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Overview

• General aspects of genetics 
• The Cancer Genome Atlas data 
• Feature selection 
• Interdependencies Discovery 
• Significant features  
• Putative functions 
• Laboratory validation of the results 
• Next steps



Genotype, phenotype



Monogenic characteristics



Corn some day ago and today

Czasy Majów/Azteków/Inków 
Kukurydza: kłos 5-7cm i 20-30 ziaren 

XVIII-XIX Ameryka 
Kukurydza: kilkanaście cm i ponad 100 ziaren 
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Molecular genetics
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Methylation



TCGA - Ceccarelli et al. 2016

Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes
(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.

554 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.

• Columns represent 932 glioma 
patients (Human 
Methylation450/27) 

• Grouping according to 
unsupervised cluster analysis 

• Rows represent methylations 
sorted by hierarchical clustering

Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess
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(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).
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using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.
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Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes
(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.
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TCGA - Ceccarelli et al. 2016

• Unsupervised clustering 
analysis for 667glioma samples 

• 2,275 most variant genes

Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes
(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.
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The above results confirm IDH status as the major 
determinant of the molecular footprints of 
diffuse glioma. 



• Data: from TCGA 88 glioma patients 

• gene expression, 

• methylation beta values

Aim: Detect methylation sites 
interacting with gene expression levels

• Scientific question: Can we model 
the patients survival? 

• Binary decision “up to 
400” and “over 400” 



Patients survival
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Data analysis scheme

Patient Cpg1 Cpg2 … Gene1 Gene2 … Survival Decision

TCGA1 0.1 0.5 … 6.9 12 … 560 ‘400+’

TCGA2 0.6 0.9 … 5.2 13.6 … 180 ‘≤400’

…

TCGA88 0.34 0.4 … 234 34 … 860 ‘400+’



Methods: MCFS-ID



Important attribute:
•occurs in many decision trees 
(DT),
•is located nearby the root 
(separates many objects),
•separates classes within the 
node with high quality,
•DTs based on it perform well 
on unseen data.

Methods: MCFS-ID



OS - Top Features
OS data contain 2 classes

‘≤400’ ‘400+’

38 50



Interdependencies Discovery
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Feature values



Patients survival 



Grade vs top cg

G2 G3 G4



5k top features + markers
OS data contain 2 classes

≤400’ 400+’

38 50

     position            attribute projections classifiers nodes     RI_norm
137       137    IDH.codel.subtype         198         239   239 0.035692070
605       605                  Age         203         168   173 0.018395388
835       835          DAXX.status         199         102   102 0.015770035
1143     1143          ATRX.status         193          94    94 0.013475393
1789     1789   X1p.19q.codeletion         202         103   103 0.009829582
1895     1895    BRAF.V600E.status         209          71    71 0.009314941
2030     2030    Chr.19.20.co.gain         224          84    84 0.008713459
2640     2640           IDH.status         180          42    42 0.006419770
3846     3846 BRAF.KIAA1549.fusion         211          28    28 0.002766280Unsupervised Clustering of Gliomas Identifies Six

Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes
(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.
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Summary

• Methylations dominated the ranking 

• Rare cg-gene interactions detected 

• Survival was much more strongly associated 
with methylome patterns than grade 

• One dead end reached ~ methylations studied 
through the function of related genes



Mapping of 63 methylations

• 44 out of 63 were mapped to a 
gene 

• 7 methylations within a region 
of 865 bp 

were mapped to MYADM 

• 2 methylations in a range of 
287 bp were 

mapped to TBR1 

• Map cg to active enhancers/promoters 



Testing associations
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TFBS

Neuron-restrictive silencer transcription factor, represses neuronal genes 
in non-neuronal tissues, member of the Kruppel-type zinc finger family

MOTIF WIDTH BEST POSSIBLE MATCH

REST_f1 22 GGGCGCTGTCCATGGTGCTGAA



Electrophoretic mobility shift assay

Cell line U87

There are additional 9 REST binding sites



Back to TCGA

• New data 167 patients with known OS



Heildenberg



Heildenberg



The Data
TCGA Data 

• Patients: 167 

• Attributes: 58191 

• Fenotype/genotype features 41 
• Decision 

• Survival (0_400, 400+)
• IDH.status (wt, mutant)



Fenotype/genotype features
 [1] "BCR"                                           "Histology"                                   
 [3] "Grade"                                         "Age"                                         
 [5] "Gender"                                        "Karnofsky.Performance.Score"                 
 [7] "Mutation.Count"                                "Percent.aneuploidy"                          
 [9] "IDH.status"                                    "X1p.19q.codeletion"                          
[11] "IDH.codel.subtype"                             "MGMT.promoter.status"                        
[13] "Chr.7.gain.Chr.10.loss"                        "Chr.19.20.co.gain"                           
[15] "TERT.promoter.status"                         "TERT.expression.log2"                        
[17] "TERT.expression.status"                      "ATRX.status"                                 
[19] "DAXX.status"                                   "Telomere.Maintenance"                        
[21] "BRAF.V600E.status"                             "BRAF.KIAA1549.fusion"                        
[23] "ABSOLUTE.purity"                               "ABSOLUTE.ploidy"                             
[25] "ESTIMATE.stromal.score"                    "ESTIMATE.immune.score"                       
[27] "ESTIMATE.combined.score"                "Original.Subtype"                            
[29] "Transcriptome.Subtype"                        "Pan.Glioma.RNA.Expression.Cluster"           
[31] "IDH.specific.RNA.Expression.Cluster"          "Pan.Glioma.DNA.Methylation.Cluster"          
[33] "IDH.specific.DNA.Methylation.Cluster"         "Supervised.DNA.Methylation.Cluster"          
[35] "Random.Forest.Sturm.Cluster"                  "RPPA.cluster"                                
[37] "Telomere.length.estimate.in.blood.normal.Kb"  "Telomere.length.estimate.in.tumor.Kb"        
[39] "diagnosis"                                     "race"                                        
[41] "ethinicity” 



Survival MCFS results

position            attribute          RI
56                           IDH.status 0.0434345804       
557                    IDH.codel.subtype 0.0151150247      
4020                    Chr.19.20.co.gain 0.0048719168      
4181               TERT.expression.status 0.00477300010     
4617                          DAXX.status 0.00450833711     
5012                    BRAF.V600E.status 0.0043099263      
5498                   X1p.19q.codeletion 0.004068978



IDH.Status MCFS results

 position                            attribute          RI
103               Chr.7.gain.Chr.10.loss 0.24287560013         
217.           Random.Forest.Sturm.Cluster 0.1204359708          
674              Pan.Glioma.RNA.Expression.Cluster 0.0284643536          
744              ATRX.status 0.02515611812         
812              Supervised.DNA.Methylation.Cluster 0.0220223947          
860              Original.Subtype 0.020578600



Survival vs IDH.Status



Modeling REST structure
REST



DNA + RESTREST + DNA



DNasaI and TF binding site
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