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Biological background & motivations



Cell potency

Cell potency is a cell’s ability to differentiate into other cell types.

Embryonic stem cells:
pluripotent – have the
potential to differentiate
into any of the three germ
layers: endoderm,
mesoderm, or ectoderm.
Stem cells derived from
adult tissues: multipotent
– maintain a limited,
tissue-specific,
regenerative potential

Image: Wikipedia



Cellular reprogramming

Reprogramming of differentiated adult cell to embryonic-like
pluripotent state
Reprogramming to other adult cell types without intermediate
reversion to a pluripotent state

D. Bartis and J. Pongrácz. Three dimensional tissue cultures and tissue engineering. University of Pécs, 2011.

Disease modelling, drug design, organ synthesis, tissue repair, etc.
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Conrad Waddington’s epigenetic landscape
A visual metaphor for the embryonic
development and cellular commitment
Development viewed as a ball rolling
down a sloping landscape containing
multiple ‘hills’ and ‘valleys’
Cells take different paths down this
landscape and so adopt different fates
Hills act as barriers by separating the
landscape into valleys (cell types)
Differentiation is not terminal:
epigenetic barriers that can be
overcome given sufficient perturbations

Epigenotype – “complex network of processes

and causal mechanisms by which the genes of

the genotype bring about phenotypic effects”.

Phenotype = genotype + epigenotype + environment
Image: B. D. MacArthur et al. Nature Reviews Molecular Cell Biology, 10(10):672–681, 2009.



The idea that cell types may be related to ‘balanced states’ of an underlying
regulatory system bears a striking resemblance to the modern mathematical

notion of attractors of dynamical systems.



S. Bornholdt. Less Is More in Modeling Large Genetic Networks.
Science, 310(5747):449-451, 2005



Boolean networks (BNs)



Boolean networks

Boolean networks are a class of discrete dynamical systems that
can be characterised by interactions over a set of Boolean variables.

First introduced by Stuart Kauffman in 1969 as a simple
model class for studying dynamical properties of gene
regulatory networks.
Assumption: genes can be in two possible states of activity
(e.g., ON or OFF) at any given point in time, and that they
act on each other by means of Boolean functions.



Boolean networks

A Boolean network G(V,f) is defined as a set of binary
valued variables (also referred to as nodes or genes),
V = {x1, x2, . . . , xn} and a vector of Boolean functions
f = (f1, f2, . . . , fn).
At each time point t, the state of the network is defined by
the vector x(t) = (x1(t), x2(t), . . . , xn(t)), where xi(t) is the
value of variable xi at time t, i.e., xi(t) ∈ {0, 1}.
For each variable xi, there exists a predictor set
{xi1 , xi2 , . . . , xik(i)}, and a Boolean predictor function (or
simply predictor) fi being the i-th element of f that
determines the value of xi at the next time point, i.e.,

xi(t+ 1) = fi(xi1(t), xi2(t), . . . , xik(i)(t)),

where 1 ≤ i1 < i2 < · · · < ik(i) ≤ n.



Synchronous Boolean networks: Attractors

x(t+ 1) = f(x(t))

Given an initial state, within a finite number of steps, the BN
will transition into: a fixed state, called singleton attractor, or
a set of states through which it will repeatedly cycle forever,
referred to as cyclic attractor.
The attractor structure of a BN is determined by the
particular combination of singleton and cyclic attractors, and
by the cycle lengths of the cyclic attractors. The attractors of
a BN characterise its long-run behaviour.
The states that lead into an attractor constitute its basin of
attraction. The basins form a partition of the state space.



Attractor detection for large asynchronous BNs



BDD-based attractor detection for asynchronous BNs

The asynchronous updating scheme: T (x(t), x(t+ 1))=(
xi(t+ 1)↔ fi(xi1(t), xi2(t), · · · , xiki

(t))
)∧

j 6=i(xj(t+ 1)↔ xj(t))

It states that node vi is updated by its Boolean function and other
nodes are kept unchanged.



BDD-based attractor detection for asynchronous BNs

[Attractor of a BN] An attractor of a BN is a set of states
satisfying that any state in this set can be reached from any other
state in this set and no state in this set can reach any other state
that is not in this set.

[Attractor system] An attractor together with its state transition
relations is referred to as an attractor system.

Three types of attractor systems for asynchronous BNs (BSCCs):
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BDD-based attractor detection for asynchronous BNs

[Block] Given a BN G(V,f) with V = {v1, v2, . . . , vn} and
f = {f1, f2, . . . , fn}, a block B(V B,fB) is a subset of the
network, where V B ⊆ V . For any node vi ∈ V B, if B contains all
the parent nodes of vi, its Boolean function in B remains the same
as in G, i.e., fi; otherwise, the Boolean function is undetermined,
meaning that additional information is required to determine the
value of vi in B.

We call the nodes with undetermined Boolean functions as
undetermined nodes.

We refer to a block as an elementary block if it contains no
undetermined nodes.



BDD-based attractor detection for asynchronous BNs

Our decomposition method:Taming Asynchrony for Attractor Detection in Large Boolean Networks 7
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(a) SCC decomposition.
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(b) Transition graph of block B1.

Fig. 3: SCC decomposition and the transition graph of block B1.

The concept of projection map can be extended to blocks. Given a block with nodes
V B = {v1, v2, . . . , vm}, let V B0

= {v1, v2, . . . , vj} ✓ V B . We can define ⇡B0 :

XB ! XB0
as x = (x1, x2, . . . , xm) 7! ⇡B0(x) = (x1, x2, . . . , xj), and for a set of

states SB ✓ XB , we define ⇡B0(SB) = {⇡B0(x) : x 2 SB}.

Definition 7 (Path, Hyper-path). Given a BN G of n nodes and its state space X =
{0, 1}n, a path of length k (k> 2) in G is a serial x1 ! x2 ! · · · ! xk of states in
X such that there exists a transition between any consecutive two states xi and xi+1,
where i 2 [1, k � 1]. A hyper-path of length k (k > 2) in G is a serial x1 99K x2 99K
· · · 99K xk of states in X such that at least one of the two conditions is satisfied: 1) there
is a transition from xi to xi+1, 2) xi = xi+1, where i 2 [1, k � 1].

The concepts of a path and a hyper-path in a BN can be naturally extended to el-
ementary blocks. Notice that for any two consecutive states xi, xi+1 in a path x1 !
x2 ! · · · ! xk in a BN, k > 2 and i 2 [1, k � 1], if the transition between these
two states is due to the updating of a node in an elementary block B, then there is
a transition from ⇡B(xi) to ⇡B(xi+1); otherwise, ⇡B(xi) = ⇡B(xi+1). Therefore, the
projection of all the states in the path x1 ! x2 ! · · · ! xk on block B actually forms
a hyper-path ⇡B(x1) 99K ⇡B(x2) 99K · · · 99K ⇡B(xk) in block B. The following
lemma follows immediately from the definitions of path and hyper-path.

Lemma 1. Let x1 99K x2 99K · · · 99K xk be a hyper-path in a BN of length k. At least
one of the two statements holds. 1) There is a path from x1 to xk in the BN and this
path contains all the states in the hyper-path. 2) x1 = x2 = · · · = xk.

An elementary block does not depend on any other block while a non-elementary
block does. Therefore, they should be treated separately. We first consider the case of
elementary blocks. An elementary block is in fact a BN; therefore, the definition of
attractors in a BN can be directly taken to the concept of an elementary block.

Definition 8 (Preservation of attractors). Given a BN G and an elementary block B
in G, let A = {A1, A2, . . . , Am} be the set of attractors of G and AB = {AB

1 , AB
2 , . . . ,

AB
m0} be the set of attractors of B. We say that B preserves the attractors of G if for any

k 2 [1, m], there is an attractor AB
k0 2 AB such that ⇡B(Ak) ✓ AB

k0 .

An elementary block contains no undetermined nodes.
Given a BN G, let B be an elementary block in G. B
preserves the attractors of G.



BDD-based attractor detection for asynchronous BNs

[Projection map, Compressed state, Mirror states] For a BN G and
its block B, where the set of nodes in B is V B = {v1, v2, . . . , vm}
and the set of nodes in G is V = {v1, v2, . . . , vm, vm+1, . . . , vn},
the projection map πB : X → XB is given by
x = (x1, x2, . . . , xm, xm+1, . . . , xn) 7→ πB(x) = (x1, x2, . . . , xm).

For any set of states S ⊆ X, we define πB(S) = {πB(x) : x ∈ S}.
The projected state πB(x) is called a compressed state of x. For
any state xB ∈ XB, we define its set of mirror states in G as
MG(xB) = {x | πB(x) = xB}. For any set of states SB ⊆ XB,
its set of mirror states isMG(SB) = {x | πB(x) ∈ SB}.



BDD-based attractor detection for asynchronous BNs

[Preservation of attractors] Given a BN G and an elementary block
B in G, let A = {A1, A2, . . . , Am} be the set of attractors of G
and AB = {AB

1 , A
B
2 , . . . , A

B
m′} be the set of attractors of B. We

say that B preserves the attractors of G if for any k ∈ [1,m], there
is an attractor AB

k′ ∈ AB such that πB(Ak) ⊆ AB
k′ .

Lemma
Given a BN G and an elementary block B in G, let Φ be the set of
attractor states of G and ΦB be the set of attractor states of B. If
B preserves the attractors of G, then Φ ⊆MG(ΦB).

Theorem
Given a BN G, let B be an elementary block in G. B preserves the
attractors of G.
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BDD-based attractor detection for asynchronous BNs

[Crossability, Cross operations]
Bi – a non-elementary block,
V Bi = {vp1 , vp2 , . . . , vps , vq1 , vq2 , . . . , vqt}
Bj – Bi’s parent block,
V Bj = {vq1 , vq2 , . . . , vqt , vr1 , vr2 , . . . , vru}
xBi = (x1, x2, . . . , xs, y

i
1, y

i
2, . . . , y

i
t) a state of Bi

xBj = (yj
1, y

j
2, . . . , y

j
t , z1, z2, . . . , zu) a state of Bj

Crossable: xBi C xBj , if the values of their common nodes
are the same, i.e., yi

k = yj
k for all k ∈ [1, t].

The cross operation:
Π(xBi ,xBj ) = (x1, x2, . . . , xs, y

i
1, y

i
2, . . . , y

i
t, z1, z2, . . . , zu)



BDD-based attractor detection for asynchronous BNs
[Crossability, Cross operations]
We say a set of states SBi ⊆ XBi and a set of states SBj ⊆ XBj

are crossable, denoted as SBi C SBj , if at least one of the sets is
empty or the following two conditions hold: 1) for any state
xBi ∈ SBi , there always exists a state xBj ∈ SBj such that xBi

and xBj are crossable; 2) vice versa.

Π(SBi , SBj ) = {Π(xBi ,xBj ) | xBi ∈ SBi ,xBj ∈ SBj and
xBi C xBj}.

Let SBi = {SBi | SBi ⊆ XBi} be a family of states sets in Bi and
SBj = {SBj | SBj ⊆ XBj} be a family of states sets in Bj . We
say SBi and SBj are crossable, denoted as SBi C SBj if for any
states set SBi ∈ SBi , there always exists a states set SBj ∈ SBj

such that SBi and SBj are crossable; 2) vice versa.

Π(SBi ,SBj ) = {Π(Si, Sj) | Si ∈ SBi , Sj ∈ SBj and Si C Sj}.



BDD-based attractor detection for asynchronous BNs
[Realisation of a block]
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(a) SCC decomposition of a BN.
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(b) Transition graph of B1.
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Figure: Transition graphs of two realisations of B3.



BDD-based attractor detection for asynchronous BNs

Main theorem

[Crossability of attractors] Let Bi be a single and elementary
parent block of a non-elementary block Bj in a BN G. Let ABi be
an attractor of Bi and let ABj be an attractor in the realisation of
Bj with respect to ABi . Then ABi C ABj .

[Attractor recovery] Given a BN G with Bi and Bj being its two
blocks, let ABi and ABj be the set of attractors for Bi and Bj ,
respectively.
Let Bi,j be the block got by merging the nodes in Bi and Bj . If
Bi and Bj are both elementary blocks or Bi is an elementary and
single parent block of Bj , then ABi C ABj and Π(ABi ,ABj ) is the
set of attractors of Bi,j .



BDD-based attractor detection for asynchronous BNs

Corollary
Given a BN G with Bi, Bj , and Bk being its three blocks, let ABi ,
ABj , and ABk be the sets of attractors for blocks Bi, Bj , and Bk,
respectively. If the three blocks are all elementary blocks or Bi is
an elementary block and it is the only parent block of Bj and Bk,
it holds that Π(Π(ABi ,ABj ),ABk) = Π(Π(ABi ,ABk),ABj ).



BDD-based attractor detection for asynchronous BNs
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The concept of projection map can be extended to blocks. Given a block with nodes
V B = {v1, v2, . . . , vm}, let V B0

= {v1, v2, . . . , vj} ✓ V B . We can define ⇡B0 :

XB ! XB0
as x = (x1, x2, . . . , xm) 7! ⇡B0(x) = (x1, x2, . . . , xj), and for a set of

states SB ✓ XB , we define ⇡B0(SB) = {⇡B0(x) : x 2 SB}.

Definition 7 (Path, Hyper-path). Given a BN G of n nodes and its state space X =
{0, 1}n, a path of length k (k> 2) in G is a serial x1 ! x2 ! · · · ! xk of states in
X such that there exists a transition between any consecutive two states xi and xi+1,
where i 2 [1, k � 1]. A hyper-path of length k (k > 2) in G is a serial x1 99K x2 99K
· · · 99K xk of states in X such that at least one of the two conditions is satisfied: 1) there
is a transition from xi to xi+1, 2) xi = xi+1, where i 2 [1, k � 1].

The concepts of a path and a hyper-path in a BN can be naturally extended to el-
ementary blocks. Notice that for any two consecutive states xi, xi+1 in a path x1 !
x2 ! · · · ! xk in a BN, k > 2 and i 2 [1, k � 1], if the transition between these
two states is due to the updating of a node in an elementary block B, then there is
a transition from ⇡B(xi) to ⇡B(xi+1); otherwise, ⇡B(xi) = ⇡B(xi+1). Therefore, the
projection of all the states in the path x1 ! x2 ! · · · ! xk on block B actually forms
a hyper-path ⇡B(x1) 99K ⇡B(x2) 99K · · · 99K ⇡B(xk) in block B. The following
lemma follows immediately from the definitions of path and hyper-path.

Lemma 1. Let x1 99K x2 99K · · · 99K xk be a hyper-path in a BN of length k. At least
one of the two statements holds. 1) There is a path from x1 to xk in the BN and this
path contains all the states in the hyper-path. 2) x1 = x2 = · · · = xk.

An elementary block does not depend on any other block while a non-elementary
block does. Therefore, they should be treated separately. We first consider the case of
elementary blocks. An elementary block is in fact a BN; therefore, the definition of
attractors in a BN can be directly taken to the concept of an elementary block.

Definition 8 (Preservation of attractors). Given a BN G and an elementary block B
in G, let A = {A1, A2, . . . , Am} be the set of attractors of G and AB = {AB

1 , AB
2 , . . . ,

AB
m0} be the set of attractors of B. We say that B preserves the attractors of G if for any

k 2 [1, m], there is an attractor AB
k0 2 AB such that ⇡B(Ak) ✓ AB

k0 .

Compute the attractors of the elementary block B1.
For B2, form realisations of B2 with the attractors of B1,
then compute attractor of each of the realisations.
Similarly, compute the attractors for B3.
B4 has two parent blocks: merge B1 and B3 as its new parent
block, and compute its attractors.
Similarly, compute the attractors for B4.
Recover the attractors of the BN by cross operations.



BDD-based attractor detection for asynchronous BNs

Evaluation: MAPK network (53 nodes) & apoptosis (97 nodes)16

Networks
#

attractors
Time(s)

Speedup Networks
#

attractors
Time(s)

Speedup
Alg. 1 Alg. 2 Alg. 1 Alg. 2

MAPK r3 20 6.070 2.614 2.32 apoptosis 1024 1633.970 103.856 15.73
MAPK r4 24 11.674 1.949 5.99 apoptosis* 2048 8564.680 218.230 39.25

Table 1: Evaluation results on two real-life biological systems.

linked by crosstalks. We take the apoptosis signalling network presented in [21] and re-
cast it into the Boolean network framework: a BN model which compromise 97 nodes.
In this network, there are 10 input nodes, one of which is a housekeeping node which
value is fixed to 1 and which is used to model constitutive activation of certain nodes in
the network. For the wiring of the BN model, see Figure 9 in Appendix C. Similar to the
MAPK network, we compute the attractors of the apoptosis network with both Algo-
rithm 1 and Algorithm 2. The results are shown in the right part of Table 1. Moreover,
we also compute the network where the value of housekeeping is not fixed and show the
result in the row apoptosis*. When the housekeeping node is not fixed, the state-space
of the network is doubled. It is clear from the table that our proposed decomposition
method results in better speedups with respect to Algorithm 1 for larger models.

6 Discussions and Future Work

We have presented a SCC-based decomposition method for detecting attractors in BNs.
To the best of our knowledge, our method is the first scalable one able to deal with large
biological systems modelled as asynchronous BNs, thanks to its divide and conquer
strategy. We have prototyped our method and performed experiments with two real
biological networks, and the results are very promising.

We have observed that the network structure of BNs can vary quite a lot, which
potentially has impact on the performance of our proposed method. In principle, our
method works well on large networks which contain several relatively small SCCs. Each
of the two mutants of the MAPK network, however, contains one large SCC with 36
nodes and 17 SCCs each with only one node. Moreover, the large SCC is in the middle
of its SCC network structure (see Figure 8 in Appendix B). This network structure in
fact does not fit well with our method and this explains why the speedups achieved
for this network are less than 10. Both the MAPK network and the apoptosis network
contain many small SCCs with only one node (see Figure 8 and Figure 10). One way to
improve our method is to merging those small SCCs into large blocks so that there will
be fewer iterations in the main loop of Algorithm 1. Moreover, the SCCs of single node
which do not have child SCCs are in fact leaves and they can be removed to reduce
the network size. When the attractors in the reduced network are detected, we can then
recover the attractors in the whole network.4 Such optimisations will be part of our
future work. We will also apply our method to more realistic large biological networks,
and propose optimisations towards different network structures.

4 This is in general related to network reduction techniques (e.g., see [22]) which aim to simplify
the networks prior to dynamic analysis.
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MAPK network

Image: L. Grieco et al. PLOS Computational Biology, 9(10):e1003286, 2013.
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Apoptosis network
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Assurance of non-monotonicity

Representation of multi-value nodes:

0 0

1 0

0 1

1 1

0

1

2

2

To eliminate this option the input of the first subnode should be
combined via an AND operator with the negation of the input of
the second subnode for each multi-value node.

The two subnodes of each of the input nodes FasL and UV are
never set to 1 at the same time. 
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MAPK network SCC decomposition
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Apoptosis network SCC decomposition
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Software tool: ASSA-PBN

ASSA-PBN
Approximate Stead-State Analyser-PBN

a software tool for modelling, simulation and analysis of
probabilistic Boolean networks

Freely available at
http://satoss.uni.lu/software/ASSA-PBN/

http://satoss.uni.lu/software/ASSA-PBN/


Future perspectives

Scalable control of large biological networks!

Network controllability (e.g., minimal interventions driving the
system from a certain attractor to a specific target attractor)
Two running projects: SEC-PBN and AlgoReCell

Image: S. J. Häfner and A. H. Lund. Biomedical Journal, 39(3):166–176, 2016.
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