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Basic De�nitions

Rough Set

U 6= ∅ - a �nite set of objects we are interested in.

R - any equivalence relation over U.

[u]R - an equivalence class of any u ∈ U.

With each X ⊆ U and R , we associate two subsets:

the R-lower approximation of X : R(X ) = {u ∈ U : [u]R ⊆ X},
the R-upper approximation of X :
R(X ) = {u ∈ U : [u]R ∩ X 6= ∅}.

Pawlak 1991

Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991).
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Basic De�nitions

Standard Set Inclusion

Let U be the universe and A,B ⊆ U. The standard set inclusion is
de�ned as

A ⊆ B if and only if ∀
u∈A

u ∈ B.

Majority Set Inclusion

Let U be the universe, A,B ⊆ U, and 0 ≤ β < 0.5. The majority
set inclusion is de�ned as

A
β
⊆B if and only if 1− card(A ∩ B)

card(A)
≤ β,
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Basic De�nitions

Variable Precision Rough Set Model (VPRSM)

By replacing the standard set inclusion with the majority set
inclusion in de�nitions of approximations, we obtain the following
two subsets:

the Rβ-lower approximation of X :

Rβ(X ) = {u ∈ U : [u]R
β
⊆X},

the Rβ-upper approximation of X :

R
β
(X ) = {u ∈ U : 1− card([u]R∩X )

card([u]R)
< 1− β}.

Ziarko 1993

Ziarko, W.: Variable precision rough set model. Journal of Computer and System
Sciences 46(1), 39-59 (1993).
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Basic De�nitions

Transition system

A transition system is a quadruple TS = (S ,E ,T ,Sinit), where:

S is the non-empty set of states,

E is the set of events,

T ⊆ S × E × S is the transition relation,

Sinit ⊆ S is the set of initial states.
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Basic De�nitions

Timed Transition System

Timed Transition Systems TTS = (S ,E ,T ,Sinit , dmin, dmax)
consists of:

the underlying transition system TS = (S ,E ,T , Sinit),

the minimal delay function (a lower bound) dmin : E → N
assigning a nonnegative integer to each event,

the maximal delay function (an upper bound)
dmax : E → N ∪ {∞} assigning a nonnegative integer or
in�nity to each event.

We assume, for timed transition systems, that the events may
occur only at discrete time instants. Therefore, whenever time
instant t is used, it means that t ∈ {t0, t1, t2, . . . }.
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Basic De�nitions

Direct Successors and Predecessors for States in Timed Transition

Systems

For each state s ∈ S in the timed transition system TTS , we can

determine its direct successors and predecessors. Let

Postt(s, e) = {s ′ ∈ S : (s, e, s ′) ∈ T ∧ dmin(e) ≤ t ≤ dmaxn(e)},

Pret(s, e) = {s ′ ∈ S : (s ′, e, s) ∈ T ∧ dmin(e) ≤ t ≤ dmax(e)},

then the set Postt(s) of all direct successors of the state s ∈ S at t is

given by

Postt(s) =
⋃
e∈E

Postt(s, e)

and the set Pret(s) of all direct predecessors of the state s ∈ S at t is

given by

Pret(s) =
⋃
e∈E

Pret(s, e).
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Rough Anticipation

Lower Predecessor Anticipation in Timed Transision Systems

Let TTS = (S ,E ,T , Sinit , dmin, dmax) be a timed transition system
and X ⊆ S . The lower predecessor anticipation Pret(X ) of X at
the time instant t is given by

Pret(X ) = {s ∈ S : Postt(s) 6= ∅ ∧ Postt(s) ⊆ X}.

The lower predecessor anticipation Pret(X ) consists of all states
from which TTS surely goes to the states in X as results of any
events occurring at these states at the time instant t.

K. Pancerz Seminarium IPI PAN



Rough Anticipation

Upper Predecessor Anticipation in Timed Transision Systems

Let TTS = (S ,E ,T , Sinit , dmin, dmax) be a timed transition system
and X ⊆ S . The upper predecessor anticipation Pret(X ) of X at
the time instant t is given by

Pret(X ) = {s ∈ S : Postt(s) ∩ X 6= ∅}.

The upper predecessor anticipation Pret(X ) consists of all states
from which TTS possibly goes to the states in X as results of some
events occurring at these states at the time instant t. It means
that TTS can also go at t to the states from outside X .
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Rough Anticipation

β-Lower Predecessor Anticipation in Timed Transision Systems

The β-lower predecessor anticipation Preβt (X ) of X at the time
instant t is given by

Preβt (X ) = {s ∈ S : Postt(s) 6= ∅ ∧ Postt(s)
β
⊆X}.

The β-lower predecessor anticipation of X at t consists of each
state from which TTS goes, in most cases (i.e., in terms of the
majority set inclusion) to the states in X as results of events
occurring at these states at the time instant t.
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Rough Anticipation

Continuous Strict Anticipator

If

∀
t∈{t0,t1,t2,... }

s ∈ Pret(X ),

then s is said to be a continuous strict anticipator of states from X .
It means that s always anticipates (i.e., at each time instant) states
from X .

Interim Strict Anticipator

If s is not a continuous strict anticipator of states from X , but

∃
t∈{t0,t1,t2,... }

s ∈ Pret(X ),

then s is said to be an interim strict anticipator of states from X .
It means that s sometimes (not always) anticipates states from X .
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Rough Anticipation

Continuous Quasi-Anticipator

If s is not a continuous and interim strict anticipator of states from
X , but

∀
t∈{t0,t1,t2,... }

s ∈ Preβt (X ),

then s is said to be a continuous quasi-anticipator of states from X .

Interim Quasi- Anticipator

If s is not a continuous and interim strict anticipator and
continuous quasi-anticipator of states from X , but

∃
t∈{t0,t1,t2,... }

s ∈ Preβt (X ),

then s is said to be an interim quasi-anticipator of states from X .
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PhyChip Project

PhyChip was a collaborative project funded by the Seventh
Framework Programme (FP7).

The main goal of the project was to implement programmable
amorphous biological computers in plasmodium of Physarum
polycephalum.

http://www.phychip.eu/
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Physarum Polycephalum

Physarum polycephalum is a one-cell organism.

In the phase of plasmodium, it looks like an amorphous giant
amoeba with networks of protoplasmic tubes.

A Physarum machine is a biological computing device
implemented in the plasmodium of Physarum polycephalum.
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Modeling Propagation of Plasmodium

A structure of the Physarum machine

PM = (P,A,R),

where:

P = {ph1, ph2, . . . , phk} is a set of original points of plasmodium.

A = {a1, a2, . . . , am} is a set of attractants.

R = {r1, r2, . . . , rn} is a set of repellents.

A dynamics (behavior) of PM over time

The family V = {V t}t∈{t0,t1,t2,... } of the sets of protoplasmic veins propagated
by the plasmodium, where V t = {v t

1, v
t
2, . . . , v

t
card(V t )} is the set of all

protoplasmic veins of the plasmodium present at time instant t in PM. Each
vein v t

i ∈ V t , where i = 1, 2, . . . , card(V t), is the unordered pair {πt
j , π

t
k} such

that πt
j ∈ P ∪ A and πt

k ∈ P ∪ A.
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Modeling Propagation of Plasmodium
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Modeling Propagation of Plasmodium

Physarum machine −→ Transition system

INPUT PM = (P,A,R) - the Physarum machine with the family
V = {V t}t∈{t0,t1,t2,... } of the sets of protoplasmic veins describing
behavior of PM.

OUTPUT TTS(PM) = (S ,E ,T ,Sinit , dmin, dmax ) - a timed transition system
modeling behavior of PM.

σ : P ∪ A→ S assigning a state to each original point of plasmodium as well as
to each attractant,

τ :

( ⋃
t∈{t0,t1,t2,... }

Vt

)
→ T assigning a transition to each protoplasmic vein,

ε :

( ⋃
t∈{t0,t1,t2,... }

Vt

)
→ E assigning an event to each protoplasmic vein,

ι : P → Sinit assigning an initial state to each original point of plasmodium.

dmin and dmax are determined on the basis of V .
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Modeling Propagation of Plasmodium

Transition system −→ Rough set model

INPUT TTS(PM) = (S ,E ,T , Sinit , dmin, dmax) - a timed
transition system modeling behavior of the Physarum

machine PM.

OUTPUT RSM(PM) =
(S , Sinit , {(Pret(s),Pret(s))}s∈(S−I ),t∈{t0,t1,t2,... }) - a
rough set model of behavior of PM.

S - the set of states de�ned in TTS(PM),

Sinit - the set of initial states de�ned in TTS(PM),

{(Pret(s),Pret(s))}s∈(S−I ),t∈{t0,t1,t2,... } - the family of lower
and upper predecessor anticipations of states, excluding initial
ones.
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Modeling Propagation of Plasmodium

Let us consider an exemplary Physarum machine PM = {P,A,R},
where:

P = {ph1},
A = {a1, a2, a3, a4, a5, a6, a7},
R = {r1},

at three time instants t0, t1, and t2.

(a) (b) (c)
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Modeling Propagation of Plasmodium

A timed transition system model of PM:

dmin(e1) = dmin(e2) = dmin(e3) = dmin(e4) = dmin(e5) =
dmin(e6) = dmin(e7) = dmin(e8) = dmin(e9) = 0,
dmax(e1) = dmax(e2) = dmax(e3) = dmax(e4) = dmax(e5) =
dmax(e6) = dmax(e8) = dmax(e9) =∞, and dmax(e7) = 4.
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Modeling Propagation of Plasmodium

Let us assume that we are interested in the set X = {s5, s6, s8} of
goal states and β = 0.5. For X and t < 5, we obtain:

Pret(X ) = {s2, s4},

Pret(X ) = {s2, s3, s4},

but Pre0.5t (X ) = {s2, s3, s4}.

For X and t ≥ 5, we obtain:

Pret(X ) = {s2, s3, s4},

Pret(X ) = {s2, s3, s4}.

It means that:

s2 and s4 are continuous strict anticipators of states from X ,

s3 is an interim strict anticipator of states from X ,

but also s3 is a continuous quasi-anticipator of states from X .
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Eye-tracking Sequences

Eye-tracking sequences can be considered in terms of complex
networks/transitions systems.
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Eye-tracking Sequences

Fixation

- when the eye gaze pauses in a certain position.

Saccade

- when the eye gaze moves to another position.
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Rough Sets and Complex Networks
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Rough Sets and Complex Networks

In the set of nodes of the complex network, we can distinguish:

Nodes corresponding to object components.

Nodes corresponding to eye-tracking points not covered by any
object component. Such nodes are called insigni�cant nodes.

Let O = {o1, o2, . . . , ov} be a set of all object components
identi�ed in the visual stimulus. We use the following notation:

N = {No1 ,No2 , . . . ,Nov } denotes a family of sets of nodes
corresponding to object components.

N	 denotes a set of insigni�cant nodes.
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Rough Sets and Complex Networks

Inter-component saccade neighborhood

For each node n ∈ No1 ∪ No2 ∪ · · · ∪ Nov , we de�ne its
inter-component saccade neighborhood:

ICSN(n) = {n′ : (n, n′) ∈ E ∧ ∃
o∈O

(n′ ∈ No ∧ n /∈ No)}.
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Rough Sets and Complex Networks

Lower approximation

The lower approximation ICSN(oi → oj) of the inter-component
saccade neighborhood, from oi to oj , is given by:

ICSN(oi → oj) =
= {n ∈ Noi : ICSN(n) 6= ∅ ∧ ICSN(n) ⊆ Noj}.

The lower approximation ICSN(oi → oj) of the inter-component
saccade neighborhood consists of all nodes Noi which are connected
by inter-component edges with nodes from Noj only.
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Rough Sets and Complex Networks

Upper approximation

The upper approximation ICSN(oi → oj) of the inter-component
saccade neighborhood, from oi to oj , is given by:

ICSN(oi → oj) = {n ∈ Noi : ICSN(n) ∩ Noj 6= ∅}.

The upper approximation ICSN(oi → oj) of the inter-component
saccade neighborhood consists of all nodes Noi which are connected
at least by one inter-component edge with nodes from Noj .
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Rough Sets and Complex Networks

Accuracy of approximation

The accuracy of approximation of the inter-component saccade
neighborhood can be de�ned analogously to the accuracy of
approximation in rough set theory, i.e.:

αICSN(oi → oj) =
card(ICSN(oi → oj))

card(ICSN(oi → oj))
.

We treat αICSN(oi → oj) as a measure of the cohesion of
saccade connections from the object component oi to the
object component oj .

If αICSN(oi → oj) = 1, then the connections are the most
coherent ones.
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Rough Sets and Complex Networks

β-lower approximation

Let 0 ≤ β < 0.5. The β-lower approximation ICSN(oi → oj) of the
inter-component saccade neighborhood, from oi to oj , is given by:

ICSNβ(oi → oj) =

= {n ∈ Noi : ICSN(n) 6= ∅ ∧ ICSN(n)
β
⊆Noj}.

The β-lower approximation of the inter-component saccade
neighborhood ICSN(oi → oj) consists of all nodes Noi which are
connected by inter-component edges, in most cases (i.e., in terms
of the majority set inclusion), with nodes from Noj .
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Rough Sets and Complex Networks

β-upper approximation

The β-upper approximation ICSN(oi → oj) of the inter-component
saccade neighborhood, from oi to oj , is given by:

ICSN
β
(oi → oj) =

=
{
n ∈ Noi :

card(ICSN(n)∩Noj
)

card(ICSN(n)) > β
}
.
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Rough Sets and Complex Networks

Relaxed measure of the cohesion

A relaxed measure of the cohesion of saccade connections from the
object component oi to the object component oj has the form:

αβICSN(oi → oj) =
card(ICSNβ(oi → oj))

card(ICSN
β
(oi → oj))

.
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Rough Sets and Complex Networks

An example of the the fragment of a complex network over the
visual stimulus:
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Rough Sets and Complex Networks

The cohesion of saccade connections, from o1 to o2:

αICSN(o1 → o2) =
2

3
.

Nodes belonging to the lower approximation are marked with
circles.

Nodes belonging to the upper approximation are marked with
rectangles.
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Rough Sets and Complex Networks

The cohesion of saccade connections, from o2 to o1:

αICSN(o2 → o1) =
3

4
.

Nodes belonging to the lower approximation are marked with
circles.

Nodes belonging to the upper approximation are marked with
rectangles.
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Rough Sets and Complex Networks

In case of the VPRSM approach (i.e., more relaxed case), for
β = 0.25, the cohesion of saccade connections, from o1 to o2:

α0.25ICSN(o1 → o2) = 1.

because:

ICSN
0.25

(o1 → o2) = ICSN0.25(o1 → o2).

Nodes belonging to the β-lower approximation are marked
with circles.
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Conclusions

We have shown that rough set theory can be used to describe
some ambiguities in behavior of systems described by
transition systems.

We will extend the spectrum of measures by applying various
rough set approaches.
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