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PART 1 – Private-Key Cryptography

Military cryptography (Enigma) - an example of early encryption
machines
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PART 1 – DES
Data Encryption Standard (1975) - block cipher for non-military
applications (IBM) – NIST Standard
Feistel structure, 4× 6 eight S-boxes
56-bit keys
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PART 1 – AES

Advanced Encryption Standard
Public AES competition announced by NIST in 1997
Finalists: Rijndael, Serpent, Twofish, RC6, MARS
Winner - Rijndael (Vincent Rijmen and Joan Daemen) - 2001
SP network structure, 8× 8 S-box
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PART 1 – SHA3

Secure Hash Algorithm Standard
Cryptanalysis by Xiaoyung Wang
SHA3 Competition - NIST 2007
Finalists: Blake, Grøstl, JH, Keccak and Skein
Winner - Keccak, 2012 (Guido Bertoni, Joan Daemen, Michael
Peeters and Gilles Van Assche)
Sponge structure
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PART 1 – CAESAR

Authenticated Encryption Competition (Daniel Bernstein)
Deadline for submissions March 2014
57 submissions (AES based, Sponge structures, stream cipher
based, hash function based)
July 2015 – 2nd Round – 29 candidates
March 2016 – 3rd Round
December 2016 - announcement of finalists
December 2017 - announcement of winner
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PART 2 – Diffie-Hellman Key Agreement (1976)

Josef Pieprzyk Quo Vadis Cryptography? January, 2016 9 / 49



PART 2 – El Gamal Cryptosystem (1984)
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PART 2 – Rivest-Shamir-Adleman Cryptosystem
(1978)

Encryption c = me (mod N)
Decryption m = cd (mod N)
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PART 2 – Pairing-based Cryptography
Pairing invented by Menezes Okamoto and Vanstone (1993) – an
attack on elliptic curve logarithms
Definition:
Given two abelian groups G1, G2 and a cyclic group G3 of order n,
then a pairing is a map

e : G1 ×G2 → G3

with the following properties:
I bilinearity

e(P + P ′,Q) = e(P,Q) · e(P ′,Q)

e(P,Q + Q′) = e(P,Q) · e(P,Q′)

I non-degeneracy

∀P 6=0;P∈G1∃Q∈G2 e(P,Q) 6= 1
∀Q 6=0;Q∈G2∃P∈G1 e(P,Q) 6= 1
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PART 2 – Three-Party Diffie-Hellman (Joux 2000)

Alice→ { Bob, Chris }: a · P
Bob→ { Alice, Chris }: b · P
Chris→ { Alice, Bob }: c · P

Alice computes K = e(b · P, c · P)a = e(P,P)abc

Bob computes K = e(a · P, c · P)b = e(P,P)abc

Chris computes K = e(a · P,b · P)C = e(P,P)abc
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PART 2 – Identity-Based Encryption (Boneh/Franklin
2001)

Public-key encryption requires the senders to use AUTHENTIC
public keys of receivers
Need for TA that distributes certificates of public keys (PKI)
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PART 2 – Identity-Based Encryption (Boneh/Franklin
2001)

IBE
I Setup:

e : G1 ×G2 → G3
H1 : {0,1}∗ → G1 and H2 : {0,1}∗ → G3
Alice’s public key KA = H1(IDA)
TA has private key s and public key S = s ∗ P
TA→ Alice : DA = s ∗ KA

I Encryption (by Bob):
Bob chooses a random r and
Bob→ Alice: R = r ∗ P and c = M ⊕ H2(e(KA,S)r ),
where hash function G is public

I Decryption (by Alice):
c⊕H2(e(DA,R)) = c⊕H2(e(s ∗KA, r ∗P)) = c⊕H2(e(KA,S)r ) = M
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PART 2 – Identity-Based Encryption (Boneh/Franklin
2001)

IBE Security:
I An adversary needs to compute

e(KA,S)r = e(KA,P)rs

knowing P, KA, S and R (hash functions H and G are public)
I This task is equivalent to solving bilinear Diffie-Helman (BDH)

problem
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PART 2 – Certificateless Public-Key Cryptography

IBE
I Senders do not need certificates
I TA generates decryption keys
I Key escrow problem
I Revocation could be a problem

Certificateless (Public-key) Encryption (CE) - Al-Riyami/Paterson
2003

I Senders do not need certificates
I No key escrow problem

Josef Pieprzyk Quo Vadis Cryptography? January, 2016 17 / 49



PART 2 – NTRU Public-Key Encryption

NTRU – Nth degree TRUncated polynomial ring
Invented in 1995 by Hoffstein, Pipher, and Silverman
Let R = Z[x ]/(xn + 1) and Rq = Zq[x ]/(xn + 1) be two rings and
p,q two primes.

I Key Generation:
f $← DZ n,σ s.t. f = p · f ′ + 1

g $← DZ n,σ

Secret key sk = f ∈ R×q
Public key pk = h = pg/f ∈ R×q

I Encryption:
Given message M = R/pR
Choose randomly “small" elements s,e $← χα
Cryptogram C = hs + pe + M ∈ Rq

I Decryption:
C′ = f · C and M = C′ mod p
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Part 2 – Security of NTRU

The design went through few iterations
Variant pNTRUEncrypt is IND-CPA secure assuming hardness of
worse-case problems in ideal lattices (2011, Stehlé and Steinfeld)
Variant NTRUCCA is IND-CCA2 secure assuming hardness of
worse-case problems in ideal lattices (2012, Steinfeld et al)
Invited talk of Jeff Hoffstein at Eurocrypt 2014
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Part 2 – Homomorphic Encryption

How to secure data in the cloud?
How to protect privacy if you outsource your computations?
Homomorphic Encryption - (1978, Rivest, Adleman and
Dertouzos)
How could it work?

I additive homomorphism

E(m1 + m2) = E(m1) + E(m2)

I multiplicative homomorphisms

E(m1 ·m2) = E(m1) · E(m2)

Early homomorphic encryptions:
I Goldwasser-Micali Encryption (1982)
I Paillier cryptosystem (1999)
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Part 2 – Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) - Craig Gentry (2009)
Allows to evaluate a circuit (with addition and multiplication
operations) such that

f (E(x1), . . . ,E(xn)) = E(f (x1, . . . , xn))

Encryption uses lattices and is very slow
There is 2nd generation of FHE with better efficiency

Josef Pieprzyk Quo Vadis Cryptography? January, 2016 21 / 49



Outline

1 Private-key Cryptography

2 Public-key Cryptography

3 Multiparty Computations

4 Cryptanalysis

Josef Pieprzyk Quo Vadis Cryptography? January, 2016 22 / 49



Part 3 – Multiparty Computations

Assume that
there is a collection of participants

{P1,P2, . . . ,Pn} and a function Y = F (x1, . . . , xn)

each participant

Pi holds a private input xi for i = 1, . . . ,n

MPC protocol allows participants to evaluate the function F in
such a way that at the end of the protocol

I all participants learn Y and
I their inputs remain private
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Part 3 – Ideal Process

Assume that there is a trusted party (TP). Then we can run the
following protocol:

Participants submit their inputs to TP
TP evaluates the function
TP distributes the result to all participants

Problem:
What happens if the participants cannot agree on a TP?
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Part 3 – Security Settings

Two possible frameworks:
computationally secure
breaking the security of the protocol implies that the adversary, in
polynomial time, is able to solve a problem that is believed to be
intractable
unconditionally secure
the adversary cannot break the system by any method better than
by guessing private inputs
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Part 3 – Adversarial Models

Two generic types
passive – also called “honest but curious”. The corrupted
participants follow the protocol but they try to learn private
information
active – corrupted participants behave arbitrarily and/or
maliciously
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Part 3 – Classical Solutions

Yao, 1982 – the concept of secure MPC – Millionaire Problem
Goldreich, Micali and Wigderson, 1987 – solution with
computational security
Ben-Or, Goldwasser, and Wigderson and independently Chaum,
Crepeau, and Damgård, 1988 – solutions with unconditional
security
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Part 3 – BGW/CCD Solution

Assume that Y = F (x1, . . . , xn) can be represented by a polynomial
(sum of products) over GP(p). The participants

collectively evaluate products
collectively evaluate the sums and finding shares of Y

Note 1
At the initial stage, each participant Pi distributes their shares xi using Shamir secret
sharing with the polynomial

fi(x) = xi + a1x + . . . ,+atx t

Note 2
Computation of products is highly interactive – the multiplication of two polynomials of
degree t gives a polynomial of degree 2t . Reduction of the degree requires n ≥ 2t + 1
Note 3
Computation of sums is easy.
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Part 3 – Security of MPC

1 In the presence of a passive adversary, no set of size

t < n/2

of participants learns any additional information, other than what
they could derive from their private inputs and the output of the
protocol.

2 In the presence of an active adversary, no set of size

t < n/3

of participants can learn any additional information or disrupt the
protocol.
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Part 3 – MPC Applications

Money without Trusted Authority (Bit Coin)
Electronic elections
Collaborative Data Mining
Lacation-based Services
Secure Cloud Services
Electronic Elections
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Part 4 – Cryptanalysis

Linear Cryptanalysis – Mitsuru Matsui 1992 - Story with a “Twist"
Differential Cryptanalysis – Biham and Shaimr 1989/1990
Don Coppersmith claims that NSA knew about it in 1974
Algebraic Cryptanalysis – Courtois and Pieprzyk (2002) limited
success for block ciphers – Efficient for stream ciphers
Cube Attack – Dinur and Shamir 2009 –
success has many fathers, failure is an orphan –
Xuejia Lai (High Differentials), Vielbaher (AIDA)
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Part 4 – Linear Cryptanalysis (Matsui 1992)
Linear Approximation of S-boxes
Given Boolean function (S-box)

f : {0,1}n → {0,1}m

We can approximate an affine combination of the function outputs
(s∗0, . . . , s

∗
m−1) by an affine combination of the inputs (s0, . . . , sn−1) or

more precisely find

d(a0s0 ⊕ a1s1 ⊕ . . .⊕ an−1si−1, b0s∗0 ⊕ b1s∗1 ⊕ . . .⊕ bm−1s∗m−1)

where (a0, . . . ,an−1) and (b0, . . . ,bm−1) are binary strings.
The best linear approximation of S-box is determined by

(ã0, . . . , ãn−1) and (b̃0, . . . , b̃m−1)

such that

d(ã0s0 ⊕ ã1s1 ⊕ . . .⊕ ãn−1si−1, b̃0s∗0 ⊕ b̃1s∗1 ⊕ . . .⊕ b̃m−1s∗m−1)

is the smallest.
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Part 4 – Example - S5 of DES

If you try all possible input (s1, s2, s3, s4, s5, s6) and output
(s∗1, s

∗
2, s
∗
3, s
∗
4) linear combinations that it turns that there is ONE that is

THE BEST. It approximates
s5

by
s∗1 ⊕ s∗2 ⊕ s∗3 ⊕ s∗4

and
d(s5, s∗1 ⊕ s∗2 ⊕ s∗3 ⊕ s∗4) = 12

We can say that the approximation is TRUE with probability

1− 12
64

=
52
64
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Part 4 – Linear Cryptanalysis of 3-Round DES
We use the best linear approximation for S5

s5 = s∗4 ⊕ s∗3 ⊕ s∗2 ⊕ s∗1 with the probability
52
64

The linear approximation gives the following relation

R(15) ⊕ k(22) = S(7) ⊕ S(18) ⊕ S(24) ⊕ S(29)
def
= S(7,18,24,29)

X

E

S-boxes

P

15

R k

S

(7,18,24,29)
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Part 4 – Linear Cryptanalysis of 3-Round DES

12
24(      )

12
24(      )

(15)(7,18,24,29)

(7,18,24,29)

f

f

f

(22)L1

R1

R2

R3

L3

CIPHERTEXT

PLAINTEXT

k2

k1

k3

L1(7,18,24,29) ⊕ R2(7,18,24,29) = k1(22) ⊕ R1(15) →
52
64

L3(7,18,24,29) ⊕ R2(7,18,24,29) = k3(22) ⊕ R3(15) →
52
64

How we can combine the two (probabilistic) relations so the internal
variables R2(7,18,24,29) gets cancelled?
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Part 4 – Linear Cryptanalysis of 3-Round DES

Matsui Piling-up Lemma

Theorem
Given two binary random variables X1 and X2 whose probabilities are
P(X1 = 0) = p and P(X2 = 0) = q, then

P(X1 ⊕ X2 = 0) = pq + (1− p)(1− q)

Proof:
The random variable X1 ⊕ X2 = 0 iff

both X1 = 0 and X2 = 0→ this happens with the probability pq
both X1 = 1 and X2 = 1→ this happens with the probability
(1− p)(1− q)
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Part 4 – Linear Cryptanalysis of 3-Round DES

So the approximations

L1(7,18,24,29) ⊕ R2(7,18,24,29) = k1(22) ⊕ R1(15) →
52
64

L3(7,18,24,29) ⊕ R2(7,18,24,29) = k3(22) ⊕ R3(15) →
52
64

can be combined giving the approximation also called linear
characteristic

L1(7,18,24,29) ⊕ L3(7,18,24,29) = k1(22) ⊕ R1(15) ⊕ k3(22) ⊕ R3(15)

that is true with the probability(
52
64

)2

+

(
12
64

)2

≈ 0.7
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Part 4 – Linear Cryptanalysis – Matsui’s Trick
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Part 4 – Differential Cryptanalysis (Biham and Shamir,
1990)

S1

+

S1

+

k k

k ks s

ss

s s
1 2

1 2

* *

21
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Part 4 – Differential Cryptanalysis – XOR Profile

Given S-box as follows:

Input Output
s s∗

000 000
001 010
010 001
011 100
100 101
101 011
110 111
111 110
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Part 4 – Differential Cryptanalysis – XOR Profile
Let us find entries for the row with δ = 001

s1 s2 = s1 ⊕ δ s∗1 = S(s1) s∗2 = S(s2) ∆

000 001 000 010 010
001 000 010 000 010
010 011 001 100 101
011 010 100 001 101
100 101 101 011 110
101 100 011 101 110
110 111 111 110 001
111 110 110 111 001

δ \∆ 000 001 010 011 100 101 110 111
000 8 0 0 0 0 0 0 0
001 0 2 2 0 0 2 2 0

...
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Part 4 – Differential Cryptanalysis – XOR Profile

IMPORTANT OBSERVATION – the XOR profiles of
S(x) and
S(x ⊕ k)

are identical (“modulo a permutation of columns”)

Assumptions about the attacker - she knows
S-box (its truth table)
input values (messages)
output differences
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Part 4 – Differential Cryptanalysis – Simple Attack

Given S-box as follows:

Input Output
s s∗

000 000
001 010
010 001
011 100
100 101
101 011
110 111
111 110

Adversary knows
pair of observed inputs (s1 = 101, s2 = 110)
output difference observed ∆ = s∗1 ⊕ s∗2 = 100

Note that δ = s1 ⊕ s2 = 011.
What does Adversary learn about the secret key?
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Part 1 – Differential Cryptanalysis – Simple Attack
Finding the set Sδ∆ = S011

100

s1 ⊕ k s∗1 s2 ⊕ k = s1 ⊕ k ⊕ δ s∗2 = S(s2 ⊕ k) ∆

000 000 011 100 100
001 010 010 001 011
010 001 001 010 011
011 100 000 000 100
100 101 111 110 011
101 011 110 111 100
110 111 101 011 100
111 110 100 101 011

S011
100 = {000,011,101,110}

Note that
k ∈ S011

100 ⊕ s1 = {101,110,000,011}

and
k ∈ S011

100 ⊕ s2 = {110,101,011,000}
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Part 4 – Differential Cryptanalysis –
Single Round Characteristics

 = ( , 0 )δ out   AΩ

f
δ∆ 11 = 0 = 0

, 0 )δ in A
Ω = (
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Part 1 – Differential Cryptanalysis –
Other Single Round Characteristics

∆1 δ 1

= ( δΩ  in , 60 00 00 00 A    )x

f
= 60 00 00 00 x= 00 80 82 00 x

 = ( δ out   AΩ + x x00 80 82 00    ,  60 00 00 00     )
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Part 4 – Differential Cryptanalysis of 4-Round DES

∆
out 4δOutput difference   (          ,     )

f

f

f

f

δ

δ

δ

δ

∆

∆

∆

∆

1

2

3 3

4 4

1

2

Input difference

Assume that we have a pair of messages at
random with their input differences

(δA = 20 00 00 00 and δ1 = 00 00 00 00)

Note that the output left-hand difference

∆out = ∆4 ⊕∆2 ⊕ δ1

As δ1 = 0, then

∆4 = ∆out ⊕∆2

As we know 28 bits of ∆2 and observe ∆out ⇒
we know 28 bits of ∆4.
By differential cryptanalysis, we can recover
6× 7 = 42 bits of working key k4 used in 4-th
round.
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Conclusions

Cryptography is as good as its implementation (side-channel
attacks)
Human factor always crucial (education)
Dual-use technologies - controversy in Australia
Use of strong cryptography as protection of citizens’ privacy –
panel discussion at Eurocrypt 2014
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