighted lattice polynomial functions has been generalized by
Marichal in [341].

Definition 1.197. The class of n-argument weighted lattice polynomial func-
tions (n-WLPF) from Pn to P is defined by applying the following rules finitely
many times:

(a) F(n)(x1, . . . , xn) = xi is an n-WLPF for any i ∈ [n],

(b) F(n)(x1, . . . , xn) = p is an n-WLPF for any p ∈ P ,

(c) If F(n) and G(n) are n-WLPFs, then F(n)uG(n) and F(n)tG(n) are n-WLPFs.

As an analogue of Proposition 1.195, we have the following result.

Proposition 1.198. Let F(n) be an n-WLPF. Then there exist k, l ≥ 1, con-
stants a1, . . . , ak, b1, . . . , bl ∈ P , and families A1, . . . , Ak, B1, . . . , Bl of nonempty
subsets of [n] such that:

F(n)(x1, . . . , xn) =
k⊔
j=1

aj u ⊔

i∈Aj

xi

 =
l ⊔

j=1

bj t ⊔
i∈Bj

xi

 . (1.65)

Interestingly, it turns out that n-ary weighted lattice polynomial functions
may also be represented as below.

Proposition 1.199. Let F(n) be an n-WLPF. Then there exist set functions
α, β : 2[n] → P such that:

F(n)(x1, . . . , xn) =
⊔
S⊆[n]

(
α(S) u ⊔

i∈S
xi

)
= ⊔

S⊆[n]

(
β(S) t

⊔
i∈S

xi

)
. (1.66)

It can be shown that, e.g., α(S) = β([n] \ S) in the above equation. An n-
WLPF formulated as above is said to be either in disjunctive (left) or conjunctive
(right) normal form.

Example 1.200. By [341, Corollary 13], see also [335], F(n) is a Sugeno integral
if and only if F(n) is an idempotent n-WLPF. And this happens if and only if
F(n)(n ∗ 0) = 0 and F(n)(n ∗ 1) = 1, i.e., it is endpoint preserving.

Proposition 1.201 ([131]). F(n) is a symmetric n-WLPF if and only if it
can be represented in a disjunctive or conjunctive normal form (see Proposi-
tion 1.199) with α(S) and β(S) being cardinality-based, i.e., solely functions
of |S|.
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1.8 Aggregation on a nominal scale
Having been given a space of objects on which an ordering relation is defined
is a quite comfortable situation. It is even more pleasant, if we can rely on
this assumption in such a way that we may require that a fusion function must
preserve such an order. Unfortunately, in some practical applications we do not
have as much as that.

Let us assume that the elements to be aggregated are defined on a nominal
scale. That is, there is a finite set, Σ = {a1, . . . , ak}, called an alphabet, on
which only an equivalence relation, =, is defined. Each element of Σ is called a
character.

Example 1.202. In molecular biology and bioinformatics (among others), we may
assume Σ = {A, C, G, T}, i.e., a set consisting of the primary nucleobases: adenine,
cytosine, guanine, and thymine, respectively. Here, we may also be interested in
the protein alphabet, which is of cardinality 20.

Example 1.203. Σ may also be the set of code points covered by the Unicode
standard. The Universal Coded Character Set defines more than 110,000 charac-
ters (letters, numbers, symbols, etc.) from most languages, scripts, and locales.
Alternatively, it may be the set of characters covered by the ASCII (see Ta-
ble 2.4) or ISO-8859-1 standard. Note that even though encoding standards
define mappings between sets of characters and integers (on which a natural
linear order exists), it does not mean that we obtain anything more than just a
nominal scale here.

Remark 1.204. In the R programming language, there is a special data type to
store information on a nominal scale called factor. Such objects are represented
as integer vectors with a special attribute, levels, which is used to decode the
numeric indices into string labels.
x <- factor(c("a", "g", "c", "a", "t", "g"))
print(x)
## [1] a g c a t g
## Levels : a c g t
table(x)
## a c g t
## 2 1 2 1
unclass(x) # internal representation
## [1] 1 3 2 1 4 3 # integer indices
## attr (," levels ")
## [1] "a" "c" "g" "t" # decoding scheme

Example 1.205. We may also assume that Σ = {0, 1} is a set of bits, i.e., binary
digits.
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It turns out that fusion functions defined on objects on a nominal scale, al-
though useful in practical applications, are not too “mathematically interesting”.
Perhaps the only sensible family of metrics we may define in the current setting
is given by:

dc(a, b) = c1(a 6= b), (1.67)
where a, b ∈ Σ, which for c = 1 is in fact the Hamming distance on Σ1, see also
Section 2.7.

Given x ∈ Σn, a ∈ Σ such that:

a = arg min
a∈Σ

∑
i∈[n]

dc(xi, a).

is equivalent to the mode of x, i.e., the most frequently occurring observation in
x, see also Remark 1.30. Note that the solution to the above equation may be
non-unique. Nevertheless, assuming that Σ = {a1, . . . , ak}, we may introduce a
fusion function, e.g., like:

Median(n)
dc

(x1, . . . , xn) = aj ,

where j = min{j : aj = arg mina∈Σ
∑
i∈[n] dc(xi, a)}, which now is well-defined.

Remark 1.206. Assuming that Σ = {1, 2, . . . , k}, there are a few possible ap-
proaches to determine a mode:

— a bucket-sort like algorithm requires O(k + n) time,

— the elements may be sorted with the radix sort algorithm, which requires
O(n log k) time,

— a hash-table-based procedure requires amortized O(n) time,

and so on.

The introduced fusion function is:

— symmetric,

— idempotent,

— such that Median(n)
dc

(x) = Median(n)
dc

(y) where yi ∈ {xi,Median(n)
dc

(x)},

— stable, see [212, 405], i.e.,

Median(n+1)
dc

(x1, . . . , xn,Median(n)
dc

(x1, . . . , xn)) = Median(n)
dc

(x1, . . . , xn).

Example 1.207. A weighted mode is a fusion function which minimizes:

a = arg min
a∈Σ

∑
i∈[n]

widc(xi, a).
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for some weighting vector w. This tool is used in a class of machine learning
algorithms for classification called ensemble methods. For instance, in the so-
called bagging (bootstrap averaging), see, e.g., [78], wi is defined as αi/

∑
j αj ,

where αi is the ith classifier’s accuracy. The famous random forest algorithm is
based on the very same idea, compare [78].

Please note that the case of aggregating observations on a nominal scale be-
comes much more challenging when we shall consider d- or arbitrary-dimensional
data.



Chapter 2

Aggregation of multivariate data

Let us focus on the task dealing with aggregation of n objects in a d-
dimensional space Xd, where this time d > 1. This is a case of, e.g., real
vectors in Rd, Cartesian products of d identical bounded posets, as well

as d-digits binary or nucleobase sequences.
For fixed d, consider a fusion function F : (Xd)n → Xd that aims to aggregate

a set of n objects x(1), . . . ,x(n) ∈ Xd. By using this mapping we obtain a single
object from the set Xd. In other words, F is such that:

F



x

(1)
1
x

(1)
2
...

x
(1)
d

 , . . . ,

x

(n)
1
x

(n)
2
...

x
(n)
d


 =


y1
y2
...
yd

 . (2.1)

Equivalently, we may conceive F as a function acting on a d× n matrix:

X = [x(1) x(2) · · · x(n)].

From now on we assume that all vectors are column vectors. Note that in
data analysis, x(i) is often called an observation – it designates an object or
experimental unit. On the other hand, x(i)

j denotes the result of measuring the
jth variable or feature (such as temperature, weight, velocity, etc.) of the ith
observation (e.g., a person, autonomous vehicle, spatial location).

First we shall review the task of real vectors’ fusion from the perspective
of aggregation theory. In the consecutive sections, we significantly extend the
results presented in [208].
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2.1 Aggregation of real vectors

Most of the aggregation methods reviewed in this section come from areas like
computational statistics and geometry. Therefore, here we shall assume that
X = R.

Example 2.1. Let us take any three non-colinear points in R2. Even in such a
simple case there are many useful ways to aggregate a triad, see the triangle
center problem [263, 272, 273]. Most often this issue is conceptualized by using
the so-called triangle center function, see [72], which is a homogeneous real-
valued function of a triangle’s side lengths. Thus, when rewritten in terms of
vertex coordinates, this leads us to a fusion function which is – among others –
rotation and scale equivariant (see below). Among the most well-known triangle
centers we find the centroid, in-, circum-, and ortho-center. What is interesting,
C. Kimberling’s Encyclopedia of Triangle Centers (available online at http://
faculty.evansville.edu/ck6/encyclopedia/ETC.html) as of December 10,
2015 lists, names, and characterizes over 8781 such aggregation methods.

As we know from Chapter 1, in classical aggregation theory, we mostly fo-
cus on the d = 1 case. Recall that the notion of a mean (internal aggregation
function) F : Rn → R, may be used to determine the “most typical observation”
among a given set of values. We know that identifying the sine qua non condi-
tions that F should fulfill in order to be useful in particular applications is very
important, as the class of all fusion functions is of course too broad. Following
the axiomatic framework by Kolmogorov and Nagumo, see, e.g., [87, 292, 370]
and Remark 1.44, we could require the fulfillment of at least the three following
properties:

— symmetry,

— nondecreasingness, and

— internality.

Let us extend them in such a way that they are valid for any d.

Symmetry. The first property is the least problematic one. We may simply
assume that for any σ ∈ S[n] it holds:

F(x(1), . . . ,x(n)) = F(x(σ(1)), . . . ,x(σ(n))) (2.2)

It turns out that the easiest and perhaps the most natural approach to extend
the other two properties is to apply them in a componentwise manner.

http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
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Nondecreasingness. First of all, note that the ordering structure on Rmay easily
be extended to Rd by determining the so-called product order. The partial order
≤d is defined in such a way that for any x,y ∈ Rd we have:

x ≤d y if and only if (∀i ∈ [d]) xi ≤ yi. (2.3)

This leads us to the concept of ≤d (componentwise)-nondecreasingness. Such an
approach is often used when the topic of aggregation on posets is explored, see,
e.g., [91, 138, 293], and also Section 2.6.

Definition 2.2. A fusion function F : (Rd)n → Rd is ≤d-nondecreasing when-
ever for all x(1), . . . ,x(n),y(1), . . . ,y(n) ∈ Rd such that x(i) ≤d y(i) for all
i = 1, . . . , n it holds F(x(1), . . . ,x(n)) ≤d F(y(1), . . . ,y(n)).

Internality. On the other hand, componentwise internality may be defined as
follows.

Definition 2.3. A fusion function F : (Rd)n → Rd is componentwise internal if
for all x(1), . . . ,x(n) ∈ Rd it holds:

F(x(1), . . . ,x(n)) ∈
[

n∧
i=1

x
(i)
1 ,

n∨
i=1

x
(i)
1

]
× · · · ×

[
n∧
i=1

x
(i)
d ,

n∨
i=1

x
(i)
d

]
. (2.4)

Basically, above we deal with the bounding (hyper)rectangle of a given set
of input points.

Here are two exemplary fusion functions that fulfill symmetry as well as
componentwise monotonicity and internality.

Definition 2.4. The componentwise extension of the arithmetic mean is
given by:

CwAMean(x(1), . . . ,x(n)) =


1
n

∑n
i=1 x

(i)
1

...
1
n

∑n
i=1 x

(i)
d

 .

This fusion function is also called the centroid (barycenter, geometric center)
of a set of points. This notion is crucial, e.g., in the definition of the k-means
[331] clustering algorithm.

On the other hand, the following mapping is sometimes used, see [432], as a
robust estimate of a multidimensional probability distribution’s median.
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Definition 2.5. The componentwise extension of the sample median is de-
fined as:

CwMedian(x(1), . . . ,x(n)) =


Median

(
x

(1)
1 , . . . , x

(n)
1

)
...

Median
(
x

(1)
d , . . . , x

(n)
d

)
 .

Both functions are examples of componentwise extensions of an internal ag-
gregation function G : Rn → R. The induced fusion function CwG : (Rd)n → Rd
combines each data dimension independently. Thus, we have:

CwG



x

(1)
1
x

(1)
2
...

x
(1)
d

 , . . . ,

x

(n)
1
x

(n)
2
...

x
(n)
d


 =


y1
y2
...
yd

 =


G(x(1)

1 , . . . , x
(n)
1 )

G(x(1)
2 , . . . , x

(n)
2 )

...

G(x(1)
d , . . . , x

(n)
d ),

 . (2.5)

It is easily seen that if G is nondecreasing in each variable, then for x(1) ≤d
y(1), . . . ,x(n) ≤d y(n), we get CwG(x(1), . . . ,x(n)) ≤d CwG(y(1), . . . ,y(n)). Thus,
CwG is ≤d-nondecreasing.

Even more generally, we may of course consider the class of decomposable
(as named, e.g., in [293]) fusion functions:

FG1,...,Gd



x

(1)
1
x

(1)
2
...

x
(1)
d

 , . . . ,

x

(n)
1
x

(n)
2
...

x
(n)
d


 =


G1(x(1)

1 , . . . , x
(n)
1 )

G2(x(1)
2 , . . . , x

(n)
2 )

...

Gd(x(1)
d , . . . , x

(n)
d ),

 , (2.6)

where Gi : Rn → R, i = 1, . . . , d. However, we shall note that in the case of
such a class of fusion functions, no interactions between different dimensions are
taken into account explicitly.

Thus, in practice more intricate fusion functions are used. Let us note that,
see [208], the following data aggregation tools – well known in data analysis –
do not fulfill the componentwise monotonicity. We will inspect them in much
greater detail later on, so now let us only provide their basic definitions.

Definition 2.6. The (Euclidean) 1-median is a point y such that:

1mediand2(x(1), . . . ,x(n)) = arg min
y∈Rd

1
n

n∑
i=1

d2(x(i),y), (2.7)

where d2 is again the Euclidean distance.
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Example 2.7. Also 1-median is not componentwise monotone. Take d = 2,
n = 3, and x(1) = [0, 0]T , x(2) = [1,−5]T , x(3) = [20, 1]T . We have
1mediand2(x(1),x(2),x(3)) ' [1.961,−2.305]T . However, when we take x′(3) =
x(3) + [1980, 1]T , then we get 1mediand2(x(1),x(2),x′(3)) ' [1.946,−3.351]T <2
[1.961,−2.305]T .

Definition 2.8. The Euclidean 1-center (smallest enclosing ball radius) is
given by:

1centerd2(x(1), . . . ,x(n)) = arg min
y∈Rd

n∨
i=1

d2(x(i),y), (2.8)

where d2 is the Euclidean metric.

Example 2.9. Euclidean 1-center is not componentwise monotone. Consider n =
3 and d = 2 with x(1) = [1,−1]T , x(2) = [−1, 1]T , x(3) = [−

√
2, 0]T . We

have 1centerd2(x(1),x(2),x(3)) = [0, 0]T . Letting x′(1) = x(1) + [3, 0]T we get
1centerd2(x′(1),x(2),x(3)) ≈ [1.3,−0.5]T 6≥2 [0, 0]T .

Moreover, Tukey [451] introduced the concept of the halfplane location depth
of y relative to a given set of points in Rd. It is the smallest number of points
contained in any closed halfhyperplane with boundary line through y. In other
words:

tdepthd(y; x(1), . . . ,x(n)) = min
u∈Rd,|u|=1

|{i : uTx(i) ≥ uTy}|. (2.9)

Observe that the deepest point in d = 1 generalizes the concept of the median, at
least for odd n. Therefore, a deepest value in higher dimensions can be thought
of as a multidimensional median.

Definition 2.10. The center of gravity of the deepest halfplane location depth
region is called the Tukey median, TkMedian.

Example 2.11. Tukey median is not componentwise monotone. Consider n = 4
and d = 2 with x(1) = [0, 0]T , x(2) = [1, 0]T , x(3) = [1, 1]T , and x(4) = [0, 1]T . We
have TkMedian(x(1),x(2),x(3),x(4)) = [0.5, 0.5]T . Letting x′(4) = x(4) + [1, 0]T
we get TkMedian(x(1),x(2),x(3),x′(4)) = [2/3, 1/3]T 6≥2 [0.5, 0.5]T .

Remark 2.12. To model a d-dimensional data set X we may make use of marginal
cumulative distribution functions F1, . . . , Fd and a d-dimensional copula C (see
Definition 1.147), which describes the interdependence between individual data
dimensions. This is because, according to the famous Sklar theorem [430], see
also [373], whatever the joint cumulative distribution function H of (X1, . . . , Xd)
is, i.e.:

H(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd),
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(a) Gaussian (% = 0.4) (b) Product (c) Clayton (θ = 4)

Figure 2.1. Effects of choosing different copulas if marginal cumulative distribution
functions are F1 = N(0, 1), F2 = Exp(0.1).

there always exists (unique if H is continuous) C, F1, . . . , Fd such that:

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Such a description is also useful if random variates generation is needed. A pro-
cedure for obtaining a single random vector in Rd may thus look as follows:

1. Generate (Y1, . . . , Yd) ∼ C (note that copula C is in fact a cumulative
distribution function on the unit hypercube);

2. Return (F−1
1 (Y1), . . . , F−1

d (Yd)) ∼ H as result.

Here is an exemplary R code that uses the copula [485] package to generate a
sample of n = 100 (d = 2)-dimensional points using the Clayton copula with
parameter θ = 4, C(u, v) =

(
0 ∨ u−θ + v−θ − 1

)−1/θ, and F1 = N(0, 1) (standard
normal), F2 = Exp(0.1) (an exponential distribution).
n <- 100
d <- 2
C <- copula :: claytonCopula(dim=d, param =4)
Finv <- list( # marginal c.d.f.s ( inverses )

function(y) qnorm(y, 0, 1), function(y) qexp(y, 0.1)
)

X <- t(copula :: rCopula(n, C))
for (i in 1:d) X[i,] <- Finv[[i]](X[i,])

Refer to Figure 2.1 for an illustration of effects of choosing different copulas.

2.2 Equivariance to geometric transforms
Instead of focusing on monotonicity and internality, researchers in such fields as
computational statistics and geometry most often consider equivariances with
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respect to specific classes of geometrical transformations. This is in line with
the aforementioned fact that the necessity of the notion of monotonicity is being
put into question in the classical framework too, see, e.g., [43, 93]. In the d = 1
case this property seems quite natural and moreover it simplifies the way the
analytic results are derived. However, the situation is much different in higher
dimensions.

Namely, one might be interested in finding a fusion function F which fulfills
for all input vectors:

— translation equivariance: for all t ∈ Rd,

F(x(1) + t, . . . ,x(n) + t) = F(x(1), . . . ,x(n)) + t,

— uniform scale equivariance: for all s > 0,

F(sx(1), . . . , sx(n)) = sF(x(1), . . . ,x(n)),

— d-scale equivariance: for all Rd 3 s > 0,

F(sx(1), . . . , sx(n)) = sF(x(1), . . . ,x(n)).

— orthogonal equivariance: for all orthogonal matrices A ∈ Rd×d,

F(Ax(1), . . . ,Ax(n)) = AF(x(1), . . . ,x(n)),

and/or

— affine equivariance: for all matrices A ∈ Rd×d of full rank and all t ∈ Rd,

F(Ax(1) + t, . . . ,Ax(n) + t) = AF(x(1), . . . ,x(n)) + t.

Affine equivariance implies translation, uniform scale, d-scale, and orthogonal
equivariance. Recall that with the notation convention used throughout this
book, e.g., affine equivariance may be written as F(AX+t) = AF(X)+t. Thus,
an affine equivariant fusion function is independent of the chosen coordinate
system. It is a very strong property, so let us start our discussion with simpler
transformations. Also, we cover equivariance to similarity transforms, which
includes the translation, uniform scale, and orthogonal equivariance.

We are interested in exploring basic facts about different types of equivari-
ances, as well as different ways to modify a given mapping (especially one that is
a componentwise extension of a classical aggregation function) so that it obeys
the most important properties.

2.2.1 Translation and scale equivariance
It turns out that, given any fusion function F, it is quite easy to transform it in
such a way that it becomes translation and uniform scale equivariant.
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Proposition 2.13. Let F,G : (Rd)n → Rd be two fusion functions and assume
that G is translation equivariant. Then F′ given by:

F′(X) = F(X− G(X)) + G(X)

is translation equivariant.

Note that G is often set to be the componentwise mean.

Proposition 2.14. Let g : (Rd)n → R be a function such that g(sX) = sg(X)
with g(X) 6= 0 for all nondegenerate X. Assuming that F : (Rd)n → Rd is a
fusion function, we have that F′ given by:

F′(X) = g(X)F
(

1
g(X)X

)
is uniform scale equivariant for all nondegenerate X.

In practice, we may set, e.g., g(X) =
√∑n

i=1
∑n
j=1 d

2
2(x(i),x(j)), which may

be thought of as a multivariate extension of the sample standard deviation, see
Section 5.2.

A quite similar result may be provided for the d-scale equivariance. Notably,
each d-scale equivariant fusion function is also uniform scale equivariant.

Remark 2.15. Translation and d-scale equivariance is highly useful in the prac-
tice of data analysis, as one often standardizes the input variables:

x
(i)
j 7→

x
(i)
j − AMean(x(1)

j , . . . , x
(n)
j )

SD(x(1)
j , . . . , x

(n)
j )

,

where AMean and SD stand for the arithmetic mean and standard deviation,
respectively, which are applied on the jth coordinate, j = 1, . . . , d.

Here is a result concerning componentwise extensions of interval scale equiv-
ariant univariate fusion functions, see Definition 1.54. On a side note, recall that
we stated in Section 1.5 that the only quasi-arithmetic mean that is interval scale
equivariant is the arithmetic mean.

Proposition 2.16. If G : Rn → R is such that G(sx + t) = sG(x) + t for all
x ∈ Rn, t ∈ R, s > 0, then its componentwise extension CwG is translation and
d-scale equivariant.

2.2.2 Orthogonal equivariance
Some machine learning algorithms (such as principal component analysis, see
Remark 2.20) assume that the data points may freely be rotated. Orthogonal
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equivariance implies equivariance to all possible rotations of input points, reflec-
tions against the axes, and their combinations. The discussed equivariance type
– especially together with translation equivariance – may be important if we do
not wish to be dependent on the choice of a coordinate system.

Recall that A is an orthogonal matrix whenever it holds AAT = ATA = I
or, equivalently, AT = A−1.

Remark 2.17. If A is orthogonal, then |det A| = 1 and columns of A are or-
thogonal unit vectors – they form an orthonormal basis of the Euclidean space
Rd. An A-based transformation is unitary, i.e., it preserves the dot product of
vectors. Thus, it preserves the Euclidean distance between two points (it is an
isometry of the Euclidean space).

Generating random orthogonal matrices. Methods for random generation of or-
thogonal matrices may be used, e.g., for empirically testing whether a fusion
function is orthogonal equivariant. Let O(d) denote the group of orthogonal
d× d matrices.

Following [150], we may be interested in a uniform distribution on O(d) with
respect to the Haar measure, see [238]. In other words, a random matrix A
is uniformly distributed if P(A ∈ A) = P(A ∈ ΓA), for any A ⊂ O(d) and
Γ ∈ O(d).

For d = 2, a random matrix may be generated by considering ϑ ∼ U[0, 2π[
and b ∼ U{−1, 1} and then taking:

A =
[

cosϑ sinϑ
−b sinϑ b cosϑ

]
. (2.10)

One way to generate a random orthogonal matrix for d > 2 is to produce
a d × d matrix with i.i.d. elements following a standard normal distribution.
Then, by applying the Gram-Schmidt orthogonalization algorithm on such a
matrix, we get a desired object, see [176, page 234] for a proof. This gives
an O(d3) algorithm, but in practice its implementation characterizes itself with
slow performance. For this reason, we may rather want to use the following
procedure.

Algorithm 2.18. [150, Section 3] To generate a random orthogonal d×d matrix
for given d > 2 proceed as follows:

1. Generate a random orthogonal 2× 2 matrix A(2), see Equation (2.10).

2. For i = 3, 4, . . . , d do:

2.1. Let v ∈ Ri be a randomly generated vector distributed uniformly on a
unit i-sphere; for that we may generate z = (z1, . . . , zi) i.i.d. N(0, 1)
and set v := z/‖z‖2, see [345];

2.2. Let x := (e(i) − v)/‖e(i) − v‖2, where e(i) = (1, 0, 0, . . . , 0) ∈ Ri;
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2.3. Set:

A(i) :=
(
I(i) − 2xxT

)
1 0 . . . 0
0
... A(i−1)

0

 ,
where I(i) is the diagonal i× i matrix.

3. Return A(d) as result.

By carefully setting vector/matrix multiplication order in Step 2.3. we may
get O(d3) time complexity, see Figure A.11 for an exemplary C++ implementa-
tion.

Orthogonal equivariant componentwise fusion functions. A special class of orthog-
onal projections consists of a kind of rotation combined with reflection. We take
A = Iσ for some σ ∈ S[d], i.e., an identity matrix with permuted rows. The
equivariance with respect to such a transformation is the same as requiring that
for each X ∈ (Rd)n it holds:

F



x

(1)
1
x

(1)
2
...

x
(1)
d

 , . . . ,

x

(n)
1
x

(n)
2
...

x
(n)
d


 = F




x

(1)
σ(1)

x
(1)
σ(2)
...

x
(1)
σ(d)

 , . . . ,

x

(n)
σ(1)

x
(n)
σ(2)
...

x
(n)
σ(d)




σ−1

. (2.11)

Thus, it is also a kind of symmetry (intuitively, a “vertical” one, as opposed
to the componentwise symmetry discussed above). This easily leads us to the
following result concerning componentwise extensions of unidimensional fusion
functions.

Proposition 2.19. If FG1,...,Gd
is an orthogonal equivariant componentwise ex-

tension of Gi : Rn → R, i ∈ [d], then necessarily it is a componentwise fusion
function: there exists G such that CwG = FG1,...,Gd

. Moreover, it necessarily
holds that G(x1, . . . , xn) = −G(−x1, . . . ,−xn).

We already noted that CwAMean is an orthogonal equivariant componentwise
fusion function. However, the above necessary conditions are not sufficient: it
turns out that the componentwise median, CwMedian, is not orthogonal equiv-
ariant.

Interestingly, even if we are given a non-orthogonal equivariant fusion func-
tion, we may orthogonalize it. Below we explain two particularly appealing
orthogonalization methods, which may be used in the case of, e.g., the compo-
nentwise median, CwMedian, see Figure 2.2.
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Figure 2.2. Componentwise median and its dependence on the choice of a
coordinate system.

Orthomedian. The orthomedian by Grubel [234] is an interesting instance of the
concept of orthogonalization, originally applied on the componentwise median.
Basically, it is the averaged median of all orthogonally transformed versions of
the input data set. As the group O(d) of orthogonal d× d matrices is compact,
we may introduce a fusion function:

OrMedian(X) =
∫
O(d)

A−1CwMedian(AX) dA, (2.12)

which is orthogonal equivariant (by construction) and additionally translation
and uniform scale equivariant (but not d-scale equivariant). Interestingly, it is
no longer ≤d-nondecreasing, so this new property is introduced at some cost.
The idea behind orthogonalization is quite general and may be applied in the
case of other fusion functions as well.

One may (and should) ask how the orthogonal median may be computed.
The above integral may of course be approximated via some Monte Carlo quadra-
ture scheme. In such a case, random matrices sampled uniformly from O(d) can
be generated (see Algorithm 2.18). However, this is computationally demanding
and we observe a quite slow rate of convergence (e.g., for d = 2 we need at least
1000 MC iterations to get satisfiable results for a few dozen of points).

Another approach is to consider a set of N points on a unit d-hypersphere,
a(1), . . . ,a(N). Then the orthomedian may be approximated, see [234, Section 5],
by:

OrMedian(X) ' dCwAMean(y(1), . . . ,y(N)),
where:

y(i) = Median
(
a(i)Tx(1), . . . ,a(i)Tx(n)

)
a(i).
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The points on the hypersphere can be sampled randomly, but this process has
an even slower convergence rate than the above-mentioned one. It is best to rely
on a quasi-Monte Carlo approach and sample the points uniformly. This is easy
for d = 2. In higher dimensions, however, the problem, at least for arbitrary
N , becomes quite difficult. It is because we have to solve the (hyper)Sphere
Packing (László Fejes Tóth’s) problem, see [125], which concerns the task of
placing N points on a d-dimensional hypersphere so as to maximize the minimal
distance (or equivalently the minimal angle) between them. Such a task may
be treated with a stochastic optimization routine (e.g., simulated annealing) or
using an algorithm proposed in, e.g., [328]. Note that the probed points may be
tabulated and stored for later use.

Before moving to the second orthogonalization method, let us briefly recall
a statistical procedure called principal component analysis.

Remark 2.20. Principal component analysis (PCA) uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated variables into a
set of values of linearly uncorrelated variables, see [241, Section 3.4 and Sec-
tion 14.5]. Let:

Xc = X− CwAMean(x(1), . . . ,x(n))

be a centered version of X. Then the sample covariance matrix is given by
S = XcXT

c /n ∈ Rd×d. Let us take the eigendecomposition of:

XcXT
c = VD2VT .

This may be obtained by taking the singular value decomposition (SVD):

XT
c = UDVT ,

where U is an n × n orthogonal matrix, D is an n × d diagonal matrix with
nonnegative elements, and V is a d× d orthogonal matrix, see the LAPACK [12]
library routine DGESDD. The eigenvectors v(i) are called principal component di-
rections of Xc. The first principal component direction v(1) has the property
that z(1) = XT

c v(1) has the largest sample variance, d2
1/n among all normal-

ized linear combinations of Xc’s rows. Subsequent principal components have
maximum variance subject to being orthogonal to the earlier ones.

SVD-based orthogonalization. Given a unidimensional fusion function, G : Rn →
R such that (∀xi) G(x1, . . . , xn) = −G(−x1, . . . ,−xn), here is a simple way to
orthogonalize its componentwise extension, CwG. Assuming that the SVD of
(X− CwAMean(X))T = UDVT and knowing that V = VT−1, we may set

OrG2(X) = VCwG
(
VT (X− CwAMean(X))

)
+ CwAMean(X). (2.13)

It is easily seen that in such a way we obtain not only an orthogonal equivariant
fusion function, but also one that is translation equivariant. Note that the
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condition G(x1, . . . , xn) = −G(−x1, . . . ,−xn) is crucial, as the U,V matrices
might be ambiguous: the singular vectors are only defined up to sign; if we
change the sign of a left singular vector, an equivalent SVD decomposition may
be obtained by changing the sign of the corresponding right vector.

Here, if G is nondecreasing, then the resulting fusion function is nondecreasing
with respect to the direction that has the maximal variance (and other directions
that are orthogonal to it and also maximize the remaining variance).

Remark 2.21. Let OrMedian2 be a SVD-orthogonalized version of the compo-
nentwise median for the case d = 2. Given x(1) = (1, 1),x(2) = (1,−1),x(3) =
(−1,−1),x(4) = (−1, 1), we have OrMedian2(. . . ) = (0, 0). Now letting
x′(1) = x(1) + (0, 2), we get F(. . . ) ≈ (−0.25, 0.07). Thus, OrMedian2 is not
componentwise monotone.

2.2.3 Equivariance to similarity transforms
The class of similarity transforms includes translation, uniform scaling in each
direction, rotation, and reflection. Equivariance to similarity transforms can be
conceived as a “lightweight” version of the corresponding property with regard
to affine transforms.

For any ‖·‖ matrix norm, if A ∈ Rd×d is a nondegenerate matrix, and t ∈ R,
then (A, t) represents a similarity transform, whenever 1

‖A‖A is orthogonal.
Let us go back to the above-derived SVD-based componentwise fusion func-

tion orthogonalization scheme. For a given G : Rn → R, under the assumption
that UDVT is the SVD decomposition of (X− CwAMean(X))T , and by noting
that for any s > 0 we have:

s(X− CwAMean(X)) = U(sD)VT

we can define a similarity transform-equivariant fusion function as:

SimG(X) = ‖D‖V−1TCwG
(

1
‖D‖V

T (X− CwAMean(X))
)

+ CwAMean(X),

or, alternatively:

SimG′(X) = VDTCwG(UT ) + CwAMean(X).

2.2.4 Affine equivariance
An affine transformation is a map that preserves hyperplanes: ratios of Eu-
clidean distances of points lying on a straight line remain the same. Every linear
transformation is affine, but not every affine transformation is linear.

Example 2.22. Table 2.1 lists exemplary affine transformations in R2. Among
them we find, e.g., translation, scaling, rotation, shear mapping, reflection, and
also any of their compositions. Figure 2.3 depicts some affine mappings.
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(b) Reflection against OY , translation.
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(c) Horizontal shear.
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(d) Scaling.

Figure 2.3. Exemplary affine transformations in R2.

Remark 2.23. Note that we require det A 6= 0. Otherwise, transformations such
as projections onto OX and OY axes would also be included in our discussion.
Yet, classically they are omitted as they lead to “too drastic” data loss.

It turns out that if affine equivariance is important to us, then we should be
interested in rather “complex” fusion functions (see also Proposition 2.19). This
is because of the following fact characterizing affine equivariant componentwise
fusion functions.

Proposition 2.24. A continuous and bounding-box internal fusion function
CwG, being a componentwise extension of G : Rn → R, is affine equivariant
if and only if G is a weighted arithmetic mean.

The above result follows from the fact that G must necessarily be additive,



2.2. Equivariance to geometric transforms 129

compare Theorem 1.133. Thus, the only componentwise symmetric, internal,
continuous, and affine equivariant fusion function is formed by extending the
arithmetic mean.

Among non-componentwise fusion functions that are affine equivariant we
find, e.g., the Tukey median, TkMedian.

Remark 2.25. It turns out that an affine transformation (A, t) may be expressed
using a single (d+1)×(d+1) square matrix. For that, the so-called homogeneous
coordinate system, introduced by A.F. Möbius, is typically used. In order to do
so, we first construct the augmented matrix:

B =

 A t

0 0 0 1


Then, instead of operating on vectors like x ∈ Rd, we rather consider [x 1]T ∈
Rd+1, i.e., a version of the original inputs with an additional coordinate equal
to 1 added. In such a way:

y = Ax + t

may now be written as: y

1

 =

 A t

0 0 0 1


 x

1

 .

Example 2.26. The homogeneous coordinate system is very common in 3D com-
puter graphics, especially in games. This is the case of, e.g., First Person Per-
spective (FPP) shooters (like Doom, Wolfenstein, Duke Nukem 3D, Quake, or
Counter-Strike) or flight simulators. Figure 2.4 gives a screenshot of an untex-
tured terrain mesh in an exemplary 3D world simulation.

In such a setting, an agent is most often represented as a point (0, 0, 0) and
faces towards the (1, 0, 0) vector. Here, the translation vector t may designate
the current position of an agent. The affine A matrix provides the direction in
which it looks. This is often provided by a composition of 3 rotation matrices
given via the Euler angles – roll (OX rotation γ; unused in FPP shooters), pitch
(OY rotation β, look up/down), and yaw (OZ rotation α, turn left/right):[ cosα cosβ cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ

sinα cosβ sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cosβ sin γ cosβ cos γ

]
.

It is worth noting that modern graphics cards take advantage of homogeneous
coordinates when a programmer implements vector and matrix algebra (e.g., via
vertex shaders). OpenGL and Direct3D libraries allow for efficient data processing
with 4-element (float) registers.
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Table 2.1. Exemplary affine transformations in R2.

description transformation x 7→ Ax + t

Translation A =
[

1 0
0 1

]
t =

[
t1
t2

]
Rotation by ϑ A =

[
cosϑ − sinϑ
sinϑ cosϑ

]
t =

[
0
0

]
Uniform scaling by s A =

[
s 0
0 s

]
t =

[
0
0

]
Horizontal shear by mx A =

[
1 mx

0 1

]
t =

[
0
0

]
Reflection against OX A =

[
1 0
0 −1

]
t =

[
0
0

]

Table 2.2. Exemplary fusion functions and some properties they fulfill: M –
componentwise monotonicity, T – translation, uS – uniform scale, dS – d-scale,

O – orthogonal, and A – affine equivariance.

function M T uS dS O A

CwAMean • • • • • •
CwMedian • • • • ◦ ◦
1centerd2 ◦ • • ◦ • ◦
1mediand2 ◦ • • ◦ • ◦
TkMedian ◦ • • • • •

Figure 2.4. An exemplary virtual 3D world simulation.
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Affinitization. It turns out that each fusion function F may be easily modified
so that it fulfills affine equivariance. This may be done via the transformation-
retransformation technique, see [113], Let us fix a set of d unique indices, I =
{i0, i1, i2, . . . , id} ⊆ [n] and take:

AI = [x(i1) − x(i0) . . . x(id) − x(i0)] ∈ Rd×d. (2.14)

Assuming that the AI matrix is invertible, it can be treated as the basis matrix
for a data-driven coordinate system in which a transformed version of our input
data set is:

Y = A−1
I X.

Thus, a modified version of a componentwise extension of G : Rn → R, AffG,
may be given by:

AffG(X) = AI CwG
(
A−1
I (X− CwAMean(X))

)
+ CwAMean(X). (2.15)

Such a construct is general, and its special case for G = Median was first pro-
posed by Chakraborty and Chaudhuri [109] (see also [369] for a discussion on
affinitization of the 1-median). This time, unfortunately, the resulting fusion
function is no longer symmetric.

Example 2.27. As a summary, Table 2.2 lists the properties fulfilled by idem-
potent fusion functions discussed so far. We see that the componentwise mean
meets all of them.

2.3 Idempotence, internality, and weak monotonicity
First of all, let us note that if G is idempotent, then its componentwise extension
CwG is also idempotent in the sense that for any x ∈ Rd we have CwG(n∗x) = x.

More generally, if G is internal (recall Proposition 1.27), then CwG(x(1), . . . ,
x(n)) is in the (axis-aligned) bounding box (orthotope, hyperrectangle) of X:[

n∧
i=1

x
(i)
1 ,

n∨
i=1

x
(i)
1

]
× · · · ×

[
n∧
i=1

x
(i)
d ,

n∨
i=1

x
(i)
d

]
.

Remark 2.28. The above property is not necessarily an attractive generalization
of ordinary internality: it seems to be too weak. Let d = 2, n = 3 and consider
x(1) = (1, 0), x(2) = (0, 0), x(3) = (0, 1).

For instance, if G(y) = 1
n

∑n
i=1 yi, then CwG(x(1),x(2),x(3)) = ( 1

3 ,
1
3 ). How-

ever, if G(y) =
∨n
i=1 yi, then CwG(x(1),x(2),x(3)) = (1, 1).

In multivariate data analysis and computational geometry, the use of convex
hulls is quite natural, see [324]. To recall, the convex hull CH(x(1), . . . ,x(n))
of a finite set of points is the smallest convex set (polytope) that includes all



132 2. Aggregation of multivariate data

the provided points. Equivalently, it is the set of all convex combinations of
x(1), . . . ,x(n):

CH(x(1), . . . ,x(n)) =
{ n∑
i=1

wix(i) : for all vectors w ≥ 0 with
n∑
i=1

wi = 1
}
.

The convex hull may be determined algorithmically. For example, if d ∈ {2, 3},
the Chan algorithm [110] has O(n log h) time complexity, where h is the number
of vertices of CH(X). On the other hand, if d > 3, then an O(nbd/2c) algorithm
exists [115].

Let us now introduce a new type of internality.

Definition 2.29. A fusion function F is CH-internal if and only if for all X we
have that F(X) ∈ CH(X).

Please note that for d = 1 we have CH(X) = [
∧n
i=1 x

(i)
1 ,
∨n
i=1 x

(i)
1 ], i.e., it is

the smallest real interval containing all the input samples. Because of that, for
univariate fusion functions, the CH-internality and ordinary internality coincide.

One may wonder about the relationship between the CH- and bounding box-
based internality. Of course, each CH-internal function fulfills the straightfor-
ward extension of ordinary internality. However, e.g., CwMedian is bounding
box- but not CH-internal. The following result states that these two notions are
equivalent when rotation equivariant fusion functions are concerned.

Proposition 2.30. Let F : (Rd)n → Rd be rotation equivariant and such that
for any X it holds that F(X) is in the bounding box of X. Then F(X) ∈ CH(X).

A simple proof of this proposition is based on the fact that the convex hull is
equivariant to rotations and that it is a subset of the bounding box. Moreover,
the convex hull may be expressed as the intersection of appropriate halfspaces
[179]. X may always be rotated so that any convex hull’s face is aligned within
the axes. Then the hyperplane that includes such a face coincides with the
hyperplane including the bounding box’s face.

As for monotonicity, we already noted that componentwise nondecreasingness
is problematic. Instead, however, we may consider a straightforward componen-
twise extension of weak monotonicity, compare Definition 1.62.

Definition 2.31. A fusion function F : (Rd)n → Rd is weakly monotone when-
ever F(X + t) ≥d F(X) for any t ≥d (d ∗ 0) and X ∈ (Rd)n.

Surely, every translation equivariant fusion function is weakly monotone, but
the converse is not necessarily true.

Here is a “multidimensional” counterpart of Proposition 1.65.
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Proposition 2.32. Let F : (Rd)k → Rd for some k, G1, . . . ,Gk : (Rd)n → Rd,
and H : (Rd)n → Rd be given by H(X) = F(G1(X), . . . ,Gk(X)) for X ∈ (Rd)n.

— If F,G1, . . . ,Gk are idempotent (respectively, bounding box-internal, CH-
internal, translation, uniform scale, d-scale, orthogonal, affine equivari-
ant), then H is also idempotent (respectively, bounding box-internal, CH-
internal, and so forth).

— If F is weakly monotone and G1, . . . ,Gk are translation equivariant, then
H is weakly monotone.

Note that a different form of monotonicity could also be defined by requiring
that if (∀i ∈ [n]) x(i) ≤d y(i), then F(X) 6>d F(Y). However, it is not even
fulfilled by the Euclidean 1-median, compare Example 2.7.

2.4 Data depth, corresponding medians,
and ordering of inputs
The purpose of the notion of data depth is to measure how “central” or “deep”
a point y is with respect to a point cloud X. It may be used, e.g., to visualize
(mostly bivariate) data sets [324], compute statistical hypothesis tests [119, 319],
design control charts, and even support decision making [415]. It has been
studied extensively by data analysts and computer scientists.

What is crucial to us in this monograph is that with any depth notion, its
corresponding multidimensional median may be defined, which may serve as a
robust estimator of location, see [8, 413, 432] for some surveys on the topic. A
depth-based median is a point of the maximal depth (or the center of gravity of a
set of points of maximal depth, if there is no single point with such a property).

Let us assume that X is a d-dimensional data set in regular position, i.e., with
no more than d points lying in a (d− 1)-dimensional subspace. In particular, in
the bivariate case, we have that no more than two observations are colinear. In
the following paragraphs we review the most notable data depth notions (like
Tukey’s, Liu’s, and Oja’s) and their corresponding affine equivariant medians.
Later on we shall note that the concept of data depth leads to orderings of
the input points, which will enable us to define new, quite interesting fusion
functions.

It is assumed that the depth of a point y ∈ Rd relative to X ∈ (Rd)n is
quantified via a bounded function depth : Rd × (Rd)n → [0, b] for some b. Zuo
and Serfling in [494] list some desirable properties that this notion should fulfill,
namely, for any X and y they require:

— affine invariance1: for all A ∈ Rd×d of full rank and t ∈ Rd:

depth(Ay + t; AX + t) = depth(y; X),
1Note that in this book we made a clear distinction between equivariance and invariance

to specific transformations.
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— monotonicity relative to the deepest point: if y = supy depth(y; X), then
for all z and α ∈ [0, 1] it holds:

depth(z; X) ≤ depth(αy + (1− α)z; X),

— vanishing at infinity: depth(y; X)→ 0 as ‖y‖ → ∞.

Note that depth notions are often considered in a statistical environment, so
other properties may additionally be of interest, e.g., maximality at center:
supy depth(y; X) = depth(µ; X) where µ is the point of symmetry of the empir-
ical distribution of X (if it exists), etc.

2.4.1 Tukey’s halfplane location depth and median
In 1974, Tukey [451] introduced the concept of the depth of a value y with
respect to a unidimensional set of points x = (x1, . . . , xn). It is defined as the
minimum number of data points from x on the left and on the right of y:

tdepth1(y;x1, . . . , xn) = |{i : xi ≤ y}| ∧ |{i : xi ≥ y}|. (2.16)

The Tukey depth is related to the observations’ ranking. The sample minimum
and maximum are the points of depth 1, the median is of depth n/2 (the “deep-
est” value), and the first and the third quartiles are of depth n/4. As noted in
[160], one can define trimmed means by, say, averaging points of depth ≥ n/10.
This notion has been used to develop robust regression techniques, see, e.g.,
[408].

As a matter of fact, Tukey in the same paper [451] introduced a generalization
of this idea too. The halfplane location depth of y relative to X is the smallest
number of points in X contained in any closed halfhyperplane with boundary
line through y. In other words, see also [160]:

Definition 2.33. The Tukey depth of y ∈ Rd relative to X ∈ (Rd)n is an
integer such that:

tdepthd(y; x(1), . . . ,x(n)) = min
u∈Rd,‖u‖=1

tdepth1
(
uTy; uTX

)
= min

u∈Rd,‖u‖=1
|{i : uTx(i) ≥ uTy}|.

Remark 2.34. Multidimensional Tukey depth is defined via projection pursuit,
see [253]. It results in applying all possible one-dimensional projections of the
data set to a line and computing the univariate Tukey depth.

It is easily seen that a set of all points of depth ≥ δ (a δ-depth contour),
for any given δ > 0, is either empty or is a convex polytope (e.g., polygon for
d = 2).
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Note that a point outside the convex hull of X is always of depth 0 [410]. On
the other hand, for all y we have tdepthd(y; X) ≤ n. In fact, we may be slightly
more precise about the upper limit for d = 2.

Proposition 2.35. If X is a bivariate data set in regular position, then the
maximal Tukey depth, δ = maxy′∈Rd tdepthd(y′; X), fulfills:⌈n

3

⌉
≤ δ ≤

⌊n
2

⌋
.

The upper bound was proved by Rousseeuw and Ruts in [410] while the lower
bound was given by Donoho and Gasko [160]. More generally, for any d, by [160],
we have that

⌈
n
d+1

⌉
≤ δ ≤

⌈
n
2
⌉
.

Note that the deepest point might not be uniquely defined. In order to
overcome this issue, we may consider the following fusion function.

Definition 2.36. Let R be the deepest Tukey depth region with respect
to given X ∈ Rd×n, i.e., R =

{
y ∈ Rd : tdepthd(y; X) = δ

}
, where δ =

maxy′∈Rd tdepthd(y′; X). The center of gravity of such a region:

TkMedian(X) =
∫
Rd x1(x ∈ R) dx∫
Rd 1(x ∈ R) dx , (2.17)

is called the Tukey median of X.

For d = 1, the Tukey median generalizes the concept of a median. Thus, in
higher dimensions this fusion function can be thought of as a multidimensional
median.

Example 2.37. Figure 2.5 depicts an exemplary data set, the three Tukey depth
contours, and the center of gravity of the deepest Tukey depth region, i.e., the
Tukey median.

Remark 2.38. Let (x1, . . . , xm) and (y1, . . . , ym) be coordinates of a convex poly-
gon in R2, ordered clockwise. Then its center of gravity, (Cx, Cy), is given by:

Cx =
∑m
i=1(xi + xi+1)(xiyi+1 − xi+1yi)

3
∑m
i=1(xiyi+1 − xi+1yi)

,

Cy =
∑m
i=1(yi + yi+1)(xiyi+1 − xi+1yi)

3
∑m
i=1(xiyi+1 − xi+1yi)

,

where, for brevity of notation, xm+1 = x1 and ym+1 = y1. For d > 2, e.g., one
may perform a Delaunay triangulation of a given convex polytope and calculate
sums of appropriate integrals (for each simplex independently).
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Figure 2.5. Tukey depth contours and Tukey median (∗) of a data set.
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Figure 2.6. A bagplot of a bivariate data set and a boxplot of its projection onto
OX generated with R (aplpack::bagplot).

Example 2.39. A bagplot, a bivariate version of the box-and-whisker plot, is
based on the discussed notions, see Figure 2.6. It consists of the Tukey median,
a bag that contains 50% of the data points (it results in a linear interpolation
of two Tukey depth regions), and a fence that separates inliers form outliers
(originally, an inflated version of the bag scaled by a factor of 3). For more
details the reader is referred to [411].
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Remark 2.40. The Tukey depth, as well as its corresponding median, is affine
equivariant, see [160, Lemma 2.1]. Moreover, the Tukey depth is monotonic
relative to the deepest point and vanishes at infinity.

For d = 2, a naïve algorithm to compute the Tukey depth requires O(n2)
time. However, in [409] an optimal (see [9]) O(n logn) algorithm LDEPTH was
given. It is implemented in R’s depth package and available via a call to
depth(..., method="Tukey"). For d = 3 there exists a O(n2 logn) exact
algorithm, see [412]. For larger d, there is an approximate Monte Carlo-type
algorithm, also provided in [412].

Algorithm 2.41. Here is how we may approximate tdepthd(y; x(1), . . . ,x(n))
for arbitrary d, see [412, Section 2.3].

1. Let D := n;

2. Repeat m times (for a given m):

2.1. Draw a random sample of size d from U{x(1), . . . ,x(n)};
2.2. Determine a direction u perpendicular to the above subset;
2.3. Project the points in X to the line L through y with direction u;
2.4. Compute the univariate Tukey depth D′ of y on L;
2.5. Set D := D ∧D′;

3. Return D as result;

A point with the largest Tukey depth (there may be many such points) may
be found in expected O(d logn) time for d = 2 and in O(nd−1) expected time for
d ≥ 3, see [111]. For d = 2 the ISODEPTH [417] algorithm determines vertices
of a depth contour in O(n2 logn) time and the HALFMED [410] algorithm for
computing the Tukey median is O(n2 log2 n). Additionally, in [306] we may find
an algorithm to compute a high depth point (not necessarily the median) in
O(n log2 n) and a lower bound for this task Ω(n logn). The interested reader is
referred to [8, 79] for further discussion on Tukey depth-related algorithms.

2.4.2 Liu’s simplical depth and median

Note that for i1, . . . , id+1 ∈ [n], if x(i1), . . . ,x(id+1) are affinely independent, then
the convex hull of d + 1 points, CH

(
x(i1), . . . ,x(id+1)), defines a d-dimensional

simplex. In particular, for d = 2, CH
(
x(i1), . . . ,x(i3)) simply designates a trian-

gle. Another notion of data depth of a point y relative to X is by Liu [323]. In
the bivariate case it is defined as the number of triangles formed by any three
elements in X that contain y. Intuitively, a “deep” or “central” point is of large
Liu depth. More generally, we have what follows.
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Definition 2.42. The Liu simplical depth of y ∈ Rd with respect to X ∈ Rd×n
is defined as:

sdepth(y; x(1), . . . ,x(n)) =
∣∣{{i1, . . . , id+1} : y ∈ CH

(
x(i1), . . . ,x(id+1))}∣∣(

n

d+ 1

) .

It is easily seen that the Liu depth is affine invariant, that is its result does
not change under arbitrary affine transformations.

Remark 2.43. Recall that it is easy to check whether y ∈ CH(x(i1), . . . ,x(id+1)).
For a nondegenerate simplex, it suffices to solve y = [x(i1) . . . x(id+1)]α for α
under the constraint

∑d+1
i=1 αi = 1 and verify whether α ≥d+1 0.

The simplical median, SMedian, may be defined similarly to the Tukey me-
dian – as a point with the greatest simplical depth or the center of gravity of the
deepest Liu depth region. This leads to an affine equivariant fusion function.

For d = 2, a straightforward algorithm to compute the simplical depth of
a point requires O(n3) time. An optimal (see [9]) O(n logn) algorithm for
that very purpose was proposed in [409]. It is available in R via a call to
depth::depth(..., method="Liu"). Moreover, for d = 2 there exists an O(n4)
time algorithm for finding the simplical median, see [10].

2.4.3 Oja’s depth and median
The Oja depth (also known as the simplical volume depth) has been introduced
in [378]. Here we provide its slightly transformed version, as given in [324],
since the original definition is not compatible with the aforementioned depth
measures: we would like to assure that a central point is of the greatest depth.

Definition 2.44. The Oja depth of y ∈ Rn with respect to X ∈ (Rd)n is
given by:

odepth(y; x(1), . . . ,x(n)) =
(
n

d

)−1 1
1 +

∑
{i1,...,id}

vol
(

CH
(
y,x(i1), . . . ,x(id)

)) ,
where vol(·) designates the volume of a given simplex.

In particular, for d = 2, the Oja depth of a point is the sum of all the areas
of triangles formed by this point and two points in an input data set.
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Remark 2.45. The volume of a nondegenerate d-dimensional simplex given by
vertices x(i1), . . . ,x(id+1) equals to:

vol
(

CH
(
x(i1), . . . ,x(id+1)

))
= abs

 1
d! det


1 1 · · · 1

x
(i1)
1 x

(i2)
1 . . . x

(id+1)
1

...
...

. . .
...

x
(i1)
d x

(i2)
d . . . x

(id+1)
d


 .

This depth measure is not affine invariant. It is because for an affine trans-
formation T (x) = Ax + t we have:

vol(T (x(i1)), . . . , T (x(id+1))) = abs(|A|) vol(x(i1), . . . ,x(id+1)),

see [378, Lemma 2.1]. However, its corresponding median, defined as a point
with the maximum depth, is affine equivariant.

Definition 2.46. The Oja median of X ∈ Rd×n is given by:

OMedian(X) = arg min
y∈Rd

∑
{i1,...,id}

vol(CH(y,x(i1), . . . ,x(id))). (2.18)

Remark 2.47. Note that the Oja median generalizes the one-dimensional median,
which is a point y that minimizes

∑
i |xi − y|.

For d = 2 there exists an O(n log3 n) algorithm [10] for finding the Oja
median and an O(n logn) algorithm [11] for computing the Oja depth of a given
point, see also depth::depth(..., method="Oja") in R. Another algorithm for
finding the Oja median for any d was proposed in [406] and runs in O(dnd logn)
time.

Note that in [376] a generalization of the Oja median was proposed:

OMedianα(X) = arg min
y∈Rd

∑
{i1,...,id}

vol(CH(y,x(i1), . . . ,x(id)))α (2.19)

for some predefined α ∈ [1, 2].

2.4.4 Other depth notions
Below we list some other approaches for defining data depth.

L1 depth. The L1 depth by Vardi and Zhang [456] is closely connected to the
1-median given by Equation (2.7). In particular, L1 depth is maximized at the
1-median.
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Projection depth. The projection depth by Zuo [493] is a generalization of the
concept by Donoho and Gasko [160], see also [413]. A measure of outlyingness
of a point y is given via projection pursuit:

O(y; X) = sup
‖u‖=1

|uTy− F(uTy)|
V(uTy) , (2.20)

where F is some unidimensional aggregation function (e.g., median) and V is
some spread measure (e.g., median absolute deviation, see Section 5.2). This
leads to a depth measure:

pdepth(y; X) = 1
1 + O(y; X) . (2.21)

Perihedral depth. Perihedral depth, see [174], is given by the number of subsets
of X whose convex hulls contain y.

Convex hull peeling depth. The convex hull peeling depth (see [178]; according
to [252] the idea was proposed by Tukey) is determined by consecutively com-
puting a convex hull of a set of points and removing values lying outside its
boundary. The corresponding median may be constructed by computing the
center of gravity of the “last” convex hull. According to [8], convex hull peeling
may be done in O(n log2 n) time for d = 2.

Delaunay depth. Recall that a Delaunay triangulation of X is a triangulation
(tessellation) DT(X) such that all points in X are not in circum-hyperspheres
of any simplices in DT(X). The Delaunay depth (according to [1] introduced
by Green in [233]) of y with respect to X is the length of the shortest path in
DT(X) from y to the convex hull of X.

Example 2.48. Figure 2.7 depicts an exemplary Delaunay triangulation of a set
of 5 points in R2. For each of the triangles in the triangulation, its circumcircle
is also plotted.

In point of fact, the Delaunay depth is a member of a special class called
proximity depths, defined as the number of edges in a proximity graph that must
be visited to reach CH(X).

Zonoid data depth. The zonoid data depth, see [175], of y ∈ Rd with respect to
X is defined as:

zdepth(y; X) = sup{α ∈ [0, 1] : y ∈ Dα(X)}, (2.22)

with convention sup{∅} = 0, where Dα is the α-trimmed region [296] of the
empirical distribution generated by X, i.e.:

Dα(X) =
{

n∑
i=1

wix(i) :
n∑
i=1

wi = 1, (∀i) wi ≥ 0, αwi ≤ 1/n
}
. (2.23)
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Figure 2.7. Delaunay triangulation of an exemplary bivariate set of points,
together with circumcircles of all the triangles in the given tesselation.

Note that for α ∈ [0, 1/n] we have Dα = CH(X). Moreover, D1 is a singleton
containing the centroid of X and for α < α′ we have Dα′ ⊂ Dα. Of course,
if y 6∈ CH(X), then zdepth(y; X) = 0. The zonoid data depth fulfills some
important properties: it is affine invariant, continuous with respect to y and
each x(i), and monotone. The computation of depth of a given point may be
reduced to a linear programming task, see [175]. However, the point with the
greatest zonoid depth corresponds to CwAMean(X).

For a summary of other depth notions, such as the Mahalanobis depth, ma-
jority depth, or the likelihood depth, see [324].

Remark 2.49. Here is a possible application of the concept of data depth in
regression analysis. Assume that we are given X ∈ (Rd)n, y ∈ Rn and we would
like to fit a hyperplane Hϑ, ϑ ∈ Rd+1, defined by y = ϑ1x1 + · · ·+ ϑdxd + ϑd+1,
such that Hϑ(X) is as close to y as possible.

The regression depth (introduced by Rousseeuw and Hubert in [408]) of Hϑ

relative to X and y is defined as the smallest number of indices like i such that
the residual ri = ϑ1x

(i)
1 + · · ·+ϑdx(i)

d +ϑd+1−yi needs to change its sign to make
Hϑ nonfit, i.e., there exists a hyperplane V such that no x(i) is on V , ri > 0 for
all x(i) in one of V ’s open halfspace and ri < 0 for all x(i) in the other halfspace.

Intuitively, it is the smallest number of observations in X that would need to
be removed in order to make a computed regression model a nonfit. It measures
how well a hyperplane fit represents data: a good fit is of larger depth than a
bad one. Thus, a fit with large depth is well-balanced relative to the input data.

There is an exact O(n logn)-time algorithm for computing the Tukey-based
regression depth for the case d = 1, see [408]. It was extended to arbitrary d in
[412], but its time complexity is O(nd logn); obviously, for large d and n such a
routine is practically unusable. However, an approximate approach, similar to
the one in Algorithm 2.41, may be used in such a case, see also [412, 414]. There
is also an algorithm to compute hyperplanes with the greatest depths [455].
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2.4.5 Symmetrization of fusion functions
Recall that a fusion function is symmetric, whenever for all permutations σ of
[n] it holds F(x(1), . . . ,x(n)) = F(xσ(1), . . . ,xσ(n)).

Given a non-symmetric unidimensional function, one may easily symmetrize
it by referring to the notion of an order statistic, i.e., the ith smallest value
among a set of input elements. It is because, by Proposition 1.80, F : Rn → R
is symmetric if and only if there exists a function G : Rn → R such that:

F(x(1), . . . ,x(n)) = G(x(σ(1)), . . . ,x(σ(n))),

where σ is an ordering permutation of the input values. In such a way, e.g., a
weighted arithmetic mean becomes an OWA operator. Such a construction is
only valid, however, in the d = 1 case, as here a natural linear order ≤ is defined,
see [324] for discussion.

In other words, if d > 1, then it is not easy to determine which values
are “small” or “large”, especially if we allow a set of points to be orthogonally
transformed.

One possible way to order a set of points in R2 is to use one of the so-
called plane-filling curves. For instance, let us consider the fractal-like Hilbert
curve. Its building process is recursive and its first few steps are depicted in
Figure 2.8. A set of points may be sorted by considering the order in which
they appear on such a plane-filling curve. Notably, the CGAL [442] library has
effective procedures to do so, also in higher dimensions. Such a sorting scheme
may be used to speed up some geometric algorithms. Unfortunately, it is easily
seen that the resulting ordering is neither translation nor, e.g., rotation invariant
(but it might be made translation and uniform scale invariant by transforming
the input data set).

Another way to sort a multivariate data set is to order the input values with
respect to increasing distances from a fixed point, e.g., the set’s componentwise
mean. If the Euclidean distance is used, the introduced sorting scheme shall be
affine equivariant. Yet, it might not be unique for some data sets. If ties occur,
one may first order the observations relatively using the same ordering as in the
input data set (this may be easily done by applying a stable sort algorithm).

More elaborate approaches may be based on the concept of data depth. With
these, the points x(i), i = 1, . . . , n, may be ordered with respect to their decreas-
ing or increasing depths. In other words, we may make use of a permutation σ
of {1, . . . , n} such that σ(i) ≤ σ(j) implies that for i < j:

depth(x(σ(i)); x(1), . . . ,x(n)) ≤ depth(x(σ(j)); x(1), . . . ,x(n)),

where depth is some data depth measure. In this way, we get so-called depth
order statistics, see [324]. Note that, unlike in the univariate case, they are not
ordered from the “smallest” to the “largest”, but from the “most central” to the
“least central”.

Having an ordered version of the input set of points, one may easily define,
e.g., multidimensional versions of trimmed or Winsorized means, see [353].
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Figure 2.8. Three iterations of the Hilbert curve creation process as depicted in
Hilbert’s original 1891 paper [248].

2.5 Penalty-based fusion functions
At the very beginning of this chapter, we introduced some notable fusion func-
tions: the componentwise mean, 1-median, and 1-center (with respect to the
Euclidean metric). Let us now discuss them, as well as their generalizations, in
greater detail.

2.5.1 1-median
Circa 1650, Evangelista Torricelli proposed a solution to a problem posed by
Pierre de Fermat in the early 17th century: given three points in a plane, find
the fourth point for which the sum of its distances to the three given points is as
small as possible (compare [300]). This task can be formulated for an arbitrary
number of points as follows. Find y such that:

1mediand(x(1), . . . ,x(n)) = arg min
y∈Rd

1
n

n∑
i=1

d(x(i),y), (2.24)

where d is a metric (originally the Euclidean one). Such a point, called in
the literature the 1-median, geometric median, spatial median, mediancenter,
L1-median, Fermat-Weber, or Torricelli point, generalizes the concept of a one-
dimensional median (i.e., for d = 1 it is equal to Median for arbitrary Lp metric
dp and odd n).

Euclidean metric. If d = d2, the Euclidean 1-median is slightly less sensitive to
outliers than the centroid (CwAmean, see below), compare Figure 2.9.

In the unidimensional case, as noted above, the solution reduces to the sample
median and thus it might not be unique. However, for d ≥ 2 and X such that
it is not concentrated on a line, Milasevic and Ducharme showed [366] that the
spatial median is always well-defined.

Note that Euclidean 1-median is sometimes used as an estimate of the under-
lying multidimensional probability distribution’s theoretical median. Moreover,
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Figure 2.9. 1-median (∗) and centroid (4) of an exemplary data set. By
definition, 1-median is less sensitive to outliers.

Brown in [86] generalized the two-sample statistical hypothesis sign test for the
equality of medians in one dimension by using their spatial analogues (the angle
test).

Weighted Euclidean metric. Let us consider a more general version of the above-
presented case, closely related to the Fermat-Weber problem, see, e.g., [81, 441],
which aims at finding the location for a new facility that minimizes the sum of
transportation costs to n destination points (e.g., customers), having in mind
different costs per unit distance.

Given a weighting vector w, the weighted geometric median is defined as:

1mediand2,w(X) = arg min
y∈Rd

n∑
i=1

wid2(x(i),y), (2.25)

Unfortunately, in general, no analytic formula expressing the solution to the
above equation exists, even in the (∀i) wi = 1/n case. By considering the
partial derivatives of the above objective function, it may be shown, see [456],
that it is a point y such that:

n∑
i=1

wiy
d2(x(i),y) =

n∑
i=1

wix(i)

d2(x(i),y) . (2.26)

However, from Equation (2.26), we may derive the following algorithm to com-
pute the fusion function of interest.

Algorithm 2.50. Weiszfeld procedure [465]:

1. Choose a starting point y(0) in the convex hull of {x(1), . . . ,x(n)};

2. For j = 1, 2, . . . do:
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2.1. If y(j−1) = x(i) for some i ∈ [n], then let y(j) := x(i);

2.2. Otherwise, let y(j) :=

n∑
i=1

wix(i)

d2(x(i) − y(j−1))
n∑
i=1

wi
d2(x(i) − y(j−1))

;

2.3. If d2(y(j),y(j−1)) ≤ ε for some fixed ε > 0, then return y(i) as result.

It may be shown, see [81], that the Weiszfeld algorithm converges to an
optimal solution for all but a countable set of starting points y(0). An exemplary
implementation of the above algorithm is given in Figure A.12, see also its more
robust version called SOR-Weiszfeld introduced in [268] and the AS78 algorithm
[228] which is based on the steepest descent heuristic.

Note that Equation (2.26) implies that:

y =
n∑
i=1

vix(i), vi =

wi
d2(x(i),y)
n∑
i=1

wi
d2(x(i),y)

. (2.27)

We see that (v1, . . . vn) is a weighting vector. Hence, the 1-median fulfills the
convex hull-based internality. Moreover, it is orthogonal, uniform scale, and
translation equivariant but not d-scale and thus not affine equivariant, see [369]
for discussion. Also, its symmetry depends solely on the form of the weighting
vector w.

Manhattan distance. Interestingly, it turns out that by setting d to be the
Manhattan d1 metric, we get the already mentioned componentwise median,
CwMedian, see [29]. Recall that this fusion function is nondecreasing, translation
and d-scale equivariant, but not rotation equivariant (note how the Manhattan
distance behaves under rotations). Note that the k-medians algorithm (more ro-
bust to outliers than k-means) was originally based on the 1-median with respect
to d1.

Other Minkowski distances. There exists a Newton-Raphson-like algorithm [29]
which computes the 1-median in the case dp for arbitrary p ≥ 1. As a mat-
ter of fact, for moderate values of p and sample sizes, this task may be easily
determined using a generic nonlinear optimization solver, for example:

one_ median _Lp <- function(X, p) {
optim(rowMeans(X), function(c) {

sum(colSums(abs(X-c)^p)^(1/p))
}, method="BFGS", control=list(reltol =1e-16))$ par

}
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Figure 2.10. 1mediandp trace as a function of p ∈ [0,∞].

Example 2.51. Figure 2.10 depicts 1-median trace of an exemplary data set. It
is assumed that the 1-median is computed with respect to Minkowski dp metrics
and the trace is generated by varying p ∈ [1,∞].

2.5.2 Medoid
The 1-median should not be confused with the concept of amedoid or set median,
which is a point y such that:

Medoidd(y) = arg min
y∈{x(1),...,x(n)}

1
n

n∑
i=1

d(x(i),y), (2.28)

for arbitrary metric d (usually Euclidean or Manhattan). The difference is that
we do not look among all the vectors in Rd, but restrict ourselves to the input
data set (hence, the medoid is a kind of exemplar, compare one of possible
definitions of internality on page 106). In other words, a medoid is a point in a
given data set, for which average dissimilarity to all the other objects in the set
is minimal.

Remark 2.52. A medoid may be non-uniquely defined. This is the case for d2
and three vertices of an equilateral triangle (or more generally, d vertices of a
regular d simplex). In such a situation, the computer science perspective is to
choose any point that fulfills Equation (2.28). Yet, for Medoidd to be a proper
fusion function, we should choose some method of distinguishing the medoid of
interest. In particular, we may assume that we return one that has the smallest
index i among {i ∈ [n] : x(i) = y}.

Medoids are useful, e.g., in clustering problems (the k-medoids algorithm,
see [384]) or as rough estimates of 1-medians. They are internal as well as
translation, uniform scale, and rotation equivariant for d = d2.
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Note that we shall refer to this concept once again when discussing aggrega-
tion in arbitrary pseudometric spaces, see Section 4.6.

2.5.3 Centroid
Given a weighting vector w, the weighted centroid is a point y such that:

y = arg min
y∈Rd

√√√√ n∑
i=1

wi
(
d2(x(i),y)

)2
, (2.29)

where d2 is the Euclidean metric.
Please notice the similarity between the above definition and the definition of

the weighted Euclidean 1-median. d2
2 is of course no longer a metric, but a kind

of dissimilarity measure. Due to this simplification it turns out that the solution
to the above equation is very easy: it is the componentwise extension of the
weighted arithmetic mean. Thus, it is componentwise monotonic. Moreover, we
already noted that it is an affine invariant fusion function which fulfills convex
hull-based internality. Also note that the centroid minimizes the variance of
distances from the observations to itself.

The centroid is a basis for the k-means clustering algorithm, see [197, 331].
On the other hand, its weighted version is used in the fuzzy c-means procedure
[55]. In physics, the discussed notion reflects the center of mass of a system of
particles.

Notably, the centroid is a special case of the Fréchet mean for d = d2.

2.5.4 1-center
For a given metric d the 1-center (smallest enclosing ball, seb) problem aims at
finding:

1centerd(x(1), . . . ,x(n)) = arg min
y∈Rd

∨
i∈[n]

d(x(i),y). (2.30)

In particular, if d is the Euclidean metric d2, the above task is called the Eu-
clidean 1-center problem and was first proposed by James Sylvester in 1857 [438].
Note that this task is not the same as finding the center of a circumscribed circle.

Figure 2.11 depicts Euclidean 1-centers of two exemplary two-dimensional
data sets. Such a formulation is used in many real-world applications, see, e.g.,
[219], which include: pattern recognition (finding reference points), computa-
tional biology (protein analysis), support vector machines – high-dimensional
clustering, and nearest neighbor search. In particular, for d = 3 these may be
used in computer graphics, e.g., visibility culling, ray tracing, and object colli-
sion detection. However, we should be careful when using it in data analysis:
it is extremely sensitive to outliers. What is more, for d = 2 we have an im-
portant operational research application, known as the facility location problem,
when one aims to seek the location of the distribution center that minimizes the
distance to a customer that is situated farthest away.
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Figure 2.11. Euclidean 1-centers of two exemplary data sets.

It may be shown, see [220], that the solution to the Euclidean 1-center prob-
lem can be expressed as:

y =
n∑
i=1

vix(i) = vXT , (2.31)

where the weighting vector v is computed by solving the quadratic programming
(QP) problem:

minimize vTXTXv− (diag(XTX))Tv w.r.t. v

subject to:

1Tv = 1,
v ≥n 0.

Note again that special care should be taken while choosing a software library to
compute this QP task, compare Remark 1.160. For example, the quadprog pack-
age for R, which implements the dual method of Goldfarb and Idnani [227], is
only able to find a solution if D is positive-definite, which – in general – is not our
case. Instead, for this task we may use a generic QP solver given in Figures A.2
and A.3, which relies on the CGAL library. Figure A.10 gives an exemplary Rcpp
implementation of a routine to compute the smallest enclosing ball.

A different, combinatorial algorithm (that resembles the simplex algorithm
for linear programming) has been proposed in [187]. Moreover, the CGAL [442]
library includes an implementation of Welzl’s routine [466].

From Equation (2.31) it follows that the Euclidean 1-center is necessarily
convex hull internal. What is more, it is translation, orthogonal, and uniform
scale equivariant (but not d-scale equivariant).
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On the other hand, the Chebyshev 1-center is a componentwise extension
of F(x) = (Max(x) + Min(x))/2, i.e., it is the center of the points’ bounding
rectangle.

Moreover, similarly to the concept of a medoid, we may define a seboid, which
is an exemplar minimizing the function in Equation (2.30), see Section 4.6 for
further information.

2.5.5 A more general framework
Similarly as in Definition 1.105, we may introduce the notion of a penalty-based
fusion function for aggregation of points in Rd. This time, however, we should
rather assume that the set of minimizers of a penalty function P : Rd× (Rd)n →
[0,∞] is a convex polytope and that a P -based fusion function F is given as the
center of gravity of such a set. For d = 1, this setting generalizes the one from
the previous chapter. Surely, each idempotent function F is a penalty-based one
for some P .

Let depth be some data depth notion which is bounded from above by a
value m ∈ [0,∞]. By setting P (y; X) = m−depth(y; X) we get that the median
corresponding to depth is a P -based fusion function.

All the other fusion functions presented in this section may be generalized as
follows, see Table 2.3

Definition 2.53. Let D : [0,∞]n → [0,∞] be a nondecreasing fusion function
such that D(n ∗ 0) = 0 and d be an arbitrary pseudometric. Then a distance-
based penalty function is given by:

P (y; X) = D
(
d(x(1),y), . . . , d(x(n),y)

)
. (2.32)

Note that not all metrics lead to proper penalty functions, though. This is
the case of the Hamming distance (see below).

Proposition 2.54. If P is a distance-based penalty function generated by D, d,
and F is a P -based fusion function, then we observe the following regularities:

— F is idempotent.

— If d is a norm-generated metric, then F is translation equivariant.

— If d is a norm-generated metric and D is scale equivariant, then F is uni-
form scale equivariant.

— If d is the Euclidean metric, then F is orthogonal equivariant.

— If d is the Euclidean metric and D is strictly increasing, then F is CH-
internal.

— If d is the Manhattan metric and D is strictly increasing, then F is bounding
box-internal.
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Table 2.3. Examples of distance-based penalty functions.

D D minimizer

Arithmetic mean 1-median
Weighted arithmetic mean Weighted 1-median
Maximum 1-center
Quadratic mean Centroid
Weighted quadratic mean Weighted centroid

Other fusion functions may be used instead of those listed in Table 2.3, for
example D(d) = d(bn/2c), will give us the center of the smallest ball containing
approximately half of the input points (may be useful in the process of con-
structing metric tree-based data structures, e.g., vp-trees [487]).

Remark 2.55. The idea of incorporating generic penalty minimizers in clustering
tasks was discussed by Leisch in [314]. He proposes a generalization of the k-
means and k-medians algorithm which works for any metric and its minimizer.
To recall, the aim of such algorithms is to find, for a given k, the centers of
clusters µ(1), . . . ,µ(k) which partition input data points into k disjoint groups.
The ith point’s membership to one of the clusters, c(i) ∈ [k], is expressed in terms
of its proximity to one of the cluster centers (cluster centers generate Dirichlet
(Voronoi) regions, see Figure 2.12, which determine a center’s “attraction area”).
This type of clustering algorithms tries to approach a solution such that the total
distance between all input points x(i) and their corresponding clusters’ centers
µ(c(i)) is as small as possible, i.e.:

minimize
∑
i∈n

d(x(i),µ(c(i))) w.r.t. c : [n]→ [k] (onto),

where:
µ(i) = arg min

y∈Rd

F{x(j) : j ∈ [n], c(j) = i}. (2.33)

A k-means-like algorithm is a heuristic which aims to solve the above optimiza-
tion problem in the following manner:

1. Initialize c(i), i ∈ [n], e.g., randomly;

2. Update the centroids according to Equation (2.33);

3. Repeat Step 2. until convergence.

Remark 2.56. There are various ways that can aid in choosing a fusion function
for practical use. One of them may be based on the set of useful properties
(such as a particular type of equivariance) that an aggregation method fulfills.
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(a) d1 (b) d2 (c) d∞

Figure 2.12. Dirichlet (Voronoi) regions generated by 5 points in R2 and different
metrics.

The other ones rely on a fusion function’s numerical characteristics (compare
the notion of a breakdown point in Section 5.5).

Nevertheless, these properties or characteristics are non-probabilistic in their
nature. As multidimensional fusion functions are frequently investigated by
computational statisticians, it is also interesting to inspect their behavior on
random input data.

For instance, Massé and Plante in [354] perform a Monte Carlo study on
the accuracy and robustness of ten bivariate location estimators: the centroid,
Tukey Median, Liu median, Oja median, depth-based trimmed medians (Liu
and Tukey, α = 0.05, 0, 1), spatial median, and componentwise median. They
consider 26 random data scenarios for different n and d = 2, including various
types of samples’ contamination, with the point of reference set to the popu-
lation median (center of symmetry). It turns out that the best performance is
exhibited by the Euclidean 1-median, the Oja and the Tukey median, as well as
the componentwise median.

2.6 Aggregation on product lattices
In Section 1.7 we explored the topic of fusion of data which were objects in some
bounded poset. Let us extend the discussion slightly to the case of information
items that are instances of poset sequences. This is exactly the situation, for
example, occurring in a decision making task where n experts express their
opinions on d alternatives and there is a need to obtain their “averaged” view
on all of the alternatives.

2.6.1 Cartesian product
The Cartesian product (see, e.g., [62]) of d identical bounded posets P = (P,v
, 0, 1) is the bounded poset Pd = (P d,vd, 0d, 1d) with P d = P × · · · × P , 0d =
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(d ∗ 0), 1d = (d ∗ 1). Here, the partial ordering relation vd is given by:

(x1, . . . , xd) vd (y1, . . . , yd)⇐⇒ x1 v y1 and . . . and xd v yd. (2.34)

Remark 2.57. Most constructions presented in this section may be quite easily
extended to the case of a Cartesian product of non-identical bounded posets.
We do not follow such a route for better readability of the material.

Additionally, if we consider a product of d identical bounded lattices (P,v
,u,t, 0, 1), then we get a bounded lattice with join ud and meet td operations,
respectively, given by:

(x1, . . . , xd) ud (y1, . . . , yd) = (x1 u y1, . . . , xd u yd),
(x1, . . . , xd) td (y1, . . . , yd) = (x1 t y1, . . . , xd t yd).

Remark 2.58. If P is a bounded chain, then Pd is a bounded lattice (product
of chains is only a chain in trivial cases: d = 1 or |P | = 1). For instance, let
P = ([0, 1],≤,∧,∨, 0, 1). Considering P2, we have (0, 1) 6≤2 6≥2 (1, 0), hence ≤2
is not a linear order.

Similarly, any function F : Pn → P , i.e., taking n objects in P as input, may
be extended in a componentwise manner. This way, we obtain F : (P d)n → P d

as follows:

Fd(x(1), . . . ,x(n)) =
(

F(x(1)
1 , . . . , x

(n)
1 ), . . . ,F(x(1)

d , . . . , x
(n)
d )
)

(2.35)

for all x(1), . . . ,x(n) ∈ P d.
Recalling the discussion on componentwise fusion functions in the case P =

R, we have the following result.

Proposition 2.59. If F is an aggregation function on a bounded poset P , see
Definition 1.180, then Fd is an aggregation function on P d. More generally, if
F1, . . . ,Fd are aggregation functions on P , then the componentwise (decompos-
able, see [293]) fusion function (F1, . . . ,Fd) is an aggregation function on P d.

As we know from previous sections, of course, one does not have to limit
him/herself to such simple extensions of fusion functions. If some kind of de-
pendency between variables exists in an input data set, more elaborate solutions
may be necessary. For instance, in decision making we may want to introduce
fusion functions that ignore the answers of experts who constantly (for all the
attributes) provide contrasting answers. We may also do so for experts whose
answers are characterized by a very small variability, and so forth.
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2.6.2 Penalty-based aggregation on product lattices
Assume that P = {p1, p2, . . . } is countable and that v is a linear order with
pi v pj whenever i ≤ j. We may consider a natural metric on P d (see [91]) such
that for any (pi1 , . . . , pid), (pj1 , . . . , pjd

) ∈ P d it holds:

dN ((pi1 , . . . , pid), (pj1 , . . . , pjd
)) =

d∑
u=1
|iu − ju|. (2.36)

With this metric, penalty-based fusion functions such as some of those con-
sidered in Section 2.5 may be introduced. Note that a form of weighting of
different dimensions and relative elements’ order may also be incorporated here
so that we get:

dw,ϕ ((pi1 , . . . , pid), (pj1 , . . . , pjd
)) =

d∑
u=1

wu|ϕu(iu)− ϕu(ju)|. (2.37)

for some increasing and convex ϕ1, . . . , ϕd : N → R and a weighting vector
w ∈ [0, 1]d.

2.6.3 Conjunctive, disjunctive, and averaging functions
Let us go back to the Komorníková-Mesiar classification of fusion functions, see
[293] and Section 1.7.3.

De Baets and Mesiar in [138] showed that the componentwise extension of d
t-norms is also a t-norm. On the other hand, as shown by Jenei and De Baets
in [261], there may exist t-norms on product lattices P d that are not direct
products of t-norms on P .

By [293, Proposition 5], we have that (F1, . . . ,Fd) is strongly conjunctive
(disjunctive) if and only if each Fi is strongly conjunctive (disjunctive).

Other properties are not necessarily inherited so easily as indicated in the
following example.

Example 2.60 ([293]). Consider the bounded chain ([0, 1],≤, 0, 1). Here, the
sample median Median is strongly averaging. But if we act on a product of
three such chains we get that Median3 is not even weakly averaging.

2.6.4 Other orders on product lattices
It turns out that the product order is only one of many possible extensions of v
to a product lattice. Other popular choices include the inf-, sup-based, and lex-
icographic ordering. In decision making these correspond to maximin, maximax
(see, e.g., [161]) and leximin (see, e.g., [162, 189]) approaches, respectively.
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Definition 2.61. Let (P,v,u,t) be a lattice. Then the inf-based ordering is
given for every p,q ∈ P d by p vmin q if and only if ⊔di=1 pi v ⊔di=1 qi.

Definition 2.62. The sup-based ordering is given for every p,q ∈ P d by
p vmax q if and only if

⊔d
i=1 pi v

⊔d
i=1 qi.

In other words, the two above orders say that a lattice element p is domi-
nated by q, whenever the satisfaction degree of the least (respectively, greatest)
satisfied constraint in the first object is not greater than the corresponding ob-
servation in the second one.

Definition 2.63. The lexicographic ordering is given for every p,q ∈ P d by:

p vlex q ⇐⇒ (∃i ∈ [d])(∀j ∈ [i− 1]) pj = qj and (2.38)
pi < qi if i < d and pi v qi otherwise.

Note that an extended version of the above order shall be studied in the next
Chapter.

Remark 2.64. As we already mentioned, the lexicographic order is particularly
appealing in decision making. Imagine we have a set of criteria, ordered with
respect to their importance, like “child safety”, “price”, and “attractive outlook”
in the case of a decision making task to determine which car should be bought
by an agent. If a car A is less safe than B, no matter what the satisfaction
degrees of other criteria are, B is preferred to A. On the other hand, if A is
as safe as B, then one should also consider its price and then – perhaps – its
general appearance.

In the three discussed cases if v is a linear order, then the above-defined
orders are at least total preorders.

Note that some of the results presented in Section 1.7 may be utilized in any
of these new, “multidimensional” settings. A combination of posets gives us yet
another poset and the methods presented in the previous Chapter are still valid
here. This is because they are very general in their nature. We therefore decide
not to explore them any further in this book.

2.7 Aggregation of character sequences
In Section 1.8 we noted that aggregation of n elements on a nominal scale was
neither very challenging nor interesting. Nevertheless, the situation is quite
different in the case of n vectors of length d with elements in some alphabet
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Σ (and will be even more engaging in the next chapter, where we deal with
character strings).

All the fusion functions considered in this section are distance penalty-based
ones. Perhaps the most frequently used metric on Σd is the one introduced by
Hamming, see [239].

Definition 2.65. The Hamming distance is defined for x,y ∈ Σd as:

dH(x,y) =
d∑
i=1

1(xi 6= yi). (2.39)

In other words, it is the total number of indices at which two given vec-
tors differ.

Exemplary applications of fusion functions based on the Hamming distance
minimizers include finding gene clusters, creating diagnostic probes, or discov-
ering potential drug targets, see, e.g., [305], especially if we compute them over
the DNA or protein sequences domain. Also, they are useful in error correction
tasks: imagine that a few signals were sent with errors, the “central” one (this
is particularly the case of the median vector discussed below) may represent the
underlying correct information piece.

Let us briefly review possibly interesting properties of such fusion functions.
Of course, there is no ordering relation on Σ, thus we cannot refer to any notion
of monotonicity here. Instead, we may consider if for every x,x(1), . . . ,x(n) ∈ Σd
it holds:

— F(n ∗ x) = x, (idempotency)

— F(x(1), . . . ,x(n)) = F(x(σ(1)), . . . ,x(σ(n))) for all σ ∈ S[n], (symmetry)

— if y = F(x(1), . . . ,x(n)), then yi ∈ {x(1)
i , . . . , x

(n)
i }, (internality)

— F(x(1), . . . ,x(n)) = F(x′(1)
, . . . ,x′(n)) = y where x′(j) ∈ {x(j),y},

(decomposability)

and for extended fusion functions:

— F(x(1), . . . ,x(n)) = y, then F(k ∗ y,x(1), . . . ,x(n)) = y for all k,

(L-stability)

— F(x(1), . . . ,x(n)) = y, then F(x(1), . . . ,x(n), k ∗ y) = y for all k.

(R-stability)
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2.7.1 Median
Let us first study the problem of finding:

MediandH(x(1), . . . ,x(n)) = arg min
x∈Σd

∑
i∈[n]

dH(x(i),x).

As the solution might be ambiguous, we may rather be interested in determining
any x∗ ∈ Σd such that:∑

i∈[n]

dH(x(i),x∗) := min
x∈Σd

∑
i∈[n]

dH(x(i),x). (2.40)

It turns out that such a vector can be determined easily. For that, we may use
the following algorithm.

Algorithm 2.66. To determine all solutions to Equation (2.40), proceed as fol-
lows:

1. For i = 1, . . . , d do:

1.1. Let ki := max
x∈{x(1)

i
,...,x

(n)
i
}
∑
j∈[n] 1(x = x

(j)
i ), i.e., the number of

occurrences of the most frequently occurring character at index i;

1.2. Let Ei = {x ∈ {x(1)
i , . . . , x

(n)
i } :

∑
j∈[n] 1(x = x

(j)
i ) = ki}, i.e., the set

of all characters that occur exactly ki times at index i;

2. Return all x∗ ∈ E1 × · · · × Ed.

Remark 2.67. If we are interested in any x∗ which is a solution to Equa-
tion (2.40), then the above procedure may be implemented in such a way that,
e.g., (a) it uses O(|Σ| + d) additional memory units and O(d|Σ| + dn) time (a
bucket sort-like algorithm) or (b) with the usage of O(n+d) additional memory
units and O(dn logn) time, see also Remark 1.206.

Figure A.13 gives an exemplary C++ implementation which is based on hash
tables and has an amortized run time of O(d|Σ′| + dn), where Σ′ ⊆ Σ consists
only of letters used in the input strings. Note that an input data set is given via
a d× n integer matrix there.

Example 2.68. Let us set d = 3, n = 6, and Σ = {0, 1, 2, 3}. Consider the
following data set:

j 1 2 3 4 5 6

s
(j)
1 2 1 3 1 2 1
s

(j)
2 2 3 1 1 0 2
s

(j)
3 3 0 0 2 0 0
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Noticing that minx∈Σd

∑
i∈[n] dH(x(i),x) = 9, there are two solutions to Equa-

tion (2.40): (1, 1, 0) and (1, 2, 0). One of them is among the input vectors (this
is not a rule in general), so it also corresponds to the set’s medoid.

The median with respect to the Hamming distance is definitely symmetric,
idempotent, internal, decomposable, and stable.

Remark 2.69. The above algorithm may easily be extended to find a weighted
median, i.e., arg minx∈Σd

∑
i∈[n] widH(x(i),x), where w is a weighting vector.

2.7.2 Center
Now we shall focus on determining:

CenterdH(x(1), . . . ,x(n)) = arg min
x∈Σd

∨
i∈[n]

dH(x(i),x).

Again, the solution may be non-unique, therefore we rather shall be aiming at
determining any x∗ ∈ Σd such that:∨

i∈[n]

dH(x(i),x∗) := min
x∈Σd

∨
i∈[n]

dH(x(i),x). (2.41)

Such a fusion function is of interest in coding theory [198], gene clustering [155],
and other bioinformatics tasks [73].

Example 2.70. Let us go back to data in Example 2.68. There are two centers:
(1, 2, 0) and (2, 1, 0). We have minx∈Σd

∨
i∈[n] dH(x(i),x) = 2.

A center character sequence is at least idempotent, symmetric, and internal
(or more precisely, there is at least one internal solution).

Unfortunately, there is no polynomial time-algorithm (with respect to n – it
can be reduced to 3SAT) for computing it (unless P = NP) even for d = 2, see,
e.g., [198, 305].

Among exact algorithms, which aim to find a string within some maximal
distance threshold, e, that is x with

∨
i∈[n] d(x(i),x) ≤ e, we may list [120,

231, 359], which are based on integer programming (IP), see [315]. One of the
simplest formulations of the discussed problem may be written in terms of an
IP task as follows (see [359]):

minimize δ w.r.t. δ ∈ Z, t ∈ Zd, z ∈ Zn×d (2.42)

subject to:

δ −
d∑
j=1

zi,j ≥ 0, i = 1, . . . , n
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tj − kzi,j ≤ s
(i)
j , i = 1, . . . , n, j = 1, . . . , d

kzi,j − tj ≥ s
(i)
j , i = 1, . . . , n, j = 1, . . . , d

δ ∈ {0, . . . , d},
tj ∈ {1, . . . , k}, j = 1, . . . , d
zi,j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , d.

Here we assume that Σ = {1, 2, . . . , k} (the original Σ may always be reencoded
in such a way). The solution is stored in the t vector. This can be solved, e.g., us-
ing the COIN-OR SYMPHONY library (via the Rsymphony package in R). Please
note that the above formulation leads to a practically unusable implementation
(unless d, n are small).

Among other exact algorithms we may find the one given in [117]. Here, we
start with a string in the input data set and then consecutively modify no more
than e letters in the candidate string at a time. Another is given in [254]. It
is based on some data reduction techniques and search tree algorithms. What
is more, in [73] an algorithm to compute the closest string in the presence of
outliers is given, i.e., one within a Hamming distance of δ to at least n − k of
the input strings for some k.

There are also polynomial-time approximation schemes, see, e.g., [305,
320, 357]. For instance, Lanctot et al. derive a polynomial-time (4/3 + ε)-
approximation algorithm for any small ε > 0, see [305].

Remark 2.71. We say that a procedure is a (1 + ε)-approximation algorithm
whenever the ratio of the quality of the result (here, expressed in terms of the
Hamming distance) as compared to the optimal solution is guaranteed to be not
greater than 1 + ε for any ε > 0.

As in practice exact algorithms exhibit poor performance, here let us discuss
a so-called evolutionary strategy to approximate the center string. The first
genetic algorithms were introduced by Fraser, see, e.g., [201, 202]. This is a
class of adaptive, approximate optimization algorithms inspired by the biological
process of natural selection. Of course, they do not guarantee that the global
maximum of a fitness function f shall be found. However, such techniques are
especially useful if the objective function is defined on a discrete space (and this
is our case).

Algorithm 2.72. For a given k (population size), η (number of iterations), and
some fit measure f :

1. Generate a random initial population, i.e., a set of k initial elements (in-
dividuals) P = {p(1), . . . ,p(k)};

2. Determine the fit measure fj for each individual p(j);

3. Set P to be the best population considered so far, P ∗;

4. For i = 1, . . . , η do:
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4.1. Selection: randomly select k pairs of vectors in P in, e.g., such a
way that each vector occurs in the resulting sample with probability
proportional to some function of fj (fitness proportionate selection);

4.2. Crossover: generate a new population P ′, such that each new individ-
ual is obtained by combining elements in a pair of vectors selected in
the previous step (some characters are taken from the first vector in
a pair, the other ones are taken from the second vector);

4.3. Mutation: replace a few randomly chosen elements of vectors in P ′

with some other characters;
4.4. Set P := P ′ and recompute the fit measures fj, j = 1, . . . , k;
4.5. If the current population includes an individual of the best fit so far,

i.e., maxj fj > maxj f∗j , set P ∗ := P ;

5. Return the best individual from P ∗, i.e., arg minp∗(j),j∈[k] f
∗
j .

In our case, the fit measure of an individual p(j) is inversely proportional to∨
i∈[n] dH(x(i),p(j)). Figure A.15 gives an exemplary R implementation of Algo-

rithm 2.72, which aims to determine an approximate solution to Equation (2.41).
Note that the crossover scheme choice is crucial here: we observe that the uni-
form crossover works far better than its one- or two-point version. There are
some other possible options too, e.g., a crossover based on three parents or dif-
ferent selection phase schemes.
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Table 2.4. ASCII codes (Unicode block C0 Controls and Basic Latin) and their
corresponding code points (chars). dec stands for a decimal code and bit gives its

corresponding 7-bit sequence.

dec bit char
0 0000000 NUL
1 0000001 SOH
2 0000010 STX
3 0000011 ETX
4 0000100 EOT
5 0000101 ENQ
6 0000110 ACK
7 0000111 BEL
8 0001000 BS
9 0001001 HT
10 0001010 LF
11 0001011 VT
12 0001100 FF
13 0001101 CR
14 0001110 SO
15 0001111 SI
16 0010000 DLE
17 0010001 DC1
18 0010010 DC2
19 0010011 DC3
20 0010100 DC4
21 0010101 NAK
22 0010110 SYN
23 0010111 ETB
24 0011000 CAN
25 0011001 EM
26 0011010 SUB
27 0011011 ESC
28 0011100 FS
29 0011101 GS
30 0011110 RS
31 0011111 US
32 0100000 (space)
33 0100001 !
34 0100010 "
35 0100011 #
36 0100100 $
37 0100101 %
38 0100110 &
39 0100111 ’
40 0101000 (
41 0101001 )
42 0101010 *

dec bit char
43 0101011 +
44 0101100 ,
45 0101101 -
46 0101110 .
47 0101111 /
48 0110000 0
49 0110001 1
50 0110010 2
51 0110011 3
52 0110100 4
53 0110101 5
54 0110110 6
55 0110111 7
56 0111000 8
57 0111001 9
58 0111010 :
59 0111011 ;
60 0111100 <
61 0111101 =
62 0111110 >
63 0111111 ?
64 1000000 @
65 1000001 A
66 1000010 B
67 1000011 C
68 1000100 D
69 1000101 E
70 1000110 F
71 1000111 G
72 1001000 H
73 1001001 I
74 1001010 J
75 1001011 K
76 1001100 L
77 1001101 M
78 1001110 N
79 1001111 O
80 1010000 P
81 1010001 Q
82 1010010 R
83 1010011 S
84 1010100 T
85 1010101 U

dec bit char
86 1010110 V
87 1010111 W
88 1011000 X
89 1011001 Y
90 1011010 Z
91 1011011 [
92 1011100 \
93 1011101 ]
94 1011110 ^
95 1011111 _
96 1100000 ‘
97 1100001 a
98 1100010 b
99 1100011 c
100 1100100 d
101 1100101 e
102 1100110 f
103 1100111 g
104 1101000 h
105 1101001 i
106 1101010 j
107 1101011 k
108 1101100 l
109 1101101 m
110 1101110 n
111 1101111 o
112 1110000 p
113 1110001 q
114 1110010 r
115 1110011 s
116 1110100 t
117 1110101 u
118 1110110 v
119 1110111 w
120 1111000 x
121 1111001 y
122 1111010 z
123 1111011 {
124 1111100 |
125 1111101 }
126 1111110 ˜
127 1111111 DEL



Chapter 3

Aggregation of strings

Up to now we have discussed different data fusion frameworks in the case
of numeric (quantitative), ordinal, and nominal data. We started with a
mathematically simple case of unidimensional data and then considered

a more complex setting in which the aggregated objects were tuples of length d.
In other words, for a given set X we considered:

— F : Xn → X (univariate fusion functions, see Chapter 1),

— F : (Xd)n → Xd (d-variate fusion functions, see Chapter 2).

The above frameworks can be extended so that fusion functions which take an
arbitrary number of elements as input are obtained:

— F : X∗ → X (extended univariate fusion functions),

— F : (Xd)∗ → Xd (extended d-variate fusion functions).

Surely, each extended fusion function may be conceived of as a family of fusion
functions, each acting on tuples of different lengths.

Remark 3.1. Aggregation theoreticians sometimes also consider fusion functions
which act on infinite sequences of elements. This is useful for studying asymp-
totic behavior of fusion functions, see, e.g., [223, 363]. As this kind of data does
not occur in computational tasks (given a data set, one may always determine
d+ = max{|x(i)|, i = 1, . . . , n}), we do not discuss such a framework in this
monograph.

It turns out that one more type of extension may be useful. Namely, we can
be interested in aggregating vectors of arbitrary (nonconforming) lengths. Such
a scenario from now on is called fusion of strings, anyvariate or variable length
data. More specifically:
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— F : (X∗)n → X∗ (n-ary fusion functions to aggregate vectors of any length),

— F : (X∗)∗ → X∗ (extended fusion functions to aggregate an arbitrary
number of vectors of any length).

Depending on the choice of X, this situation frequently occurs, e.g., in the case
of informetric data (X = I) or character strings (like DNA or bit sequences –
nominal scale).

Remark 3.2. A sequence of strings with elements being real numbers may be
represented in R/Rcpp as a List object (a vector of elements of any type),
which stores NumericVectors as its elements. In the case of character strings,
see Section 3.2, this corresponds to the CharacterVector type, whose elements
are objects of class Rcpp::String. In pure C we may use such data types as
double** and char**, respectively, and, when using the C++ Standard Li-
brary (or STL) objects, we may set std::vector< std::vector<double> >
and std::vector< std::string >, respectively.

Having in mind that the current space is even more “complex” than the
previous one, this time let us begin with a review of different orderings on X∗.

3.1 Orders in the space of strings

Let X∗ =
⋃∞
d=1X

d (note that this time we include vectors of length one). In
a parallel section from the previous chapter we studied – among others – the
so-called product order, which was a way to extend a partial or linear ordering
relation v on some set P to the case of P d for some d. Here we are naturally
interested in a review of different ways of extending v to v∗ in such a way that it
may act on P ∗. More formally, given a poset P = (P,v), our aim is to construct
P∗ = (P ∗,v∗). It turns out that several interesting ways to do so exist in the
aggregation literature.

3.1.1 Lexicographic order
The lexicographic order is defined for p,q ∈ P ∗ as:

p v∗ q ⇐⇒ (∃i ∈ [dp ∧ dq])(∀j ∈ [i− 1]) pj = qj and (3.1)
pi < qi if i < dp and pi v qi otherwise,

where |p| = dp, |q| = dq and, as usual, p < q whenever p v q with p 6= q.
Note that if v is a linear order, then also v∗ is one. Moreover, if P is bounded

from below with the least element denoted with 0, then (0) is the least element
of P∗.
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Example 3.3. Let P = {a, b, . . . , z} and a < b < · · · < z. In such a case, we
have "a" <∗ "aa" <∗ "aaa" <∗ · · · <∗ "ab" <∗ "aba" <∗ "abaa" <∗ · · · <∗

"abb" <∗ · · · <∗ "b" etc., where, e.g., "abc" = (a, b, c).

Remark 3.4. Lexicographic order determines exactly how character strings are
ordered in many locales. Yet, in natural language processing tasks there are
some exceptions to this rule. For instance, in the Slovak locale (similar rules
exist for Czech), we have "citlivý" <∗ "hladný" <∗ "chladný" (delicate /
hungry / cool). This is because ch is treated as a digraph here and in fact it
should be treated as a distinct, single character. Moreover, if we compare strings
which consist of numerals, one might need a different order here, e.g., one that
gives "ID_69" <∗ "ID_123"; please refer to the Unicode Technical Standard on
string collation [136] for more information.

Among modified versions of the lexicographic ordering we find, among others,
the Luzin-Sierpiński (Kleene-Brouwer) order, which gives a greater priority to a
string with prefix p than to the sole string p in its entirety, see [275].

3.1.2 α- and β-, and informetric orderings
The so-called α- and β-orderings were introduced by Carbonell, Mas, and Mayor
in [101] for the purpose of studying extended classical aggregation functions
and constructing weighting triangles, compare Section 1.4.1. Moreover, they
were considered in a more general (lattice) setting by Calvo and Mayor in [98].
Assuming that (P,v,u,t) is a complete lattice, we have what follows.

Definition 3.5. Let p ∈ P dp ,q ∈ P dq . Then p vα q if and only if dp ≤ dq and
(∀i ∈ [dp]) pi v qi and if additionally dp < dq, then

⊔dp

i=1 pi v ⊔dq

i=dp+1 qi.

Definition 3.6. Let p ∈ P dp ,q ∈ P dq . Then p vβ q if and only if dp ≥ dq and
(∀i ∈ [dq]) pi v qi and if additionally dp > dq, then

⊔dp

i=dq+1 pi v ⊔dq

i=1 qi.

We see that for dp = dq both orders coincide with the extension of the product
order to P ∗, v∗, defined as p v∗ q whenever dp = dq and p vd q. Formally, as
each binary relation on X is in fact a subset of X2, we have that v∗⊆vα and
v∗⊆vβ .

If (P,v,u,t, 0, 1) is a bounded lattice, then 0 is the least element with respect
to vα and 1 is the greatest one with respect to vβ .

A somehow more relaxed version of vα may be formulated as follows.
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Definition 3.7. Let p ∈ P dp ,q ∈ P dq . Then p vγ q if and only if dp ≤ dq and
(∀i ∈ [dp]) pi v qi.

This type of ordering is useful in informetric tasks, see the next section for
details. If (P,v,u,t, 0, 1) is a bounded lattice, then 0 is the least element with
respect to vγ .

Proposition 3.8. Given a bounded lattice (P,v,u,t, 0, 1), we have what fol-
lows for every p ∈ P d and d ∈ N:

— (p1, . . . , pd, ⊔di=1 pi) vβ (p1, . . . , pd) vα (p1, . . . , pd,
⊔d
i=1 pi), see [98],

— (p1) vγ (p1, p2) vγ · · · vγ (p1, . . . , pd) vγ (p1, . . . , pd, 0).

Also, if (P,v) is a chain, then the above extensions of v generate lattices.

Remark 3.9. Regarding classical fusion functions based on the above orderings,
we have what follows. Let F : P ∗ → P be a fusion function monotonic with
respect to v∗. Then:

— F is monotonic with respect to vα if and only if F(p) v F(p,
⊔dp

i=1 pi),

— F is monotonic with respect to vβ if and only if F(p, ⊔dp

i=1 pi) v F(p)

for all p ∈ P ∗, see [98].
Notably, in [98] the concept of an extended aggregation function on P ∗

has been defined with the requirement of idempotency, as well as α-, and β-
monotonicity.

Also let F : P ∗ → P be a fusion function monotonic with respect to v∗ and
(P,v, 0, 1) be a bounded poset. Then F is monotonic with respect to vγ if and
only if F(p) v F(p, 0).

Yet, in this chapter we are interested in fusion functions like F : (P ∗)n → P ∗.

3.1.3 Aggregation methods
As by using the listed extensions of v we get different lattices, trivially, methods
already discussed (note their great generality) in Section 1.7 may be used to
aggregate such kinds of data.

3.2 Aggregation of informetric data
Typical practical situations in which we are faced with the need to aggregate
vectors of any length with elements in some real interval I (commonly I = [0,∞]
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Table 3.1. Representative instances of informetric and similar data, where numeric
lists of nonconforming lengths may be encountered, see, e.g., [107].

producer products rating method

R package author R packages Number of dependencies
Developer team Python packages Number of namespace im-

ports from other projects
Web server Web pages Number of targeting web-

links or Page Rank
Web service server JSON/XML-RPC meth-

ods
Number of remote proce-
dure calls

Developer team Code repository (git, svn,
etc.)

Number of commits or
lines of code

Publisher On-line document Number of downloads
Social networking
profile

Posts Number of “tweets” or
“likes”

StackOverflow
users

Answers to other users’
questions

Up-votes

YouTube channels Videos Number of views
Digital library Subscriber Number of accesses
Scientist Scientific articles Number of citations
Scientific institute Scientists The h-index
Factory Model-ranges of products Sale results
Factory product Supplied lots Number of items without

defects
Artist Paintings Auction price

or I = [−∞,∞]) include scientometrics, webometrics, marketing, manufacturing,
or quality engineering. Such application domains are sometimes referred to as
informetrics (information metrics), and their aim is to deal with quantitative
aspects of information processes. Here we assume that we have a set of abstract
producers that output various numbers of products and each product is given a
numeric valuation, representing its quality, see Figure 3.1, Table 3.1, and, e.g.,
[107, 199, 214, 215].

Most often, the order of elements in input vectors does not matter. Therefore,
we may assume that the vectors we aggregate are already sorted. For any d and
a fixed I, let Sd designate the set of nonincreasingly ordered vectors of length
d, i.e., Sd = {(x1, . . . , xd) ∈ Id, x1 ≥ · · · ≥ xd}. Moreover, let S≤d be a set
of nonincreasingly ordered vectors of length at most d, that is S≤d =

⋃d
i=1 Si.
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Producer p1

−→
−→ x

(1)
1 x

(1)
2

. . . x
(1)
n1

n1 products

= x(1) ∈ S≤d

Producer p2

−→
−→ x

(2)
1 x

(2)
2

. . . x
(2)
n2−2 x

(2)
n2−1 x

(2)
n2

n2 products

= x(2) ∈ S≤d

...
...

...

...
...

Producer pk

−→
−→ x

(k)
1 x

(k)
2

. . . x
(k)
nk−1 x

(k)
nk

nk products

= x(k) ∈ S≤d

quality ratings ∈ I

Figure 3.1. Producers, products, and their quality ratings, see [107].

From now on we also assume that S = S≤∞.
Suppose that we are given n producers and that each of them produced no

more than d products for some d. Obviously, such d is finite and well defined
for each set of producers. The set of producers may thus be represented as
X = {x(1), . . . ,x(n)}, where x(i) =

(
x

(i)
1 , . . . , x

(i)
di

)
∈ S≤d for all i = 1, . . . , n.

For instance, x(i)
j may denote the number of citations of the jth most cited

paper of the ith scholar, or the score of the jth best post written by the ith
Stack Exchange user.

In this section we are interested in constructing fusion functions like F :
Sn≤d → S≤d or their extended versions F : S∗≤d → S≤d. They aim to determine
the most “typical” or “representative” output of a producer in a cluster of pro-
ducers. They may be used in, among others, informetric data clustering tasks,
see the papers by Cena and Gagolewski [105, 106] (for a (fuzzy) k-means-like
procedure) and also [118, 130, 256, 380]. Moreover, note that in Chapter 5 we
shall focus on numeric characteristics of informetric data, which include such
tools as the famous Hirsch h-index (a particular Sugeno integral).

Possibly desirable properties of fusion functions of our interest here include:

— monotonicity with respect to vγ ,

— symmetry,
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— F(n ∗ x) = x, (idempotency)

— F((x1), (x1, x2), . . . , (x1, x2, . . . , xn)) = (x1, x2, . . . , xj) for some j ∈ [n]
and all n as well as x1, x2, . . . xn ∈ I, xi ≥ xi+1, i ∈ [n− 1],

(idempotency on common indices)

— dy ∈ [dmin, dmax], (length internality)

— yj ∈ [
∧n
i=1 x

(i)
j ,
∨n
i=1 x

(i)
j ] for all j ∈ [dmin],

(componentwise internality on common indices)

— yj ∈ [
∧n
i=1 x

(i)
di
,
∨n
i=1 x

(i)
1 ] for every j ∈ [dy], (global internality)

— F(x(1), . . . ,x(n)) = F(x′(1)
, . . . ,x′(n)) = y where x′(i) ∈ {x(i),y} for every

i ∈ [n],

— stability,

for all x,x(1), . . . ,x(n) ∈ S≤d, where we assume that F(x(1), . . . ,x(n)) = y,
dy = |y|, di = |x(i)|, dmin =

∧n
i=1 di, and dmax =

∨n
i=1 di.

3.2.1 Metrics on the space of numeric strings
In order to construct fusion functions on the considered domain, defined as min-
imizers of some penalty, let us study a family of metrics introduced by Cena,
Gagolewski, and Mesiar in [108]. Recall that among some interesting metrics
in the space of vectors of the same lengths Rd, we have, e.g., the Euclidean
d2(x,y) =

√∑d
i=1(xi − yi)2 or the Manhattan d1(x,y) =

∑d
i=1 |xi − yi| dis-

tance. Metrics on sets of real vectors are most often defined by considering
absolute values of pairwise differences of vectors’ elements (see the notion of a
norm-generated metric). Letting

∑v
i=u · · · = 0 for u > v, one way to redefine,

e.g., d1 so that it acts on elements in S≤d is to consider:

d′1(x,y) =
dx∑
i=1
|xi − yi|+

dy∑
i=dx+1

|yi|, (3.2)

where, by symmetry, without loss in generality, we assume that dx ≤ dy. Note
that as |a − 0| = |0 − a| = |a|, we have d′1(x,y) = d1(x̃, ỹ), where, e.g., x̃ =
(x1, . . . , xdx , 0, 0, . . . , 0) ∈ Rd, i.e., a version of x padded with 0s (a similar idea
is reflected in the Hirsch h-index, which in fact is the Ky Fan metric [183] applied
to x and a 0 vector of the same length as x).

Unfortunately, d′1 is only a pseudometric on S≤d: a vector (x1, . . . , xdx
) is in-

distinguishable from (x1, . . . , xdx
, 0, 0, . . . , 0). In other words, nonexistent prod-

ucts are treated in the same way as products of quality 0. This setting, however,
is not completely valid in our framework. Thus, an additional penalty for the
difference in vectors’ lengths may be introduced.
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Theorem 3.10. Let d : S≤d × S≤d → [0,∞] be such that d(x,y) = µ(x̃, ỹ) +
ν(x,y), where µ is a metric on Rd and ν is a pseudometric on S≤d. Then d is
a metric on S≤d if and only if for all x,y such that x̃ = ỹ it holds ν(x,y) =
0 =⇒ nx = ny.

In particular, we may consider ν(x,y) which is just a function of vector
lengths, e.g., ν(x,y) = p|drx−dry| for any p, r > 0. In such a way, the Manhattan
and the Euclidean metric may be rewritten as:

dM1,p,r(x,y) = d1(x̃, ỹ) + p|drx − dry| (3.3)

and:
dM2,p,r(x,y) = d2(x̃, ỹ) + p|drx − dry|, (3.4)

respectively. Take any vectors x,y such that nx < ny. Both metric classes
possess the important property that the distance between x and y is smaller
than the distance between x and (y, a, a, . . . , a), i.e., y padded with at least
one value a ∈ I. In other words, such metrics are able to distinguish vectors of
different lengths from each other.

3.2.2 Centroid
Let us study fusion functions that minimize sums of dM2,p,r-based penalties of
the form:

d2
p,r(x,y) =

min {dx,dy}∑
i=1

(xi − yi)2 +
ny∑

i=dx+1
y2
i + (3.5)

+
nx∑

i=dy+1
x2
i + p|drx − dry|,

which lead to centroid-like (see Section 2.5.3) mappings:

F(x(1), . . . ,x(n)) = arg min
y∈S

n∑
i=1

d2
p,r(x(i),y). (3.6)

First of all, let us note that |F(x(1), . . . ,x(n))| ≤ d = max{|x(i)| : i = 1, . . . , n}.
It can be shown, see [106], that the value of F may be determined by using the
following 2-step procedure.

1. First of all, for all j = 1, . . . , d we compute:

y(j) = arg min
y∈Sd

n∑
i=1

d2
p,r(x(i),y).
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2. Then we set:

j∗ = arg min
j=1,...,d

n∑
i=1

d2
p,r(x(i),y(j)),

F(x(1), . . . ,x(n)) = y(j∗).

It turns out that if we act on I = [0,∞], we simply have for all j ∈ [d] and
i ∈ [j]:

y
(j)
i = 1

n

n∑
k=1

x̃
(k)
i .

The obtained fusion function is symmetric, idempotent, and length internal,
among others.

The above formula is unfortunately invalid for arbitrary I. This is due to
the fact that the space S≤d consists of ordered vectors. Thus, in general, the
task that aims to determine a penalty minimizer here is much more difficult. It
may be shown that a procedure given in Figure A.17 may be used to compute
F(x(1), . . . ,x(n)), see [106] for more details – some of the components have to
be averaged. Unfortunately, if we allow negative elements, the resulting fusion
function is definitely not vγ-nondecreasing.

Note that this procedure may relatively easily be generalized to the case of
weighted d2

p,r penalty functions, see [105].

Example 3.11 ([106]). Let:

X =


( 42, 21, 12, 10, 8 ),
( 1, 0, −10 ),
( 0, −1 ),
( −10, −13 )

 .

Assuming that p = 1, r = 1, we have F(X ) = (8 1
4 , 4

1
4 , 1

2
3 , 1

2
3 , 1

2
3 ). Here is the

output of the procedure given in Figure A.17 for each j = 1, . . . , d.

j
∑n
i=1 d

2
1,1(x(i),y(j)) y

(j)
1 y

(j)
2 y

(j)
3 y

(j)
4 y

(j)
5 y

(j)
6

1 3139.75 8.25
2 3063.50 8.25 4.25
3 3062.50 8.25 4.25 0.50
4 3047.50 8.25 4.25 1.50 1.50
5 3034.17 8.25 4.25 1.67 1.67 1.67
6 3037.17 8.25 4.25 1.67 1.67 1.67 0.00

Example 3.12 ([106]). Let:

X =


( −10, −12, −14, −16, −17 ),
( 1, 0, −10 ),
( −10, −15, −16 ),
( −20 )

 .
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Then F(X ) = (−6.95,−6.95,−6.95,−6.95,−6.95) for p = 1, r = 1.

j
∑n
i=1 d

2
1,1(x(i),y(j)) y

(j)
1 y

(j)
2 y

(j)
3 y

(j)
4 y

(j)
5

1 1694.75 -9.750
2 1528.50 -8.250 -8.250
3 1126.50 -8.250 -8.250 -10.000
4 1142.75 -7.625 -7.625 -7.625 -7.625
5 1108.95 -6.950 -6.950 -6.950 -6.950 -6.950

3.2.3 1-Median
Due to the nature of the introduced metrics, the described 2-step procedure
may also be incorporated in the case of finding the 1-median with respect to the
dM1,p,r and dM2,p,r metrics.

For I = [0,∞] and dM1,p,r, the 1-Median of course corresponds to the compo-
nentwise median (with missing elements treated as 0s). That is, for some j ∈ [d]
and i ∈ [j] we have:

y
(j)
i = Median(x̃(1)

i , . . . , x̃
(n)
i ).

By the monotonicity of Median and the fact that 0 ≤ x
(j)
i for all j ∈ [n] and

i ∈ [dj ], we have that if x(j) ∈ S, then y(j) ∈ S. In other words, the resulting
vector is surely sorted.
Remark 3.13. Inspired by the above derivations, we may introduce the follow-
ing family of componentwise fusion functions for numeric strings in the case
of I = [0,∞]. Let F : In → I be a nondecreasing fusion function. Note that
x̃(1), . . . , x̃(n) ∈ Id and thus with data transformed in such a way we obtain a
case exactly as in the previous chapter. Now let y ∈ Sd be such that for i ∈ [d]
we have:

yi = F(x̃(1)
i , . . . , x̃

(n)
i ).

Then a penalty-based solution may be given as (y1, . . . , yd′) where d′ is given by:

d′ = arg min
d′∈[d]

P
(

(y1, . . . , yd′); x(1), . . . ,x(n)
)
.

For instance, P may be given as P
(
(y1, . . . , yd′); x(1), . . . ,x(n)) =

∑n
k=1 p|drk −

d′r| for some p, r > 0. Of course, similarly as in Definition 1.105, we require
P : S × Sn → [0,∞] to fulfill:

— P (y; x(1), . . . ,x(n)) = 0 if y = x(j) for all j ∈ [n],

— for every fixed x(1), . . . ,x(n), the set of minimizers of P (y; x(1), . . . ,x(n))
is a singleton.

Moreover, if arg mind′∈[d] P
(
(y1, . . . , yd′); x(1), . . . ,x(n)) is ambiguous, then we

may choose the smallest one or the largest d′ which minimizes the penalty.
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Note that the case of dM2,p,r is slightly more difficult. First of all, we need
the following result.

Proposition 3.14. For all d and n, a convex combination of any n vectors in
Sd is also a vector in Sd.

Of course, for any x ∈ S≤d and I = [0,∞], it holds that x̃ ∈ Sd. Recall that
in Section 2.5.1 we noted that the 1-median is within the convex hull of a set of
input points, see Equation (2.27). This implies that y(j) is sorted. Thus, e.g.,
the Weiszfeld algorithm may be used in the 1st step of our 2-step procedure.

3.3 Aggregation of character strings
This time, for a given X, let X∗ =

⋃∞
d=0X

d denote the Kleene closure of X. In
particular, an empty vector ε ∈ X∗.

In Section 3.2 we discussed a few methods to aggregate vectors of noncon-
forming lengths. Each member of such a vector was a real number. It was quite
a comfortable situation, as algebraic operations like addition, multiplication, di-
vision, and so forth, were defined there – we were on an interval scale. Here
we revisit a situation where vectors with elements on a nominal scale are to be
aggregated, see Sections 1.8 and 2.7.

A tuple x ∈ Σ∗ is often called a character string (over a finite set Σ), and an
element si – the ith character. If, say, a, b ∈ Σ, then we shall sometimes write,
e.g., "aba" instead of (a, b, a).

Example 3.15. Going back to Example 1.202, character strings over Σ =
{A, C, G, T} may be interpreted as DNA sequences or protein sequences in the
case of |Σ| = 20. On the other hand, referring to Example 1.203, we may also
consider ASCII or Unicode character strings.

Example 3.16. Strings over Σ = {0, 1} are called bit strings. In fact, even if
generally it is not the most convenient perspective, each computer file or a
digital signal transmission may be viewed as sequence of bits (see Table 2.4).
Interestingly, there are a few different ways to map Unicode code point sequences
to bit sequences: UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE, and
so on.

Here we are of course interested in fusion functions like F : (Σ∗)n → Σ∗.

Remark 3.17. In SQL-oriented relational database management systems, the
term “string aggregation” is usually understood as a form of string concatena-
tion (joining). For instance, in SQLite, there is an aggregate GROUP_CONCAT(),
which joins a given list of strings, separating each item with a comma. We have,
e.g.:

GROUP_CONCAT("a", "bcd", "abc") = "a,bcd,abc".
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A similar function in Oracle Database is named LISTAGG() and in PostgreSQL
– STRING_AGG(). Additionally, it is worth noting that it is an associative string
fusion function, see [313].

As far as desired properties of such fusion functions are concerned, firstly, let
us stress that this time no ordering relation can naturally be taken into account,
so we cannot rely on any type of monotonicity. On the other hand, at this point
we may be expecting:

— symmetry,

— F(n ∗ x) = x, (idempotency)

— |F(x(1), . . . ,x(n))| ∈
[∧n

i=1 |x(i)|,
∨n
i=1 |x(i)|

]
, (length internality)

— F(x(1), . . . ,x(n)) ∈ Σ′∗ with Σ′ = {s(i)
j : i ∈ [n], j ∈ [|x(i)|]} (the output is

only based on characters which are used in the inputs; this is because we
rather do not want the result of aggregating ("a", "c", "c", "a") to be
"b"),

— for some b1, . . . , bj ∈ Σ, there exists i ∈ [j] such that F("b1", "b1b2", . . . ,
"b1b2 . . . bj") = "b1b2 . . . bi",

— F(x(1), . . . ,x(n)) = F(x′(1)
, . . . ,x′(n)) = y where x′(j) ∈ {x(j),y},

— stability,

for each x,x(1), . . . ,x(n) ∈ Σ∗.
The fusion functions discussed further on are defined as minimizers of care-

fully aggregated pseudometrics or metrics. Thus, in the latter case we naturally
expect to obtain idempotent fusion functions. Nevertheless, we should not go
that far now: firstly we shall define a few types of dissimilarity measures for
strings.

3.3.1 Dissimilarity measures of character strings
Let us review the most frequently used dissimilarity measures of character
strings, see also [77, 301, 371, 454]. They are not only used for constructing
fusion functions, but have numerous other applications, e.g., in spelling cor-
rection [356, 368], error-tolerant pattern searching, fuzzy/approximate pattern
matching [461], plagiarism detection [25, 26], text retrieval, optical character
recognition, text clustering [265, 489], file revisions comparison (see the UNIX
diff utility or software revision control systems like git, svn, or mercurial),
and many others.

Below we discuss the following classes of character string distances:

— edit-based distances,

— q-gram-based distances,
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— other.

Remark 3.18. Let us once again stress that some of the dissimilarity measures
presented below – like the Jaccard q-gram index – are not necessarily “full”
metrics. A few of them violate the condition “d(x, y) = 0 if and only if x = y”.
They are at least pseudometrics: the “only if” part of the axiom might not be
met in all the cases.

A. Edit-based distances

Edit-based distances express the smallest total cost of necessary changes that
have to be made to transform one string so as to get another one.

Definition 3.19. An edit operation is a pair (a,b) ∈ Σ∗ × Σ∗, written a → b
for short.

For instance, the set B ⊆ Σ∗×Σ∗ of admissible edit operations may include:

— single character removal ((∀a ∈ Σ), ("a"→ ε) ∈ B),

— single character insertion ((∀b ∈ Σ), (ε→ "b") ∈ B),

— single character substitution ((∀a, b ∈ Σ), ("a"→ "b") ∈ B),

— transposition of an adjacent pair of characters (swap; (∀a, b ∈ Σ), ("ab"→
"ba") ∈ B),

compare the historical Damerau paper [134] for discussion.
We may apply an edit operation a→ b at a position i of a string u, if:

(ui, ui+1, . . . , ui+|a|−1) = a.

In such a way, we derive a new string:

v = (u1, . . . , ui−1,b, ui+|a|, . . . , u|u|).

Given any two strings u,v, we may seek a transforming sequence (s1, . . . , sk)
of edit operations and positions where they are applied, si ∈ B × N, such that
v may be derived step by step from u. In order to define an edit distance, we
shall assume that B is such that for each pair of strings there always exists at
least one such sequence. From now on denote by S(u,v) ∈ (B × N)∗ the set of
all transforming sequences that enable us to derive v from u.

Example 3.20. Assume that the set of admissible transformations consists only
of single character removal and insertion. In such a setting, at least three steps
are needed to derive "fiction" from "function".
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f u n c t i o n

# "u"→ ε (index 2)
f n c t i o n

# "n"→ ε (index 2)
f c t i o n

# ε→ "i" (index 2)
f i c t i o n

Also, we might be interested in introducing a function δ : B → R0+ that
measures the cost of applying any given edit operation.

Definition 3.21. A generic edit distance relative to a set of edit operations B
and their costs δ : B→ R0+ is given for any u,v ∈ Σ∗ by:

d(u,v) = min
S∈S(u,v)

∑
(b,i)∈S

δ(b). (3.7)

The following result follows from [77, Theorem 2.8].

Theorem 3.22. Whenever B and δ are such that:

— if (a → b) ∈ B, then also the reverse operation (b → a) ∈ B; moreover,
we have δ(a→ b) = δ(b→ a),

— if (a→ b) ∈ B, then δ(a→ b) = 0 implies that a = b,

— B is finite,

then the generic edit distance relative to B and δ is a metric on Σ∗ × Σ∗.

Classical edit distances assume that each edit operation has unit cost.

Definition 3.23. The longest common subsequence (LCS) distance [372], dLCS,
for u,v ∈ Σ∗ is defined as the minimal number of single character insertions and
deletions that are used to derive v from u. In other words, it is an edit distance
given by B = {("a"→ ε), (ε→ "a") : a ∈ Σ} and δ(b) = 1 for every b ∈ B.

If we additionally enable the use of a single character replacement operation,
we might get an extended version of the metric introduced in Definition 2.65.

Remark 3.24. The extended Hamming distance dH of u,v ∈ Σ∗ is given by:

dH(u,v) =
{ ∑d

i=1 1(ui 6= vi) if |u| = |v| = d,
∞ otherwise. (3.8)
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It may may be conceived as a kind of edit distance, where single character
replacement has unit cost and character insertion and removal has an infinitely
large cost.

The LCS character modification scheme together with the replacement op-
eration leads us also to the famous Levenshtein distance.

Definition 3.25. The Levenshtein distance [317], dLV, for u,v ∈ Σ∗ is defined
as the minimal number of single character insertions, deletions, and replacements
that are used to obtain u from v, i.e., it is an edit distance defined by B =
{("a"→ ε), (ε→ "a"), ("a"→ "b") : a, b ∈ Σ} and δ(b) = 1 for every b ∈ B.

Example 3.26. We have dLV("function", "fiction") = 2.

f u n c t i o n

# "u"→ ε (index 2)
f n c t i o n

# "n"→ "i" (index 2)
f i c t i o n

It turns out that a dynamic programming scheme may be applied to calculate
dLV(u,v), see, e.g., [458], as well as dLCS(u,v) [372], see also [457]. For instance,
we have that dLV(u,v) = d|u|,|v|, where d0,0 = 0, di,j = ∞ if i ∧ j < 0 and
otherwise:

di,j = min

 di−1,j−1 + 1 · 1(ui 6= vj),
di,j−1 + 1,
di−1,j + 1.

 (3.9)

A basic algorithm runs in O(|u| |v|) time and requires O(|u| |v|) memory, which
makes it practically unusable for long data streams (say, consisting of more
than 100,000 characters). However, its advantage is that we may trace back the
changes made in the first string to get the second string. If just the value of the
edit distance is needed, only two rows of the (di,j) matrix need be allocated. This
leads to the space complexity of O(|u| ∧ |v|), see Figure A.18 for an exemplary
implementation in the case of the Levenshtein distance. Please note that the
proposed implementation acts on integer vectors, so for character strings it may
be computed over Unicode text (all code points may be converted to UTF-32).

Another algorithm, given by Ukkonen [452], is able to compute dLV(u,v)
in O(d · (|u| ∧ |v|)) time and O(d) space, where d = dLV(u,v). It may be
modified to check in O(t · (|u| ∧ |v|)) time whether d ≤ t for some t. A different
algorithm, this time by Masek and Pateson, can be found in [352]: it leads to
O(nmax{1,m/ logn}) time, where n = (|u| ∨ |v|) and m = (|u| ∧ |v|).

If we additionally allow swapping any two adjacent characters, we get the
following dissimilarity measure, formalized for the first time by Lowrance and
Wagner in [329].
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Definition 3.27. The (unrestricted) Damerau–Levenshtein distance dDL, for
u,v ∈ Σ∗ is defined as the minimal number of single character insertions, dele-
tions, replacements, and pairwise transpositions that are used to obtain u from
v, i.e., it is an edit distance given by B = {("a" → ε), (ε → "a"), ("a" →
"b"), ("ab"→ "ba") : a, b ∈ Σ} and δ(b) = 1 for every b ∈ B.

Also in this case there exists a dynamic programming approach-based algo-
rithm, see [329], yet it is more complicated. We have dDL(u,v) = d|u|,|v|, where
d0,0 = 0, di,j =∞ if i ∧ j < 0 and otherwise:

di,j = min



di−1,j−1 + 1 · 1(ui 6= vj),
di,j−1 + 1,
di−1,j + 1,∧

i′<i,j′<j

ui=vj′ and ui′=vj

(di′−1,j′−1 + i− i′ + j − j′ − 1) .


(3.10)

Remark 3.28. As noted by, e.g., Boytsov [77] and Loo [454], the (unrestricted)
Damerau-Levenshtein distance is very often confused with its restricted version,
namely the optimal string alignment distance (OSA). Informally, in OSA each
substring is allowed to be edited only once. This dissimilarity measure is calcu-
lated as in Equation (3.10), but the minimum (∧) loop is computed only in the
case of i′ = i − 1 and j′ = j − 1. For the unrestricted version, we for example
have dDL("ba", "acb") = 2.

b a

# "ba"→ "ab" (index 1)
a b

# ε→ "c" (edits an already modified part)
a c b

On the other hand, dOSA("ba", "acb") = 3.

b a

# "b"→ ε (index 1)
a

# ε→ "c" (index 2)
a c

# ε→ "b" (index 3)
a c b

Also note that dDL("ba", "ab") = dOSA("ba", "ab") = 1 and dDL("ab",
"acb") = dOSA("ab", "acb") = 1. We see that OSA does not fulfill the tri-
angle inequality and hence it is not a metric on Σ∗ × Σ∗.

As we already mentioned, classical edit distances assume that each edit op-
eration has unit cost. However, some software libraries like the stringdist [454]
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package for R allow us to specify costs of each type of edit operation. For
instance, having been given wI, wD, wR > 0, i.e., costs of insertion, deletion,
and replacement, respectively, we may set (∀a, b ∈ Σ) δ("a" → ε) = wD,
δ(ε → "B") = wI, δ("a" → "b") = wR. In such a way we get a weighted
Levenshtein distance, see [294]. It is easily seen that this leads to the following
modification of Equation (3.9):

di,j = min

 di−1,j−1 + wR · 1(ui 6= vj),
di,j−1 + wI,
di−1,j + wD.


According to Theorem 3.22, a weighted Levenshtein distance is a metric if wI =
wD. Moreover, if wR = wI + wD, then a dissimilarity measure proportional to
the longest common subsequence distance is obtained.

Remark 3.29. More complex edit operations and cost dispatch schemes are suit-
able for natural language processing tasks (e.g., automated spell checking). For
instance, in the case of the German language, we may set δ("ß"→ "ss") to be
smaller than the cost of other replacement operations etc.

It is worth noting that various modifications of edit distances exist in the
literature. In particular, a constrained version of the Levenshtein distance, with
limits on the number and type of edit operations performed, was proposed by
Oommen in [379]. Moreover, Marzal and Vidal, see [351], discuss a normalized
edit distance defined as the minimum with respect to all transforming sequences
S(u,v) of w/p, where w is the sum of unit costs of edit operations in a transform-
ing sequence and p stands for the number of such operations. Additionally, in
[404] an algorithm for edit-distance learning (more precisely, determining costs
of edit operations) is given.

B. Q-gram-based distances

Given a string u, a q-gram, |u| ≥ q ≥ 1, is its substring that consists of q
consecutive characters in u, see [453]. The concept dates back to Shannon
[422] and was used by him to model processes generating discrete sequences of
characters. Nowadays, q-grams (at a word level1) are used, among others for
automated search engine query completion.

Let Qq(u) denote the set of all q-grams in u, that is:

Qq(u) =
{

(ui, ui+1, . . . , ui+q−1) ∈ Σq : i = 1, . . . , |u| − q + 1
}
. (3.11)

We see that |Qq(u)| = |u| − q + 1.

1For instance, Google in 2006 released a 24 GB compressed data set which consists of
13,588,391 unique words; we may find, e.g., 1,176,470,663 5-grams, ranked by the frequency of
their occurrences, see https://catalog.ldc.upenn.edu/LDC2006T13.

https://catalog.ldc.upenn.edu/LDC2006T13
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Example 3.30. Three bigrams can be obtained from "ACTG": it holds
Q2("ACTG") = {"AC", "CT", "TG"}.

It turns out that q-grams may be used to define dissimilarity measures for
strings.

Definition 3.31. Given u,v ∈ Σ∗ and q ≤ |u| ∧ |v|, the Jaccard q-gram dis-
similarity index is given by:

dJ,q(u,v) = 1− |Qq(u) ∩Qq(v)|
|Qq(u) ∪Qq(v)| ∈ [0, 1]. (3.12)

Remark 3.32. It holds dJ,2("aab", "aaab") = 0, thus a Jaccard index is not a
metric. The property dJ,q(u,v) = 0⇐⇒ u = v is violated for all pairs of strings
with non-unique q-grams. However, a Jaccard index is positive, symmetric, and
fulfills the triangle inequality and hence it is a pseudometric.

Let cq(u) designate the number of occurrences of a substring q in u:

cq(u) =
∣∣∣{i = 1, . . . , |u| − |q|+ 1 : (ui, . . . , ui+|q|−1) = q

}∣∣∣ . (3.13)

Clearly, cq(u) > 0 if and only if q ∈ Qq(u).

Example 3.33. We have c"aa"("aaabaa") = 3.

The so-called q-gram profile allows us to represent a string as a vector with
integer elements of size |Σ|q: QPq(u) = (cq(u))q∈Σq .

Example 3.34. Let Σ = {a, b} and q = 2. We have:

"aa" "ab" "ba" "bb"
QPq("abaa") = ( 1, 1, 1, 0 ),

QPq("aabbaa") = ( 2, 1, 1, 1 ).

This leads us to the following dissimilarity measure proposed by Ukkonen
in [453].

Definition 3.35. The q-gram distance is defined as:

dQ,q(u,v) =
∑

q∈Σq

|cq(u)− cq(v)|. (3.14)

Note that the summation may be made just over q ∈ Qq(u) ∪Qq(v).
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Remark 3.36. According to [453, Theorem 2.1], dQ,q is a pseudometric for
any q. It is not a metric as, for instance, for the bigram distance we have
dQ,2("abaa", "aaba") = 0. It is because many strings may have the same q-
gram profiles.

Ukkonen in [453] provides an O(|u|+|v|)-time and O(|Σ|q+|u|+|v|)-space al-
gorithm to compute the q-gram distance. Also please notice that Equation (3.14)
is nothing more than the L1 metric between QPq(u) and QPq(v) and thus the
introduced dissimilarity measure can potentially be easily generalized.

C. Other string metrics

We should point out that many other string distances may be found in the
literature. For instance, the Dinu rank distance dDR [153], closely related to
the so-called Spearman’s footrule, see [149], has recently been of interest in
computational biology. As for its construction we need some linear order on
Σ now (in fact, its nature is irrelevant here), let us without loss of generality
assume that Σ = {1, . . . , k} ⊆ N – any set of characters may be mapped to a set
of consecutive integers.

Let us define a mapping Σ 3 ui 7→ (ui, ji) ∈ N2, i ∈ [du], du = |u|, such that
ji =

∑i
k=1 1(uk = ui). In other words, e.g., (3, 2) denotes the 2nd occurrence

of character 3 in u. From that we generate the sequence ũ = ((uσu(1), jσu(1)),
. . . , (uσu(du), jσu(du))), where σu stands for the ordering permutation of ũ with
respect to the linear order � such that (a, j) � (a′, j′) if and only if either a < a′,
or a = a′ and j ≤ j′ (it is a lexicographic order on N2). Now for any (a, j) ∈ N2

let:
ordu(a, j) =

{
σu(i) if (a, j) = (ũi, j̃i) for some i,
0 if (a, j) is not a member of ũ.

Example 3.37. For instance, given a string (2, 1, 1, 3, 3, 4, 1), we get:

i ui ji ũi j̃i ordu(ũi, j̃i)

1 2 1 1 1 (first character 1) 2
2 1 1 1 2 (second character 1) 3
3 1 2 1 3 (third character 1) 7
4 3 1 2 1 (first character 2) 1
5 3 2 3 1 (first character 3) 4
6 4 1 3 2 (second character 3) 5
7 1 3 4 1 (first character 4) 6

Definition 3.38. Let u,v ∈ Σ∗. The Dinu rank distance is given by:

dDR(u,v) =
∑

(a,j)∈ũ∪ṽ

|ordu(a, j)− ordv(a, j)| . (3.15)
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Thus, it is an L1 distance between the ord vectors. It may be shown that
dDR is a metric, see [153].

Figure A.20 gives our own implementation of the algorithm to compute the
Dinu rank distance which operates in O(du log du + dv log dv)-time. Note that it
is also possible to formulate it in such a way that it runs in O(du|Σ|+dv|Σ|)-time.
The costly step here is to find the stable ordering permutations of u and v, but
if more computations are needed on a set of strings (e.g., in implementations
of hierarchical clustering algorithms that require roughly n2 distance computa-
tions), they may be determined once in advance, and the time gets reduced to
O(du ∨ dv).

Other string (pseudo)metrics include, for example, the Jaro or Jaro-Winkler
distance (see [471]), or the one proposed by Ehrenfeucht and Haussler in [181].
Note that the issue of how to compare DNA sequences is still in the top of a
list of major open problems in bioinformatics/computational biology, see [476].
Yet, the discussed instances are perhaps the most frequently used and influential
ones. Having said that, let us proceed with some seminal distance-based fusion
function construction methods.

3.3.2 Median strings and a strings’ centroid
The concept of a median string was introduced by Kohonen [294] for the purpose
of smoothing of erroneous versions of strings and for string classification in, e.g.,
pattern recognition. Given x(1), . . . ,x(n) ∈ Σ∗ it is a string x∗ such that:

x∗ = arg min
x∈Σ∗

∑
i∈[n]

d(x(i),x),

where d is some string metric, originally the Levenshtein distance. Additionally,
we may consider a centroid-like search task:

x∗ = arg min
x∈Σ∗

∑
i∈[n]

d2(x(i),x).

Note that many strings which are solutions to the two above equations may exist.
Thus, the definition of a fusion function to aggregate a set of strings should be
formulated with care.

Remark 3.39. Note that in the space of character strings, a medoid (set median)
may in some contexts be more sensible than a median string, especially if n is
large. This is especially the case when not all the strings in Σ∗ are “valid” or
“meaningful” (e.g., when we aggregate words in natural language). Recall that
in the case of a medoid, we always get a string which is among those in the input
data set. Another option is to restrict the search domain and seek within some
dictionary.
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The case of two strings. Let n = 2 and x(1),x(2) ∈ Σ∗. Both of the input
objects are within the possible 1-median strings. In such a case, as a solution
one may want to consider a string x such that d(x(1),x) = bd(x(1),x(2))/2c
and d(x(1),x) + d2(x(2),x) = d(x(1),x(2)) as a median string, which is exactly a
solution to the string centroid problem. In other words, here a centroid is always
at the same time a medoid.

To compute a Levenshtein metric-based centroid of two strings, we may make
use of the fact that the classical algorithm that determines the value of this
distance (see Equation (3.9)) also provides us with the information on how to
edit the first string in such a way that the second one may be obtained. In order
to do so, we can apply consecutive edit operations on the first string until the
cumulative cost of edits made so far reaches bd(x(1),x(2))/2c. This leads to an
algorithm whose source code is given in Figure A.19. Note that the underlying
fusion function is not symmetric. It can be made such if we first order the two
input strings lexicographically.

Remark 3.40. The centroids of "1234" and "2345" with respect to the Lev-
enshtein, LCS, and Damerau-Levenshtein distances are exactly "234" and
"12345". We observe that whichever we choose as a desired output of a centroid-
like fusion function, the length internality property is violated.

However, in order to guarantee length internality, one may always restrict
the search domain and be rather interested in finding, e.g.:

x∗ = arg min
x∈
⋃dmax

d=dmin
Σd

∑
i∈[n]

dp(x(i),x),

where p ∈ {1, 2} and dmin =
∧n
i=1 |x(i)|, dmax =

∨n
i=1 |x(i)|.

General case. There are string distances which guarantee that a median search
is of polynomial-time. This is in the case of, e.g., the Dinu rank distance, see
[156].

However, unlike in the fixed d case and the Hamming distance, it turns out
that finding a median string with respect to the (weighted) Levenshtein distance
is an NP-complete problem as a function of n even if Σ is a binary alphabet.
Nicolas and Rivals in [374, 375] proved that by reduction to the intractable
longest common subsequence problem. An exact algorithm was provided by
Kruskal [301].

In order to find an approximate version of a median string with respect to
the Levenshtein distance, Kohonen [294] suggests to compute the set median
(which may be done easily) and then to vary each of the symbol positions of
the set median, making “errors” of all three types over the whole alphabet, and
checking whether the sum of distances from the other elements is decreased.
More elaborate approximate algorithms, in the case of weighted Levenshtein
distances, were given by Martinez et al. [350] (together with an application in
k-nearest neighbor classification) and Abreu and Juan in [2] – yet, they are
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also based on perturbations over the initial string. On the other hand, Jiang et
al. [262] incorporate an idea of computing median strings by embedding them
into Euclidean vector spaces. See also the works by Kohonen and Somervuo
[285, 433] for an application in constructing unsupervised self-organizing maps
(SOMs).

Here we shall provide a genetic algorithm (see Algorithm 2.72) to compute
the desired fusion function. Its most interesting facet concerns a proper crossover
and mutation scheme, the selection of which might not be trivial in the space of
vectors of arbitrary lengths. We recommend the following approaches:
— a crossover between u and v is set to be the centroid of {u,v} (see above),

— a single mutation operation may consist of a Levenshtein edit: with equal
probability we choose to perform at a randomly chosen index in a string
being mutated, either:

– an insertion of a character,
– a removal of a character, or
– a replacement of a character with one sampled from Σ.

Remark 3.41. The discussed crossover scheme is sometimes called an intermedi-
ate recombination. We observe that a cut-and-splice crossover (joining a random
prefix of u with a random suffix of v) does not perform well. Also what does not
work best is a scheme used in [155] (for center strings with respect to the Dinu
rank distance, see below), which basically is based on joining a random prefix of
the first vector with a permuted version of a sampled suffix of the second vector.

Remark 3.42. Note that finding the median with respect to the q-gram distance
is much more difficult.

Let P = {q(1), . . . ,q(m)} be a set of all q-grams that appear in at least
one of the input strings, i.e., P =

⋃n
i=1Qq(x(i)). We remap each string x(i)

to a q-gram profile c(i) = (cq(1)(x(i)), . . . , cq(m)(x(i))), which gives a vector of
nonnegative integers.

Our aim is to find:
arg min

c∈X

n∑
i=1

d1(c, c(i)), (3.16)

where X is a subset of Nm0 which denotes a valid q-gram profile, i.e., one from
which we may reconstruct a proper character string.

If the search space was just as simple as Nm0 , an integer programming (IP)
solver could be used for determining the 1-median (perhaps one that is able to
iterate through all the optimal solutions). Yet, for instance, assume that "abcb",
"cbac", "acab” are three input character strings and q = 2. Then the output
from an IP solver suggests that the best match consists of the following bigrams:
"ac", "cb", "ab". It is easily seen that no string can be constructed from such
a q-gram (multi)set.
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3.3.3 Closest strings
Recall that the 1-center problem aims at finding a point which minimizes the
maximal distance towards every point in a given input data set. What is known
in the literature under the name closest or center string problem represents
exactly such a type of task, this time however – in the character string domain.

More precisely, let d be a (pseudo)metric on Σ∗. Given x(1), . . . ,x(n), we
define:

ClosestStringd(x(1), . . . ,x(n)) = arg min
x∈Σ∗

∨
i∈[n]

d(x(i),x).

Note that the solution may be ambiguous. There are many applications of such
a fusion function in computational biology. Among some instances listed in [155]
we find: searching for motifs or common patterns in a set of given DNA sequences
or genetic drugs design with a structure similar to a set of RNA sequences.

Remark 3.43. For n = 2 a centroid of {x(1),x(2)} is also its center string.

If d is the ordinary Levenshtein distance and |Σ| ≥ 2, then – as shown
by Nicolas and Rivals in [374] – the center string is NP-complete with respect
to n (a proof is by reduction to the longest common subsequence problem).
Moreover, the mentioned authors show similar results for the case of the weighted
Levenshtein distance in [375].

Here, also an algorithm for finding the closest string with respect to the Dinu
rank distance is NP-complete, see [157]. Thus, in [155] Dinu and Ionescu propose
a genetic algorithm-based approach to approximate a closest string. Moreover,
in [154] they develop k-means-like and hierarchical clustering methods based on
closest strings and the rank distance.





Chapter 4

Aggregation of other data types

Fusion functions defined on more complex domains than in the previous
chapters are the subject of interest in this part of the monograph. In the
consecutive sections we shall assume that we deal with the following data

types:

1. directional (e.g., angular) data,

2. real intervals,

3. fuzzy numbers,

4. random variables,

5. trees and other graphs as well as rankings and other relations,

6. general finite semimetric spaces,

7. heterogeneous data sets.

We already observed that it is possible to aggregate fusion functions (in partic-
ular, regression and classification models) and metrics themselves. Even though
the construction and analysis of data fusion tools acting on the aforementioned
domains may seem much more difficult, it shall turn out that many of the already
known ideas may be easily extrapolated. For instance, if we deal with a linear
space (and thus if we are able to define addition and scalar multiplication oper-
ations properly), then a weighted arithmetic mean, i.e., a convex combination,
can be defined. If a linear ordering relation may be introduced quite naturally,
then we can refer to the notion of an order statistic. Moreover, having various
metrics or other kinds of dissimilarity measures, we may consider the notion of
a penalty-based fusion function.
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4.1 Directional data
Let us consider the situation where observations are defined on spheres {x ∈ Rd :
‖x‖ = 1} = Sd−1 ⊂ Rd, d > 1, rather than Euclidean spaces like in Chapter 2,
see [190, 332, 333]. For instance, this kind of information may occur in:

— data on location of earthquake epicenters (as Earth may be modeled by a
sphere),

— observations of winds, animal migration, paleomagnetism, etc. (here, a
natural phenomenon’s movement direction is the most relevant),

— events occurring periodically, e.g., on a 24-hour clock, yearly calendar
(whenever there is a cyclic pattern in time),

— handwriting features descriptions (for, e.g., optical character recognition,
see [20]),

— models of local protein structure, see [67],

and many others.
Handling directional (e.g, circular/angular for d = 2 or spherical for d = 3)

data is quite challenging. Even if we are on a circle, we do not have a natural
ordering of our data. This is because angles of −180◦ and 180◦ are equivalent,
as well as 0◦ and 360◦, and so on. Additionally, observe that the “average” of
165◦ and −165◦ should not be set to 0◦, etc. Our space of discourse here may
be conceived as a “modulo 2π”-type algebra.

Example 4.1. A rose diagram is a modification of an ordinary histogram, tailored
for depicting circular data. Figure 4.1 depicts a rose diagram of an exemplary
circular data set, being a random sample from a von Mises distribution (the
circular counterpart of a normal distribution) with expected value of π/4.

Remark 4.2. What should be the mean of 0, π/2, π, 3π/2? Of course, there is no
definite answer to this question.

Let us consider a few fusion functions that may be found in the literature
and which aim to provide information on the average value of a directional data
set. In other words, for d > 1 and some n, this time we are interested in fusion
functions like F : (Sd−1)n → Sd−1.

Firstly, we should note that in the case of directional data, most researchers
discourage using a stereographic projection of input data (see [432]), i.e., em-
bedding x(1), . . . ,x(n) in Rd. Instead, using the Euclidean space analogues are
preferred. Therefore, one may consider:

— arcs of a great circle as replacements for straight lines (the “shortest curve”
joining two points),
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Figure 4.1. An exemplary rose diagram of a circular data set.

— arc lengths as replacements for the Euclidean distance,

and so on.

Example 4.3. The mean of a circular data set x(1), . . . ,x(n) ∈ S1 is usually
defined as follows, see [259]. Let ϑ1, . . . , ϑn ∈ [−π, π[ denote the corresponding
angles. Then:

CircMean(ϑ)

= atan2
(

AMean(sinϑ1, . . . , sinϑn),AMean(cosϑ1, . . . , cosϑn)
)
,

where for x, y ∈ R \ {0}:

atan2(y, x) =

 arctan y
x if x > 0,

arctan y
x + π if x ≤ 0 and y > 0,

arctan y
x − π if x ≤ 0 and y ≤ 0.

Example 4.4. The Mardia-type (see [333]) median of a circular data set is a point
y on the unit circle such that:

— most of the observations are closer to the median y than to the anti-median
y′,

— the number of observations in each semi-circle determined by the diameter
yy′ are equal.

Note that for some data sets the Mardia-type median may be ambiguous, see
[381] for discussion and some modifications of the above method.
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Example 4.5. The extension of the 1-median is called the Mardia-Fisher spher-
ical median. It is a point y such that:

y = arg min
y∈Sd−1

n∑
i=1

d(x(i),y),

where d(x,y) = cos−1(〈x,y〉), i.e., the length of the geodesic arc joining x and y.

Example 4.6. Data depth notions were also generalized for the case of directional
data. For instance, an Oja-type spherical median was proposed in [431] – instead
of simplices we consider the intersection of all closed hemispheres that contain
d + 1 points. Moreover, in [325] the concept of angular simplical depth and
angular Tukey’s depth (rotation invariant) is considered and in [318] – angular
Mahalanobis depth.

4.2 Aggregation of real intervals
If input data of numeric type are not precisely given, they sometimes are repre-
sented as real intervals, see, e.g., [24, 281, 302]. Let I([a, b]) denote the set of
all closed subintervals of [a, b], a < b.

Example 4.7. In statistics, data may be provided by means of frequency tables
(which may be much easier to gather manually or using low accuracy measure-
ment devices). An exemplary grouped (histogram-like) data set is as follows:

time frequency

[0, 5[ 5
[5, 10[ 9
[10, 15[ 6
[15, 20[ 3

Example 4.8. Recall from page 30 that most values x ∈ R cannot be directly
represented in a set of floating-point numbers, F. Instead of simple round-
ing, we may model x as the smallest interval [x, x], where x, x ∈ F and
x ∈ [x, x]. Surely, x = fp(x) ≤ x is defined as x rounded towards −∞ and
x = fp(x) ≥ x – towards +∞. For instance, the GNU C library allows (on
CPU architectures and compilers that support this operation) to change the
rounding mode by a call to the int fesetround(int round) function, where
round ∈ {FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO}.

In the current setting, a few approaches to interval data fusion are possible.
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Intervals as bounded posets. On the set of real intervals we may define a partial
ordering relation, e.g., as follows:

— [x, x] vI [y, y] if and only if x < y, or x = y and x = y (the so-called
interval order),

— [x, x] ≤2 [y, y] if and only if x ≤ y and x ≤ y (Cartesian product extension
of ordinary ≤ on the set of real numbers).

In both cases we may obtain a bounded lattice, thus aggregation methods devel-
oped already in Section 1.7 are directly applicable here, see also [145]. Of course,
it is possible to derive more tailored results as well, such as ones concerning for
instance t-norms on the space of real intervals and the ≤2 order, see [138, 491].
In particular, it can be shown that for every semicontinuous t-norm T on I([0, 1])
there exists a t-norm T′ on [0, 1] such that T([x, x], [y, y]) = [T′(x, y),T′(x, y)].
Moreover, Làzaro and Calvo in [307] considered aggregation functions monotone
with respect to the above orders.

Defuzzification. Note that each interval [x, x] may be represented as x±r, where
x = (x+ x)/2 is its midpoint and r = (x− x)/2 ≥ 0 is its halfwidth. Some sta-
tistical data analysis handbooks suggest to “defuzzify” interval data and instead
just to consider the corresponding midpoints (corresponding halfwidths may be
aggregated separately to measure the imprecision of the outcome). Then, clas-
sical fusion functions for unidimensional quantitative data may be used.

Interval arithmetic. Let us introduce the following extensions of arithmetic op-
erations to the space of real intervals, see, e.g., [281]:[

x, x
]
⊕
[
y, y
]

=
[
x+ y, x+ y

]
,[

x, x
]
	
[
y, y
]

=
[
x− y, x− y

]
,[

x, x
]
⊗
[
y, y
]

=
[
x · y ∧ x · y ∧ x · y ∧ x · y, x · y ∨ x · y ∨ x · y ∨ x · y

]
,[

x, x
]
�
[
y, y
]

=
[
x, x

]
⊗
[
1/y, 1/y

]
whenever 0 6∈ [y, y

]
.

Functions like f : R → R may be extended straightforwardly. For example, if f
is strictly increasing, then let:

f ([x, x]) = [f(x), f(x)].

Remark 4.9. The Interval Arithmetic Library in Boost for the C++ programming
language [83] is able to programmatically quantify the propagation of rounding
errors in floating point computations by using proper rounding towards −∞
(left) and +∞ (right bound).

Note that for any s ≥ 0 it holds
[
x, x

]
⊗ s =

[
x, x

]
⊗ [s, s] =

[
sx, sx

]
. We

see that the set of intervals is closed under addition and scalar multiplication
and forms a linear space. Thus, the notion of a weighted arithmetic mean may
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easily be introduced. This leads to an idempotent and ≤2-monotone fusion
function. On the other hand, redefining OWA-like operators is not as trivial, as
the construction of a linear order on I([a, b]) can be done in many ways (e.g.,
by considering intervals’ midpoints, halfwidths, etc.).

Penalty-based fusion functions. In order to introduce penalty-based functions to
aggregate interval data, let us first recall the most popular interval metrics, see
also [39, Chapter 8].

Definition 4.10. Moore’s interval metric is given by:

dM
([
x, x

]
⊕
[
y, y
])

= |x− y| ∨ |x− y|. (4.1)

If [a, b] is interpreted as a point in R2, the Moore metric is exactly the Cheby-
shev distance, d∞. On the other hand, if we rely on the midpoint ± halfwidth
representation, then this metric is the d1 one: it holds dM(x ± rx, y ± ry) =
|x− y|+ |rx − ry|. Therefore, we have what follows (compare also Section 2.5).

— The dM-based 1-median of x ∈ I([a, b])n is equal to the componentwise
median of the inputs’ midpoints and halfwidths, see [114, Theorem 1].

— The dM-based 1-center of x ∈ I([a, b])n is given as:[
(
∨
i

xi +
∧
i

xi)/2, (
∨
i

xi +
∧
i

xi)/2
]
, (4.2)

see [114, Theorem 2],

Moreover, if we assume that dM2(x± rx, y ± ry) =
√
|x− y|2 + |rx − ry|2, then:

— dM2-based centroid of x ∈ I([a, b])n is equal to the componentwise arith-
metic mean of midpoints and halfwidths, see [114, Theorem 3].

Note that the above results may easily be generalized to hyperrectangles such
that their faces are parallel to axes of a coordinate system. Such data occur,
among others, in the so-called granular [24, 386] box regression, see [387] and
also [237, 388].

Among other interval metrics we find the Wasserstein one, dW(x ± rx, y ±
ry) =

√
(x− y)2 + (rx − ry)/3 and the Bertoluzza one dB(x ± rx, y ± ry) =√

(x− y)2 + 2(rx − ry)/3, see, e.g., [257] for a review and a possible application
in data clustering.

4.3 Aggregation of fuzzy numbers
Fuzzy set theory lets us to quite intuitively represent imprecise or vague infor-
mation, see [281]. Fuzzy numbers (FNs), introduced by Dubois and Prade in
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[164], form a particular subclass of fuzzy sets of the real line. They play an
important role in many practical applications, e.g., in automation and robotics
[271], statistical process control [251], survey design in the social sciences [140]
or decision making [116], since we often describe our knowledge about objects
through vague numbers such as “I’m about 180 cm tall” or “The train arrived
between 2 and 3 p.m.”.

Definition 4.11. A fuzzy set A with membership function µA : R→ [0, 1] is a
fuzzy number, if it possesses at least the four following properties:

(a) it is a normalized fuzzy set, i.e., µA(x0) = 1 for some x0 ∈ R,

(b) it is fuzzy convex, i.e., for any x1, x2 ∈ R and λ ∈ [0, 1] it holds:

µA(λx1 + (1− λ)x2) ≥ µA(x1) ∧ µA(x2),

(c) the support of A is bounded, where:

supp(A) = cl({x ∈ R : µA(x) > 0}),

(d) µA is upper semicontinuous.

Remark 4.12. It may be shown that the membership function of a fuzzy number
A is given by:

µA(x) =


0 if x < a1,
lA(x) if a1 ≤ x < a2,
1 if a2 ≤ x ≤ a3,
rA(x) if a3 < x ≤ a4,
0 if x > a4,

(4.3)

where a1, a2, a3, a4 ∈ R, lA : [a1, a2] −→ [0, 1] is a nondecreasing upper semi-
continuous function, lA(a1) = 0, lA(a2) = 1, called the left side of the fuzzy
number, and rA : [a3, a4] −→ [0, 1] is a nonincreasing upper semicontinuous
function, rA(a3) = 1, rA(a4) = 0, called the right side of the fuzzy number A.

Remark 4.13. A fuzzy number A may also be specified by providing its so-called
α-cuts, α ∈ [0, 1]. Let:

Aα = {x ∈ R : µA(x) ≥ α} (4.4)

for α > 0 and A0 = supp(A). The 1-cut is sometimes called the core of A. Every
α-cut is a closed interval, that is:

Aα = [AL(α), AR(α)] , (4.5)

with:

AL(α) = inf{x ∈ R : µA(x) ≥ α},
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AR(α) = sup{x ∈ R : µA(x) ≥ α}.

Note that if the sides of the fuzzy number A are strictly monotone, then AL and
AU are inverse functions of lA and rA, respectively.

Let F(R) denote the set of all fuzzy numbers. In practice, e.g., when com-
putations of arithmetic operations are performed, fuzzy numbers with simple
membership functions are often preferred. A very useful subclass of F(R), es-
pecially for computer processing, may be defined by considering fuzzy numbers
with piecewise linear side functions. Thus, let us consider the following defini-
tion, see [128, 129].

Definition 4.14. Fix n ∈ N0. Given α ∈ {(α0, α1, . . . , αn+1) ∈ [0, 1]n+2 : 0 =
α0 < α1 < · · · < αn < αn+1 = 1} and s ∈ {(s1, . . . , s2n+4) ∈ R2n+4 : s1 ≤ · · · ≤
s2n+4}, an α-piecewise linear n-knot fuzzy number S(α, s), is defined by:

S(α, s)L(β) = si+1 + (si+2 − si+1) β − αi
αi+1 − αi

,

S(α, s)U (β) = s2n+4−i + (s2n+3−i − s2n+4−i)
β − αi

αi+1 − αi
,

for some i ∈ [0 : n] such that β ∈ [αi, αi+1].

Please note that the membership function of S(α, s) is also piecewise linear
in the case when s is strictly monotone (for an example see Figure 4.2).
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Figure 4.2. Plot of an exemplary 3-knot piecewise linear fuzzy number S(α, s), with
α = (0, 0.3, 0.5, 0.7, 1) and s = (1, 1.5, 2, 2.4, 2.5, 4, 5, 5.5, 6.5, 7).
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Remark 4.15. It is worth noting that the class of fuzzy sets introduced in Defi-
nition 4.14 generalizes some well-known subfamilies of fuzzy numbers. Actually,
for n = 0 and s1 = s4 we get “crisp” real numbers, for n = 0 and s1 = s2, s3 = s4
we obtain “crisp” real intervals; if n = 0 and s2 = s3 we get triangular fuzzy
numbers, and by assuming only n = 0 we obtain trapezoidal fuzzy numbers.

Further on we assume that two fuzzy numbers A and B are equal (denoted
A = B) if AL(α) = BL(α) and AU (α) = BU (α) for all α ∈ [0, 1].

Let us consider a fusion function F : F(R)n → F(R), which aims to aggregate
n fuzzy numbers so that one fuzzy number is generated as a result.

Defuzzification methods. Concepts such as the expected value [167] or value
[144] of a fuzzy number (see Section 5.6) may be used to defuzzify a given
fuzzy number. Together with some measure of nonspecifity, e.g., width [112] or
ambiguity [144], these may be used to concisely represent A ∈ F(R) as x ± r,
i.e., a real interval. If such a level of data loss is accepted, then the aggregation
methods discussed in the previous section may be utilized.

Arithmetic operations. In order to extend a binary arithmetic operation ∗ (e.g.,
+, −, ×, /) to the set of fuzzy numbers, most often Zadeh’s extension principle,
see [270, 281], is used. In such a case C = A ~ B is given via the membership
function:

µC(z) = sup
z=x∗y

(µA(x) ∧ µB(y)) . (4.6)

Note that for fuzzy numbers being real intervals, the extension principle gener-
ates exactly the same arithmetic operators as presented in the previous section.
In particular, in the α-cut representation, the sum A⊕B and the scalar multi-
plication t⊗A (see, e.g., [151, page 40]) for every α ∈ [0, 1] is given by:

(A⊕B)α = Aα ⊕Bα = [AL (α) +BL (α) , AU (α) +BU (α)] (4.7)

and:
(t⊗A)α = t⊗Aα =

{
[t ·AL (α) , t ·AU (α)] if t ≥ 0,
[t ·AU (α) , t ·AL (α)] if t < 0. (4.8)

Remark 4.16. Note that a set of piecewise linear fuzzy numbers with fixed knot
configuration is closed under addition and scalar multiplication, but not, e.g.,
multiplication of two arbitrary members of this class. Nevertheless, this suffices
to introduce the notion of a weighted arithmetic mean.

Basic fuzzy number arithmetic operations are available in R via the FuzzyNum-
bers package [210]. For practical reasons, each arbitrary fuzzy number should be
approximated by a piecewise linear one (using a considerable number of knots),
see [129] for discussion.
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library("FuzzyNumbers")
A <- TrapezoidalFuzzyNumber (1, 2, 3, 4)
B <- TriangularFuzzyNumber (3, 5.5, 6)
C <- as.PiecewiseLinearFuzzyNumber(A, knot.n=100) *

as.PiecewiseLinearFuzzyNumber(B, knot.n=100)
alphacut(C, c(0, 1)) # support and core
## L U
## 0 3 24.0
## 1 11 16.5

Please note that the extension principle is based on the ∧ operation. It turns
out that this way of extending arithmetic operations to the set of fuzzy numbers
can be generalized by replacing ∧ in Equation (4.6) with, e.g., an arbitrary
triangular norm. This leads to the notion of the so-called interactive fuzzy
numbers, where one is able to take into account a kind of mutual interdependency
between such types of objects (compare the role of copulas in probability theory).
This idea has been investigated by Fullér and other researchers, see, e.g., [102,
126, 127, 163, 203].

Orders in the space of fuzzy numbers. The space of fuzzy numbers, just like
its subclass – real intervals, has no natural linear order. A relation A vS B
whenever, e.g., sup suppA ≤ inf suppB or A = B is merely a partial ordering.

Nevertheless, in the literature many authors have considered different ways
to construct so-called ranking indices, i.e., functions of the r : F(R) → R kind,
which can be used to construct a total preorder on the set of fuzzy numbers.
Such tools may be useful for symmetrizing weighted arithmetic means in order
to define OWA-like operations.

In particular, Ban and Coroianu in [21] characterized all the ranking indices
for trapezoidal fuzzy numbers that fulfill – among others – the set of famous
Wang and Kerre [462] axioms, including translation and scale invariance. De-
noting a trapezoidal fuzzy number as T(s1, s2, s3, s4), this very strong result
indicates that the only reasonable ranking index may be a kind of linear combi-
nation of s1, . . . , s4, given by:

r(T) = cs1 + (0.5− c)s2 + (0.5− c)s3 + cs4

for some c ∈ [0, 1].

Metrics in the space of fuzzy numbers and penalty-based fusion functions. Perhaps
the most often considered metric in the space of fuzzy numbers is an extension
of the Euclidean distance defined by the equation:

d2(A,B) =

√∫ 1

0
(AL(α)−BL(α))2

dα+
∫ 1

0
(AU (α)−BU (α))2

dα. (4.9)

In a very similar manner, arbitrary weighted Minkowski distances may be intro-
duced, see [235].
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Ban, Coroianu, and Grzegorzewski in [22] considered a trapezoidal fuzzy
number fusion problem. They derived an algorithm for determining a d2-based
centroid of n such fuzzy sets using the Karush-Kuhn-Tucker theorem, which is
expressed as:

F(t(1), . . . , t(n)) = T
(

AMean(s(1)
1 , . . . , s

(n)
1 ), . . . ,AMean(s(1)

4 , . . . , s
(n)
4 )
)
,

where t(i) = T(s(i)
1 , . . . , s

(i)
4 ).

Additionally, the same authors in [23] studied the conditions for which, given
a metric d in the space of fuzzy numbers, the corresponding 1-median exists and
is unique. It is worth noting that their results are based on the Rådström
embedding theorem and can be quite easily generalized to some other linear
spaces equipped with a norm-generated metric.

Some notes on aggregation of other types of fuzzy quantities. There are various
possible ways to generalize and/or extend the theory of classical fuzzy sets. One
of them includes the class of Atanassov’s so-called intuitionistic fuzzy sets (AIFS,
see, e.g., [16, 17]). Here, the degrees of “belongingness” and “nonbelongingness”
of an observation to an AIFS are modeled separately. Notably, AIFS are equiv-
alent to interval-valued fuzzy sets (see [147] for discussion), so we may rather
just model the degree of belongingness using a real interval.

In particular, e.g., Szmidt and Kacprzyk in [439] as well as Grzegorzewski in
[236] review possible ways to define metrics in the space of AIFS. Moreover, De-
schrijver in [146] defines OWA operators together with quasi-arithmetic means,
and Beliakov, Bustince, James, Calvo, and Fernandez [40] define median-like fu-
sion functions. The reader is referred to [39] for a comprehensive review of these
concepts and a list of practical applications of AIFS, e.g., in image processing.

4.4 Aggregation of random variables
Let us assume that we are given n random variables which are independent
and identically distributed (i.i.d.) – following a common cumulative distribution
function F . That is, let X = (X1, . . . , Xn) i.i.d. F . Moreover, let F be contin-
uous with support I = [a, b]. Note that basically in aggregation theory we only
consider observed values such as x = (x1, . . . , xn), i.e., particular realizations of
X. Probabilistic models provide us with yet another way for dealing with input
data imprecision (in fact, one that is accepted by most of the practitioners).

Definition 4.17. A statistic is any function of random variables.

Thus, each fusion function defined on a sequence of random variables is a
statistic in the probabilistic sense. Note that F (X1, . . . , Xn) = Y is per se
another random variable which follows its own distribution function.

Studies of probabilistic properties of particular classes of fusion functions
appear significantly less frequently in the literature than research dealing with
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constructions of particular functions fulfilling desired statistical properties. De-
spite this, let us now review a few fundamental results on general properties of
some fusion functions discussed so far.

Order statistics. Here are some basic facts on order statistics in an i.i.d. mo-
del, see [135, Chapter 2]. The cumulative distribution function of the ith order
statistic is given by:

F(i)(x) =
n∑
j=i

(
n

j

)
F j(x)(1− F (x))n−j = IF (x)(i, n− i+ 1) (4.10)

and – assuming that f is the common density of eachXi – the probability density
function is given by:

f(i)(x) = F i−1(x)(1− F (x))n−jf(x)
B(i, n− i+ 1) , (4.11)

where B(x, y) =
∫ 1

0 t
x−1(1 − t)y−1 dt is the Beta function and Ip(x, y) =∫ p

0 t
x−1(1−t)y−1 dt/B(x, y) is the regularized incomplete Beta function, x, y > 0,

p ∈ [0, 1].
In particular, the sample median for even n follows the c.d.f.:

FMedian(x) = 2
B(n/2, n/2) ·

·
∫ x

−∞
F (y)0.5n−1 ((1− F (y))0.5n − (1− F (2x− y))0.5n) f(y) dy,

see [148] for a proof.

Example 4.18. The ith order statistic of a sample of i.i.d. random variables uni-
formly distributed on [0, 1] has a Beta distribution with parameters i and n+1−i.
In any case, generally we can observe that deriving exact yet user-friendly forms
of order statistics’ distributions is a difficult task.

We already mentioned that a statistic is a random variable itself. For large
n and arbitrary p ∈]0, 1], the dnpeth order statistic is approximately normally
distributed. More precisely:

X(dnpe) ∼ AN
(

F−1(p),
√
p(1− p)√

nf(F−1(p))

)
,

where AN(µ, σ) denotes that the distribution is asymptotically normal with ex-
pected value µ and standard deviation σ.

Of course, do notice thatX(i) andX(j) are no more independent random vari-
ables. However, in the literature we may find general equations giving joint dis-
tributions of pairs, triples, etc., of order statistics. For more details on stochastic
properties of order statistics and functions of order statistics the reader is re-
ferred to the seminal monograph by David and Nagaraja [135].
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Remark 4.19. Provided that F is symmetric, the sample median is one of the
possible estimators of the expected value of X, that is – intuitively – fusion
functions which aim to guess one of the parameters or characteristics of the
unknown probability distribution – solely based on the observed sample. What
is worth noting, “good statistical properties”, such as unbiasedness, consistency,
efficiency, and so forth, may suggest which fusion function shall be chosen for
use in particular applications (see Section 5.1). For instance, it is known that
the arithmetic mean is an unbiased, minimal variance estimator of the expected
value provided that Xi has finite variance, which in simple statistical models
(e.g., not contaminated by outliers) is a much better choice than the median.

Weighted arithmetic means and ordered weighted averages. By the famous central
limit theorem we know that the arithmetic mean is asymptotically normally
distributed (under certain conditions on F ). For arbitrary weighted means, if
the expected value of X is finite, then the expected value of a weighted mean is
equal to the expected value ofX, because EWMeanw(X) =

∑n
i=1 wiEXi = EX.

Interestingly, in probability and statistics, OWA operators are special cases
of the so-called L-statistics, i.e., linear combinations of order statistics. Their
properties are quite well-known already, compare [68]. More generally, Kojadi-
novic and Marichal in [288] studied the moments and distributions of arbitrary
Choquet discrete integrals.

Extended versions of functions from both of the above classes have been
considered. In [436] the conditions on the triangle of coefficients choice for which
a corresponding L-statistic has a limiting normal distribution is studied. For that
we must assume certain weight generating schemes, compare Section 1.4.1. For
instance, in [258] the convergence of weighted averages is studied, where there is
one weight sequence (c1, c2, . . . ) and the statistic is of the form F(x1, . . . , xn) =∑n
i=1 cixi/

∑n
j=1 cj . On the other hand, like, e.g., in [68, 479], we may also

assume that F(x1, . . . , xn) =
∑n
i=1 ci,nxi/

∑n
j=1 cj,n, where ci,n = C(i/n+ 1)

for some coefficient generating function C :]0, 1[→ R0+.

Discrete Sugeno integrals and other lattice polynomial functions. Marichal in [338]
derived formulas for cumulative distribution functions and moments of lattice
polynomial functions in the case of independent (but not necessarily identically
distributed) random variables (real-valued ones). Note again that symmetric lat-
tice polynomial functions are equivalent to sample quantiles. The case in which
random variables are not necessarily independent was studied by Dukhovny in
[173]. Also, Marichal and Kojadinovic studied the behavior of linear combina-
tions of lattice polynomial functions in the case of uniformly distributed input
data, see [342]. The i.i.d. case for weighted lattice polynomial functions was
studied in [340]. Asymptotic behavior of the discrete Sugeno integral was stud-
ied by Gagolewski and Grzegorzewski in [213]. In particular, they showed the
asymptotic normality of this fusion function and that it is a consistent estimator
of some underlying probability distribution’s characteristic of location.
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Remark 4.20. Knowing the probabilistic behavior of fusion functions enables us
to construct tools, e.g., aiming at statistical inference or decision making. For
instance, a two-sample statistical hypothesis test for equality of Pareto distribu-
tion parameters based on the differences in the outputs of a particular Sugeno
integral (the Hirsch index, see Section 5.4) was proposed by Gagolewski in [206].

Operations on random variables. Taking into account the above and other facts
from probability theory, we may infer some new results concerning other classes
of fusion functions. For instance, let ϕ be a strictly increasing and continuous
function and assume that Y = ϕ(X). Knowing that:

FY (u) = FX(ϕ−1(u)), (4.12)

we may easily deduce the form of the cumulative distribution function of a quasi-
arithmetic mean from the form of the c.d.f. of the arithmetic mean etc. What is
more, note that under the current assumptions the density function is given by:

fY (u) = fX(ϕ−1(u)) d
du
ϕ−1(u). (4.13)

Basic arithmetic operations on independent random variables, see, e.g., [434],
are given by:

fX+Y (u) = (fX ⊕ fY )(u) =
∫ +∞

−∞
fX(t)fY (u− t) dt, (4.14)

fX−Y (u) = (fX 	 fY )(u) =
∫ +∞

−∞
fX(t)fY (t− u) dt, (4.15)

fX×Y (u) = (fX ⊗ fY )(u) =
∫ +∞

−∞

fX(t)fY (u/t)
|t|

dt, (4.16)

fX/Y (u) = (fX � fY )(u) =
∫ +∞

−∞

fX(t)fY (t/u)|t|
u2 dt. (4.17)

Jaroszewicz and Korzeń in [260] study families of probability distributions closed
under the above operations. Moreover, they develop a methodology for approxi-
mating arbitrary densities using piecewise Chebyshev interpolation. The PaCAL
(probabilistic calculator) package for Python [295] is based on these results.

Orders in the space of random variables. There are many possible ways to in-
troduce a partial order on the family of random variables, see, e.g., [311]. In
particular, first order stochastic dominance is defined as:

X �st Y if and only if (∀x) FX(x) ≥ FY (x), (4.18)

and the likelihood ratio order as:

X �lr Y if and only if g(u) = fY (u)
fX(u) is an increasing function of u. (4.19)
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Linear orders may be introduced by considering, e.g., numerical characteristics of
probability distributions such as the expected value (see Section 5.1). Moreover,
it is not uncommon to consider various dissimilarity measures (which might not
fulfill the triangle inequality), like the Kullback-Leibler divergence [303] and the
Kolmogorov-Smirnov, Cramer-von Mises, or Anderson-Darling statistics which
appear in the corresponding goodness-of-fit tests, see [435].

Randomness and fuzzy numbers. On a side note, we may also consider random-
ness and fuzziness together. In particular, Puri and Ralescu in [394] defined
the concept of a random fuzzy variable as a mapping from a sample space Ω
to the set of fuzzy numbers (see, e.g., [304] for one of the possible alternative
approaches). In such a framework, e.g., Sinova and others [426–429] considered
various types of median-like fusion functions for random intervals and random
fuzzy numbers.

4.5 Aggregation of graphs and relations
Recall (compare Remark 1.176) that, at least for the purpose of this book, we
may assume that there is a one-to-one correspondence between graphs and binary
relations. Nevertheless, data fusion methods for the two classes of objects differ
from each other as they most often serve much different practical purposes.

Aggregation of rankings and other relations. Suppose that P = {p1, . . . , pk} and
let L(P ) denote the set of all linear strict ordering relations on P . Our aim is to
construct a fusion function F : L(P )n → L(P ) that aggregates n linear ordering
relations into one that is as much “concordant” with the inputs as possible. From
now on we assume that the set of input orders x = (<(1), . . . ,<(n)) is fixed.

The construction of fair election methods continues to be of interest to many
researchers since the 18th century. For instance, the famous Borda count assigns
to each pj , j ∈ [k], a particular number of points relative to pj ’s position in a
ranking <(i), i ∈ [n], namely:

bi,j = 1 +
∣∣∣{l ∈ [k] : pl <(i) pj

}∣∣∣ . (4.20)

Then the position of pj in the aggregated ranking is a function of the total
number of points, b̄j =

∑n
i=1 bi,j . The reader is referred to the extensive litera-

ture on the subject for a treatment of those kinds of data fusion methods at an
appropriate level of detail, e.g., [15, 74, 123, 188, 321].

Nevertheless, we shall at least sketch two noteworthy classes of rank aggrega-
tion method construction. A Kemeny-like optimal aggregation scheme, compare
[269], aims at finding a ranking <∗ ∈ L(P ) which for some dissimilarity measure
d (e.g., a metric) has the property that:

n∑
i=1

d(<∗,<(i)) ≤
n∑
i=1

d(<,<(i)), (4.21)
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for all < ∈ L(P ). For instance, d may be the already mentioned Dinu [156]
rank distance or a function of the Kendall correlation coefficient τ [121], see also
[152] for a different choice. This approach to rank fusion is in fact an instance
of a penalty-based scheme. As most often exact algorithms for determining a
Kemeny optimal solution are computationally intractable, various approximate
methods are used in practice, e.g., ones that are based on evolutionary strategies
(compare Algorithm 2.72).

A second approach is based on a notion of monotonicity. For instance, Rade-
maker and De Baets in [400] considered the following measure Sx : L(P )2 → [0 :
n] of strength of support for a pair (pi, pj):

Sx(pi, pj) =
n∑
l=1

1(pi =(l) pj), (4.22)

see also [399]. For pi 6= pj it holds that Sx(pi, pj) + Sx(pj , pi) = n. The authors
suggest that the aggregated ranking <∗ should fulfill the following monotonicity
condition for all pi, p′i, pj , p′j ∈ P :

(pi w∗ p′i) and (pj w∗ p′j) and
(
(pi =∗ p′i) or (pj =∗ p′j)

)
=⇒ Sx(pi, pj) ≥ Sx(p′i, p′j).

If the construction of such a ranking is not possible, it is allowed to “slightly
modify” the values returned by Sx so that a concordance becomes possible (note
that the result might not be unique). Unfortunately, the procedure proposed in
[400] requires that all the possible rankings in L(P ) shall be considered. Nev-
ertheless, the reader is already aware that, e.g., a genetic algorithm may quite
easily be constructed to approximate the desired solution.

For an approach to aggregating arbitrary partial ordering relations, see, e.g.,
[398], in which pairwise preferences are learned through a majority-based voting
process computed iteratively (using the notion of transitive closure) in such a
way that cyclical and contradictory preferences are avoided.

Another interesting problem considers an aggregation of equivalence rela-
tions. For instance, Gionis, Mannila, and Tsaparas in [224] discuss the issue of
clustering aggregation. Given n partitions C1, . . . , Cn of the same data set X
into an equal number of subsets, d, they review different methods to find a single
d-partition that minimizes the total disagreement with the n input clusterings.

Aggregation of trees and other graphs. Graph representation of objects is par-
ticularly useful in various pattern recognition tasks, see, e.g., [60, 89]. We may
be faced with a need to aggregate a set of graphs (possibly with labeled edges
or nodes) when we need to determine a prototypical object in a set of similar
glyphs in an optical character recognition task or to construct a k-means-like
procedure for structurally described molecules. In such a case, we may rely on
the notion of a penalty-based fusion function.

The following two classes of dissimilarity measures for graphs are most often
referred to in the literature:
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— metrics based on maximal common subgraphs or minimal common super-
graphs, see, e.g., [90, 184, 459], for instance:

d(G1, G2) = 1− |mcs(G1, G2)|
|G1| ∨ |G2|

, (4.23)

where mcs(G1, G2) denotes the maximal common subgraph of two input
graphs and |G| gives the number of vertices in a graph G,

— edit distance-based metrics, see, e.g., [60, 217, 440, 492], defined by con-
sidering the minimal number of node/edge relabeling, deletions, insertions
(and possibly other types of edit operations) that are needed to transform
a given graph to another one.

Interestingly, as shown by Bunke in [88], there exist graph-based and mcs-based
distances which are equivalent to each other.

4.6 Aggregation in finite semimetric spaces

Let X = (x(1), . . . ,x(n)) be a finite set and (X, d) denote a space equipped with
a dissimilarity measure (a semimetric) d : X ×X → [0,∞], i.e., one that fulfills:

— symmetry, i.e., d(x(i),x(j)) = d(x(j),x(i)) for all i, j ∈ [n],

— d(x(i),x(i)) = 0 for all i ∈ [n].

We would like to construct a fusion function F which aggregates all elements in
X. Clearly, the output should be an element in X as well. Due to the high
generality of the assumed model (which as a matter of fact is quite realistic),
the set of possible operations that may be involved in the fusion process is
limited: practically, we may only be looking for a penalty-based exemplar, see
Section 2.5.2.

Let D : [0,∞]n → [0,∞] be a nondecreasing and idempotent fusion function
such that D(n ∗ 0) = 0. We consider a fusion function like:

F(x(1), . . . ,x(n)) = arg min
y∈X

D
(
d(x(1),y), . . . , d(x(n),y)

)
. (4.24)

If D(d1, . . . , dn) =
∑n
i=1 di, then we get a medoid, and if D(d1, . . . , dn) =

∨n
i=1 di,

a seboid is obtained. Clearly, other choices of D are also possible and potentially
useful.

A fast way to compute exemplars is crucial in, for instance, clustering large
data sets. In practice, the costly part of all the algorithms to compute F involves
the computation of d. This is the case of, e.g., long DNA sequences and the
Levenshtein distance. Thus, our aim here is to discuss some possible approaches
which keep the number of total calls to d as small as possible.

Let us suppose that D is associative with neutral element e. The simplest
approach to computing F is as follows.
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Algorithm 4.21. To compute arg miny∈X D
(
d(x(1),y), . . . , d(x(n),y)

)
in the

case of associative D with neutral element e, proceed as follows:

1. Let d = (n ∗ e);

2. For i = 1, 2, . . . , n− 1 do:

2.1. For j = i+ 1, i+ 2, . . . , n do:
2.1.1. Let d′ = d(x(i),x(j));
2.1.2. di = D(di, d′);
2.1.3. dj = D(dj , d′);

3. Return x(i) as result, where i = arg mini∈[n] di.

It is easily seen that the above algorithm requires exactly n(n− 1)/2 calls to
d, thus, it does not adapt to input data at all. Therefore, we may consider the
following algorithm.

Algorithm 4.22. To compute arg miny∈X D
(
d(x(1),y), . . . , d(x(n),y)

)
in the

case of associative D with neutral element e, proceed as follows:

1. Let bd =∞;

2. Let bi = −1;

3. For i = 1, 2, . . . , n do:

3.1. cd = e;
3.2. For j = 1, 2, . . . , n do:

3.1.1. Let d = d(x(i),x(j));
3.1.2. cd = D(cd, d);
3.1.3. If cd ≥ bd then break (go to step 3.3);

3.3. If cd < bd then:
3.3.1. bd = cd;
3.3.2. bi = i;

4. Return x(bi) as result.

This algorithm requires at least 2n but no more than n2 calls to d. Its
performance is thus strongly dependent on the type of input data, form of D, as
well as the order of input elements. Note that it does not take into account the
symmetry of d. Some savings would be possible at the cost of utilizing additional
O(n2) memory, but for large n the use of such a cache is highly discouraged: if
n = 100,000 and values of d are stored as 8-byte double type, we would need
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40 GB of RAM, which is way beyond memory limits of popular desktop PCs
nowadays.

Example 4.23. Let us compare an average speedup (or slowdown) in terms of
number of calls to d of the second algorithm as compared to Algorithm 4.21.
The averages are based on M = 10 Monte Carlo samples and in each considered
scenario n = 10,000 input data items were aggregated.

metric d type of data in X Alg. 4.22
speedup
(medoid)

Alg. 4.22
speedup
(seboid)

Euclidean normal distribution, d = 200 0.54 1796.1

Manhattan normal distribution, d = 200 0.54 1519.6

Maximum normal distribution, d = 200 0.55 1277.0

Dinu ACTG sequences, d = 200 0.65 1681.8

Levenshtein ispell Polish words dictionary 0.60 1646.9

It turns out that the use of the second procedure is particularly appealing when
computing a seboid.

In certain applications (such as clustering), for large data sets we might be
interested in a rough estimate of a set exemplar which is quite close to the
true one but can be computed much faster. For that we propose the following
procedure.

Algorithm 4.24. To approximate arg miny∈X D
(
d(x(1),y), . . . , d(x(n),y)

)
in

the case of associative D with neutral element e, proceed as follows:

1. Let ci = some random index in [n];

2. Let v = (n ∗ 0);

3. Let bi = ci; (current candidate)

4. Let bd = D
(
d(x(1),x(ci)), . . . , d(x(n),x(ci))

)
;

5. vci
= 1; (mark as visited)

6. Do:

6.1. Let change = 0;
6.1. For each ui in (indices of k-nearest neighbors of ci) do:

6.1.1. If vui
= 1 then continue to step 6.1;

6.1.2. Let ud = D
(
d(x(1),x(ui)), . . . , d(x(n),x(ui))

)
;

6.1.3. vui
= 1; (mark as visited)

6.1.4. If ud < bd then: (better candidate was found)
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6.1.4.1. bi = ui;
6.1.4.2. bd = ud;
6.1.4.3. change = 1;

6.2. ci = bi;

while change = 1;

7. Return x(bi) as result.

where k is some fixed but small integer.

This algorithm has been inspired by the steepest-descent optimization tech-
nique. Instead of computing the gradient (which in an arbitrary semimetric
space is of course unavailable), an element’s k nearest neighbors are taken into
account. Starting from a randomly chosen point, we proceed in the direction
which gives the best fit (inversely proportional to the value of D) until we find a
local minimum. In order to increase the quality of the result, it is suggested to
run the procedure a few times (note that the v vector should not be overwritten).

Figures A.21 and A.22 present a possible implementation of the algorithm
which assumes by default k = 5 and 15 restarts. Numerical studies indicate that
the procedure works reasonably well in the case of, e.g., D(d) =

∑n
i=1 di, and

D(d) =
∑n
i=1 d

2
i , but is far from perfect in the case of a seboid search (which

anyway can be performed very efficiently with Algorithm 4.23).

Example 4.25. Let us compute the speedup of an approximate medoid search
in terms of the number of d calls in Algorithm 4.22. Scenarios and experiment
setup are identical to the those used in Example 4.23, we used k = 5 and 15
restarts.

metric d type of data in X Alg. 4.24
speedup
(medoid)

Alg. 4.24
rel. err.
(medoid)

Euclidean normal distribution, d = 200 26.82 0.0001

Manhattan normal distribution, d = 200 25.70 0.0003

Maximum normal distribution, d = 200 25.47 0.0052

Dinu ACTG sequences, d = 200 15.24 0.0065

Levenshtein ispell Polish words dictionary 24.28 0.0134

We observe that the speedup is considerable while the relative error is kept small.

A different approximate algorithm – characterized by a competitive perfor-
mance, but one which only works in the case of a medoid search task – is given by
Micó and Oncina in [365] (note that our approach may also be used to improve
the quality of its output). There is also an exact algorithm proposed by Juan
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and Vidal in [264]. It may be applied in the cases when d is a metric. Never-
theless, it does not perform well for high-dimensional data (due to the so-called
curse of dimensionality, compare, e.g., [5]).

4.7 Aggregation of heterogeneous data

Aggregation of complex data sets consisting of heterogeneous variables (like those
representing information coming from different types of sources and/or having
incompatible representations) faces us with new challenges that perhaps were
not present before. Nevertheless, it turns out that many of the methods we have
already discussed are still valid in such a setting, compare [64, 447]. Other ones
need to be adjusted accordingly or combined with other data fusion and data
mining tools which start to serve their purpose when they are considered as a
whole system.

Let us, however, note that the data fusion algorithms already presented are
very general in their nature and thus can be described and examined via a
plethora of formal methods and approaches. On the other hand, data science
practitioners are aware of the fact that dealing with complex data sets some-
times may appear to be more art than science: each database often needs a
customized treatment and it is not trivial to find frequently occurring, common
patterns. Nevertheless, we shall at least try to explore limitations of the data
fusion methods reviewed so far, suggest some heuristics to overcome them, as
well as indicate few new types of data mining tasks, where their usage may be
advantageous.

In the commencing sections of the second Chapter we discussed in detail
data fusion methods to aggregate points in a d-dimensional space. We relied
on an implicit assumption that the combined variables were homogeneous. In
such a scenario, operations like rotations were fully justified. However, in a
heterogeneous setting, this might not be the case. The easiest way to deal with
data in complex domains is to apply simple componentwise fusion functions,
that is, treat each of the variables independently. This is an imperfect solution,
as any interactions between features cannot be taken into account in this way.
Therefore, we may try to group variables of similar type and apply data fusion
methods separately for each block. We can do the same with respect to clustered
records that denote similar entities.

Penalty-based approaches may be quite powerful here too, especially if we
have variables of mixed types, like categorical, ordinal, and numerical in one data
set. Once a set of variables is partitioned, various dissimilarity measures may
be introduced on each group, and then such measures may be aggregated (for
instance, it is known that a conical combination of different metrics generates a
new metric, etc.).

As usual, proper data wrangling – that is preprocessing, remapping, and
reencoding – is a crucial initial stage of the data analysis process. An important
step often consists of decorrelation of variables, e.g., via principal component
analysis, correspondence analysis, or manifold learning procedures, see [242].
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This can also lead to reduction in data dimensionality.
Fusion functions are also required in the process of improving data quality.

For example, in the case of missing observations, it is customary to group (clus-
ter) observations which represent similar entities and fill information that is not
available with “averaged” results, compare [416].

Another area where they may be found useful deals with data deduplication
and consolidation. That is, when removal of similar entities is needed. In such
a case, we merge multiple redundant entries and replace them with aggregated
ones, those that minimize information loss. For instance, Bronselaer, Szymczak,
Zadrożny, and De Tré [85] develop a framework that during such a process
takes into account a natural ordering relation that is learned dynamically from
a data set. Moreover, in [84] a theoretical model for automated coreferent object
detection and processing is proposed.

Let us also mention the record linkage task, see [59, 158, 472], which aim is to
combine a set {D1, . . . , Dn} of different, inconsistent, or non-unified databanks
(e.g., SQL tables) into a single new database somehow. Typically, this is done
by identifying all records in a database Dj that correspond to a record r in
a databank Di, i 6= j, either exactly (this may be done by simple join-like
operations) or approximately in cases where data are contaminated by errors. In
the latter setup, fast fuzzy matching algorithms are needed, including distance-
and clustering-based ones, compare [447]. This typically involves the use of
complex data structures such as vp- and kd-trees, GNAT, or similar [82, 316,
487], which speed up searching for similar objects.



Chapter 5

Numerical characteristics of objects

Synthetic measures of diverse characteristics of objects are useful whenever
there is a need to quantify how similar to or different from each other are
given entities in terms of some carefully distinguished features. One such

notion discussed already is a vector norm (see Definition 1.45). We shall see
that in order to capture exactly a type of behavior or property that is of interest
to a practitioner in a particular setting, we should rely on its proper mathe-
matical axiomatization. In this chapter we are interested in exploring various
ways to numerically characterize probability distributions, spread of numerical
sequences (in their entirety), the degree of decision makers’ consensus, economic
inequality or poverty, entropy, empirical distribution shape, fuzzy numbers, as
well as fusion functions themselves. We end the discussion with the notion of a
checksum function, which shall appear different in its very nature from all the
other measures.

5.1 Characteristics of probability distributions
The development of currently widely used measures of data central tendency and
variability is inevitably connected with the history of probability and statistics.
Perhaps the first official (published) use of the term standard deviation (in the
context of probability) is due to Pearson [385, Part I]:

Let the equation to the probability-curve be y′ = 1
σ
√

2π e
−x2/(2σ2).

Then σ will be termed its standard-deviation (error of mean square).
[385, page 80]

However, it is known that the terms “root mean squared error” and “mean error”
were already used by Gauss.

On the other hand, the term variance was probably first defined in the paper
by R.A. Fisher [191]:
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It is therefore desirable in analyzing the causes of variability to deal
with the square of the standard deviation as the measure of variability.
We shall term this quantity the Variance (. . . ). [191, page 399]

Please note that both quotations discuss in fact the underlying probability
distribution characteristic, and not the (observed) sample-based estimates. The
debate leading to the acceptance of a proper distinction between the objects
being of interest of probability theory, on the one hand, and statistics, on the
other, engaged many leading researchers for many years in the first decades of
the 20th century1. The need to discriminate between a (probabilistic) popula-
tion with its characteristics (such as expected value µ or variance σ2), and a
(statistical, observed) sample from which we may calculate the characteristics’
estimates (like mean x̄ or sample variance s2) is explained, e.g., in Fisher’s paper
[192]:

(. . . ) it has happened that in statistics a purely verbal confusion
has hindered the distinct formulation of statistical problems; for it
is customary to apply the same name, mean, standard deviation,
correlation coefficient, etc., both to the true value which we should
like to know, but can only estimate, and to the particular value at
which we happen to arrive by our methods of estimation; so also in
applying the term probable error, writers sometimes would appear to
suggest that the former quantity, and not merely the latter, is subject
to error.

Moreover, Fisher in the same paper [192] considered two estimates of the
(population’s) standard deviation σ (in some statistical model), namely themean
error:

ME(x) = 1
n

√
π

2

n∑
i=1
|xi − AMean(x)|, (5.1)

and the mean squared error defined as:

MSE(x) =

√√√√ 1
n

n∑
i=1

(xi − AMean(x))2. (5.2)

This paper is a beautiful early example of a comparative study concerning the
usage of two different sample statistics that shall measure the same quantity.

In this section our main focus is on various methods that can be used to
measure central tendency or dispersion of probability distributions. Note that
in Section 4.4 we considered fusion functions that act on random data and this

1According to the on-line encyclopedia “Earliest Known Uses of Some of the Words of
Mathematics” (maintained by J. Aldrich, see http://jeff560.tripod.com/mathword.html, see
also “The Oxford Dictionary of Statistical Terms”): Although Student (1908) had used the
phrases, “mean of the population” and “mean of the sample”, it was not until the 1930s that
such terms as sample mean or population standard deviation became prominent.
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time we are interested in functions that are used to numerically summarize some
aspects of the underlying probability distribution’s behavior.

Then, we shall consider the link between the two approaches. More precisely,
we concentrate on the properties that a statistic (a fusion function acting on
random data) should fulfill in order to call it an estimator of a probability
distribution characteristic.

5.1.1 Measures of location

Denote by Dd the set of probability distributions in Rd, d ≥ 1. Note that if
a random variable X is f -distributed, that is X ∼ f ∈ Dd, then we shall also
denote this fact by X ∈ Dd for brevity. Moreover, if ϕ : Dd → Z for some set
Z, then instead of writing ϕ(f) we shall also use the notation ϕ(X).

Oja in [378] considered the following axiomatization of measures of loca-
tion, which is a multivariate generalization of a model introduced by Bickel and
Lehmann in [56].

Definition 5.1. We call L : Dd → Rd a measure of location in the Oja sense,
whenever:

(a) for any X,Y ∈ Dd if X �st Y , then L(X) ≤ L(Y ),

(b) for all matrices A ∈ Rd×d of full rank, all t ∈ Rd, and X ∈ Dd such that
AX + t ∈ Dd it holds that L(AX + t) = AL(X) + t.

In other words, a measure of location is first order stochastic dominance-
monotone and affine equivariant.

Note that if the distribution of X is symmetric about µ, that is µ −X has
the same distribution as X −µ, then L(X) = µ. In other words, if Dd is a class
consisting solely of symmetrical probability distributions, then all measures of
location coincide.

Apart from the expected value, EX, also, e.g., the population version of the
Oja median is an example of a location measure.

5.1.2 Measures of dispersion
Bickel and Lehmann in [57] considered measures of dispersion for a family of
symmetric univariate probability distributions D1. We consider X less dispersed
than Y , denoted X �d Y , whenever |X − µX | �st |Y − µY |, where µX and µY
denote the points of symmetry of X and Y , respectively. Then S : D1 → [0,∞]
is called a dispersion (scatter) measure, whenever:

(a) for all X,Y ∈ D1, if X �d Y , then S(X) ≤ S(Y ),

(b) for all s, t ∈ R, X ∈ D1, if sX + t ∈ D1, then S(sX + t) = |s|S(X).
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Equivalently, dispersion measures are�d-monotone, scale equivariant, and trans-
lation invariant.

The presented notion has been generalized by Oja in [378]. He defined S :
Dd → [0,∞] to be a scatter measure, if it fulfills generalized �d-monotonicity
(the concept is based on areas of appropriate multidimensional simplices), as
well as such that S(AX + t) = |det(A)|S(X). In particular, this class includes
the following measures for any p > 0:

— generalizations of the unidimensional standard deviation:

SdX =
√

VarX =
√
EX2 − (EX)2 =

√
(E(EX −X)2),

such as:
S(X) = p

√
E
(
vol(CH(EX,X1, . . . , Xd))

)p
,

— generalizations of the Gini mean difference such as:

S(X) = p

√
E
(
vol(CH(X1, . . . , Xd+1))

)p
,

where f ∈ Dd and X,X1, . . . , Xd+1 i.i.d. f .
Additionally, Bickel and Lehmann in [58] considered measures of spread for

univariate but not necessarily symmetric distributions.

5.1.3 Point estimation
Suppose that S is a statistic and that Fϑ is a probability distribution charac-
terized by some parameter ϑ. Assume that X = (X1, . . . , Xn) is a sequence of
random variables following Fϑ (most often they are considered to be indepen-
dent). The aim of point estimation, see, e.g., [310, 423], is to determine whether
S(X1, . . . , Xn) may be used somehow to guess – in an educated manner – the
value of ϑ. As ϑ is a fixed value and S(X1, . . . , Xn) is a random variable, there
are many possible ways to relate these two objects. In particular, we may be
interested in measuring an estimator’s:

— Bias or expected systematic error, i.e.:

Biasϑ(S) = E (S(X)− ϑ) . (5.3)

Note that if Biasϑ(S) = 0, we call S an unbiased estimator of ϑ.

— Mean squared error, i.e.:

MSEϑ(S) = E (S(X)− ϑ)2
. (5.4)

It is well-known that MSEϑ(S) = Var S(X) + (Biasϑ(S))2.

— Efficiency, which is equal to 1 whenever S is unbiased and has the small-
est possible mean squared error (and hence variance) among all unbiased
estimators of ϑ.
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For instance, it may be shown that if (X1, . . . , Xn) is a sample of i.i.d. random
variables with expectation of µ and variance of σ2, then the sample variance
given by:

Var(X) = 1
n− 1

n∑
i=1

(Xi − AMean(X))2 (5.5)

is an unbiased estimator of σ2. Moreover, the arithmetic mean is an unbiased
estimator of µ. If, additionally, the random variables are normally distributed,
then AMean is of efficiency 1. In such a case, the sample median is an unbiased
estimator of µ too, but yet not as efficient.

Additionally, asymptotic properties (for arbitrarily large n) may also be stud-
ied. If (X1, X2, . . . ) is a sequence of Fϑ-distributed random variables, these
include:

— asymptotic unbiasedness,

— asymptotic efficiency,

— asymptotic normality,

— consistency, which holds if limn→∞ Pϑ(|S(X1, . . . , Xn)−ϑ| < ε) = 1 for all
ε > 0,

and so on. For instance, the sample standard deviation, SD, is only an asymp-
totically unbiased estimator of the population standard deviation, σ.

From the described perspective, it is not unusual to take a unidimensional
fusion function F, treat it as a statistic, and answer questions such as:

— What does F estimate?

— How well does it perform in doing so?

in particular probability models. Such an approach may provide a new insight
into the existing fusion functions (compare Section 4.4 too).

5.2 Spread measures
Many introductory textbooks on applied statistics and academic lectures on the
subject include a review of the so-called descriptive statistics, i.e., methods for
summarizing quantitative unidimensional data for performing exploratory data
analysis. Most often such methods are divided into at least two classes (see [3,
Chapter 1] and, e.g., [132]):

1. Measures of central tendency (also known as measures of location or cen-
trality of observations); e.g., sample quantiles (including median, min, and
max), arithmetic mean, mode, trimmed and Winsorized mean etc.

2. Measures of variability (or data spread), e.g., range, interquartile range,
variance, standard deviation.
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As we noted in the first chapter, aggregation theory classically focuses on (among
others) the broadly-conceived means. However, we often need a very different
kind of a proper synthesis of multidimensional numeric data into a single number
– the one that falls into the second category above.

It turns out that popular measures of data variability may be divided further
into the following subclasses:

2a. Measures of absolute data spread, e.g., standard deviation, interquartile
range, median absolute deviation. In this case, an absolute spread mea-
sure V may accompany an aggregation function A in order to state that a
numeric list x is concisely described as A(x)± V(x).

2b. Measures of relative data spread (e.g., Gini coefficient, coefficient of varia-
tion), which are dependent on the order of magnitude of a numeric list’s el-
ements. For instance, imagine that we have two groups of people. The first
group consists of (1, 2, 3)-year-olds and the second one of (101, 102, 103)-
year-olds. Intuitively, the relative spread of age in the first group is greater
than that of the second group.

In this section we would like to focus on measures of absolute data spread
from the perspective of aggregation theory. For that, we shall properly axioma-
tize this class so that we establish exactly our universe of discourse.

Remark 5.2. Pitman in [392] claimed that the function C, used to estimate the
scale parameter c in his simple translate-scale model (see Remark 1.56), should
satisfy the conditions:

(c1) C(x1, . . . , xn) ≥ 0, (nonnegativity)

(c2) C
(
x1+λ
µ , . . . , xn+λ

µ

)
= C(x1,...,xn)

µ , for all λ ∈ [−∞,∞] and µ > 0.

(scale equivariance and translation invariance)

Unfortunately, his setting does not serve our purposes: it is too weak. Let:

S(x) =


0 for x = (n ∗ c) for some c,∑n

i=1(xi − x̄)2∑n
i=1(xi − x(1))

otherwise.

It is easily seen that S is nonnegative, translation invariant, and S(sx) = sS(x)
for all s ≥ 1. However, it holds that S(0, 4, 100) ' 61.64 > S(0, 10, 107) ' 59.71,
which is counter-intuitive. Moreover, it may be easily seen that some “classical”
spread measures, e.g., the sample variance, do not fulfill (c2).

5.2.1 Measures of absolute spread for unidimensional data
Here we shall rather rely on the axiomatization of measures of absolute data
spread which was proposed by Gagolewski in [209].
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x′
1 x′

2 x′
3 x′

4 x′
5 x′

6 x′
7 x′

8 x′
9 x′
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 5.1. Two exemplary numeric lists with different spreads: x 4n x′.

Definition 5.3. For some I = [a, b], given x,x′ ∈ In, we write x 4n x′ and say
that x has not greater absolute spread than x′, if and only if for all i, j ∈ [n] it
holds:

(xi − xj)(x′i − x′j) ≥ 0 and |xi − xj | ≤ |x′i − x′j |. (5.6)

Please note that 4n is a preorder on In, that is, a relation that is reflexive
and transitive. What is more, it is not necessarily total, i.e., not all vectors are
comparable with each other.

Additionally, whether 4n holds for given x,x′ depends on how the elements
in both vectors are jointly ordered. The left side of (5.6) implies that if x 4n x′,
then x,x′ are comonotonic.

Figure 5.1 illustrates two vectors: x and its modified version x′ with increased
distances between consecutive elements.

Remark 5.4. Let us study how 4n behaves under scaling and translation of
elements in a given vector.

It is easily seen that for all s ≥ 1 and x ∈ In such that sx ∈ In we have
x 4n sx. Additionally, for all t ∈ R for which t + x ∈ In it holds x 4n t + x
and, at the same time, t+ x 4n x. Thus, 4n is not antisymmetric.

What is more, for all c ∈ I, (n ∗ c) is a minimal element of (In,4n), i.e., for
any x we have (n ∗ c) 4n x. This relation is also convex: for all x,x′, α ∈ [0, 1]
it holds x 4n αx + (1− α)x′ 4n x′ whenever x 4n x′.

Let us proceed with the definition of objects in which we have a special
interest in this section.

Definition 5.5 ([209]). A spread measure is a mapping V : In → [0,∞] such
that:

(v1) for each x 4n x′ it holds V(x) ≤ V(x′),

(v2) for any c ∈ I it holds V(n ∗ c) = 0.

Note that the first characteristic property implies that each spread measure
is translation invariant. Moreover, for all s ≥ 1 and x ∈ In such that sx ∈ In it
holds V(x) ≤ V(sx).
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In [209] it has been shown that this class includes, among others, the following
spread measures:

— Var(x) = 1
n−1

∑n
i=1 (xi − AMean(x))2, (sample variance)

— SD(x) =
√

Var(x), (standard deviation)

— Range(x) = Max(x)−Min(x), (range)

— IQR(x) = Q0.75(x)− Q0.25(x), (interquartile range)

— MAD(x) = 1.4826Median(|x−Median(x)|),
(median absolute deviation)

— ME(x) = 1
n

√
π
2
∑n
i=1 |xi − AMean(x)|, (Fisher’s mean error)

that is functions widely used in exploratory data analysis (all of them are sym-
metric). Note that the sample variance, standard deviation, mean error, and
range are 3-incremental fusion functions.

Proposition 5.6. Let V be a spread measure such that supx∈In V(x) = u. Then
for each nondecreasing function ϕ : [0, u]→ [0, (b− a)] such that ϕ(0) = 0, ϕ ◦V
is a spread measure too.

Taking the above into account, the following further classes of fusion func-
tions (together with their monotone transforms) may be distinguished:

— V(x) =
∑n
i=1
∑n
k=1 |xi − xk|p for some p ≥ 1, in particular, the sample

variance:

Var(x) = 1
2n(n− 1)

n∑
i=1

n∑
k=1

(xi − xk)2 (5.7)

and the Gini mean difference:

MD(x) = 1
n (n− 1)

n∑
i=1

n∑
k=1
|xi − xk|, (5.8)

— V(x) = A (|x1 − Qα(x)| , . . . , |xn − Qα(x)|) for some n-ary classical aggre-
gation function A and α ∈ [0, 1], e.g., MAD, IQR, and Range,

— WD2WAM spread measures of the form:

V(x) =
n∑
i=1

wi

xi − n∑
j=1

wjxj

2

(5.9)

for some weighting vector w as well as their symmetrized counterparts
(WD2OWA operators), e.g., the sample variance,
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— WD1WAM spread measures V(x) =
∑n
i=1 wi

∣∣∣xi −∑n
j=1 wixj

∣∣∣ and the
corresponding WD1OWA operators, e.g., the Fisher mean error,

— WD∞WAM operators V(x) = maxi=1,...,n

∣∣∣xi −∑n
j=1 wjxj

∣∣∣ as well as the
corresponding WD∞OWA operators.

Note that in [207] Gagolewski considered normalized versions of some of the
above spread measures classes which can be used in decision making. They
attain the greatest possible value equal to (b− a) (in particular, 1 if I = [0, 1]).
For example:

NWD2WAMw(x) =

√∑n
i=1 wi

(
xi −

∑n
j=1 wjxj

)2

(b− a)
√
p(1− p)

, (5.10)

where p = maxA⊆[n],
∑

i∈A
wi≤0.5

∑
i∈A wi, and:

NWD1WAMw(x) =

∑n
i=1 wi

∣∣∣xi −∑n
j=1 wjxj

∣∣∣
2p(1− p)(b− a) , (5.11)

where p = maxA⊆[n],
∑

i∈A
wi≤0.5

∑
i∈A wi.

Let us proceed with an appealing characterization of measures of absolute
spread. For any given x ∈ In, let diff(x) = (x(2)−x(1), . . . , x(n)−x(n−1)) ∈ [0, (b−
a)]n−1 denote the iterated difference between consecutive ordered components of
a given vector. Please note that such a function is available in some programming
languages: in particular, it may be computed by calling diff(sort(x)) in R.
We see that if δ = diff(x), then 0 ≤ δi ≤ b− a and

∑n−1
i=1 δi ≤ b− a. Intuitively,

if x is already ordered, then this operation may be viewed as a kind of “vector
differentiation”. On the other hand, for x̃ = cumsum(x(1), δ) = (x(1), x(1) +
δ1, x(1) + δ1 + δ2, . . . , x(1) + δ1 + · · · + δn) denoting the cumulative sum of δ̂ =
(x(1), δ) we have x(i) = x̃i, xi = x̃σ−1(i), where σ is such that x ∈ Inσ. Thus, x
may be reconstructed from x(1), δ, and σ.

We are now in a position to provide an equivalent definition of the relation
defined by Equation (5.6).

Lemma 5.7 ([209]). For any x,x′ ∈ In it holds x 4n x′ if and only if x,x′
are comonotonic and diff(x) ≤n−1 diff(x′).

Therefore, we have what follows.

Theorem 5.8 ([209]). V : In → [0,∞] is a spread measure if and only if the
following conditions are valid:

(v1’) for each comonotonic x,x′ such that diff(x) ≤n−1 diff(x′) we have V(x) ≤
V(x′),

(v2’) infx∈In V(x) = 0.
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Corollary 5.9. For any V : In → [0,∞], V|σ fulfills (v1) and (v2) if and only
if there exists Ã : [0, b− a]n−1 → [0,∞] such that V|σ(x) = Ã(diff(x)) is nonde-
creasing and lower endpoint-preserving.

We see that symmetric absolute spread measures are nothing more than
aggregation functions computed on iterated differences of an input vector.

5.2.2 Measures of relative spread
As indicated in [209], some “normalized” measures of relative spread may also
be considered. At the most general level, these are functions of the form:

S(x) = V(x)
A(x) , (5.12)

where V is an absolute spread measure, and A is an aggregation function.
For instance, the well known (unit-free) Gini coefficient, defined as:

Gini(x) = MD(x)
2AMean(x) (5.13)

is definitely not a measure of absolute spread. This is because it is not even trans-
lation invariant: we have Gini(0, 2, 4) = 2/3, and Gini(2, 4, 6) = 1/3. Moreover,
even though (0, 2, 4) 4n (0, 3, 5), we have G(0, 3, 5) = 5/8 < 2/3 = G(0, 2, 4). A
similar observation may be made about the so-called coefficient of variation:

CV(x) = SD(x)
AMean(x) . (5.14)

Both functions take into account the order of magnitude of the observations, and
are ratio scale invariant (i.e., S(sx) = S(x) for all s > 0) as well as continuous
but not translation invariant.

5.2.3 Spread measures for multidimensional data
Similarly as in Chapter 2, let us again assume that we are given X ∈ (Rd)n. As
noted, e.g., in [324], there are two ways to quantify dispersion of a multivariate
data set: as a matrix or as a scalar. The latter is of course much easier to
construct and fits the overall setting established in this chapter. Nevertheless,
let us at least mention that, e.g., the sample covariance matrix, given by:

Cov(X) = 1
n− 1 (X− CwAMean(X)) (X− CwAMean(X))T ∈ Rd×d,

can reveal other useful information on a dataset, such as the orientation of the
empirical probability mass distribution and the dispersion of individual variates
or covariates.

In a recent contribution, Kołacz and Grzegorzewski [289] considered multi-
dimensional spread measures defined as functions V : (Rd)n → [0,∞] that are:
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— symmetric,

— translation and rotation invariant,

— homogeneous, i.e., there exists a nondecreasing function ϕ : [0,∞[→ [0,∞[
such that V(sX) = ϕ(s)V(X) for all s > 0 and X ∈ (Rd)n.

— such that V(n ∗ x) = 0 for all x ∈ Rd.
Similarly as the Pitman [392] axiomatization of a scale parameter estimate,
their setting seems to be too mild, as it only concerns uniform scaling in each
direction, translation, and rotation transforms. It would be informative, if it
referred to some ordering relation. Nevertheless, this axiomatization is a good
starting point for future research on the topic – to our best knowledge there are
no alternatives to this proposal in the literature yet. Interestingly, the authors
explore the relationships between spread measures for vectors of different arities
and functions that are generated via particular so-called multidistances [346,
347].

Remark 5.10. The Oja simplex volume-approach (see [378] and Section 5.1.2)
gives one possibility for generalizing the 4n relation defined in [209]. Note that
for d = 1 the condition |x(i) − x(j)| ≤ |x′(i) − x′(j)| presented in Equation (5.6)
may be written also as:

vol
(

CH(x(i),x(j))
)
≤ vol

(
CH(x′(i),x′(j))

)
,

which now can be generalized for any d as:

vol
(

CH(x(i1), . . . ,x(id+1))
)
≤ vol

(
CH(x′(i1), . . . ,x′(id+1))

)
,

where i1, . . . , id+1 ∈ [n]. Regardless of some problems with defining comono-
tonicity (which can be quite easily bypassed), a fusion function monotone with
respect to the above partial ordering is automatically translation and rotation
invariant. Moreover, uniform scaling in each direction shall never lead to a
decrease in its output.

Here are a few particular classes and/or general construction methods for
dispersion measures.
— Unidimensional spread measures may be generalized to any d via projec-

tion pursuit, see [253]. This is because we may apply all possible one-
dimensional projections of the data set and compute the univariate V. For
instance:

V′(X) = sup
‖u‖=1

V(uTX),

which gives the maximal possible directional variance (compare the Prin-
cipal Component Analysis method), or:

V′′(X) =
∫
‖u‖=1

V(uTX) du,
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which gives the averaged dispersion, see Figure 5.2 for a graphical illustra-
tion.

— Given a semimetric d on Rd and a fusion function F : [0,∞]n(n−1)/2 →
[0,∞], compute:

V′(X) = F
(
d(x(1),x(2)), d(x(1),x(3)), . . . , d(x(n−1),x(n))

)
,

in particular F can be the arithmetic mean.

— Given a semimetric d on Rd, a fusion function A : (Rd)n → Rd, and a
fusion function F : [0,∞]n → [0,∞], compute:

V′(X) = F
(
d(x(1),A(X)), . . . , d(x(n−1),A(X))

)
,

in particular F can be the quadratic mean or the Max function and A –
the componentwise arithmetic mean (centroid).

Moreover, Liu, Parelius, and Singh in [324] consider a few data depth-based
dispersion measures.

Remark 5.11. Various methods for measuring dispersion of directional data exist
as well. Given a circular data sample ϑ1, . . . , ϑn ∈ [−π, π[, for instance:

V(ϑ1, . . . , ϑn) =
√

AMean(sinϑ1, . . . , sinϑn)2 + AMean(cosϑ1, . . . , cosϑn)2

is quite often used in practice. The interested reader is referred to [381] for
further references.

5.3 Consensus, inequality, and other measures
Somehow related to spread measures are numerical characteristics that originate
from decision making, ecology, and economics.

Measures of consensus and ecological evenness. Recently, Beliakov, Calvo, and
James in [42] studied measures of decision makers’ consensus that are based on
Bonferroni means and fuzzy implications. They postulate that these should be
functions like C : [0, 1]n → [0, 1] which fulfill at least the following properties:

— symmetry (unanimity),

— for all x ∈ [0, 1] it holds C(n ∗ x) = 1 (maximal consensus),

— C(bn/2c ∗ 0, dn/2e ∗ 1) = 0 and C(bn/2c ∗ 1, dn/2e ∗ 0) = 0 (minimal con-
sensus),

— monotonicity with respect to the majority, i.e., for each c ∈ [0, 1] and x,y ∈
[0, 1]bn/2c, if |c− x| ≤bn/2c |c− y|, then C(dn/2e ∗ c,x) ≥ C(dn/2e ∗ c,y).
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(a) A sample data set.
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Figure 5.2. An exemplary 2D data set together with one dimensional dispersion
measures computed for its projections in every direction (represented as arrow

lengths). Note that MAD and IQR give nonsmooth shapes.

Indices of social inequality and poverty. Economists find their interests in mea-
sures of social inequality (unevenness, poverty, etc.) For instance, Marques
Pereira and others [14, 70, 218] (see, e.g., [283, 284] for a different setting) study
poverty measures for nonnegative vectors defined as functions – among others –
monotone with respect to the Lorenz majorization relation vL, which is defined
as x vL y if and only if AMean(x) = AMean(y) and cumsum(x(n), . . . , x(1)) ≤n
cumsum(y(n), . . . , y(1)). In particular, it is easily seen that (n ∗ AMean(x)) vL x
for all x. On a side note, recall that absolute spread measures are given via a
diff-based relation 4n and that cumsum can be conceived as a dual operation to
diff.
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Remark 5.12. Monotonicity with respect to vL is also called Schur-convexity in
the literature. Interestingly, if w,v are weighting vectors of the same lengths,
then, see, e.g., [71]:

— for all x ∈ In, OWAw(x) ≤ OWAv(x) if and only if cumsum(w) ≥n
cumsum(v),

— OWAw is Schur-convex if and only if w is ordered nondecreasingly.

Moreover, an exponential mean EMeanγ is Schur-convex, whenever γ ≥ 0, see
[70].

It turns out, see [47, 48], that social inequality measures can be related to
ecological indices of evenness [390], which aim to capture how evenly species’
populations are distributed over a geographical region, compare [100, 244, 391].

Entropy of discrete probability mass functions. A noteworthy characterization of
measures of entropy or uncertainty of discrete probability mass functions (repre-
sented as numeric vectors in [0, 1]n with elements summing up to 1) was proposed
by Martín, Mayor, and Suñer in [348], compare also [403, 425] for axiomatiza-
tions on different kinds of domains. Such a class includes the Shannon entropy,
Entropy(w) = −

∑n
i=1 wi logwi, and alike, see also [299]. Here, monotonicity

with respect to a partial order vD such that w vD v if and only if for all i ∈ [n]
wi ≤ vi ≤ 1/n or wi ≥ vi ≥ 1/n is considered useful.

Measures of shape of empirical distributions. We strongly believe that this short
overview would have left the reader with a feeling of dissatisfaction if the two
following measures of an input data vector’s empirical distribution shape had
not been considered.

A measure of skewness quantifies the degree of non-symmetry of an empirical
distribution. A negative or positive skew is observed if the mass of the distribu-
tion is concentrated on the right or, respectively, left of the corresponding data
histogram. In this case, we may consider, e.g.:

skewness(x) =
1
n

∑n
i=1(xi − AMean(x))3(

1
n−1

∑n
i=1(xi − AMean(x))2

)3/2 . (5.15)

Notably, Liu, Parelius, and Singh in [324], compare also the work of Oja [378],
study different types of symmetry of multidimensional data samples, such as
spherical, elliptical, antipodal, or angular ones.

On the other hand, a measure of kurtosis (peakedness/flatness) shall be sensi-
tive to the movement of the probability mass from the shoulders of a distribution
to its center or tails, e.g.:

kurtosis(x) =
1
n

∑n
i=1(xi − AMean(x))4( 1

n

∑n
i=1(xi − AMean(x))2

)2 − 3. (5.16)
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Please note that for samples following a normal distribution skewness and kur-
tosis are – on average – equal to 0.

5.4 Impact functions for informetric data
Let us assume that I = [0,∞] and that our universe of discourse consists of
informetric strings as in Section 3.2. This time, however, we would like to
compute a numerical characteristic of a given x ∈ S = {(x1, x2, . . . , xd) : d ∈
N, (∀i ∈ [d]) xi ∈ I, x1 ≥ x2 ≥ · · · ≥ xd} such that it reflects both:

— the number of items (e.g., scientific articles, posts, software packages)
produced by an abstract information resources producer (e.g., a scientist,
StackOverflow user, software engineer) and

— the quality of individual products.

In the informetric (in particular, scientometric) literature it is widely accepted,
see, e.g., [200, 214, 395, 396, 407, 473–475], that such an impact function F :
S → [0,∞] to be applied in the so-called Producers Assessment Problem (PAP)
should at least be:

— vγ-nondecreasing (compare Section 3.1.2) and

— such that F(0) = 0.

Note that vγ-nondecreasingness implies both monotonicity with respect to each
component as well as the vector’s size (arity), see [214] for a proof.

Remark 5.13. Note that, originally, many proposals for bibliometric indices as-
sumed that we aggregate the number of papers’ citations, i.e., sequences with
elements in N0. Generally, however, the paper quality measures may be arbi-
trary real numbers, for example when citations are normalized according to the
number of coauthors, paper’s time of publication, quality of a journal, and so
forth, see, e.g., [215].

Some of the notable examples of impact functions are as follows:

— Total number of product qualities:

Sum(x1, . . . , xn) =
n∑
i=1

xi, (5.17)

or, more generally, a weighted sum of elements of x ∈ S. This includes,
e.g., “the total number of citations of the five most cited papers”.

— The Hirsch h-index [249]:

H(x1, . . . , xn) = max {h ∈ [0 : n] : xh ≥ h} , (5.18)

with convention x0 = x1.
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— The Kosmulski MaxProd-index [298]:

MP(x1, . . . , xn) = max {i · xi : i ∈ [n]} . (5.19)

This index is a particular case of the (projected) lp-indices, p ≥ 1, see [211].

— The Egghe g-index [180]:

G(x1, . . . , xn) = max
{
g ∈ [0 : n] :

g∑
i=1

xi ≥ g2

}
, (5.20)

with convention
∑0
i=1 · · · = 0 and xn+1 = xn+2 = · · · = 0.

— The Woeginger w-index [474]:

W(x1, . . . , xn) = max {w ∈ [0 : n] : xi ≥ w − i+ 1 for all i ≤ w} . (5.21)

The h- and w-index are generalized by, e.g., the class of rp-indices, p ≥ 1,
see [211].

— The h(2)-index [297]:

H2(x1, . . . , xn) = max
{
h ∈ [0 : n] : xh ≥ h2} . (5.22)

Note that the h(2)-index is one of the many examples of very simple, direct
modifications of the h-index. Many authors considered settings other than
“h2” on the right side of Equation (5.22), e.g., “αh” for some α > 0 or
“hβ”, β ≥ 1, see [7].

All the introduced impact functions are zero-insensitive, that is, for all x ∈ S
it holds F(x) = F(x, 0). Moreover, the h-, w-, and h(2)-indices are symmetric
minitive, see [204], and additionally the h-index is also maxitive and modular.

5.4.1 Impact functions generated by universal integrals
Let us study the connection between zero-insensitive impact functions and uni-
versal integrals, see Section 1.3.2. In this setting, with no loss in generality,
we may assume that the vectors we characterize are padded with 0s and that
they are elements in Sd = {(x1, x2, . . . , xd) ∈ Id : x1 ≥ x2 ≥ · · · ≥ xd} for
some fixed d. We shall need a transformation from the vector space Sd into the
space R(Ω,F) for some (Ω,F). Although the most straightforward choice is of
course the measurable space (N, 2N), it is not necessarily the most convenient
one. Thus, we fix the space to (I,B(I)).

Given x ∈ Sd, let 〈x〉 ∈ R(I,B(I)) such that:

〈x〉(t) = xbt+1c, t ∈ I.

It is easily seen that 〈x〉 is a nonincreasing step function with steps possible only
in points from N. As a matter of fact, 〈x〉 is often called by bibliometricians the
citation function for the vector x.
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Let us consider the family Φ of functions F : Sd → I given by the equation:

F(x) = η
(
I
(
µ, 〈ϕ(x)〉

))
(5.23)

where:

— ϕ : Sd → Sd – a function nondecreasing in each variable, ϕ(0, 0, . . . , 0) =
(0, 0, . . . , 0),

— µ : B(I)→ [0,∞] – a monotone measure,

— I – a universal integral onM(I,B(I)) ×R(I,B(I)),

— η : I→ I – an increasing function, η(0) = 0.

Noteworthily, Gagolewski and Mesiar in [216] provide an easy-to-use algorithm
that may be used to compute the function given by Equation (5.23).

We have what follows, see [216].

Theorem 5.14. Each function F given by Equation (5.23) is a zero-insensitive
impact function.

It is important to discuss the implications of choosing different ϕ, µ, I, and
η on the aggregation process. Please note that the ϕ function may be used,
e.g., to normalize citation records, and often will be set by extending a function
of one variable ϕ′ to S, that is ϕ(x) = (ϕ′(x1), ϕ′(x2), . . . ). Many classical
(citation-based) bibliometric indices assume that ϕ′(x) = bxc or ϕ′(x) = x. The
η function may be used to “calibrate” the output values, especially if we would
like to compare the values of different impact functions. On the other hand, the
monotone measure µ shall in turn often be set to be the Lebesgue measure λ or
some monotone transformation of λ.

Example 5.15. It is easily seen that:

— Sum(x) = Ch(λ, 〈x〉), i.e., a Choquet integral, see Equation (1.29),

— H(x) = Su(λ, 〈bxc〉) = bSu(λ, 〈x〉)c (Sugeno integral, Equation (1.31)), see
also [450],

— MP(x) = Sh(λ, 〈x〉) (Shilkret integral, Equation (1.30)).

Example 5.16. Let ϕ = id, I = Ch, and η = id.

— If µ = λ, then we get of course I(λ, 〈x〉) =
∑
i xi.

— For µ(A) = λ(A)2 (a convex transformation), we obtain I(λ2, 〈x〉) =∑
i(i2 − (i − 1)2) · xi = 1x1 + 3x2 + 5x3 + 7x5 + 9x6 + . . . . Thus, we

put higher weight for productivity here.
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— If µ(A) =
√
λ(A) (a concave transformation), then I(

√
λ, 〈x〉) =

∑
i(
√
i−√

i− 1) · xi ' 1.00x1 + 0.41x2 + 0.32x3 + 0.27x4 + 0.24x5 + 0.21x6 + . . . .
In consequence, the top-cited papers are of greater significance.

For instance, consider two vectors y = (60, 30, 10, 4, 0, 0, . . . ) (higher quality)
and z = (15, 13, 11, 11, 9, 8, 7, 7, 6, 5, 3, 3, 2, 1, 1, 1, 1, 0, 0, . . . ) (higher productiv-
ity). We have I(λ, 〈y〉) = I(λ, 〈z〉) = 104, I(λ2, 〈y〉) ' 228 < I(λ2, 〈z〉) ' 1050,
and I(

√
λ, 〈y〉) ' 76.7 > I(

√
λ, 〈z〉) ' 36.9

Example 5.17. Let I = Su, µ = λ, η = id. We know that by choosing ϕ(x) =
bxc we obtain the h-index, H. It is easily seen that, e.g., Su(λ, 〈b

√
xc〉) =

H2(x). As we already indicated, many other Hirsch-based indices actually use
simple transformations of the input vector, such as the one above. Moreover, by
dropping the floor function we obtain the generalization of the h-index that is
real-valued.

The ϕ function may be used, e.g., to change the impact of extremely high-
cited publications, like when we choose ϕ(x) = log(x + 1).

Example 5.18. Consideration of more complex ϕ : S → S functions may lead
us to other notable numerical characteristics. For example, the g- and w-index.
Let cummin, cumsum : Id → Id denote the cumulative minimum and sum, re-
spectively, i.e.:

cummin(x) = (x1, x1 ∧ x2, x1 ∧ x2 ∧ x3, . . . ),
cumsum(x) = (x1, x1 + x2, x1 + x2 + x3, . . . ).

Given x ∈ Sd it holds:

G(x) = Su
(
λ,
〈⌊

0 ∨ cummin
(
cumsum(x)− (12, 22, . . . ) + (1, 2, . . . )

)⌋〉)
,

and:

W(x) = Su
(
λ,
〈⌊

cummin
(
x + (1, 2, . . . )− 1

)⌋〉)
.

Example 5.19. Let I = Sh, µ = λ, ϕ = id. By setting η = id we of course get
the MaxProd-index, MP. We may note, however, that the valuations generated
by this index cannot be easily compared to that of the h-index. For example,
we get H(n ∗ n, 0, 0, . . . ) = n and MP(n ∗ n, 0, 0, . . . ) = n2. Thus, by setting
η(x) =

√
x we may obtain the “calibrated” version of the MaxProd index.

Of course, integrals other than the classical Choquet, Sugeno, or Shilkret,
may also lead to interesting indices.
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5.4.2 Properties of impact functions
Apart from zero-insensitivity, here are some other properties of impact functions
that can be useful in practice while aggregating vectors of varying lengths, see
[107]:
— F -insensitivity, see [212, 474], see also “conservative productivity incre-

ment” in [367] and the notion of “stability” in [46], which holds if for all
x ∈ S and 0 ≤ y ≤ F(x) we have F(x, y) = F(x),

— F+sensitivity, see [212, 474], see also “productivity responsiveness” in
[367], that is for all x ∈ S and y > F(x) we have F(x, y) > F(x),

— multiplicative coherence, compare [460], i.e., for all x,y ∈ S and d ≥ 1 if
F(x) ≤ F(y), then F(dx) ≤ F(dy),

— additive coherence, i.e., for all x,y ∈ S and e ≥ 0 if F(x) ≤ F(y), then
F(x + e) ≤ F(y + e),

— independence, which was considered in [75], and states that the relative
ranking of two producers should not change after an addition of products
of the same quality; in other words, for all x,y ∈ S and z ∈ I it holds
F(x) ≤ F(y) ⇒ F(x, z) ≤ F(y, z),

— consistency, see [75], which considers joint output of consortia of producers:
if a producer A is dominated by producer B, and C is dominated by D,
then it is reasonable that A and C together (i.e., their combined outputs)
shall be dominated by B and D; in other words, whenever for all x,x′,y,y′
such that F(x) ≤ F(y) and F(x′) ≤ F(y′) it holds F(x,x′) ≤ F(y,y′).

Example 5.20. Let us consider the following impact functions:
— Max(x) = x1 (sample maximum),

— MaxN(x) = x1 ∧ n,

— Q5(x) = x5 if n ≥ 5 and 0 otherwise (∼ the fifth quantile),

— H(x) =
∨n
i=1bxic ∧ i (the Hirsch index),

— H̃(x) =
∨n
i=1 xi ∧ i (a real-valued Hirsch index),

— H2(x) =
∨n
i=1b
√
xic ∧ i (the h(2)-index),

— H̃2(x) =
∨n
i=1
√
xi ∧ i (a real-valued h(2) index),

— N(x) = n (sample length),

— NP(x) =
∑n
i=1 1(xi > 0) =

∨n
i=1 1(xi > 0)b ∧ i (number of elements with

non-zero quality).
All of these are symmetric minitive, maxitive, as well as modular. Table 5.1
summarizes which of the properties discussed in this section are fulfilled by the
above functions. The function that obeys the greatest number of properties is
the Max function.
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Table 5.1. Exemplary impact functions and some properties they fulfill, see [107].

property name Max MaxN Q5 H H̃ H2 H̃2 N NP
∑

arity-monotonicity • • • • • • • • • 9

continuity • • • ◦ • ◦ • • ◦ 6

zero-insensitivity • ◦ • • • • • ◦ • 7

F-insensitivity • ◦ • • • • ◦ ◦ ◦ 5

F+sensitivity • • ◦ ◦ ◦ ◦ ◦ • • 4

multiplicative coh. • ◦ • ◦ ◦ ◦ ◦ • • 4

additive coherent • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 2

independence • ◦ ◦ ◦ ◦ ◦ ◦ • • 3

consistency • • ◦ ◦ ◦ ◦ ◦ • • 4∑
9 4 5 3 4 3 3 7 6

∑

5.5 Characteristics of fusion functions
Numerical characteristics of fusion functions may give us a better insight into
particular aspects of their behavior. Moreover, they can aid in selecting an
aggregation function that best fits a practitioner’s needs.

5.5.1 Orness and related measures
First we shall focus on idempotent fusion functions like F : In → I, see Chapter 1.
Let us incorporate the traditional assumption that I = [0, 1]. However, please
note that the measures introduced in this section may be easily generalized to
any I of finite width.

First let us note that the average value of F(n) as defined in [230, Chapter 10],
that is:

average(F(n)) =
∫
In

F(n)(x) dx (5.24)

is nothing more than the expected value of F(n) under the assumption that it is
applied on a random vector uniformly distributed on In.

Moreover, recall that in the class of idempotent aggregation functions, Min
and Max are the least and the greatest fusion tools, respectively.

Lemma 5.21 ([171]). For any n it holds:

— average(Min(n)) =
∫
In Min(n)(x) dx = 1

n+1 ,

— average(Max(n)) =
∫
In Max(n)(x) dx = n

n+1 .
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The orness measure for averaging functions was introduced by Dujmović in
[172] under the name disjunction degree. This numerical characteristic aims to
quantify how far – on average – a fusion function’s value is from the least and
the greatest averaging functions.

Definition 5.22. Let F(n) be an idempotent aggregation function. Its degree
of orness is given by:

orness(F(n)) =
∫
In F(n)(x) dx−

∫
In Min(n)(x) dx∫

In Max(n)(x) dx−
∫
In Min(n)(x) dx

∈ [0, 1]. (5.25)

It is easily seen that orness(Min(n)) = 0 and orness(Max(n)) = 1. Addition-
ally, orness(AMean(n)) = 0.5. As noted in [49], exact orness values are known
only for a few of the most notable fusion functions and arities, in particular:

— orness(QMean(2)) = 1
3

(
1 + log(1+

√
2)√

2

)
,

— orness(HMean(2)) = 4
3 (1− log 2),

— orness(GMean(n)) = n+1
n−1

(
n
n+1

)n
− 1

n−1 .

In other cases, computations may be performed numerically (via, e.g., numerical
cubatures [53, 221] or Monte Carlo integration, especially if n is large). For
instance:
qmean <- function(x) sqrt(mean(x^2)) # quadratic mean
# Compute orness measures for 1,2,3,4- ary quadratic means :
sapply (1:4, function(n) {

cubature :: adaptIntegrate(qmean ,
lowerLimit=rep(0, n),
upperLimit=rep(1, n),
tol=1e-12

)
})

## [ ,1] [ ,2] [ ,3] [ ,4]
## integral 0.5 0.5410751 0.554598 0.5609498
## error 5.5511e -15 5.4056e -13 5.5459e -13 5.609497e -13
## fEvaluations 15 62509 2872617 103726263

Please note that the number of function evaluations increases drastically as n
gets larger.

Remark 5.23. We can also consider the andness measure defined as:

andness(F(n)) = 1− orness(F(n)). (5.26)

A slightly different measure was introduced by Fernández Salido and Mu-
rakami in [185].
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Definition 5.24. The average orness of an idempotent aggregation function
F(n) is given by:

aveorness(F(n)) =
∫
In

F(n)(x)−Min(n)(x)
Max(n)(x)−Min(n)(x)

dx, (5.27)

under the assumption that 0/0 = 0.

Again, aveorness(Min(n)) = 0 and aveorness(Max(n)) = 1. Please note that
the nature of the introduced measures of disjunctivity is such that they are based
on the fact that F outputs a single numeric value. Therefore, they cannot be
easily generalized to fusion functions like F(n) : (Id)n → Id. A possible idea
to overcome this limitation would be to consider, e.g., a quite different measure
based on a properly normalized expected Euclidean distance between the outputs
generated by F(n) and the boundary of the Id set under the assumption that input
data are independent and uniformly distributed on Id. Alternatively, taking into
account the fact that if X ∼ U(Id), then EX = (d∗0.5), we may consider simply
a mean squared error-like measure E d2(F(n)(X1, . . . , Xn), (d ∗ 0.5)).

What is more, if F(n) is a Lipschitz function, then its corresponding Lipschitz
constant may also be used as its numerical characteristic.

5.5.2 Weighting vector’s entropy
For classes of aggregation operators that are parametrized via a weighting vector
– such as weighted arithmetic means or OWA operators – their orness measures
are dependent solely on the distribution of weights.

Remark 5.25. The orness and average orness measures coincide in the case of
OWA operators, see [185]. For any weighting vector w it holds that:

orness(OWAw) = aveorness(OWAw) =
n∑
i=1

n− i
n− 1wi.

Nevertheless, this is not the case for arbitrary fusion functions.

Therefore, such types of numerical characteristics may aid in choosing a
particular fusion function, see, e.g., [186] for an example of fitting OWA operators
to empirical data under the constraint that the orness measure is fixed to some
pre-established value.

In the current setting, a weighting vector’s entropy:

Entropy(w) = −
n∑
i=1

wi logwi (5.28)
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can be conceived as a measure of the degree to which all the input data are used
in the aggregation process, compare [49]. It is easily seen that the entropy is
maximized for w = (n∗(1/n)). During the choice of a suitable OWA operator, it
is not unusual to fix the desired orness and then maximize the weights’ entropy.
Moreover, we can note that, e.g., spread or related measures introduced above
may be used for this purpose as well.

5.5.3 Breakdown points and values
An outlier is most often defined as an observation that is too distant from other
data points and thus it is in some way suspicious. It may be present due to a
measurement or data input error, or simply because we are analyzing a sample
following a heavy-tailed distribution. Beckman and Cook in [28] note what
follows:

The concern over outliers is old and undoubtedly dates back to the first
attempt to base conclusions on a set of statistical data. Comments by
Bernoulli (1777) indicate that the practice of discarding discordant obser-
vations was commonplace 200 years ago.

The notion of a breakdown point of a fusion function as discussed in this
monograph has been introduced by Donoho in [159]. It is meant to serve as
a measure of a function’s robustness to the presence of potential outliers. Its
aim is to express “the smallest amount of contamination which can cause the
estimator to give an arbitrarily bad answer”.

Definition 5.26 ([159]). The breakdown point of a fusion function F(n) :
(Rd)n → Rd, d ≥ 1, at X ∈ (Rd)n is given by:

ε(F(n),X) = min
m∈[n]

{
m

n
: sup

Ym∈(R̄d)n

‖F(n)(X)− F(n)(Ym)‖ =∞
}
,

where the supremum is over all possible data sets Ym obtained from X in such
a way that exactly m points are replaced with arbitrary values.

Clearly, the higher the breakdown point, the more insensitive to outliers a
fusion function is at a given point. As it is noted by Lopuhaä and Rousseeuw in
[327], for most of the functions studied in the literature, ε does not depend on
X. In any case, one might be interested in quantifying the “global” breakdown
value:

breakval(F(n)) = inf
X∈(Rd)n

ε(F(n),X) ∈
[

1
n
, 1
]
. (5.29)

Please note that for translation equivariant fusion functions we have that
breakval(F(n)) ≤ 0.5, see [159]. It turns out that we have what follows.
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Table 5.2. Breakdown values of exemplary fusion functions.

fusion function breakdown point reference

centroid 1
n —

componentwise median 1
2 [327], see also [27]

1-median 1
2 [327]

Tukey median ∈
[

1
d+1 ,

1
3

]
[8]

Oja median 2
n+2 for d = 2 [376]

Convex hull peeling median ≤ n+d+1
(n+2)(d+1) [159, 432]

Theorem 5.27 ([27]). The componentwise median, CwMedian(n), is the only
fusion function that is componentwise nondecreasing, translation and uniform-
scale equivariant that has a 50% breakdown value.

On a side note, it is worth stressing that this result is derived from the no-
tion of monotonicity which is generally very rare in the computational statistics
literature.
Example 5.28. Table 5.2 gives breakdown points for some of the fusion functions
studied in this book, see also [8, 160]. We may note that, e.g., the componentwise
arithmetic mean (centroid) is extremely sensitive to outliers.

Remark 5.29. Outliers are not the only types of data “contamination” that can
be considered. Among others we have missing values, see [416], and censored
observations, see [135, Section 8.5].

5.6 Characteristics of fuzzy numbers
Recall from Section 4.3 that a fuzzy number is a kind of fuzzy subset of the real
line. Let us briefly review the numerical characteristics of such objects.

Measures of central tendency (defuzzifiers). Let us first mention the notion of the
expected interval of a fuzzy number A, proposed by Dubois and Prade in [167]:

EI(A) =
[∫ 1

0
AL(α) dα,

∫ 1

0
AU (α) dα

]
. (5.30)

The midpoint of the expected interval is called the expected value of a fuzzy
number. It is given by:

EV(A) =
∫ 1

0 AL(α) dα+
∫ 1

0 AU (α) dα
2 . (5.31)
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Sometimes a generalization of the expected value, called weighted expected
value, is useful. For a given w ∈ [0, 1], it is defined as:

EVw(A) = (1− w)
∫ 1

0
AL(α) dα+ w

∫ 1

0
AU (α) dα. (5.32)

It is easily seen that EV0.5(A) = EV(A).
On the other hand, the value of A was defined by Delgado, Vila, and Voxman

in [144], see also [103], as:

val(A) =
∫ 1

0
α (AL(α) +AU (α)) dα. (5.33)

The α term may be replaced with a generic weighting function w(α), most often
such that

∫ 1
0 w(α) dα = 0.5.

Please note that the expected value or value may be used to “defuzzify” A.
The introduced measures are translation and scale equivariant.

Example 5.30. If A denotes a trapezoidal fuzzy number, A = T(s1, s2, s3, s4),
then EV(A) = (s1 + s2 + s3 + s4)/4 and val(A) = (s1 + s4)/6 + (s2 + s3)/3.

Measures of nonspecifity. Among notions of “nonspecifity” of a fuzzy number we
find, among others, what follows. The width of A [112] is defined as the width
of its expected interval, that is:

width(A) =
∫ 1

0
AU (α) dα−

∫ 1

0
AL(α) dα. (5.34)

The ambiguity of A [144] is defined as:

amb(A) =
∫ 1

0
α (AU (α)−AL(α)) dα. (5.35)

Moreover, the standard deviation of A, as introduced by Carlsson and Fullér in
[103], is given by:

sd(A) =

√
1
2

∫ 1

0
α (AU (α)−AL(α))2

dα. (5.36)

The three measures are translation invariant and scale equivariant. A defuzzifier
together with a nonspecifity measure may be used to project a fuzzy number to
a real interval.

Example 5.31. If A denotes a trapezoidal fuzzy number, A = T(s1, s2, s3, s4),
then width(A) = (s3+s4)/2−(s1+s2)/2 and amb(A) = (s3−s2)/3+(s4−s1)/6.
If A is a triangular fuzzy number (i.e., a trapezoidal one with s2 = s3) we
additionally have sd(A) = (s4 − s1)/

√
24.
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Measures of fuzziness. Closely related to nonspecifity characteristics are mea-
sures of fuzziness of arbitrary fuzzy sets, see, e.g., [418, 464, 490], which are
often axiomatized as functions: (a) outputting value of 0 if and only if they
are applied on a crisp set and (b) monotone with respect to a partial order-
ing relation vF such that A vF B (A is less fuzzy than B) if and only if
(0.5 ∧ µA(x)) ≤ (0.5 ∧ µB(x)) and (0.5 ∨ µA(x)) ≥ (0.5 ∨ µB(x)) for all x. We
see that the membership degree of 0.5 is considered as the most vague.

5.7 Checksums
Let us end this chapter – as well as the whole monograph – with a class of
numerical characteristics which is quite different from the above measures: those
which are supposed to be very difficult to study analytically.

A checksum function provides us with a way to verify data integrity that can
be broken due to:

— errors in data transmission,

— cryptographic attacks,

— malware (malicious software, e.g., viruses, Trojan horses, backdoors) in-
jection,

and so on. Such tools are related to hash functions and fingerprint algorithms,
which are also used to map (perhaps uniquely) a (possibly) large and complex
data set into a much simpler domain. However, their purpose is quite different
than that of checksums – they aim to aid in efficient object dictionary look-up.

Most of the checksum functions studied in the literature assume that an input
data stream consists of chunks of bit sequences of a fixed length, Σ = {0, 1}d
for, e.g., d = 8, 16, 32, or 64. They are incremental (compare Definition 1.121)
functions: to compute their value only a single pass through a data stream is
required. Checksum functions map the data into a set of binary sequences of
fixed length d′, e.g.:

— d′ = 32 for the CRC-32 algorithm (which is based on cyclic codes intro-
duced by Prange [393], see also [104, 389]),

— d′ = 128 for the MD5 checksum (introduced in RFC13212) by R. Rivest,
compare also, e.g., [54]),

— d′ = 256 in the case of the SHA-256 algorithm (which was developed by
the National Security Agency (NSA), see, e.g., [358]).

Typically, we represent checksum routine outputs as character strings consisting
of hexadecimal digits (0, . . . , 9, a, . . . , f). However, please note that each bit

2See https://tools.ietf.org/html/rfc1321.

https://tools.ietf.org/html/rfc1321
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sequence may be mapped to an unsigned binary (base-2) number:

(bd−1bd−2 · · · b0)2 =
d−1∑
i=0

bi2i. (5.37)

Because of this, each checksum is an integer number and thus a function that
computes it may be conceived as a kind of bit sequence numerical characteristic,
F : Σ∗ → [0 : 2d′ − 1] ⊆ N0.

Example 5.32. We have:
x <- "fusion␣functions" # input string
paste(charToRaw(x), collapse="") # hex sequence
## [1] "667573696 f6e2066756e6374696f6e73 "
digest :: digest(x, "crc32") # CRC -32 checksum
## [1] "659348 f9"
digest :: digest(x, "md5") # MD5 checksum
## [1] " ecb11c3a8afdbfdec37956b4997fcf55 "

By default, checksum algorithms involve the following operations on data
chunks:

— bitwise NOT, AND, OR, and XOR (exclusive OR),

— rotate-no-carry (e.g., 00010111→ 10001011),

— right-logical-shift with 0-padding (e.g., 00010111→ 00001011),

— addition (modulo 2d′).

Algorithm 5.33. To get a general intuition about how checksum algorithms
look, here is a fragment of C++ code to compute CRC-32.
/* COPYRIGHT (C) 1986 Gary S. Brown . You may use

* this program , or code or tables extracted from it ,
* as desired without restriction . */

static uint32_t crc32_tab [256] = {
0x00000000 , 0x77073096 , 0xee0e612c , 0x990951ba ,
// ....... , .......... , .......... , .......... ,
0xb40bbe37 , 0xc30c8ea1 , 0x5a05df1b , 0x2d02ef8d

};

uint32_t crc32(const uint8_t* buf , size_t n)
{

uint32_t crc = 0 ^ ~0U;
while (n--)

crc = crc32_tab [(crc ^ *buf ++) & 0xFF] ^ (crc >> 8);
return crc ^ ~0U;

}

Here ^ stands for bitwise XOR, & for AND, ~ for NOT, and >> for right-logical-
shift. The data stream is read byte by byte.
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Desired properties of checksum functions like F, especially in cryptographic
tasks, include (compare [124]):

— preimage resistance – given a checksum y, it should be computationally
infeasible to find a data stream x such that F(x) = y,

— collision resistance – given a data stream x, it should be computationally
infeasible to find a data stream x′ 6= x such that F(x) = F(x′).

Generally, F itself should be relatively easy to compute but difficult to analyze
and thus break (invert).

Another useful feature that F should possess is in full opposition to the
Lipschitz continuity property: we would like a checksum to change drastically
even for a very small perturbation in input streams. The dissimilarity degree
can be expressed as, for instance:

— the Hamming distance in the case of base-2 representation of outputs,

— the Levenshtein distance for the character string (hexadecimal) form,

— absolute difference in the case of the numeric representation.

Example 5.34. Let us slightly modify a string from the previous example:
x <- "Fusion␣functions" # input string
paste(charToRaw(x), collapse="") # hex sequence
## [1] "467573696 f6e2066756e6374696f6e73 "
digest :: digest(x, "crc32") # CRC -32 checksum
## [1] "72 ac3384 "
digest :: digest(x, "md5") # MD5 checksum
## [1] "5 c303067a54b75760940ba0d20ad01b7 "

Please note that the checksums are very different. For instance, if CRC-32 check-
sums are interpreted as unsigned integers, the corresponding decimal numbers
are equal to 1704151289 and 1923888004, respectively.
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Listings

Source codes of scripts or programs included in this book are licensed un-
der the MIT license. The license permits code reuse within proprietary
software provided that all copies of the software include the license terms

and the copyright notice.

Copyright © 2015 Marek Gagolewski

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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# include <algorithm >
// [[ Rcpp :: plugins (" cpp11 ")]]

struct Comparer {
const double* v;
Comparer(const double* _v) { v = _v; }
bool operator ()( const int& i, const int& j) {

// returns true if the first argument is less than
// (i.e. is ordered before ) the second .
return (v[i] < v[j]);

}
};

bool is_comonotonic(NumericVector x, NumericVector y) {
int n = x.size ();
if (y.size() != n) stop("lengths␣of␣x␣and␣y␣differ");

// recall that array elements in C++ are numbered from 0
// let s = (0 ,1 ,... ,n -1)
std::vector <int > s(n); for (int i=0; i<n; ++i) s[i] = i;

Comparer ltx(REAL(x));
std::sort(s.begin(), s.end(), ltx);
// now s is an ordering permutation of x

Comparer lty(REAL(y));
int i1 = 0;
while (i1 < n) { /* now search for the longest subsequence

consisting of equal x’s */
int i2 = i1+1;
while (i2 < n && x[s[i1]] == x[s[i2]]) ++i2;
// sort the subsequence if necessary :
if (i2 -i1 > 1) std::sort(s.begin ()+i1, s.begin ()+i2, lty);
// y[s[i1 -1]] >y[s[i1 ]] => x and y are not comonotonic :
if (i1 > 0 && y[s[i1 -1]] > y[s[i1]]) return false;
i1 = i2;

}

// as a by - product , (s [0]+1 , s [1]+1 , ... , s[n -1]+1)
// is a permutation that orders both x and y
return true;

}

Figure A.1. A C++ implementation of an O(n logn) algorithm to determine if two
vectors of length n are comonotonic, see [207].
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#’ @param D a symmetric positive - semidefinite n*n matrix
#’ @param c a numeric vector of length n
#’ @param A an m*n numeric matrix
#’ @param b a numeric vector of length m
#’ @param r a character vector of length m
#’ with elements like <=, ==, or >=;
#’ specifies types of linear constraints
#’ @param l a numeric vector of length n which gives
#’ lower bounds for corresponding x variables ,
#’ -Inf gives no bound
#’ @param u a numeric vector of length n which gives
#’ upper bounds for corresponding x variables ,
#’ Inf gives no bound
#’ @param c0 a single numeric value
#’
#’ @return
#’ A list with the following components :
#’ par : The best set of parameters , x, found ;
#’ value : The value of the objective function at par ;
#’ counts : The number of iterations that it took
#’ to solve the program ;
#’ status : Solution status - 0 for optimal
cgal_qp_solver <- function(D, c, A, b, r=rep(">=", length(b)),

l=rep(-Inf , length(c)), u=rep(Inf , length(c)), c0=0.0)
{

stopifnot(is.numeric(D), is.finite(D), is.matrix(D))
stopifnot(is.numeric(A), is.finite(A), is.matrix(A))
stopifnot(is.numeric(c), is.finite(c))
stopifnot(is.numeric(b), is.finite(b))
stopifnot(is.character(r), r %in% c(" <=", "==", " >="))
stopifnot(is.numeric(l), !is.na(l) & !is.nan(l))
stopifnot(is.numeric(u), !is.na(u) & !is.nan(u))
stopifnot(is.numeric(c0), is.finite(c0))
stopifnot(length(b) == nrow(A), length(r) == nrow(A))
stopifnot(isSymmetric(D), ncol(D) == ncol(A))
stopifnot(length(c) == nrow(D), length(c0) == 1)
stopifnot(length(l) == nrow(D), length(u) == nrow(D))

r <- match(r, c("<=", "==", " >="))-2 # values in {-1, 0, 1}
fl <- is.finite(l) # which lower bounds for x are active
fu <- is.finite(u) # which upper bounds for x are active

.cgal_qp_solver(length(c), length(b), A, b, r,
fl, l, fu, u, D, c, c0)

}

Figure A.2. An R interface to the CGAL [442] library quadratic programming
solver, part I.
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# include <CGAL/QP_functions.h>
# include <CGAL/MP_Float.h>
typedef CGAL:: MP_Float ET;
typedef CGAL:: Quadratic_program_solution <ET> Solution;
typedef CGAL:: Quadratic_program_from_iterators <double **,

double*, CGAL:: Comparison_result*,
int*, double*, int*, double*, double **, double*> Program;

// [[ Rcpp :: plugins (" cpp11 ")]]
// [[ Rcpp :: export (". cgal_qp_solver ")]]
List cgal_qp_solver(int n, int m, NumericMatrix A,

NumericVector b, IntegerVector r, LogicalVector fl,
NumericVector l, LogicalVector fu, NumericVector u,
NumericMatrix D, NumericVector c, double c0)

{
double *Aptr = REAL((SEXP)(A)), *Dptr = REAL((SEXP)(D));
double **_A = new double *[n], **_D = new double *[n];
for (int i=0; i<n; ++i) // ith column
{ _A[i] = Aptr+i*m; _D[i] = Dptr+i*n; }
CGAL:: Comparison_result* _r = new CGAL:: Comparison_result[m];
for (int j=0; j<m; ++j)

_r[j] = (r[j] < 0 ? CGAL:: SMALLER
: (r[j] > 0 ? CGAL:: LARGER : CGAL:: EQUAL ));

List retval;
Program qp(n, m, _A, REAL((SEXP)(b)), _r,

(int*) LOGICAL ((SEXP)(fl)), REAL((SEXP)(l)),
(int*) LOGICAL ((SEXP)(fu)), REAL((SEXP)(u)),
_D, REAL((SEXP)(c)), c0);

Solution s(CGAL:: solve_quadratic_program(qp, ET()));
// generate output solution :
NumericVector solution(n);
int i=0;
for (auto it = s.variable_values_begin ();

it != s.variable_values_end (); ++it)
solution[i++] = to_double (*it);

retval = List:: create(
_("par") = solution ,
_("value") = to_double(s.objective_value ()),
_("counts") = s.number_of_iterations (),
_("status") = (s.status () == CGAL:: QP_OPTIMAL ? 0

: (s.status () == CGAL:: QP_INFEASIBLE ? 1
: (s.status () == CGAL:: QP_UNBOUNDED ? 2
: -1)))

);
delete [] _r; delete [] _A; delete [] _D;
return retval;

}

Figure A.3. An R interface to the CGAL [442] library quadratic programming
solver, part II.
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fit_wam_L2_quadprog <- function(X, Y) {
stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))

# Linear constraint ( sum(w) == 1):
A <- matrix (1, ncol=n, nrow =1)
B <- 1

# Objective function definition :
D <- tcrossprod(X) # X %*% t(X)
C <- -tcrossprod(X, Y) # - (X %*% t(Y))

res <- cgal_qp_solver(D, C, A, B, r="==", l=rep(0, n))
stopifnot(res$ status == 0)
res$ par # return value

}

Figure A.4. R code for least squares fitting of weighted arithmetic mean’s weights.

fit_wam_L1_linprog <- function(X, Y) {
stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))

A <- rbind(
cbind(t(X), -diag(m), diag(m)),
c(rep(1, n), rep(0, 2*m))

)
B <- c(Y, 1)
C <- c(rep(0, n), rep(1, 2*m))
D <- matrix (0, nrow=n+2*m, ncol=n+2*m) # an LP problem
res <- cgal_qp_solver(D, C, A, B, r=rep("==", nrow(A)),

l=rep(0, n+2*m))
stopifnot(res$ status == 0)
stopifnot (0 == max(apply(MARGIN=2, FUN=min ,

X=matrix(res$ par [-(1:n)], nrow=2, byrow=TRUE ))))
res$ par [1:n] # return value : first n parameters

}

Figure A.5. R code for least absolute deviation fitting of a weighted arithmetic
mean’s weights.
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fit_wam_LInf_linprog <- function(X, Y) {
stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))
A <- rbind(

cbind(t(X), -1),
cbind(t(X), +1),
c(rep(1, n), 0)

)
B <- c(Y, Y, 1)
C <- c(rep(0, n), 1)
D <- matrix (0, nrow=n+1, ncol=n+1) # an LP problem
res <- cgal_qp_solver(D, C, A, B,

r=c(rep(" <=", m), rep(" >=", m), "=="),
l=rep(0, n+1))

stopifnot(res$ status == 0)
res$ par [1:n] # return value : first n parameters

}

Figure A.6. R code for least Chebyshev metric fitting of a weighted arithmetic
mean’s weights.

fit_wqam_L2_ optim <- function(X, Y, phi , phiInv , phiInvPrime) {
stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))
stopifnot(is.function(phi), # generator function

is.function(phiInv), # its inverse
is.function(phiInvPrime )) # derivative of inverse

phiX <- phi(X)
w0 <- runif(n); w0 <- w0/ sum(w0)
lambda0 <- log(w0) # initial parameters
E <- function(lambda) { # goodness -of -fit measure

w <- exp(lambda)/ sum(exp(lambda ))
sum(( phiInv(t(w) %*% phiX)-Y)^2)

}
gradE <- function(lambda) { # its gradient

w <- exp(lambda)/ sum(exp(lambda ))
Z <- as.numeric(t(w) %*% phiX)
2*w*((( phiInv(Z)-Y)*phiInvPrime(Z)) %*% (t(phiX) - Z))

}
res <- optim(lambda0 , E, gradE , method="BFGS")
stopifnot(res$convergence == 0)
exp(res$ par)/ sum(exp(res$ par)) # return value

}

Figure A.7. R code for least squares fitting of a weighted quasi-arithmetic mean’s
weights.
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fit_wqam_L1_ optim _ approx <- function(X, Y,
phi , phiInv , phiInvPrime , eps=1e-12) {

stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))
stopifnot(is.function(phi), # generator function

is.function(phiInv), # its inverse
is.function(phiInvPrime )) # derivative of inverse

stopifnot(is.numeric(eps), length(eps) == 1, eps > 0)

phiX <- phi(X)
w0 <- runif(n); w0 <- w0/ sum(w0)
lambda0 <- log(w0) # initial parameters

E <- function(lambda) { # goodness -of -fit measure
w <- exp(lambda)/ sum(exp(lambda ))
e <- phiInv(t(w) %*% phiX)-Y
sum(sqrt(e^2+ eps ^2))

}

gradE <- function(lambda) { # its gradient
w <- exp(lambda)/ sum(exp(lambda ))
Z <- as.numeric(t(w) %*% phiX)
w*(

(( phiInv(Z)-Y)*phiInvPrime(Z)/
sqrt (( phiInv(Z)-Y)^2 + eps ^2)) %*%

(t(phiX)-Z)
)

}

res <- optim(lambda0 , E, gradE , method="BFGS")
stopifnot(res$convergence == 0)
exp(res$ par)/ sum(exp(res$ par)) # return value

}

Figure A.8. R code for approximate least absolute deviation fitting of a weighted
quasi-arithmetic mean’s weights.
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fit_powmean_L2_ optim <- function(X, Y, pmin =0.1, pmax =10) {
stopifnot(is.matrix(X), is.matrix(Y))
n <- nrow(X); m <- ncol(X)
stopifnot (1 == nrow(Y), m == ncol(Y))

p <- 1 # this will be a parameter shared by the 3 functions :
phi <- function(x)

x^p
phiInv <- function(x)

exp(log(x)/p) # x ^(1 /p)
phiInvPrime <- function(x)

exp((1-p)* log(x)/p)/p # (x^(1 /p -1)) /p
envir_p <- new.env()
envir_p[["p"]] <- p
environment(phi) <- envir_p
environment(phiInv) <- envir_p
environment(phiInvPrime) <- envir_p

E <- function(p) {
assign("p", p, environment(phi)) # affects 3 functions
w <- fit_wqam_L2_ optim(X, Y, phi , phiInv , phiInvPrime)
sum((as.numeric ((t(X^p) %*% w)^(1/p))-Y)^2)

}

optimize(E, c(pmin , pmax ))$minimum
}

Figure A.9. R code for determining best exponent p in a least squares error power
mean fitting task; calls a function given in Figure A.7.

seb <- function(X) {
stopifnot(is.numeric(X), is.matrix(X))
n <- ncol(X)
# QP solver in CGAL determines argmin _v 0.5 v^T D v + c^T v
XtX <- crossprod(X) # (t(X) %*% X)
D <- 2.0*XtX
C <- -diag(XtX)
A <- matrix(rep(1, n), ncol=n)
B <- 1
res <- cgal_qp_solver(D, C, A, B, r="==", l=rep(0, n))
stopifnot(res$convergence == 0)
v <- res$ par
as.numeric(tcrossprod(v, X)) # v %*% t(X) - return value

}

Figure A.10. An R implementation of a QP-based [220] Euclidean 1-center finder.
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NumericMatrix rortho(int d) {
if (d < 1) stop("d␣<␣1");
NumericMatrix A(d, d); // resulting matrix
NumericVector x(d); // auxiliary vector

/* --- Step 1. --- */
double theta = Rf_runif (0.0, 2.0* M_PI); // U[0 ,2 pi]
double b = double(Rf_runif (0.0, 1.0) <0.5)*2.0 -1.0; // U{ -1 ,1}
A(0,0) = cos(theta ); A(0,1) = sin(theta );
A(1,0) = -b*sin(theta ); A(1,1) = b*cos(theta);

/* --- Step 2.--- */
for (int i=3; i<=d; ++i) {

/* --- Steps 2.1. and 2.2. together --- */
double xnorm = 0.0;
for (int j=0; j<i; ++j) {

x[j] = Rf_rnorm (0.0, 1.0);
xnorm += x[j]*x[j];

} // non - normalized z
xnorm = sqrt(xnorm );
x[0] = 1.0-x[0]/ xnorm;
double xnorm2 = x[0]*x[0];
for (int j=1; j<i; ++j) {

x[j] = -x[j]/ xnorm;
xnorm2 += x[j]*x[j];

} // non - normalized x
xnorm2 = sqrt(xnorm2 );
for (int j=0; j<i; ++j) x[j] /= xnorm2;
/* --- Step 2.3. --- */
for (int k=i-1; k>0; --k)

for (int j=i-1; j>0; --j)
A(j,k) = A(j-1, k-1);

for (int j=1; j<i; ++j) A(0,j) = A(j,0) = 0.0;
A(0,0) = 1.0; // now previous A is extended

for (int k=0; k<i; ++k) {
double x2 = 0.0;
for (int j=0; j<i; ++j)

x2 += x[j]*A(j,k); // t(x)* extA (.,k)
for (int j=0; j<i; ++j)

A(j,k) -= 2*x[j]*x2; // extA -2*x* above
}

}
return A; // Step 3.

}

Figure A.11. A C++ implementation of Algorithm 2.18: Generation of a random
orthogonal d× d matrix.
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# include <algorithm >
# include <utility >
// [[ Rcpp :: plugins (" cpp11 ")]]
NumericVector Weiszfeld1median(NumericMatrix X,

NumericVector w, NumericVector y0, double eps =1.0e-9) {
int d = X.nrow ();
int n = X.ncol ();
if (w.length () != n) stop("w.length ()␣␣!=␣n");
if (y0.length () != d) stop("y0.length ()␣!=␣d");

NumericVector y_last(d); // a new vector
NumericVector y_cur(Rcpp:: clone(y0)); // a deep copy of y0

double lasterr;
do {

std::swap(y_last , y_cur); // swaps underlying pointers
for (int j=0; j<d; ++j)

y_cur[j] = 0.0;
double w_over_d_x_y = 0.0;
for (int i=0; i<n; ++i) {

double d_xi_y = 0.0;
for (int j=0; j<d; ++j)

d_xi_y += (X(j, i)-y_last[j])*(X(j, i)-y_last[j]);
d_xi_y = sqrt(d_xi_y );
if (d_xi_y <= eps) return y_last; /* Step 2.1. */
double w_over_d_xi_y = w[i]/ d_xi_y;
w_over_d_x_y += w_over_d_xi_y;
for (int j=0; j<d; ++j)

y_cur[j] += w_over_d_xi_y*X(j, i);
}

lasterr = 0.0;
for (int j=0; j<d; ++j) {

y_cur[j] /= w_over_d_x_y;
lasterr += (y_cur[j]-y_last[j])*( y_cur[j]-y_last[j]);

}
} while (lasterr > eps*eps); /* Step 2.3. */
return y_cur;

}

Figure A.12. A C++ implementation of the Weiszfeld procedure, see Algorithm
2.50, for determining the weighted 1-median.
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# include <unordered_map >
// [[ Rcpp :: plugins (" cpp11 ")]]
IntegerVector median_hamming(IntegerMatrix X) {

int n = X.ncol ();
int d = X.nrow ();
IntegerVector out(d);
for (int i=0; i<d; ++i) {

std:: unordered_map <int , int > ht; // hasthable
for (int j=0; j<n; ++j)

ht[X(i,j)]++; /* count occurrences of each
letter ; ints are default - constructed as 0 */

int max = 0, argmax = -1;
for (auto it=ht.cbegin (); it != ht.cend (); ++it)

if (max < (*it). second) { // find a most frequently
max = (*it). second; // occurring letter
argmax = (*it).first;

}
out[i] = argmax;

}
return out;

}

Figure A.13. A C++ implementation of a procedure to determine a solution to
Equation (2.40) – a median with respect to the Hamming distance.

// [[ Rcpp :: export ]]
IntegerVector hamming_dist_max(IntegerMatrix Y,

IntegerMatrix X) {
int nx = X.ncol(), ny = Y.ncol(), d = Y.nrow ();
if (X.nrow() != d) stop("X.nrow()␣!=␣Y.nrow()");
IntegerVector out(ny);
for (int i=0; i<ny; ++i) {

int max_hamming = 0;
for (int j=0; j<nx; ++j) {

// Hamming distance between Y[,i] and X[,j]
int h = 0;
for (int k=0; k<d; ++k) h += (int)(Y(k,i) != X(k,j));
if (h > max_hamming) max_hamming = h;

}
out[i] = max_hamming;

}
return out;

}

Figure A.14. A helper function used in Figure A.15; determines the maximal
Hamming distance between each vector in Y and all vectors in X.
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hamming_closest_ga <- function(X, k=length(X)*8, niter =2000,
lambdaMutMult =0.001) {

n <- ncol(X)
d <- nrow(X)
S <- unique(as.integer(X))
# expected value of number of bits to mutate per iteration :
lambdaMut <- max(1, k*d*lambdaMutMult)

selection <- function(P, f) {
p <- (d-f+1)^3 # max (f) == d
p <- p/ sum(p)
P[,sample(k, replace=TRUE , size=2*k, prob=p)]

}

crossover <- function(P2) { # uniform crossover
P <- P2[,1:k]
for (i in 1:k) {

b <- sample(d, d/2)
P[b, i] <- P2[b, i+k]

}
P

}

mutation <- function(P) {
m <- sample(length(P), min(k*d, rpois(1, lambdaMut )))
P[m] <- sample(S, length(m), replace=TRUE)
P

}

# initial population : points in X and random ones ( mixed ):
P <- matrix(nrow=d, sample(S, k*d, replace=TRUE))
P[,sample(k, min(n, k))] <- X[,sample(n, min(n, k))]

# store the best solution so far:
f <- hamming_dist_ max(P, X)
bestP <- t(unique(t(P[,f==min(f)])))
bestF <- min(f)

for (i in 1: niter) {
P <- mutation(crossover(selection(P, f)))
f <- hamming_dist_ max(P, X)
if (bestF > min(f)) { # we got a better solution

bestP <- t(unique(t(P[,f==min(f)])))
bestF <- min(f)

}
}
bestP # return value

}

Figure A.15. An R implementation of a genetic algorithm-based approximate
solution to the closest vector with respect to the Hamming distance finding problem.
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double dpr2_dist(List X, NumericVector y,
int dy, double p, double r) {

int n = X.size ();
double dist = 0.0;

for (int i=0; i<n; ++i) {
NumericVector x(X[i]);
int dx = x.size ();
int min_dx_dy = std::min(dx, dy);

for (int j=0; j<min_dx_dy; ++j)
dist += (x[j]-y[j])*(x[j]-y[j]);

for (int j=min_dx_dy; j<dx; ++j)
dist += x[j]*x[j];

for (int j=min_dx_dy; j<dy; ++j)
dist += y[j]*y[j];

dist += p*abs(pow(dx , r)-pow(dy, r));
}

return dist;
}

Figure A.16. A C++ implementation of to compute the sum of d2
p,r penalty

functions, see Equation (3.5), between the first dy observations in a vector y and each
vector in X.
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# include <deque >
// [[ Rcpp :: plugins (" cpp11 ")]]
NumericVector dpr2_centroid(List X, double p, double r) {

int l=X.size ();
int d=calc_max_vector_length(X);

NumericVector xtilde(d);
for (auto it=X.begin (); it != X.end(); ++it) {

NumericVector x(*it);
int dx = x.size ();
for (int j=0; j<dx; ++j) xtilde[j] += x[j];

}

// a linked list (a stack ):
std::deque < std::pair <int , int > > part;
NumericVector y(d);
NumericVector best_y=NumericVector (0);
double best_dist=INFINITY;

for (int n=1; n<=d; ++n) {
// C++ arrays use 0- based indices
part.push_front( std::pair <int , int >(n-1, n-1) );
y[n-1]= xtilde[n-1]/l;
auto it=part.begin ();
while (it+1!= part.end() &&

y[(*it).first] > y[(*(it+1)). second ]) {
// merge :
int p1=(*it).second -(*it).first +1;
int p2=(*(it+1)). second -(*(it+1)). first +1;
y[(*it). second] = (y[(*it). second ]*p1+

y[(*(it+1)). second ]*p2)/(p1+p2);
for (int j=(*it).second -1; j >=(*(it+1)). first; --j)

y[j]=y[(*it). second ];
(*(it+1)). second =(*it). second;
// erase current it and move forward ( pop stack )
it=part.erase(it);

}
double cur_dist=dpr2_dist(X, y, n, p, r);
if (cur_dist <best_dist) {

best_dist=cur_dist;
best_y=NumericVector(y.begin(), y.begin ()+n);

}
}
return best_y;

}

Figure A.17. A C++ implementation of a function to compute centroid-like fusion
function for informetric data given by Equation (3.6); a function from Figure A.16 is

called; see [106].
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int levenshtein_smallmem(int* s1, int* s2, int n1, int n2) {
if (n1 < n2) {

std::swap(s1, s2); // pointer swap
std::swap(n1, n2);

}

int* v_cur = new int[n2+1];
int* v_last = new int[n2+1]; // n2 <= n1
for (int j=0; j<=n2; ++j)

v_cur[j] = j;

for (int i=1; i<=n1; ++i) {
std::swap(v_last , v_cur); // pointer swap
v_cur [0] = i;
for (int j=1; j<=n2; ++j) {

v_cur[j] = std::min(std::min(
v_last[j-1]+( int)(s1[i-1]!=s2[j-1]),
v_cur[j-1]+1) ,
v_last[j]+1);

}
}

int ret = v_cur[n2];
delete [] v_cur;
delete [] v_last;
return ret;

}

// [[ Rcpp :: export ]]
int levenshtein_smallmem(IntegerVector s1 , IntegerVector s2) {

// Rcpp interface to the above function
return levenshtein_smallmem(INTEGER(s1), INTEGER(s2),

LENGTH(s1), LENGTH(s2));
}

Figure A.18. A memory-efficient C++ implementation of a Wagner-Fisher version
[458] of the Levenshtein distance computation algorithm.
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// [[ Rcpp :: export ]]
IntegerVector Levenshtein_centroid2(IntegerVector s1 ,

IntegerVector s2) {
int n1 = s1.size(), n2 = s2.size ();
NumericMatrix D(n1+1, n2+1);
IntegerMatrix T(n1+1, n2+1);
for (int i=1; i<=n1; ++i) { // deletion

D(i,0) = D(i-1 ,0)+1; T(i,0) = 4;
}
for (int j=1; j<=n2; ++j) { // insertion

D(0,j) = D(0,j -1)+1; T(0,j) = 2;
}
for (int i=1; i<=n1; ++i)

for (int j=1; j<=n2; ++j) {
T(i,j) = 0;
if (s1[i-1]== s2[j-1])

D(i,j) = D(i-1,j-1); // no change
else {

double m1 = D(i-1,j -1)+1; // sub
double m2 = D(i,j -1)+1; // ins
double m3 = D(i-1,j)+1; // del
D(i,j) = std::min(std::min(m1 , m2), m3);
if (D(i,j) == m1) T(i,j) |= 1;
if (D(i,j) == m2) T(i,j) |= 2;
if (D(i,j) == m3) T(i,j) |= 4;

}
}

int maxd = (int)(D(n1 , n2 )*0.5);
if (maxd <= 0) return s1;
std::list <int > l1(s1.begin(), s1.end ());
auto it1 = l1.end(); --it1;
auto it2 = s2.end(); --it2;
int x = n1, y = n2;
for (int curd =0; curd < maxd; ) {

curd += (int)(T(x,y) != 0);
if (T(x,y) == 0) { // no change

x--; y--; --it1; --it2;
} else if (T(x,y) & 1) { // sub

x--; y--; (*(it1 --)) = (*(it2 --));
} else if ((T(x, y) & 2) && ((!(T(x,y)&4))

|| ((int)l1.size() < std::max(n1 ,n2)))) { // ins
y--; it1 = l1.insert (++it1 , *(it2 --)); --it1;

} else { // del
x--; it1 = l1.erase(it1); --it1;

}
}
return IntegerVector(l1.begin(), l1.end ());

}

Figure A.19. A C++ implementation of an algorithm to compute the Levenshtein
distance-based centroid of two strings.
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# include <algorithm >

struct Comparer {
// just like the comparer for the comonotonicity algorithm
const int* v;
Comparer(const int* _v) { v = _v; }
bool operator ()( const int& i, const int& j) const {

return v[i] < v[j];
}

};

// [[ Rcpp :: export ]]
double dinudist(IntegerVector x, IntegerVector y) {

int nx = x.size(), ny = y.size ();

// ordering permutation of x:
std::vector <int > ox(nx);
for (int i=0; i<nx; ++i) ox[i] = i;
std:: stable_sort(ox.begin(), ox.end(),

Comparer(INTEGER(x)));

// ordering permutation of y:
std::vector <int > oy(ny);
for (int i=0; i<ny; ++i) oy[i] = i;
std:: stable_sort(oy.begin(), oy.end(),

Comparer(INTEGER(y)));

double d = 0.0;
int ix = 0, iy = 0;
while (ix < nx && iy < ny) {

if (x[ox[ix]] == y[oy[iy]])
d += std::abs((ox[ix ++]+1) - (oy[iy ++]+1));

else if (x[ox[ix]] < y[oy[iy]])
d += std::abs((ox[ix ++]+1) - 0);

else
d += std::abs(0 - (oy[iy ++]+1));

}
while (ix < nx)

d += std::abs((ox[ix ++]+1) - 0);
while (iy < ny)

d += std::abs(0 - (oy[iy ++]+1));

return d;
}

Figure A.20. A C++ implementation of an algorithm to compute the Dinu rank
distance.
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struct NNItem {
size_t index;
double dist;

NNItem(size_t index , double dist) :
index(index), dist(dist) {}

NNItem () :
index(SIZE_MAX), dist(-INFINITY) {}

inline bool operator <( const NNItem& o ) const {
return dist < o.dist;

}
};

class Distance { // abstract class , must be overloaded
private:

size_t n;
virtual double compute(size_t v1, size_t v2) = 0;

public:
Distance(Function distance , RObject objects );
inline size_t getObjectCount () { return n; }
inline double operator ()( size_t v1, size_t v2) {

return compute(v1, v2);
}

};

double sumd_nn(Distance* dist , size_t i, size_t nntry ,
std:: priority_queue <NNItem >& queue , double limit=INFINITY)

{
double totd = 0.0;
for (size_t j=0; j<dist ->getObjectCount (); ++j) {

if (i == j) continue;
double curd = (*dist)(i, j);
if (queue.empty ())

queue.push( NNItem(j, curd) );
else if (curd <= queue.top(). dist) {

if (queue.size() >= nntry && curd < queue.top(). dist) {
double oldtop = queue.top(). dist;
while (!queue.empty () && queue.top(). dist == oldtop)

queue.pop();
}
queue.push( NNItem(j, curd) );

}
totd += curd;
if (totd >= limit) return INFINITY;

}
return totd;

}

Figure A.21. Approximate medoid search in an arbitrary finite semimetric space,
part I.
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// [[ Rcpp :: export ]]
RObject medoid_approx(Function distance , RObject objects ,

int iters=15, int nntry =5)
{

RObject result(R_NilValue );
Distance* dist = new Distance(distance , objects );
size_t n = dist ->getObjectCount ();
std::vector <bool > active(n, true );
size_t besti_overall = -1;
double bestd_overall = INFINITY;
for (size_t r=0; r<( size_t)iters; ++r) {

std:: priority_queue <NNItem > queue;
size_t besti = (size_t )( unif_rand ()*n);
if (! active[besti]) continue;
active[besti] = false;
double bestd = sumd_nn(dist , besti , nntry , queue);
std:: priority_queue <NNItem > bestqueue;
bool change = true;
while (change) {

change = false;
while (!queue.empty ()) {

NNItem nncur = queue.top();
queue.pop();
size_t curi = nncur.index;
if (! active[curi]) continue;
active[curi] = false;
std:: priority_queue <NNItem > curqueue;
double curd = sumd_nn(dist , curi , nntry ,

curqueue , bestd);
if (curd < bestd) {

change = true;
bestd = curd;
besti = curi;
bestqueue = curqueue;

}
}
queue = bestqueue;

}
if (bestd < bestd_overall) {

bestd_overall = bestd;
besti_overall = besti;

}
}
result = besti_overall +1;
if (dist) delete dist;
return result;

}

Figure A.22. Approximate medoid search in an arbitrary finite semimetric space,
part II.
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�st, see first order stochastic
dominance

∨-equivariance, 44, 80
∧-equivariance, 44, 80
(1 + ε)-approximation algorithm,

158
1-Lipschitz function, 42
1center, see Euclidean 1-center
1median, see Euclidean 1-median
2-increasingness, 79
3Π function, 37, 84

additive coherence, 225
additivity, 45, 76
affine equivariance, 121
affinitization, 131
aggregation function (classical), 35
aggregation function (on bounded

posets), 105
α-median, 77
α-monotonicity, 46
α-ordering, 163
alphabet, 112
ambiguity of a fuzzy number, 231
AMean, see arithmetic mean
andness, 227
annihilator element, 78
antisymmetry, 102
Archimedean copula, 80
arithmetic mean, 28, 49, 50, 76

arity-dependent property, 67
arity-free property, 67
associativity, 68, 106
average orness, 85, 228
averaging function, 36

B-spline basis functions, 99
bagging, 114
bagplot, 136
BajMean, see Bajraktarević mean
Bajraktarević mean, 52
Bertoluzza metric, 190
Beta function, 196
β-ordering, 163
bias, 210
bisymmetry, 73, 106
Borda count, 199
bounded poset, 104
breakdown point, 229
breakdown value, 85, 229

c.d.f., see cumulative distribution
function

capacity, see monotone measure
Cartesian product, 151
censored observation, 230
center of gravity, 135
center string, see closest string
centroid, 117, 168
CH-internality, see convex-hull

based internality
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chain, 104
character, 112
character string, 171
character string distance, 172
checksum, 232
Choquet integral, 59
CircMean, see circular mean
circular mean, 187
Clayton copula, 81
closest string, 183
clustering aggregation, 200
coefficient of variation, 216
comonotonic additivity, 77
comonotonic maxitivity, 80
comonotonicity, 39
compensativity, see idempotency
complete lattice, 104
componentwise arithmetic mean,

117, 128
componentwise median, 118, 145,

230
concativity, 42
conjunctivity, 37
consensus measure, 218
consistency, 225
consistent estimator, 211
continuity, 40
convex combination, 30, 40, 132
convex hull, 131
convex hull peeling depth, 140
convex-hull based internality, 132
convexity, 42
copula, 79, 119
counting measure, 58
covariance matrix, 216
cumsum, see cumulative sum
cumulative distribution function,

58
cumulative minimum, 224
cumulative sum, 224
curse of dimensionality, 205
CwAMean, see componentwise

arithmetic mean
CwMedian, see componentwise

median

d-scale equivariance, 121
data depth, 133, 149
data depth-based penalty function,

149
data-driven coordinate system, 131
decomposability, 72, 106, 118
decomposition integral, 62
Delaunay depth, 140
Demerau-Levenshtein distance

(restricted), see optimal
string alignment distance

Demerau-Levenshtein distance
(unrestricted), 176

diagonal section, 48
diff, see iterated difference
Dinu rank distance, 179, 200
directional data, 186
directional monotonicity, 46
disjunctivity, 37
distance-based penalty function,

149, 201
distributive lattice, 104
DNA sequence, 171
double type, 31
drastic t-conorm, 30, 81
drastic t-norm, 81

ecological evenness indices, 220
edit distance, see generic edit

distance
edit operation, 173
efficiency, 210
EMeanγ , see exponential mean
endpoint preservation, 34
ensemble methods, 114
entropy, 220, 228
estimator, 210
Euclidean 1-center, 119, 147
Euclidean 1-median, 118, 143, 170
Euclidean norm, 41
exemplar, 146, 149, 201
expected value of a fuzzy number,

230
exponential mean, 50, 76
extended fusion function, 65
extension principle, 193
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F+sensitivity, 225
F-insensitivity, 225
faithful penalty function, 64
feedforward neural network, 56
Fermat-Weber problem, 144
first order stochastic dominance,

198
Fischer-Yates shuffle, see random

permutation
floating point numbers, 30
Fodor t-conorm, 81
Fodor t-norm, 81
Frank copula, 81
fusion function, 27, 105
fuzziness of a fuzzy set, 232
fuzzy implication, 84
fuzzy measure, 57
fuzzy number, 191

g-index, 222
γ-ordering, 164
Gaussian copula, 80
generic edit distance, 174
genetic algorithm, 158
geometric mean, 29, 50, 76
geometric median, see Euclidean

1-median
Gini coefficient, 216
Gini mean, 52
GMean, see geometric mean
granular data, 190
graph edit distance, 200
graph metric, 200
greatest element, 104
Gumbel copula, 81

h-index, 221
Hadoop Map-Reduce, 69
halfplane location depth, see Tukey

depth
Hamming distance, 155, 174
harmonic mean, 29, 50
hierarchy of fusion functions, 54
HMean, see harmonic mean
homogeneity of the first degree, 41
homogeneous coordinates, 129

i.i.d., 195
idempotency, 35, 106
idempotization, 48
IEEE-754, 31
impact function, 221
incrementality, 72
independence, 225
independence copula, see product
inequality, 219
inf-based order, 154
informetrics, 165
intcl, 21
integer programming task, 157
intermediate recombination, 182
intermediate value property, 40
internality, 36, 106, 117, 131
internalization, 48
interquartile range, 214
interval arithmetic, 189
interval order, 189
interval scale equivariance, 44
IP task, see integer programming

task
IQR, see interquartile range
iterated difference, 215

Jaccard q-gram dissimilarity index,
178

join, 104

k-means clustering, 150
Kemeny aggregation scheme, 199
Kendall correlation coefficient, 200
knot vector, 99
kurtosis, 220

L1 depth, 139
LAD, see least absolute deviation
lattice, 104
lattice polynomial function, 62, 83,

110
LCS distance, see longest common

subsequence distance
least absolute deviation, 88
least element, 104
least squares error, 87
Levenshtein distance, 175
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lexicographic order, 154, 162
likelihood ratio order, 198
linear order, 103
linear programming task, 88
linearization, 95
Lipschitz constant, 42
Lipschitz continuity, 41
Liu depth, see simplical depth
LogSumExp, 50
longest common subsequence

distance, 174
LP task, see linear programming

task
LPF, see lattice polynomial

function
LSE, see least squares error
Łukasiewicz t-conorm, 30, 81
Łukasiewicz t-norm, 30, 69, 81

machine epsilon, 31, 35
MAD, see median absolute

deviation
Manhattan norm, 41
Mardia-Fisher spherical median,

188
Mardia-type median, 187
Max, see maximum
maximal common subgraph, 200
maximum, 28, 30, 37, 81
maximum norm, 41
maxitivity, 45
MaxProd-index, 222
MD, see mean difference
ME, see mean error
mean (Bullen sense), 43
mean (Cauchy sense), 36
mean (Gini sense), 36
mean (Kolmogorov-Nagumo sense),

40, 116
mean (Pitman sense), 44
mean difference, 214
mean error, 208
mean squared error, 208, 210
measurable function, 57
measure of dispersion, 209
measure of location, 209

median, 28, 64, 66, 135, 139, 196
median absolute deviation, 43, 214
median string, 180
medoid, 146, 201
meet, 104
metric, 62
Min, see minimum
minimum, 28, 29, 37, 69, 81
minitivity, 45
Minkowski p-norm, 41
missing value, 230
mixture operator, 52
mode, 36, 113
modularity, 45, 76
monotone measure, 57
Moore metric, 190
MSE, see mean squared error
multiplicative coherence, 225

natural metric on product chains,
153

neuron, 56
neutral element, 78
nondecreasingness, 34, 117
nonperiodic B-spline, 99
norm, 41
normalization, 43
numerical stability, 42

odepth, see Oja depth
Oja depth, 138
Oja median, 139
OMA operator, 82
OMedian, see Oja median
online algorithm, 72
optimal string alignment distance,

176
order statistic, 23, 28, 38, 61, 83,

196
ordered weighted maximum, 61, 83
ordered weighted minimum, 62
ordering permutation, 23, 40
ordinal scale equivariance, 44
OrMedian, see orthomedian
orness, 85, 227
orthogonal equivariance, 121
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orthogonal matrix, 123
orthogonalization, 124
orthomedian, 125
OSk, see order statistic
outlier, 36, 229
OWA operator, 53, 60, 64, 66, 77
OWMax, see ordered weighted

maximum
OWMin, see ordered weighted

minimum

partial order, 102
PCA, see principal component

analysis
pdepth, see projection depth
penalty function, 63
penalty-based function, 63, 149
perihedral depth, 140
ϕ-isomorphism, 49
piecewise linear fuzzy number, 192
PMeanr, see power mean
poset, 102
power mean, 50, 76
pre-aggregation function, 46
preorder, 102
principal component analysis, 126
probability measure, 58
Prod, see product
product, 29, 69, 81
product t-conorm, 81
projection depth, 140
projection pursuit, 134, 140, 217
pseudometric, 63
pseudomultiplication, 57
pseudonorm, 41

Qα, see quantile
q-gram, 177
q-gram distance, 178
q-gram profile, 178
QAMeanϕ, see quasi-arithmetic

mean
QMean, see quadratic mean
QP task, see quadratic

programming task
quadratic mean, 50

quadratic programming task, 87
quantile, 53
quasi-arithmetic mean, 49, 56

random comonotonic vectors, 40
random forest, 114
random permutation, 39
random variable, 58
range, 43, 214
recursivity, 71
reflexivity, 102
regression depth, 141
regular position, 133
regularization, 93
regularized incomplete Beta

function, 196
relation ≤n, 34, 46
relation <n, 34
relation 4n, 213
robust standardization, 43
rose diagram, 186
round half to even, 31

sample space, 58
scale equivariance, 43
Schur-convexity, 220
SD, see standard deviation
SD, see Drastic t-norm
sdepth, see simplical depth
seb, see smallest enclosing ball
seboid, 149, 201
semimetric, 201
set median, see medoid
SF, see Fodor t-conorm
Shilkret integral, 60
simplical depth, 138
simplical median, 138
simplical volume depth, see Oja

depth
singular value decomposition, 126
skewness, 220
SŁ, see Łukasiewicz t-conorm
smallest enclosing ball, see

Euclidean 1-center
SMedian, see simplical median
SP, see product t-conorm
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spatial median, see Euclidean
1-median

spread measure, 213
stability, 113
stable ordering permutation, 24
standard deviation, 43, 207, 214
standard deviation of a fuzzy

number, 231
standardization, 43
statistic, 195
strong conjunctivity, 107
strong disjunctivity, 107
strong idempotence, 68
strong neutral element, 78
strongly averaging function, 107
Sugeno integral, 61, 111
Sum, 28, 32, 69
sup-based order, 154
survival function, 58
SVD, see singular value

decomposition
symmetric additivity, 77
symmetric maxitivity, 80
symmetric minitivity, 80
symmetric modularity, 80
symmetric monotone measure, 58
symmetrization, 53
symmetry, 38, 105, 116

t-conorm, 79, 108
t-level set, 57
t-norm, 78, 108
TD, see drastic t-norm
tdepth, see Tukey depth
TF, see Fodor t-norm
TkMedian, see Tukey median
TŁ, see Łukasiewicz t-norm
total order, 103
transformation-retransformation,

131
transitivity, 102
translation equivariance, 43, 121
translation invariance, 43
triangle center function, 116
triangular conorm, see t-conorm
triangular norm, see t-norm

TriMeank, see trimmed mean
trimmed mean, 29
Tukey depth, 119, 134
Tukey median, 119, 135

unanimity, see idempotency
unanimous increasingness, 34
unbiased estimator, 210
uniform scale equivariance, 121
uninorm, 83, 108
unitary transformation, 123
universal integral, 59

value of a fuzzy number, 231
Var, see variance
variance, 207, 214
Voronoi region, 150

w-index, 222
WAMean, see weighted arithmetic

mean
Wasserstein metric, 190
WDpOWA operators, 214
WDpWAM operators, 214
weak conjunctivity, 107
weak disjunctivity, 107
weak monotonicity, 46, 132
weakly averaging function, 107
weighted arithmetic mean, 30, 51,

60, 64, 66, 76
weighted centroid, 147
weighted Euclidean 1-median, 144
weighted geometric mean, 51
weighted harmonic mean, 51
weighted lattice polynomial

function, 62, 111
weighted maximum, 61
weighted minimum, 61
weighted mode, 113
weighted quasi-arithmetic mean,

51, 64
weighting triangle, 66
weighting vector, 51
Weiszfeld procedure, 144
WGMean, see weighted geometric

mean
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WHMean, see weighted harmonic
mean

width of a fuzzy number, 231
WinMeank, see Winsorized mean
Winsorized mean, 29
WLPF, see weighted lattice

polynomial function

WMax, see weighted maximum
WMin, see weighted minimum
WQAMeanϕ, see weighted

quasi-arithmetic mean

zdepth, see zonoid data depth
zero-insensitivity, 222
zonoid data depth, 140
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