Zbiory przybliżone i systemy tranzycyjne (Rough Sets and Transition Systems)

Krzysztof Pancerz

Uniwersytet Rzeszowski

17.10.2016

The main goal of the reserach:

< /i>

Introduction

Rough Set

- $U \neq \emptyset$ a finite set of objects we are interested in.
- R any equivalence relation over U.
- $[u]_R$ an equivalence class of any $u \in U$.

With each $X \subseteq U$ and R, we associate two subsets:

- the *R*-lower approximation of *X*: $\underline{R}(X) = \{u \in U : [u]_R \subseteq X\}$,
- the *R*-upper approximation of *X*: $\overline{R}(X) = \{u \in U : [u]_R \cap X \neq \emptyset\}.$

Pawlak 1991

Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991).

Standard Set Inclusion

Let U be the universe and $A, B \subseteq U$. The standard set inclusion is defined as

$$A \subseteq B$$
 if and only if $orall u \in B$.

Majority Set Inclusion

Let U be the universe, $A,B\subseteq U,$ and $0\leq\beta<0.5.$ The majority set inclusion is defined as

$$A \subseteq B$$
 if and only if $1 - \frac{card(A \cap B)}{card(A)} \leq \beta$,

Variable Precision Rough Set Model (VPRSM)

By replacing the standard set inclusion with the majority set inclusion in definitions of approximations, we obtain the following two subsets:

• the R_{β} -lower approximation of X:

$$\underline{R}^{\beta}(X) = \{ u \in U : [u]_R \subseteq^{\beta} X \},\$$

• the R_{β} -upper approximation of X: $\overline{R}^{\beta}(X) = \{ u \in U : 1 - \frac{card([u]_R \cap X)}{card([u]_R)} < 1 - \beta \}.$

Ziarko 1993

Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39-59 (1993).

Transition system

A transition system is a quadruple $TS = (S, E, T, S_{init})$, where:

- S is the non-empty set of states,
- E is the set of events,
- $T \subseteq S \times E \times S$ is the transition relation,
- $S_{init} \subseteq S$ is the set of initial states.

Timed Transition System

Timed Transition Systems $TTS = (S, E, T, S_{init}, d_{min}, d_{max})$ consists of:

- the underlying transition system $TS = (S, E, T, S_{init})$,
- the minimal delay function (a lower bound) $d_{min}: E o N$ assigning a nonnegative integer to each event,
- the maximal delay function (an upper bound)
 d_{max}: E → N ∪ {∞} assigning a nonnegative integer or infinity to each event.

We assume, for timed transition systems, that the events may occur only at discrete time instants. Therefore, whenever time instant t is used, it means that $t \in \{t_0, t_1, t_2, ...\}$.

Direct Successors and Predecessors for States in Timed Transition Systems

For each state $s \in S$ in the timed transition system *TTS*, we can determine its direct successors and predecessors. Let

- $\textit{Post}_t(s, e) = \{s' \in S : (s, e, s') \in T \land d_{min}(e) \le t \le d_{maxn}(e)\},\$
- $Pre_t(s, e) = \{s' \in S : (s', e, s) \in T \land d_{min}(e) \le t \le d_{max}(e)\},\$

then the set $Post_t(s)$ of all direct successors of the state $s \in S$ at t is given by

$$Post_t(s) = \bigcup_{e \in E} Post_t(s, e)$$

and the set $Pre_t(s)$ of all direct predecessors of the state $s \in S$ at t is given by

$$Pre_t(s) = \bigcup_{e \in E} Pre_t(s, e).$$

Lower Predecessor Anticipation in Timed Transision Systems

Let $TTS = (S, E, T, S_{init}, d_{min}, d_{max})$ be a timed transition system and $X \subseteq S$. The lower predecessor anticipation $\underline{Pre}_t(X)$ of X at the time instant t is given by

$$\underline{\textit{Pre}}_t(X) = \{s \in S : \textit{Post}_t(s) \neq \emptyset \land \textit{Post}_t(s) \subseteq X\}.$$

The lower predecessor anticipation $\underline{Pre}_t(X)$ consists of all states from which TTS surely goes to the states in X as results of any events occurring at these states at the time instant t. Upper Predecessor Anticipation in Timed Transision Systems

Let $TTS = (S, E, T, S_{init}, d_{min}, d_{max})$ be a timed transition system and $X \subseteq S$. The upper predecessor anticipation $\overline{Pre}_t(X)$ of X at the time instant t is given by

$$\overline{Pre}_t(X) = \{s \in S : Post_t(s) \cap X \neq \emptyset\}.$$

The upper predecessor anticipation $\overline{Pre}_t(X)$ consists of all states from which *TTS* possibly goes to the states in X as results of some events occurring at these states at the time instant t. It means that *TTS* can also go at t to the states from outside X.

β-Lower Predecessor Anticipation in Timed Transision Systems

The β -lower predecessor anticipation $\underline{Pre}_t^{\beta}(X)$ of X at the time instant t is given by

$$\underline{\textit{Pre}}_t^{eta}(X) = \{s \in S : \textit{Post}_t(s)
eq \emptyset \land \textit{Post}_t(s) \subseteq X\}.$$

The β -lower predecessor anticipation of X at t consists of each state from which TTS goes, in most cases (i.e., in terms of the majority set inclusion) to the states in X as results of events occurring at these states at the time instant t.

Continuous Strict Anticipator

lf

$$\forall_{t\in\{t_0,t_1,t_2,\dots\}}s\in\underline{Pre}_t(X),$$

then s is said to be a continuous strict anticipator of states from X. It means that s always anticipates (i.e., at each time instant) states from X.

Interim Strict Anticipator

If s is not a continuous strict anticipator of states from X, but

$$\exists_{t\in\{t_0,t_1,t_2,\dots\}} s \in \underline{Pre}_t(X),$$

then s is said to be an interim strict anticipator of states from X. It means that s sometimes (not always) anticipates states from X.

Continuous Quasi-Anticipator

If s is not a continuous and interim strict anticipator of states from X, but

$$\forall_{t\in\{t_0,t_1,t_2,\dots\}}s\in\underline{Pre}_t^\beta(X),$$

then s is said to be a continuous quasi-anticipator of states from X.

Interim Quasi- Anticipator

If s is not a continuous and interim strict anticipator and continuous quasi-anticipator of states from X, but

$$\exists_{t\in\{t_0,t_1,t_2,\dots\}} s \in \underline{Pre}_t^{\beta}(X),$$

then s is said to be an interim quasi-anticipator of states from X.

- PhyChip was a collaborative project funded by the Seventh Framework Programme (FP7).
- The main goal of the project was to implement programmable amorphous biological computers in plasmodium of *Physarum polycephalum*.

http://www.phychip.eu/

Physarum Polycephalum

- *Physarum polycephalum* is a one-cell organism.
- In the phase of plasmodium, it looks like an amorphous giant amoeba with networks of protoplasmic tubes.
- A *Physarum* machine is a biological computing device implemented in the plasmodium of *Physarum polycephalum*.

Modeling Propagation of Plasmodium

A structure of the Physarum machine

$$\mathcal{PM} = (P, A, R),$$

where:

- $P = \{ph_1, ph_2, \dots, ph_k\}$ is a set of original points of plasmodium.
- $A = \{a_1, a_2, \dots, a_m\}$ is a set of attractants.
- $R = \{r_1, r_2, \ldots, r_n\}$ is a set of repellents.

A dynamics (behavior) of \mathcal{PM} over time

The family $V = \{V^t\}_{t \in \{t_0, t_1, t_2, ...\}}$ of the sets of protoplasmic veins propagated by the plasmodium, where $V^t = \{v_1^t, v_2^t, ..., v_{card(V^t)}^t\}$ is the set of all protoplasmic veins of the plasmodium present at time instant t in \mathcal{PM} . Each vein $v_i^t \in V^t$, where $i = 1, 2, ..., card(V^t)$, is the unordered pair $\{\pi_j^t, \pi_k^t\}$ such that $\pi_i^t \in P \cup A$ and $\pi_k^t \in P \cup A$.

> Establishing or annihilating the protoplasmic veins can be controlled by means of attractants or repellents (their activation or deactivation)!

・ロト ・ 一日 ・ ・ 日 ・

Modeling Propagation of Plasmodium

Physarum machine \longrightarrow Transition system

- OUTPUT $TTS(\mathcal{PM}) = (S, E, T, S_{init}, d_{min}, d_{max})$ a timed transition system modeling behavior of \mathcal{PM} .
- $\sigma: P \cup A \to S$ assigning a state to each original point of plasmodium as well as to each attractant,
- $\tau: \left(\bigcup_{t \in \{t_0, t_1, t_2, \dots\}} V_t\right) \to T$ assigning a transition to each protoplasmic vein,
- $\epsilon : \left(\bigcup_{t \in \{t_0, t_1, t_2, \dots\}} V_t\right) \to E$ assigning an event to each protoplasmic vein,
- $\iota: P \rightarrow S_{init}$ assigning an initial state to each original point of plasmodium.
- d_{min} and d_{max} are determined on the basis of V.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Transition system \longrightarrow Rough set model

INPUT $TTS(\mathcal{PM}) = (S, E, T, S_{init}, d_{min}, d_{max})$ - a timed transition system modeling behavior of the *Physarum* machine \mathcal{PM} .

OUTPUT $RSM(\mathcal{PM}) = (S, S_{init}, \{(\underline{Pre}_t(s), \overline{Pre}_t(s))\}_{s \in (S-I), t \in \{t_0, t_1, t_2, ...\}})$ - a rough set model of behavior of \mathcal{PM} .

- S the set of states defined in $TTS(\mathcal{PM})$,
- S_{init} the set of initial states defined in $TTS(\mathcal{PM})$,
- {(<u>Pre</u>t(s), Pret(s))}s∈(S-I),t∈{t₀,t₁,t₂,...} the family of lower and upper predecessor anticipations of states, excluding initial ones.

Let us consider an exemplary *Physarum* machine $\mathcal{PM} = \{P, A, R\}$, where:

P = {ph₁},
A = {a₁, a₂, a₃, a₄, a₅, a₆, a₇},
R = {r₁},

at three time instants t_0 , t_1 , and t_2 .

Modeling Propagation of Plasmodium

• A timed transition system model of \mathcal{PM} :

Modeling Propagation of Plasmodium

Let us assume that we are interested in the set $X = \{s_5, s_6, s_8\}$ of goal states and $\beta = 0.5$. For X and t < 5, we obtain:

- $\underline{Pre}_t(X) = \{s_2, s_4\},\$
- $\overline{Pre}_t(X) = \{s_2, s_3, s_4\},\$
- but $\underline{Pre}_t^{0.5}(X) = \{s_2, s_3, s_4\}.$

For X and $t \ge 5$, we obtain:

- $\underline{Pre}_t(X) = \{s_2, s_3, s_4\},\$
- $\overline{Pre}_t(X) = \{s_2, s_3, s_4\}.$

It means that:

- s_2 and s_4 are **continuous strict anticipators** of states from X,
- s_3 is an interim strict anticipator of states from X,
- but also s_3 is a **continuous quasi-anticipator** of states from X.

Eye-tracking sequences can be considered in terms of complex networks/transitions systems.

Fixation

- when the eye gaze pauses in a certain position.

Transformation of a sequence of eye-tracking data (a sequence of points in two-dimensional space) into an undirected graph representing a complex network.

Identification of object components in a visual stimulus and assignment of nodes of the complex network to each identified component.

Assessment of the cohesion of saccade connections between object components identified in a visual stimulus.

In the set of nodes of the complex network, we can distinguish:

- Nodes corresponding to object components.
- Nodes corresponding to eye-tracking points not covered by any object component. Such nodes are called insignificant nodes.

Let $O = \{o_1, o_2, \dots, o_v\}$ be a set of all object components identified in the visual stimulus. We use the following notation:

- $\mathcal{N} = \{N_{o_1}, N_{o_2}, \dots, N_{o_v}\}$ denotes a family of sets of nodes corresponding to object components.
- N^{\ominus} denotes a set of insignificant nodes.

Inter-component saccade neighborhood

For each node $n \in N_{o_1} \cup N_{o_2} \cup \cdots \cup N_{o_v}$, we define its inter-component saccade neighborhood:

$$ICSN(n) = \{n': (n, n') \in E \land \underset{o \in O}{\exists} (n' \in N_o \land n \notin N_o)\}.$$

Lower approximation

The lower approximation $\underline{ICSN}(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood, from o_i to o_j , is given by:

$$\frac{ICSN}{(o_i \rightarrow o_j)} = \\ = \{n \in N_{o_i} : ICSN(n) \neq \emptyset \land ICSN(n) \subseteq N_{o_j}\}.$$

The lower approximation $\underline{ICSN}(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood consists of all nodes N_{o_i} which are connected by inter-component edges with nodes from N_{o_i} only.

Upper approximation

The upper approximation $\overline{ICSN}(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood, from o_i to o_j , is given by:

$$\overline{\mathit{ICSN}}(o_i \to o_j) = \{n \in N_{o_i} : \mathit{ICSN}(n) \cap N_{o_i} \neq \emptyset\}.$$

The upper approximation $ICSN(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood consists of all nodes N_{o_i} which are connected at least by one inter-component edge with nodes from N_{o_i} .

Accuracy of approximation

The accuracy of approximation of the inter-component saccade neighborhood can be defined analogously to the accuracy of approximation in rough set theory, i.e.:

$$\alpha_{ICSN}(o_i \rightarrow o_j) = rac{card(\underline{ICSN}(o_i \rightarrow o_j))}{card(\overline{ICSN}(o_i \rightarrow o_j))}.$$

- We treat α_{ICSN}(o_i → o_j) as a measure of the cohesion of saccade connections from the object component o_i to the object component o_i.
- If $\alpha_{ICSN}(o_i \rightarrow o_j) = 1$, then the connections are the most coherent ones.

β -lower approximation

Let $0 \le \beta < 0.5$. The β -lower approximation $\underline{ICSN}(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood, from o_i to o_j , is given by:

$$\frac{ICSN^{\beta}(o_i \to o_j)}{= \{n \in N_{o_i} : ICSN(n) \neq \emptyset \land ICSN(n) \stackrel{\beta}{\subseteq} N_{o_j}\}}.$$

The β -lower approximation of the inter-component saccade neighborhood $\underline{ICSN}(o_i \rightarrow o_j)$ consists of all nodes N_{o_i} which are connected by inter-component edges, in most cases (i.e., in terms of the majority set inclusion), with nodes from N_{o_i} .

β -upper approximation

The β -upper approximation $\overline{ICSN}(o_i \rightarrow o_j)$ of the inter-component saccade neighborhood, from o_i to o_j , is given by:

$$\overline{\mathit{ICSN}}^{\beta}(o_i \to o_j) = \\ = \left\{ n \in N_{o_i} : \frac{\mathit{card}(\mathit{ICSN}(n) \cap N_{o_j})}{\mathit{card}(\mathit{ICSN}(n))} > \beta \right\}.$$

Relaxed measure of the cohesion

A relaxed measure of the cohesion of saccade connections from the object component o_i to the object component o_i has the form:

$$lpha_{ICSN}^{eta}(o_i
ightarrow o_j) = rac{card(ICSN^{eta}(o_i
ightarrow o_j))}{card(\overline{ICSN}^{eta}(o_i
ightarrow o_j))}.$$

An example of the the fragment of a complex network over the visual stimulus:

The cohesion of saccade connections, from o_1 to o_2 :

- Nodes belonging to the lower approximation are marked with circles.
- Nodes belonging to the upper approximation are marked with rectangles.

The cohesion of saccade connections, from o_2 to o_1 :

- Nodes belonging to the lower approximation are marked with circles.
- Nodes belonging to the upper approximation are marked with rectangles.

In case of the VPRSM approach (i.e., more relaxed case), for $\beta = 0.25$, the cohesion of saccade connections, from o_1 to o_2 :

$$\alpha_{ICSN}^{0.25}(o_1 \rightarrow o_2) = 1.$$

because:

$$\overline{\textit{ICSN}}^{0.25}(o_1 \rightarrow o_2) = \underline{\textit{ICSN}}^{0.25}(o_1 \rightarrow o_2).$$

 Nodes belonging to the β-lower approximation are marked with circles.

- We have shown that rough set theory can be used to describe some ambiguities in behavior of systems described by transition systems.
- We will extend the spectrum of measures by applying various rough set approaches.

- Pancerz, K., Lewicki, A., Tadeusiewicz, R., Warchoł, J.: Ant-Based Clustering in Delta Episode Information Systems Based on Temporal Rough Set Flow Graphs. Fundamenta Informaticae 128(1-2), 2013, pp. 143-158.
- Pancerz, K., Schumann, A.: Rough Set Models of Physarum Machines. International Journal of General Systems 44(3), 2015, pp. 314-325.

Literature - Chapters in Monographs and Contributions to Collections

 Pancerz, K., Schumann, A.: Rough Set Description of Strategy Games on Physarum Machines. In: Adamatzky, A. (Ed.), Advances in Unconventional Computing, Volume 2: Prototypes, Models and Algorithms. Emergence, Complexity and Computation, Vol. 23, Springer International Publishing, Switzerland, 2017, pp. 615-636.

Literature - Conference Papers

- Pancerz, K.: Extensions of Dynamic Information Systems in State Prediction Problems: the First Study. Proc. of IPMU'2008, pp. 101-108.
- Matusiewicz, Z., Pancerz, K.: Rough Set Flow Graphs and Max-* Fuzzy Relation Equations in State Prediction Problems. Proc. of RSCTC'2008, LNAI, Vol. 5306, Springer-Verlag, 2008, pp. 359-368.
- Pancerz, K.: Extensions of Multistage Decision Transition Systems: the Rough Set Perspective. Man-Machine Interactions. AISC, Vol. 59, Springer-Verlag, 2009, pp. 209-216.
- Pancerz, K., Matusiewicz, Z.: Prediction with Temporal Rough Set Flow Graphs: the Eigen Fuzzy Sets Perspective. Proc. of HSI'2010, pp. 744-748.
- Pancerz, K., Lewicki, A., Tadeusiewicz, R.: Ant Based Clustering of Time Series Discrete Data - a Rough Set Approach. Proc. of SEMCCO'2011, LNCS, Vol. 7076, Springer-Verlag, 2011, pp. 645-653.
- Schumann, A., Pancerz, K.: Roughness in Timed Transition Systems Modeling Propagation of Plasmodium. Proc. of RSKT'2015, LNAI, Vol. 9436, Springer International Publishing, 2015, pp. 482-491.
- Schumann, A., Pancerz, K.: A Rough Set Version of the Go Game on Physarum Machines. In: Proc. of BICT'2015.

 Jaskuła, B., Szkoła, J., Pancerz, K., Derkacz, A.: Eye-tracking Data, Complex Networks and Rough Sets: an Attempt Toward Combining Them. Proc. of BICT'2015.

・ロト ・同ト ・ヨト ・ヨト