DNA methylation impact on the glioma patients overall survival.

Michał J. Dąbrowski

IPI PAN seminar 2017-06-05

- General aspects of genetics
- The Cancer Genome Atlas data
- Feature selection
- Interdependencies Discovery
- Significant features
- Putative functions
- Laboratory validation of the results
- Next steps

Genotype, phenotype

Monogenic characteristics

Corn some day ago and today ZB

X K

Czasy Majów/Azteków/Inków Kukurydza: kłos 5-7cm i 20-30 zia

Genome size

Figure 1-37 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Variability

(B) (D) Figure 1-1 Molecular Biology of the Cell 5/e (2) Garland Science 2008)

Molecular genetics

Molecular genetics

Polymer

Figure 7-79 Molecular Biology of the Cell S/e (C Garland Science 2008)

TCGA - Ceccarelli et al. 2016

 Columns represent 932 glioma patients (Human Methylation450/27)

- Grouping according to unsupervised cluster analysis
- Rows represent methylations sorted by hierarchical clustering

TCGA - Ceccarelli et al. 2016

 Unsupervised clustering analysis for 667glioma samples

• 2,275 most variant genes

The above results confirm IDH status as the major determinant of the molecular footprints of diffuse glioma.

Aim: Detect methylation sites interacting with gene expression levels

- Data: from TCGA 88 glioma patients
 - gene expression,
 - methylation beta values
- Scientific question: Can we model the patients survival?
 - Binary decision "up to 400" and "over 400"

Patients survival

Histogram of survival

Patient	Cpg1	Cpg2	•••	Gene1	Gene2	•••	Survival	Decision
TCGA1	0.1	0.5	•••	6.9	12	•••	560	'400+'
TCGA2	0.6	0.9		5.2	13.6		180	'≤400'
TCGA88	0.34	0.4	•••	234	34	•••	860	'400+'

Methods: MCFS-ID

Methods: MCFS-ID

The relative importance of feature g_k , RI_{g_k} , is defined as

$$\operatorname{RI}_{g_k} = \sum_{\tau=1}^{s \cdot t} \operatorname{wAcc}_{\tau}^{u} \sum_{n_{g_k}(\tau)} \operatorname{IG}(n_{g_k}(\tau)) \left(\frac{\operatorname{no. in} n_{g_k}(\tau)}{\operatorname{no. in} \tau}\right)^{v},$$

OS - Top Features

Interdependencies Discovery

Feature values

Patients survival

5k top features + markers

OS data contain 2 classes				
≤400 '	400+'			
38	50			

position		attribute projections classifiers nodes RI_norm					
137	137	IDH.codel.subtype	198	239 2	39 0.0356920)70	
605	605	Age 203	B 168	173 0.0	018395388		
835	835	DAXX.status	199	102 102	2 0.01577003	5	
1143	1143	ATRX.status	193	94 94	0.013475393	3	
1789	1789	X1p.19q.codeletion	202	103	103 0.009829	9582	
1895	1895	BRAF.V600E.status	209	71	71 0.009314	1941	
2030	2030	Chr.19.20.co.gain	224	84 8	34 0.0087134	59	
2640	2640	IDH.status	180	42 42	0.006419770		
3846	3846	BRAF.KIAA1549.fusio	n 211	28	8 28 0.00276	66280	

- Methylations dominated the ranking
- Rare cg-gene interactions detected
- Survival was much more strongly associated with methylome patterns than grade
- One dead end reached ~ methylations studied through the function of related genes

Mapping of 63 methylations

- 44 out of 63 were mapped to a gene
- 7 methylations within a region of 865 bp were mapped to MYADM
- 2 methylations in a range of 287 bp were mapped to TBR1

- CTCF_binding_site
 open_chromatin_region
 promoter_flanking_region
- enhancerpromoterTF_binding_site

• Map cg to active enhancers/promoters

Testing associations

Correlation GAL3ST2 cg15072976

TFBS

Assays for REST in Cluster

#	signal	abr	cellType	factor	antibody	treatment	lab	more info
1	172.00	u	U87	REST	NRSF	None	HudsonAlpha	metadata 🕶

Neuron-restrictive silencer transcription factor, represses neuronal genes in non-neuronal tissues, member of the Kruppel-type zinc finger family

Cell, tissue or DNA sample: Cell line or tissue used as the source of experimental material.

cell	Tier	Description	Lineage	Tissue	Karyotype	Sex	Documents	Vendor ID	Term ID	Label
U87	3	glioblastoma, astrocytoma, (PMID: 4332744)	ectoderm	brain	cancer	М	Myers	ATCC HTB-14	BTO:0002036	U87

MOTIF WIDTH BEST POSSIBLE MATCH

REST_f1 22 GGGCGCTGTCCATGGTGCTGAA

Electrophoretic mobility shift assay

There are additional 9 REST binding sites

• New data 167 patients with known OS

Heildenberg

Heildenberg

The Data

TCGA Data

- Patients: **167**
- Attributes: **58191**
 - Fenotype/genotype features 41
- Decision
 - Survival (0_400, 400+)
 - IDH.status (wt, mutant)

Fenotype/genotype features

[1] "BCR"

- [3] "Grade"
- [5] "Gender"
- [7] "Mutation.Count"
- [9] "IDH.status"
- [11] "IDH.codel.subtype"
- [13] "Chr.7.gain.Chr.10.loss"
- [15] "TERT.promoter.status"
- [17] "TERT.expression.status"
- [19] "DAXX.status"
- [21] "BRAF.V600E.status"
- [23] "ABSOLUTE.purity"
- [25] "ESTIMATE.stromal.score"
- [27] "ESTIMATE.combined.score"
- [29] "Transcriptome.Subtype"
- [31] "IDH.specific.RNA.Expression.Cluster"
- [33] "IDH.specific.DNA.Methylation.Cluster"
- [35] "Random.Forest.Sturm.Cluster"
- [37] "Telomere.length.estimate.in.blood.normal.Kb"
- [39] "diagnosis"
- [41] "ethinicity"

"Histology" "Age" "Karnofsky.Performance.Score" "Percent.aneuploidy" "X1p.19q.codeletion" "MGMT.promoter.status" "Chr.19.20.co.gain" "TERT.expression.log2" "ATRX.status" "Telomere.Maintenance" "BRAF.KIAA1549.fusion" "ABSOLUTE.ploidy" "ESTIMATE.immune.score" "Original.Subtype" "Pan.Glioma.RNA.Expression.Cluster" "Pan.Glioma.DNA.Methylation.Cluster" "Supervised.DNA.Methylation.Cluster" "RPPA cluster" "Telomere.length.estimate.in.tumor.Kb" "race"

Survival MCFS results

Cross Validation Results (wacc)

5498

attribute

IDH.status

IDH.codel.subtype

Chr.19.20.co.gain TERT.expression.status DAXX.status BRAF.V600E.status X1p.19q.codeletion RI

0.0434345804 0.0151150247 0.0048719168 0.00477300010 0.00450833711 0.0043099263 0.004068978

Top Features (RI)

JDH.Status MCFS results ZB

position	attribute	RI
103	Chr.7.gain.Chr.10.loss	0.24287560013
2 17.	Random.Forest.Sturm.Cluster	0.1204359708
674	Pan.Glioma.RNA.Expression.Cl	uster 0.0284643536
<mark>74</mark> 4	ATRX.status	0.02515611812
812	Supervised.DNA.Methylation.Cl	uster 0.0220223947
860	Original.Subtype	0.020578600

Modeling REST structure

DNA + REST

Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data

Aleksander Jankowski^{1,2,†,*}, Jerzy Tiuryn¹ and Shyam Prabhakar²

¹Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warszawa, Poland and ²Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore

*To whom correspondence should be addressed.

[†]Present address: Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany Associate Editor: Alfonso Valencia

Received on September 18, 2015; revised on March 23, 2016; accepted on April 12, 2016

Acknowledgments

Institute of Computer Science

<u>Michał Dramiński</u> Magdalena Mozolewska Jacek Koronacki Paweł Teisseyre Jan Komorowski

Uppsala University

Klev Diamanti

Nencki Institute of Experimental Biology

<u>Bartosz Wojtas</u> <u>Karolina Stępniak</u> Jakub Mieczkowski Bożena Kamińska

University of Warsaw, Faculty of Mathematics, Informatics, and Mechanics

Ania Macioszek Bartosz Wilczyński