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Streszczenie

Predyktorem nazywamy całkowitą funkcję ze zbioru słów binarnych w zbiór {0, 1}.
Odpowiada to operacji zgadywania i + 1-szego bitu na podstawie informacji o pier-
wszych i zaobserwowanych bitach. Rozprawa skupia się wokół predyktorów, które są
jednocześnie całkowitymi obliczalnymi funkcjami.

Miarą skuteczności predyktora jest strata zerojedynkowa, która liczona jest jako sto-
sunek błędnych zgadywań do wszystkich zgadywań dokonanych do pewnego momentu.
Wielkość tę nazywamy błędem predykcji. W szczególności, interesuje nas asympto-
tyczne zachowanie błędów predykcji. Badane są takie własności jak zbieżność, op-
tymalność czy istnienie schematów predykcji, które są uniwersalne dla zadanej klasy
procesów. W toku wywodu prezentowane wyniki umiejscowione są w kontekście algo-
rytmicznej teorii losowości.
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Abstract

A predictor is a total function from binary words into the set of binary outcomes —
{0,1}. It is interpreted as an operation of guessing i+ 1-th outcome using information
about the first i outcomes of some process. This thesis focuses on predictors which are
total computable functions.

The performance of a predictor is assessed via the zero-one loss function, that is, we
study the ratio between the number of wrong guesses and the total number of guesses
made so far. This ratio is called the prediction error. In particular, the thesis deals
with questions concerning the asymptotic behaviors of prediction errors. We study such
issues as convergence, optimality and existence of schemes that are universal for the
class of stationary ergodic processes. The results are presented in the context of the
algorithmic randomness theory.
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Introduction

Suppose that we deal with a finite but potentially infinite set of data, possibly
representing empirical observations about some physical system. A natural question
which occurs in this case is the question of prediction. Although prediction might be
understood in various different ways, in this thesis we focus on prediction of the nearest
future of the underlying system based on its unfolding behaviour. For a very simple
example, consider an infinite sequence of binary values. It could be the case that this
sequence is a binary representation for some well defined number, e.g. square root of
two. If that is so, then this sequence is deterministic and if someone asks us to guess
the i-th bit of the sequence, we can always give the right answer, at least in principle.

Suppose, however, that the sequence is a witness to some random phenomena. For
example, Rosencrantz is continuously flipping a fair unbiased coin, while Guildenstern
writes down the outcomes — 0 for heads, 1 for tails. What can be said about our
ability to predict such a sequence? Does the knowledge about past outcomes change
our situation in any way? Is there any optimal strategy to approach this problem? Even
more, what theoretical framework is the best to describe this scenario? Are we dealing
with an individual sequence or rather the whole universe of equipropable sequences?
Furthermore, can we go the other way around and infer about the system in question
based on its apparent (un)predictability?

To tackle these questions, a mathematical notion of predictors is introduced. A
predictor is simply a function that takes a binary word (a prefix of some infinite se-
quence) as an argument and outputs zero or one. In this thesis, we choose to restrict
our attention to binary sequences only. There are various philosophical and practical
reasons for this, but these will not be discussed here.

To compare various prediction schemes and to measure their performance, an ap-
propriate loss function is needed. Here, a natural zero-one loss is considered. Formally
speaking, at each stage of prediction we study the ratio of incorrect answers to all pre-
dictions made so far. It is assumed that we never abstain from making a guess. We
will call this measure a prediction error. Since we are dealing with potentially infinite
objects, our attention will be focused on the asymptotic behavior of the prediction er-
ror. In particular, sequences and predictors for which the error converges in the limit
will be of a special interest.

It is important to note, that other loss functions could be considered as well. For
example, we could require that the sequence of guesses converges to giving the right
answers at some point — in other words, that we are wrong only finitely many times. In
the probabilistic setting in turn, various authors use word prediction to denote empirical
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estimation of uknown conditional probabilities. In such case, one can be interested
in different loss functions such as vanishing of quadratic differences between the true
probabilities and the estimates. Prediction via predictors and measure estimation are
connected in various ways. While it is not the central topic of the present work, some
insights on these connections will be provided.

Finally, we impose one important constrain on predictors. Our goal is to describe
prediction as it is done (or in principle, as it may be done) in sciences. Therefore, we
are not interested in any form of magical prediction familiar to the world of witches,
prophets and crystal gazing. We want the prediction to be effective. A minimal con-
strain for effectiveness is given by the mathematical notion of computability. Therefore,
we will focus on computable predictors, which will be called proper predictors. In the
context of theoretical computer science, such idea was — to the best of my knowledge
— introduced by Ko [24] (by the name of total prediction functions).

Looking at prediction from this perspective, various computability-oriented ques-
tions and problems will manifest themselves. In particular, we will ask how predictabil-
ity (or unpredictability) connects to well studied notions from computability such as
Turing degrees.

The structure of this work is as follows. It begins with an introductory part which
deals with elementary notions from computability theory and modern probability the-
ory. It is then followed by the second part which deals with the prediction in the
deterministic setting — prediction of individual sequences. Three problems are studied
in this part.

Firstly, a simple notion of unpredictability, known as Ko stochasticity, is introduced.
It is then placed in the context of algorithmic randomness theory. Most of this section
follows known results. This part also contributes a novel result by showing that no Ko
stochastic sequence may be computably enumerable (in fact, not even n-computably
enumerable).

Secondly, we move our attention to sequences for which errors of no predictor con-
verge. These sequences will be called unstable. An unstable c.e. sequence is constructed
using the priority method. This is a joint work with Dariusz Kalociński from the paper
[23].

Thirdly, we consider the notion of optimality. It is shown that for a certain se-
quence no predictor is optimal. Again, this theorem comes from a joint paper with
Dariusz Kalociński [23]. This part is ended by some simple observations regarding the
connections between predictors and predictability as defined by Tadaki [36] as well as
connections with coarse computability, which is one of the most fruitful recent devel-
opments in computability.

Eventually, we move on to the probabilistic framework in the third part of this dis-
sertation. Following probabilistic results on universal prediction for stationary ergodic
processes, we provide effective versions of several theorems. In particular, it is shown
that there exists such a proper predictor that is optimal on every sequence random in
the Martin-Löf sense relative to some computable stationary ergodic measure. In this
way we fill up another gap between the standard probabilistic framework and its algo-
rithmic counterpart. A probabilistic version of the optimality theorem from the second
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part is also provided. This theorem is a refined version of the result presented in Paris
on the IEEE International Symposium on Information Theory 2019 [22].
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Notation

By convention, the term sequences refers to infinite objects constructed over the
alphabet {0, 1}. The set of finite words over {0, 1} is denoted by 2<N. The set of all
one-sided infinite sequences is denoted by 2N. The set of all two-sided infinite sequences
is denoted by 2Z. For k > 0, the set of words of length k is sometimes denoted by 2k.

Following information-theoretic convention, bits of a one-sided infinite sequence are
indexed from 1. It is assumed that 0 ∈ N. The set of all nonzero natural numbers
is denoted as N+ (similarly, R+ denotes the set of positive real numbers). The empty
word is denoted by �.

Given a sequence (or a word) x we denote i-th bit of x by xi. To denote a string
xj, xj+1, . . . , xk (with j < k) we write xkj . In particular, a prefix of length n of x is
denoted by xn1 . By convention, for a sequence (or a word) x, we let x01 denote the empty
word as well.
|σ| is used to denote the length of the word σ, while #X refers to the cardinality of

set X. |x| may also denote the absolute value if x ∈ R.
#1 is used to denote the number of nonzero bits in a word, that is

#1σ = #{i < |σ| : σi = 1}.

We sometimes write σ(≺) � τ to say that σ is a (proper) prefix of τ .
We identify sets of natural numbers with binary sequences in the natural way: every

n-th bit is nonzero if and only if n is in the corresponding set. Similarly, we sometimes
assume correspondence between words and sets: σn = 1 if and only if n is in the
corresponding set and no k > |σ| belongs to the set. In this manner we sometimes
apply set-theoretic notation to sequences in words. In particular, σ ⊆ τ means that if
σi = 1 then τi = 1, while ω =

⋃∞
i=1 σi (with σi ∈ 2<N) means that ωi = 1 if and only if

for some i we have σi = 1.
Given sets A and B, the set C = A⊕B is constructed by putting bits of A on odd

bits of C and bits of B on even bits C.
For a function f , dom(f) denotes the domain of f , while given set A we write f [A]

to denote the image of A. Following a standard set-theoretic notation, we let P(Ω)
denote the power set of a set Ω.
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Part I

Preliminaries
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1

Computability theory

1.1 Computable functions and sets

Partial computable functions may be defined using various equivalent models of
computation [11]. For completeness, a certain definition will be also provided here.
This definition will be based on register machines.

The register machines consist of the unbounded number of registers which are unre-
stricted in their capacity and a set of admissible instructions. A program for the register
machine defines which registers will be used (a finite number of these) and which in-
structions are to be executed and in what order. A register is functionally equivalent
to a variable in modern programming languages, with the exception of its unlimited
capacity as it can store an arbitrary large natural number.

Definition 1 (Register machine). The register machine consists of registers r1, r2, . . .
A program for the register machine consists of a finite number of instructions coming
from the set of admissible instructions. For each i, j, k ∈ N we have the following
instructions:

• zeroing of j-th register (rj := 0) — the value stored in the register rj is changed
to zero; all other registers remain unchanged;

• succesor for j-th register (rj := rj + 1) — the value stored in the register rj is
increased by 1; all other registers remain unchanged;

• copying of j-th register to i-th register (ri := rj) — the value stored in the register
ri is replaced by the value stored in the register rj; all other registers (including
rj) remain unchanged;

• conditional jump (IF rj = ri GO TO k) — if the values stored in j-th and i-
th register are equal, execute the k-th instruction. Otherwise, execute the next
instruction.

Since a program is finite list of instructions, each program uses only a finite number
of registers. Suppose that the register machine is executing some program and i is the
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maximal index of a register used in this program (i.e., no register rj with j > i is used).
We encode the configuration of the machine on program P after some number of steps
as (s0, s1, . . . , si) where s0 is the index of the instruction that should be executed in the
next step and s1, . . . , si are equal to values stored by registers r1, . . . , ri respectively, with
r1, . . . , ri being all the registers used by the program P .

We say that a (v1, v2, . . .) is a computation of the register machine on program P if
for every j the states vj and vj+1 are related according to the instruction executed in the
(j + 1)-th step and v1 = (0, s1, . . . , sk, 0, . . . , 0) for some k. We will say that s1, . . . , sk
is an input of the register machine on program P .

Let b be the total number of instructions in the program P . We will say that the
machine stops on program P with input s1, . . . , sk if there exists a computation with a
configuration vm = (y0, y1, . . . , yk) such that y0 > b. Moreover, we will say that y1 is
the output of the computation.

Definition 2 (Partial computable function). We say that f : Nc → N is a partial
computable function if there exists a program P such that for every x1, . . . , xc ∈ N there
exists y ∈ N such that

f(x1, . . . , xc) = y

if and only if the computation of P with input x1, . . . , xc, stops. Moreover, if this
computation stops, then the output is y. We will write f(x1, . . . , xc) ↓ if f(x1, . . . , xc)
is defined and f(x1, . . . , xc) ↑ otherwise.

We say that f is computable if it is total, that is f(n) is defined for every natural n.

Observation 3. There are countably many partial computable functions.

Proof. Observe that every partial computable function corresponds to a program and
every program is a finite object and may be represented by a natural number.

When talking about functions from a countable set to a countable set, we often iden-
tify objects from countable sets with natural numbers. In particular, binary words may
be identified with natural numbers using the standard binary representation. Similarly,
a positive rational number q ∈ Q+ may be identified with its representation (a, b) ∈ N2

q =
a

b
.

In this manner, the definition of partial computable functions (and other definitions
introduced later) may be generalized for functions from a countable set to a countable
set — via an appropriate coding.

In particular, an arithmetical decision problem of form:

given x is φ(x) satisfied?

where φ is arithmetical formula, may be seen as equivalent to a set

{x ∈ N : φ(x)}.
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Definition 4 (Characteristic function). Let A ⊆ Nk. We will say that χA : Nk → {0, 1}
is a characteristic function of A if and only if for every x̄ ∈ Nk we have χA(x̄) = 1 if
and only if x̄ ∈ A.

Definition 5 (Computable sets). A set is computable1 if its characteristic function is
computable.

This gives us an important notion of computability of sets or problems. A problem
X is computable if there is an algorithm which allows us to decide, in a finite time,
for each natural number whether it belongs to X or not. An early realization of Alan
Turing was that not every problem is computable. Before defining a canonical example
of an uncomputable problem, we introduce the notion of a universal program. We start
by noting that all programs may be enumerated in an effective way (since they are finite
objects which may be effectively coded — for details see e.g. Chapter 4 of [11]). We
fix h1, h2, . . . — a canonical enumeration of partial computable functions with only one
argument. The halting set is defined as

{x ∈ N : hx(x) ↓}.

Theorem 6 (Turing [39]). The halting set is not computable.

The proof is based on a simple diagonal argument which is possible by the following
observation. There exists a program which can simulate an arbitrary program if given
the code of the program as input. Indeed, we can prove that

Theorem 7. Let h1, h2, . . . be a canonical enumeration of partial computable functions
with only one argument. There exists a program U such that for all i ∈ N, hi(x) is
defined if and only if U(i, x, 0, . . . , 0) ↓ and if hi(x) = y, then the program U ends its
computation on input i, x with the output y.

Proof. [11], Chapter 4, gives the proof of analogous result for Turing machines. One
can easily adapt this reasoning for the purpose of the register machine.

We will call such program U universal. We know that there is no effective procedure
that will decide for an arbitrary natural number, whether it belongs to the halting set
or not. That being said, there is a procedure by which every element of the halting set
(and no other) is listed after some finite time, as the following reasoning asserts.

Observe that we can simulate all programs simultaneously in the following effective
way. Fix an effective enumeration of programs. At each n-th step we simulate n first
steps of the computation of the first n programs with their codes as inputs. We have
only a countable set of programs and a countable set of steps. A product of countable
sets is countable. Hence, if some program halts then it will halt sooner or later in our
simulation, and consequently we can list effectively all the elements of the halting set.

This observation lead us to the notion of computable enumerability.

Definition 8 (Computably enumerable sets). A set A is computably enumerable (c.e.)
if there is a partial computable function f such that dom(f) = A.
1For historical reasons, ’computable’ is sometimes used interchangeably with ’recursive’.
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Proposition 9. If A is c.e. and A 6= ∅, then there exists a total computable function
which enumerates A, i.e., A is the image of the function.

Proof. If A is c.e. then there exists a partial computable function f such that dom(f) =
A and the corresponding program P for the register machine. Now, the enumeration
is straighforward. Simply simulate P on all possible inputs in an effective way. Each
time that f(n) ↓, output n as a part of the enumeration.

Finally, recall that we have a natural correspondence between sets and binary se-
quences, namely, given a set X there is a sequence Y for all n > 0, n if and only if
Y (n) = 1. This simple observation allow us to talk about computability of sequences,
c.e. sequences etc.

1.2 Turing reductions

Computability gives us a certain demarcation line between problems. However,
it is rather crude. For various reasons, we might want to have a more fine grained
classification of problems. For computable problems, this may be done by considering
upper bounds for computation time or the number of registers used (time and space
complexities). But this idea does not work for uncomputable problems, whereas these
will be of interest to us. Turing’s idea was to consider an ordering imposed on problems
by the relation of computable reducibility. This has a very natural interpretation.
Roughly speaking, A is reducible to B, simply if knowing the answer to B allows us to
get the answer to A. A formal definition follows.

Definition 10 (Oracle machine). A program for the register oracle machine consists
of a finite number of instructions coming from the set of admissible instructions. The
set of admissible instructions is contain all instructions from Definition 1 joined with
the following instruction:

• oracle inquiry (IF ri ∈ X GO TO k) — if the value stored in i-th register is a
member of set X, execute the k-th instruction. Otherwise, proceed to the instruc-
tion as ordered in the program.

Note that the oracle inquiry is a syntactical object — it’s just an another instruction.
Depending on what set is actually supplied as the oracle (i.e., what set is being denoted
by X), the answer to ri ∈ X might be different.

All auxiliary notions (computation, stoping etc.) are defined in an analogous way
as in the case of a regular register machine. In particular, we will have the notion of a
set being computable with an oracle. By convention, we say X is Y -computable if X
is computable with the oracle Y .

Definition 11. We say that A is Turing reducible to B (or that A is computable in B)
if A is computable with the oracle B. We also write A ≤T B to say that A is Turing
reducible to B. We say that problems A and B are Turing equivalent A ≡T B if A ≤T B
and B ≤T A.

9



Observation 12. The relation ≡T is an equivalence relation.

Definition 13 (Turing degree). A Turing degree is an equivalence class of the relation
≡T .

Definition 14 (Turing jump). A Turing jump a′ of a degree a is a set of indices i
in the canonical enumeration hX1 , h

X
2 , . . . of programs for the register machines with an

oracle X ∈ a, such that hXi (i, 0, . . .) ↓ .

In particular, we mention the degree 0 which corresponds to computable problems.
The halting set is then in the degree 0′.

1.3 Arithmetical hierarchy

Furthermore, we introduce the arithmetical hierarchy which classifies sets of natural
numbers via their corresponding first order definitions.

Definition 15 (Arithmetical hierarchy). We define classes Σ0
n and Π0

n inductively for
relations on natural numbers.

1. Firstly, let both Σ0
0 and Π0

0 denote the class of computable relations.

2. For n ≥ 0, relation ψ belongs to Σ0
n+1 if and only if there exists a relation φ in

class Π0
n such that

ψ(y1, . . . , yj)⇔ ∃x1, . . . , xkφ(y1, . . . , yj, x1, . . . , xk).

3. For n ≥ 0, relation ψ belongs to Π0
n+1 if and only if there exists a relation φ in

class Σ0
n such that

ψ(y1, . . . , yj)⇔ ∀x1, . . . , xkφ(y1, . . . , yj, x1, . . . , xk).

We will say that relation is Σ0
n or Π0

n meaning that it belongs to class Σ0
n or Π0

n respec-
tively. Similarly, we will say that a set A ⊂ N is Σ0

n or Π0
n if it is defined by a relation

ψ of class Σ0
n or Π0

n respectively, that is

∀x ∈ N : x ∈ A⇔ ψ(x).

We will say that a relation or set is ∆0
n if it is both Σ0

n and Π0
n.

Clearly, if a set A is computable then it is Σ0
1.

Theorem 16 (Arithmetical hierarchy). A set A is computably enumerable if and only
if it is Σ0

1.
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Sketch. Suppose that A is Σ0
1. That is for each y

y ∈ A⇔ ∃x1, . . . ,∃xkφ(y, x1, . . . , xk)

where k is natural and φ is a computable predicate. Since k is finite, we can effectively
enumerate every possible combination of k + 1 natural numbers. The algorithm for
enumeration of y works as follows. Enumerate all tuples of length k+ 1. For each tuple
z0, . . . , zk check if φ(z0, . . . , zk). If so, z0 is an element of A. This gives an effective
enumeration of A which shows that A is computably enumerable.

The proof for the other direction is a slightly more involved. For simplicity, we sketch
the proof for unary relations only. One need to define the so-called Kleene predicate T
(invented by Stephen C. Kleene). Roughly speaking, T (a, b, c) states that c is a code
for the computation history of the program with index a starting with input b and
terminating with a halting state. Since every halting computation is a finite iteration
of finite number of operations, one can code it as natural number. Moreover, assuming
a fixed coding procedure one can effectively check if a given number is a code of a
halting computation. Suppose that given input x, the a-th program enumerates A and
halts if and only if it finds out that x ∈ A. Such program exists if A is computably
enumerable. Now, we can give a simple Σ0

1 definition for A:

∀x ∈ N : x ∈ A⇔ ∃cT (a, x, c).

Observation 17. If a set A is Σ0
n for some n, then its complement is Π0

n.

Observation 18. If a set A is Σ0
n or Π0

n for some n, then it is Σ0
m and Π0

m for every
m > n.

1.4 Computability and real functions

A significant part of mathematics deals with real numbers. Some of real numbers
(i.e., their digits) are easy to describe by an algorithm. On the other hand, we already
know that there are only countably many algorithms, while the set of real numbers is
uncountable. Hence, some real numbers will be beyond our algorithmic comprehension.
To formalize this intuition, we introduce computability notions into the realm of real
numbers.

Definition 19 (Computable reals). We say that a r ∈ R is computable if and only if
the left cut of r, that is, {q ∈ Q : q < r} is computable.

In other words, the real is computable if it is approximable by some computable
sequence of rationals such that we can control the approximation error. We get a
weaker notion if the latter condition is lifted.

Definition 20 (Left-c.e. reals). We say that a r ∈ R is left computably enumerable
(left-c.e.) if and only if the left cut of r is computably enumerable.
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Definition 21 (Uniform computability). A sequence of reals is uniformly computable
if and only if the corresponding sequence of left cuts is uniformly computable, that is,
if there exists a computable function g : N×Q→ {0, 1} such that for the i-th real r in
the sequence and for every q, g(i, q) = 1 if and only if q belongs to the left cut of r.

Definition 22 (Uniform computable enumerability). A sequence of reals is uniformly
c.e. if and only if the corresponding sequence of left cuts is uniformly c.e., that is, if
there exists a computable function g : N × N → Q such that for the i-th real r in the
sequence, g(i, j) enumerates the left cut of r.

Definition 23 (Computable real-valued functions). A function f from a countable
domain (such as N or 2<N) to R is computable if and only if its values are uniformly
computable.

Definition 24 (Left-c.e. real-valued functions). A function f from a countable domain
(such as N or 2<N) to R is left-c.e. if and only if its values are uniformly left-c.e.

12



2

Probability theory

2.1 Measures and probability

For completeness, we recall the fundamental notions of modern probability theory.
For a textbook introduction, see e.g., [8].

Definition 25 (π-system, algebra). Let Ω be a set. A collection of subsets F ⊆ P(Ω)
is called a π-system if Ω ∈ F and F is closed under finite intersection. A π-system is
called an algebra if it closed under complement.

Definition 26 (σ-algebra). An algebra F is called σ-algebra if it is closed under count-
able union i.e., for any subsets Ai ∈ F where i ∈ N, we have⋃

i∈N

Ai ∈ F .

A pair (Ω,F), where F is a σ-algebra on Ω, will be called a measurable space.

Definition 27 (generated σ-algebra). We say that a σ-algebra F is generated by the
class A ⊆ P(Ω), written in symbols as F = σ(A), if F is the intersection of all σ-
algebras J such that A ⊆ J .

It may also useful to consider the following notion

Definition 28 (λ-system). Let Ω be a set. A collection of subsets F ⊂ P(Ω) is called an
λ-system if Ω ∈ F and F is closed under complement and countable union of pairwise
disjoint sets.

λ-systems and π-systems are connected via fundamental result by E. Dynkin

Theorem 29 (Dynkin’s π − λ theorem). Let A be a π-system and D be λ-system. If
A ⊆ D then the σ-field generated by A is contained in D.

Proof. See e.g., Theorem 3.2. in [8].

This theorem will be used later on, when we will be interested in probabilities
conditioned on infinite past. Before we get there, we will start by defining the standard
probability measures.
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Definition 30 (finite measure). Let F be σ-algebra. Let function ρ : F → R≥0 be called
a finite measure on F if for any subsets Ai ∈ F where i ∈ N and Ai ∩Aj = ∅ for i 6= j,
we have

ρ

⋃
i∈N

Ai

 =
∑
i∈N

ρ(Ai).

Definition 31 (probability measure). A finite measure ρ on the σ-algebra F of Ω is
called a probability measure if ρ(Ω) = 1.

Definition 32 (probability space). A tuple (Ω,F , ρ) is called a probability space if ρ is
a probability measure on σ-algebra F of Ω.

It turns out that the σ-algebra equal to the power set P(Ω) is usually too large to
support interesting probability measures. This happens in particular for Ω = 2N, being
the set of all infinite binary sequences. In this case, we usually consider some specific
σ-algebra F = 2N, called the Borel σ-algebra. Its construction is as follows. For a word
w ∈ 2<N, we will use the following notation to denote the set of its infinite extensions,
called a cylinder set:

JwK := {x ∈ 2N : x
|w|
1 = w}.

Similarly, for a set of words S ⊂ 2<N we introduce the notation:

JSK =
⋃
w∈S

JwK.

The Borel σ-algebra is the σ-algebra generated by the class of all cylinder sets:

2N := σ({JwK : w ∈ 2<N}).

Probability measures on σ-algebra 2N can be defined via the notion of a premeasure:

Definition 33 (premeasure). Let function p : 2<N → R≥0 be called a premeasure if
p(�) = 1 and for every w ∈ 2<N we have p(w) = p(w0) + p(w1).

We can move from premeasures to probability measures and back.

Proposition 34 (Kolmogorov process theorem I). For any premeasure p on 2<N there
exists a unique probability measure P on 2N such that for all words w ∈ 2<N we have

P (JwK) = p(w). (2.1)

Conversely, for any probability measure P on 2N there exists a unique premeasure p on
2<N such that (2.1) holds for all w ∈ 2<N.

Proof. See Chapter 7 of [8].
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We will say that probability measure P is generated by premeasure p if condition
(2.1) holds. An important example of a measure is the uniform measure. The uniform
measure λ is generated by premeasure u(w) = 2−|w|. This measure may be naturally
interpreted as representing probabilities of independent unbiased coin tossing. The
unbiasedness condition means that for each toss the probability of the outcome being a
tail is 1/2. The independence condition means that the conditional probability of the
next outcome does not depend on the outcome of previous one. It is easy to arrive at a
conclusion that the probability of the first k bits being equal to some word w is equal to
2−k. One can also note that the uniform measure corresponds to the Lebesgue measure
Λ on interval [0, 1]. If for a sequence x ∈ 2N we define φ(x) :=

∑∞
i=1 xi2

−i then for a
word w ∈ 2<N we obtain that φ(JwK) is an interval of length 2−|w|. Consequently, for
any Borel set A ∈ 2N we have Λ(φ(A)) = λ(A). For this reason, the uniform measure
λ is sometimes called the Lebesgue measure.

For practical reasons we will take often abuse the notation and identify premeasures
with their corresponding measures. In particular, if µ is a measure with some corre-
sponding premeasure ρ, we will write µ(w) to denote ρ(w) (or equivalently — µ(JwK))
and so on.

By convention, if µ(A) = 1, we will say that A happens µ-almost surely (or simply,
almost surely). Similarly, if

µ({ω : φ(ω)}) = 1,

we will say that φ(ω) for almost every ω.

2.2 Computable measures

We will find the notion of a premeasure quite useful when trying to incorporate
computability-theoretic notions into the world of probabilities. One can observe that
some measures are computationally easy (e.g., unbiased coin tosses), while other some-
how escape our limited comprehension (e.g., biased coin tosses with an uncomputable
probability of a tail). We want to explicate that intuition via the notion of a computable
measure. A standard definition makes use of the fact that every premeasure is a real
function. Hence:

Definition 35 (computable measure). We will say that a measure µ is computable if
the corresponding premeasure is a computable real function.

Prediction may be seen as guessing which bit is more probable as the outcome of
some future experiment. The following proposition tells us that computability does not
guarantee that we can compute the answer to the question which bit is more probable
(if any).

Proposition 36. There is a computable measure µ such that the set

{σ : µ(σ0) = µ(σ1)}

is not computable.
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Proof. Fix some enumeration of machines M1,M2, . . . and consider f defined for each
n ∈ N by

f(n) = 0.c1c2 . . .

where ci = 1 if and only if the machine Mn halts on input n after i steps. The above
definition is stated in decimal notation for natural numbers. Note that f(n) = 0 if an
only if Mn never halts on n.

We define a measure µ as follows. For each σ ∈ 2<N let

µ(σ0) = µ(σ)(1/2 + f(|σ|)).

We can well approximate µ(σ0) simply by simulating Mn. But if the set {σ : µ(σ0) =
µ(σ1)} is computable, then the halting problem is computable as well, which constitutes
a contradiction.

2.3 Random variables

In this section we will recall the basic concept of a random variable and its expec-
tation.

Definition 37 (measurable function). Let (Ω,F) and (X,X ) be measurable spaces. A
function f : Ω → X is called a measurable function from (Ω,F) to (X,X ) if A ∈ X
implies

f−1[A] ∈ F .

A measurable function T : Ω→ Ω is called a measurable transformation.

Definition 38 (random variable). Let (X,X ) be a measurable space. A random variable
X with an image space (X,X ) on a measure space (Ω,F , µ) is an arbitrary measurable
function from (Ω,F) to (X,X ).

As we proceed our studies, we will become interested in assigning probabilities to
propositions, that is, given a predicate φ we would like to know the measure of events
that satisfy φ. Thus, we adopt a notational convention which reflects the natural
correspondence between propositions and random variables with the set of logical values
{true, false} as their image:

(φ) := {ω ∈ Ω : φ(ω)},

µ(φ) := µ({ω ∈ Ω : φ(ω)}).

By convention, we use 1 to denote the indicator variable i.e., given a predicate φ

1{φ(ω)} =

{
1 if φ(ω) (2.2)
0 otherwise. (2.3)
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Definition 39 (discrete and simple random variables). A random variable X with an
image space (X,X ) is called a discrete random variable if the set X is countable and X
is generated by {{x} : x ∈ X}. A discrete random variable is called simple if its image
X is finite.

Definition 40 (stochastic process). A stochastic process X is a collection of random
variables Xi with i ∈ I which share the same image space (X,X ). We say that the
process is one-sided infinite (or simply—infinite) if I = N+ and two-sided infinite if
I = Z.

In this dissertation, our attention will orbit around binary processes as defined
below.

Definition 41 (binary random variables and processes). A random variable is called
binary if its image is X = {0, 1}. A process consisting of binary random variables will
be called a binary process.

In our applications, a typical stochastic processX = X1, X2, . . . (X = . . . X−1, X0, X1, . . .)
consists of projection functions mapping a one-sided infinite (two-sided infinite) binary
sequence ω to its i-th bit ωi, i.e., Xi(ω) = ωi. In the case of these projections, if X is a
process on the measure space (Ω,F , µ), we will say that µ is a probability distribution
of X. Random variables and stochastic processes provide us with yet another notation
for cylinder sets generated by words w ∈ 2<N. For every k ∈ Z and n = |w| let

(Xk+n
k+1 = w) := (Xk+1 = w1 ∧Xk+2 = w2 ∧ . . . ∧Xk+n = wn).

In particular,
(Xn

1 = w) = JwK.

Definition 42 (real variable). A random variable X is called real if its image space is
equal to (R ∪ {−∞,∞},R∞) where R∞ denotes the σ-algebra generated by the set of
all semiclosed (possibly infinite) intervals, that is the set

{[a, b] : a, b ∈ R ∪ {−∞,∞}}.

Definition 43 (Lebesgue integral). For a real random variable Y on a finite measure
space (Ω,F , µ) we define the Lebesgue integral

∫
Y dµ as

1. If Y ≥ 0 and Y is a simple random variable:∫
Y dµ =

∑
y:µ(Y=y)>0

yµ(Y = y).

2. If Y ≥ 0 and Y is not a simple random variable:∫
Y dµ = sup

X≤Y

∫
Xdµ,

where the supremum is taken over all real simple random variables X satisfying
X ≤ Y .
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3. If Y = Y+−Y−, where Y+, Y− ≥ 0 and either
∫
Y+dµ <∞ or

∫
Y−dµ <∞, then:∫

Y dµ =

∫
Y+dµ−

∫
Y−dµ.

Definition 44 (expectation). Assuming a fixed probability measure µ, we define the
expectation Eµ of the random variable X as

Eµ(Y ) =

∫
Xdµ.

Typically, when probability measure µ in question is clear from context, we omit
the index and write simply E(Y ) := Eµ(Y ). An elementary property of the expectation
follows from the properties of Lebesque integral:

Lemma 45 (Jensen’s inequality). Let f : (a, b) → R be a convex measurable function
and Y be a real random variable. If E(f(Y )) and E(Y ) are defined then

E(f(Y )) ≥ f(E(Y )).

2.4 Conditional probability

In the elementary probability calculus, the conditional probability of an event A
given an event B (with µ(B) > 0) is defined as

µ(A|B) = µ(A ∩B)/µ(B).

This definition may be roughly interpreted as an answer to the following question—
what probability should we assign to A, if we know that B is true? Suppose that we
perform an experiment to observe whether B holds or not. This experiment induces a
partition γ of the event space:

γ = {B, B̄}.

Let us rephrase the previous question—how will the probability assigned to A change
depending on the outcome of the experiment? Going further, we might want to think
about the conditional probability as a random variable—the conditional probability of
A defined with respect to partition γ as

µ(A|γ)(ω) = 1{ω ∈ B}µ(A|B) + 1{ω ∈ B̄}µ(A|B̄)

Naturally, more complicated partitions (experiments) may be considered. This disser-
tation concerns prediction of infinite binary processes. In our framework, prediction is
conditioned on the past outcomes of some process. Indeed, most of the time we will
try to decide what is the next bit assuming that the previous bits are such and such.
Hence, we will often deal with conditional probabilities such as

µ(Xn = 1|Xn−1
j = w)
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for some w ∈ 2<N and j < n. Such conditional probability gives an answer to the
question—how the outcome of experiments Xj, Xj+1, . . . , Xn−1 influences the probabil-
ity of Xn? Here, the conditional probability is defined with respect to an appropriate
collection of cylinder sets. Ultimately, we will become interested in assigning proba-
bilities relative to some infinite past. Obviously, for a nonatomic measure the set of
extensions of an infinite past x−n−∞ (with x ∈ 2Z), i.e., event

(X−n−∞ = x−n−∞)

is of measure zero. Hence, the elementary definition cannot be applied here. But as we
are about to see, the conditional probability may be generalized to such cases. Indeed,
we will try to generalize the notion of conditional probability to conditional probabilities
with respect to an arbitrary σ-algebra.

To motivate the general definition let us focus further on the special case. Suppose
that we have a binary process X with the probability distribution µ and assume that
the values of X1, . . . , Xn are to be observed. For simplicity, assume that µ(Xn

1 = w) > 0
for all w ∈ 2<N of length n. We want to have a notion of probability of an event A (such
as Xn+1 = 1) conditioned on the random variable Xn

1 . Let us denote it by µ(A|Xn
1 ).

This entity will be a random variable itself. A minimal constraint for such a notion is
following—we expect

µ(A|Xn
1 ) = µ(A|Xn

1 = w)

to hold every time that Xn
1 = w, where µ(A|Xn

1 = w) is given by the elementary
definition

µ(A|Xn
1 = w) = µ(A ∧Xn

1 = w)/µ(Xn
1 = w).

To give it a more concrete form, we let

µ(A|Xn
1 )(ω) :=

∑
w∈2n

1{ωn1 = w}µ(A|Xn
1 = w).

In particular, this random variable will satisfy

µ(A ∧Xn
1 = w) =

∫
JwK

µ(A|Xn
1 )dµ

for all w ∈ 2n. Moreover, it will be measurable with respect to the σ-algebra generated
by cylinders JwK, where |w| = n.

We will treat these two properties as a more abstract characterization of elementary
conditional probability with respect to events of positive measure. To extend this to a
general setting, we need to introduce the following measure-theoretic result

Theorem 46 (Radon-Nikodym theorem). Let µ and ν be finite measures on a measur-
able space (Ω,G) such that for every G ∈ G

µ(G) = 0⇒ ν(G) = 0.

Then there exists a function dν/dµ : Ω→ [0,∞) satisfying:
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i) dν/dµ is G-measurable,

ii) For every G ∈ G,

ν(G) =

∫
G

dν

dµ
dµ

where
∫
G
fdµ =

∫
1{ω ∈ G}fdµ.

Furthermore, any two functions satisfying these conditions are equal µ-almost surely.

Proof. See Section 6 of [8].

Function dν/dµ is called the Radon-Nikodym derivate.
Now, consider µA(B) := µ(A ∩B) for an event A. Note that for every event B,

µ(B) = 0⇒ µA(B) = 0.

Hence, the following definition is justifiable.

Definition 47 (conditional probability). Consider a probability space (Ω,J , µ) and a
σ-algebra F ⊂ J . For a set A ∈ J we define conditional probability of A relative to F
as

µ(A|F) =
dµA|F
dµ|F

,

where dµ|F is a restriction of µ to subdomain F .

Note that the conditional probability is, in fact, a random variable. By the Radon-
Nikodym theorem, every two functions satisfying Definition 47 are equal on some set of
measure one. That being said, there might be many such functions. Every such function
will be called a version of conditional probability. These versions may disagree only on
events of zero probability. Hence, in many situations it does not matter which version
we have in mind. We note in passing, that in some circumstances (i.e. statistical
inference) we may need versions to agree on individual points. This happens under
certain topological conditions, for details see [38].

In our work, we will be interested in probabilities conditioned on some fixed past.
Possible information about the past observation, e.g., information about Xn

1 , will cor-
respond to the σ-algebra F generated by the collection of cylinders (Xn

1 = w) for some
w. Then, by convention for an A

µ(A|Xn
1 ) := µ(A|F)

and given a, b, c ∈ Z and an arbitrary ω ∈ 2Z such that ωba = w

µ(Xc = 1|Xb
a = w) := µ(Xc = 1|Xb

a)(ω).

Note that this value is a constant. For completeness, we note that this conditional
probability, defined with respect to σ-algebra generated by a set of cylinders, reduces
to the elementary ratio on events of positive measure. Indeed, it may be proven that
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Theorem 48. Let P be a π-system and let F be a σ-algebra on Ω generated by P.
Suppose that Ω is a finite or countable union of sets from P. An integrable function f
is a version of µ(A|F) if it is measurable with respect to F and∫

G

fdµ = µ(A ∩G)

holds for every G ∈ P.

Proof. See, e.g., Theorem 10.4 in [8]. The Theorem follows directly from it.

Similarly to the conditional probability, we can define the conditional expectation
of some event Y relative to a σ-algebra F .

Definition 49 (conditional expectation). Consider a probability space (Ω,J , µ) and a
σ-algebra F ⊂ J . For a real random variable Y (with Y ≥ 0 and E(Y ) <∞) we define
conditional expectation of Y relative to F as

E(Y |F) =
dµY |F
dµ|F

where µY (A) =
∫
A
Y dµ.

Again, the conditional expectation is a random variable. Among many interesting
properties of the conditional expectation one may mention in particular the following:

Lemma 50 (conditional Jensen’s inequality). Let f : (a, b)→ R be a convex measurable
function and Y be a real random variable. If E(f(Y )|G) and E(Y |G) are defined then

E(f(Y )|G) ≥ f(E(Y |G))

almost surely.

We end this section with an essential comment on the (un)computability of con-
ditional probabilities. Ackerman et al. [1] constructed a pair (X, Y ) of computable
random variables such that the conditional probability µ(X|Y ) encodes the halting
problem (hence, is not computable). However, this does not pose a problem in our
circumstances. The prediction algorithms described further in the text will deal with
probabilities conditioned on a finite past. As this reduces to the elementary definition
on events of interest (i.e., on events of positive measure), they are computable almost
everywhere as long as the underlying probability measure is computable. Indeed, the
ratio of two computable functions is computable.

2.5 Martingales

As we have already signalled, the abstract measure-theoretic definition of condi-
tional probability was introduced to allow us to talk about probabilities conditioned on
events of zero measure (e.g., on the infinite past). However, any example of conditional
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probability introduced in the previous section simply reduces to the elementary notion.
In this section, we will argue that the abstract definition indeed provides us with a
reasonable notion of probability conditioned on the events of zero probability. We are
about to see that such measure is, in fact, a limit of probabilities conditioned on events
of positive measure. The intuitive idea is that we start with a very coarse partition of
the event space and then gradually move through finer and finer partitions. The desired
conditional probability corresponds to the fixed point of that procedure. To show that
this makes any formal sense, we need to introduce the notion of a martingale process.

Definition 51 (martingale process). Let X = X1, X2, . . . be a stochastic process on
(Ω,J , µ) and let F1,F2, . . . be a sequence of σ-algebras in 2N or 2 Z. X is called a
martingale process relative to the σ-algebras F1,F2, . . . if the following conditions hold:

i) Fi ⊂ Fi+1 for all i ∈ N+;

ii) Xn is measurable in Fn for all n ∈ N+;

iii) E(|Xn|) <∞ for all n ∈ N+;

iv) E(Xn+1|Fn) = Xn for all n ∈ N+ almost surely.

The sequence F1,F2, . . . satisfying i) is called a filtration.

The general intuition behind the notion of a martingale process is as follows. Suppose
that Xn represents the amount of capital available to the gambler after n-th play. This
capital is always finite by the third condition. The filtration F1,F2, . . . represents the
increasing information—in our special case, the information about outcomes of the first
several plays. The fourth condition is simply a fairness condition—the expected value
of capital after the next play is equal to the present capital.

On the other hand, we want to think that some filtrations correspond to a progression
of finer and finer partitions of the event space, as described at the beginning of this
section. It follows from the fundamental result of the martingale theory, the Doob’s
convergence theorem, that the limit of probabilities conditioned on the elements of this
filtration always exists.

Theorem 52 (Doob’s convergence theorem). Let X be a martingale proces relative to
the σ-algebras F1,F2, . . .. Then almost surely the limit

lim
n→∞

Xn

exists and is finite.

Proof. See Theorem 35.5. in [8].

A corollary of Doob’s convergence theorem tells us that

Theorem 53 (Lévy’s law). Let F1,F2, . . . be a filtration and define F∞ to be σ-algebra
generated by the union

⋃
n∈N+ Fn. Let E(|Y |) <∞. Then

E(Y |F∞) = lim
n→∞

E(Y |Fn)

almost surely.
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Proof. Consider a filtration F1,F2, . . . and the σ-algebra F∞ to be σ-algebra generated
by the union

⋃
n∈N+ Fn. Consider a random variable Y and observe that for each n

E(E(Y |Fn+1)|Fn) = E(Y |Fn)

almost surely, wheres E(|E(Y |Fn)|) ≤ E(|Y |) < ∞, by the conditional Jensen’s in-
equality. Therefore, a collection of random variables E(Y |Fn) is a martingale process
relative to F1,F2, . . .. Hence, Doob’s convergence theorem may be applied. It may be
concluded that the limit

lim
n→∞

E(Y |Fn)

exists and is finite.
It remains to be shown that

lim
n→∞

E(Y |Fn) = E(Y |F∞).

By the definition of conditional expectation and by Radon-Nikodym theorem, it suffices
to show that for every A ∈ F∞ we have∫

A

E(Y |F∞)dµ = lim
n→∞

∫
A

E(Y |Fn)dµ. (2.4)

By the dominated convergence theorem, the equation 2.4 holds for any i ∈ N and any
set A ∈ Fi. Consequently, it holds for every set A ∈

⋃
n∈N+ Fn. In general, this union

is not necessarily a σ-algebra. That being said, we can observe that it is a π-system.
Furthermore, the collection F of sets A ∈ F∞ satisfying equation 2.4 forms a λ-system.
Indeed, the fact that F is closed under countable disjoint union again follows from the
dominated convergence theorem. By Dynkin’s π − λ theorem, F∞ is contained in F .
This ends the proof.

Consequently, we can define the probability conditioned on an infinite past as a limit
of probabilities conditioned on finite past:

µ(X0 = 1|X−1−∞ = x−1−∞) := lim
n→∞

µ(X0 = 1|X−1−n = x−1−n).

This value is a concrete version of the conditional probability given the infinite past.

2.6 Useful theorems

Finally, we introduce some basic theorems, which are used as standard tools in
probability theory. Unless stated otherwise, the proofs for these may be found e.g., in
[8].

Theorem 54 (Markov’s inequality). Let X be a nonnegative real random variable.
Then for all t > 0

µ(X ≥ t) ≤ 1

t
E(X).
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Proof. Fix a nonnegative random variable X with values in R and t > 0. Consider a
random variable Y = X/t. Then

µ(X ≥ t) = µ(Y ≥ 1) =

∫
Y≥1

dµ ≤
∫
Y≥1

Y dµ ≤
∫
Y dµ =

1

t
E(X).

Theorem 55 (Hoeffding’s inequality [19]). Let X1, . . . , Xn be independent binary ran-
dom variables with the probability distribution µ. Then

µ(
1

n

n∑
i=1

Xi − E(
1

n

n∑
i=1

Xi) > t) ≤ e−2nt
2

.

A more general version of Hoeffding’s lemma may be stated for a martingale process.

Theorem 56 (Azuma’s inequality [5]). Let X = X1, X2, . . . be a martingale process
with values in R, relative to the filtration F1,F2, . . . and suppose that |Xi+1 −Xi| ≤ c
for all i. Then, for all real s > 0 and i > 1

µ
(
|Xi+1 −X1| > s

)
≤ 2e−s

2/2ic2 .

Recall the interpretation of Xn as representing a gambler’s capital after nth play.
The Azuma’s inequality states that with high probability this capital is close to the
starting capital X0. Moreover, a large divergence from the initial capital will become
less probable as the game progresses in time.

The remaining propositions are well-known.

Theorem 57 (monotone convergence theorem). Let Y = Y1, Y2, . . . be a sequence of
nonnegative and nondecreasing real random variables. Then

sup
n∈N

∫
Yndµ =

∫
sup
n∈N

Yndµ.

Theorem 58 (dominated convergence theorem). Let (Yn)n∈N be a sequence of real
random variables such that |Yn| < Z, where

∫
Zdµ <∞. If limn→∞ Yn exists then

lim
n→∞

∫
Yndµ =

∫
lim
n→∞

Yndµ.

Theorem 59 (Borel-Cantelli lemma). Let A1, A2, . . . be an infinite collection of events
such that

∞∑
n=1

µ(An) <∞.

Then µ-almost surely only finitely many of Ai happens, i.e. µ(
⋂
n∈N

⋃
i≥nAi) = 0
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3

Predictors

Recall that we want to see the prediction as a process, presumably an effective one,
which takes a finite number of past observations and makes a guess based on these. In
what follows, we give a formal definition of predictor, followed by a formal definition of
the prediction error.

Definition 60 (predictor). A predictor is a total function f : 2<N → {0, 1}. We say
that f is a proper predictor if it is a total computable function. Otherwise, we say that
it is an improper predictor.

Definition 61 (prediction error). Let f be an (im)proper predictor and let σ ∈ 2<N be
a non-empty word, |σ| > 0. The prediction error of f on σ is defined as

ς(f, σ) :=
#{1 ≤ i ≤ |σ| : σi 6= f(σi−11 )}

|σ|
(3.1)

For an infinite sequence x ∈ 2N, the prediction errors of f on A are defined as

ς+(f, x) := lim sup
n→∞

ς(f, xn1 ), (3.2)

ς−(f, x) := lim inf
n→∞

ς(f, xn1 ), (3.3)

whereas we write ς(f, x) := ς+(f, x) = ς−(f, x) if the later two limits are equal.

We may start with a very simple observation:

Proposition 62. Fix A ∈ 2N and let f be a predictor for A. Suppose that ς(f, A) = r.
Then, there exists a predictor g for A such that ς(g, A) = 1− r.

Proof. Given A and f , let g be such that for every τ we have g(τ) = 0 if and only if
g(τ) = 1.

The existence of a relatively good predictor entails the existence of a corresponding,
relatively bad predictor (a kind of an evil twin).
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Part II

Prediction of individual sequences
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4

Unpredictability and stochasticity

As if you didn’t know how it feels to lose at dice with fate. (. . . )
As if it wasn’t a lifetime spent on connecting the dots,
there was no pattern.

– Mgła, Exercises in Futility VI

4.1 Unpredictability via predictors

A natural class of unpredictable sequences may be defined in the framework of
predictors. It was first introduced by Ko [24] and later studied by Ambos-Spies et al.
[3].

Definition 63. We say that x ∈ 2N is Ko stochastic iff for every proper predictor f we
have ς(f, x) = 1

2
.

Ko stochastic sequences are naturally related to a known notion of stochasticity,
namely Church stochasticity. We start by recalling its definition.

Definition 64. A selection rule is a partial function f : 2<N → {yes, no}. Given a
sequence x and a selection rule f , we denote the n-th number k such that f(xk1)=yes
as sf (x, n). Moreover, if sf (x, n− 1) is defined, let Sf (x, n) =

∑
i<n xsf (x,i) denote the

number of ones in the first n− 1 bits selected by f from x.
For every f we say that the subsequence selected by f is balanced if and only if

lim
n→∞

Sf (x, n)

n
=

1

2
.

Definition 65. Let F be a collection of selection functions. A sequence x is stochastic
with respect to F if and only if for every selection rule f from F either limn→∞

Sf (x,n)

n
=

1
2

(i.e. the subsequence selected by f is balanced) or the number of bits selected by f is
finite. We say that a sequence is Church stochastic if it is stochastic with respect to all
computable functions.
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Before a construction of a Church stochastic sequence is presented, let as reflect on
the relation between Church and Ko stochasticity.

Proposition 66. Every Church stochastic sequence is Ko stochastic.

Proof. Let f be a proper predictor. Consider two selection rules s1 and s2. The first one
selects an i-th bit if and only if f predicts that i-th bit is zero. Otherwise, the second
one selects that bit. Now, suppose that x is Church stochastic. By the definition, the
subsequences selected by s1 and s2 are both infinite and balanced or one is infinite and
balanced and one is finite. It follows that ς(f, x) = 1

2
.

On the other hand, not every Ko stochastic sequence is Church stochastic. Indeed,
consider a Ko stochastic sequence with bits of ∅ (i.e. all-zero sequence) placed on every
2i-th bit (in fact, every sufficiently fast growing function will be good). Such sequence
is not Church stochastic (we have a selection rule that gives an unbalanced sequence ∅)
but the unbalanced subsequence is placed sparsely enough so that it does not influence
the error of any predictor. For completeness, a direct construction of such sequence
is presented below. There are several ways to construct a Ko stochastic sequence—
here, we use the version of the proof of Ville’s theorem as presented in [40]. Ville’s
example provides a method for building a sequence which is stochastic with respect to
any countable collection of selection rules. It then remains to recall that every predictor
corresponds to two selection rules. Below, we show a generalized version which proves a
kind of Church stochasticity relative to some subsequence selected by a function g (only
those bits selected by g are used to check if some f selects a balanced subsequence).
This will allow us to construct sequences with an unpredictable subsequence (that is,
where for any predictor the ratio of correct and wrong prediction on the subsequence
approaches 1

2
). The proof is a simple modification of the construction of Ville’s sequence,

see: section 6.2.2 in [40].

Theorem 67 (Ville [42]). For every countable collection F of selection functions, there
exists a sequence A such that for every f from F the subsequence selected by f is
balanced.

This construction is usually presented in two steps. Firstly, a version for finite
collection of rules is explained and then it is extended to infinite version. Suppose we
have a finite collection of selection functions f0, f1, . . . , fk−1. We want to construct a
sequence x. It will be a mixture of a finite number of subsequences of form 010101 . . ..

At each step we will be dealing with a subcollection of selection functions. Suppose
that xn1 is already defined. We will deal with selection functions f such that f(xn1 ) = yes.
These are active selection functions and each combination of active selection functions
corresponds to a binary word σ of length k in the following way: σj = 1 if and only if
fj selects n + 1-th bit of the sequence. When a combination of selection functions is
active and these are coded by σ, we will simply say that σ is active.

There are 2k words that may be active. As a matter of fact, 2k is also the number of
subsequences 010101 . . . which the resulting sequence x will be composed of. We fix a
one-to-one correspondence between copies of 010101 . . . and words. This correspondence
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is used in the construction: the places on which a given subsequence 010101 . . . is put
depend, among other things, on whether the correponding word σ is active.

Again, suppose that xn1 is already defined and let σ be a word that codes the active
subcollection of selection functions. Let l be a number of times that σ was active before
in our construction. Then, we let xn+1 = yl+1 where y = 010101 . . .. Hence, whether
we put 0 or 1 depends solely on whether we have dealt with the active combination of
functions odd or even number of times.

Suppose that xn1 is already defined and each combination of selection functions was
active a nonnegative number of times. If a combination coded by σ was active an even
number of times, then it caused us to put the same number of zeros and ones into x.
Otherwise, the difference between these is at most 1. Consequently, at each step the
difference between the number of ones and the number of zeros in a prefix xn1 is bounded
by the number of possible combinations of selection functions i.e., by 2k.

Similarly, for a subsequence selected by a function f , the difference between the
number of ones and the number of zeros in a prefix is bounded by the number of all
possible combinations of selection functions which include f i.e., by 2k−1. Since k is
fixed, this difference become negligible for sufficiently large n and so, every f selects a
balanced subsequence of x.

Obviously, this is not enough for the infinite case. We will start with a finite sub-
collection of selection rules and then gradually add more rules. The trick is to do it
slowly enough, so that the number of active selection rules is small enough compared
to the length of the active prefix.

Proof. Let F = f0, f1, . . . be a countable collection of selection rules. We will construct
a sequence x satisfying the condition from the theorem. Let x1 = 0. We will fix a
sequence of natural numbers n0, n1, . . . which will be used to provide some lower bounds
for lengths of prefixes. We will require these numbers to grow fast e.g., ni = 22i . Suppose
that for some n we have already defined xn1 . Let y ∈ 2N be such that for every i

yi = 1 iff fi(x
n
1 ) = yes.

Now, the active word will be the least prefix ym1 such that ym1 was active less than nm
times. Similarly as in finite case, each word corresponds to a different copy of 010101 . . .

Given xn1 suppose that σ is active on xn1 . We will let xn+1 = 1 if and only if the
exact number of times σ was active before is odd.
Now, consider a sequence z being a subsequence of x selected by a selection function fj.
Each bit of z corresponds to some prefix of an infinite sequence y which codes selection
functions that select this bit.

Suppose that k is the length of the longest σ that contributed to a bit of zn1 . Without
a loss of generality, we may assume that k > j (as we are interested in the asymptotic
behavior). Therefore, the number of different words contributing to some bit of xn1 is
bounded from above by 1 + 2 + . . . + 2k ≤ 2k+1. This means that at most 2k+1 copies
of 010101 . . . were used to build the prefix zn1 . Therefore, we know that the number of
ones in zn1 is bounded from below by n

2
− 2k+1. It is also not possible that the number

of ones is greater than the number of zeros (since 1 is always preceded by at least one
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0).
On the other hand, we know that a word of length k may be active only if its prefix
was active nk−1 times. Note that every time a word becomes active a new bit of z is
constructed. Thus, we now that n > nk−1. And therefore, we get an upper bound for
the deviation of the ratio of zeros and ones from 1/2, that is

|1
2
− 2k+1

nk−1
|.

It remains to see that if the sequence ni grows fast enough, then x will be balanced for
every function from F .

Corollary 68. Fix x ∈ 2N. For every countable collection F of selection functions,
there exists a sequence y such that for every f from F the subsequence selected by f is
balanced. Moreover, for every i ∈ N such that yi is not selected by any function from
F , we have yi = xi.

Proof. This may be proved by simple modification of the construction of Ville’s se-
quence. The sequence y is constructed by induction. Every time we deal with a bit
selected by some function from F we proceed as with the regular construction for Ville’s
sequence. If for some i ∈ N we have a bit yi that is not selected by any admissible func-
tion we let yi = xi.

Corollary 69. There exists a Ko stochastic sequence which is not Church stochastic

Proof. We proceed as in Ville’s construction with one restriction. Every time we want to
define an i-th bit of a sequence x, if i = 2j for some j the Ville’s procedure is bypassed
and let xi = 0. Observe that it does not influence prediction error of any predictor
(since indexes of form 2j are sparse), so that the resulting sequence is Ko stochastic.
On the other, consider a selection function f such that f(xn1 ) = yes if and only if n = 2j

for some j. The subsequence selected by f is not balanced. Therefore, x is not Church
stochastic.

4.1.1 Martin-Löf tests and randomness

In the previous section we have introduced the class of Church stochastic sequences.
Church proposed his notion of stochasticity as an effectivization of von Mises notion
of ‘collectives’ [41]. Following Ville, we have provided a direct construction of such a
sequence x. However, we have done it in such a way that for every k ∈ N,

#0(x
k
1) ≥ #1(x

k
1).

This is a bit disappointing, if we hoped that the definition would somehow correctly
explicate the intuitive notions of randomness or stochasticity: we have a sequence that
passes some tests (checking the normality of effective subsequences) but also fails some.
One could try to construct a Church stochastic sequences x with a more ‘random’ ratio
between 0s and 1s—for example, satisfying the law of iterated logarithm. We could
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then require that all stochastic sequences must satisfy both normality and the law of
iterated logarithm. But then again, maybe some other apparent property of stochastic
sequences would not be satisfied by x? This would mean that we need again extend our
definition and this could go on forever. A natural remedy for such a situation would be
to look for a kind of a fixed point.

To do accomplish that, Martin-Löf defined a notion of an effective statistical test
for randomness and required that a random sequence passes all such test. It is based
on two assumptions. Firstly, we require that a random sequence should not have any
rare property. This intuition is formalized by the notion of being of measure zero (with
respect to the uniform measure λ). Secondly, the tests of rare properties are to be
effective and the effectivization is understood in terms of computability theory.

Definition 70 (uniformly Σ0
1 collection of subsets of 2N). A collection U0, U1, . . . of

sets of sequences is uniformly Σ0
1 if and only if there is a uniformly c.e. collection

V0, V1, . . . ⊂ 2<N such that Ui = JViK for every i ∈ N.

Definition 71 (Martin-Löf test). An uniformly Σ0
1 sequence U0, U1, . . . of subsets of 2N

is called a Martin-Löf test if there exists a computable f such that limn→∞ f(n) = 0
and λ(Un) ≤ f(n) for every n ∈ N.

Definition 72 (Martin-Löf randomness). A sequence x ∈ 2N is called 1-random (or
Martin-Löf random) if there is no such Martin-Löf test U0, U1 . . . that x ∈

⋂
i∈N Un.

This definition may be relativized by replacing computable enumerability with enu-
merability with respect to some oracles. Thus, a hierarchy of notions of randomness
is acquired. This explains how the name 1-randomness comes in place—Martin-Löf
randomness forms the first level of an infinite hierarchy of notions of randomness.
As tests are based on computability, one can observe that there is a test that is universal
in a sense that it covers every other Martin-Löf test, and suffices to prove or disprove
1-randomness.

Definition 73 (universal Martin-Löf test). Let U = U0, U1, . . . be a Martin-Löf test.
We will say that U is a universal Martin-Löf test if the following holds for each sequence
x:

x /∈
⋂
i∈N

Ui

if and only if x is 1-random.

Proposition 74 (Martin-Löf [26]). There exists a universal Martin-Löf test.

Proof. See e.g. Theorem 6.2.5 in [12].

One can note an easy but important corollary

Corollary 75. λ-almost every sequence is 1-random.

To prove various properties of 1-randomness, it is often advantageous to consider
the notion of a Solovay test.
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Definition 76 (Solovay test). A Solovay test is a collection S0, S1, . . . of uniformly Σ0
1

sets of sequences such that
∑

n∈N λ(Sn) < ∞. A sequence x ∈ 2N is called Solovay
random if for every Solovay test, x belongs only to finitely many Sn.

Theorem 77 (Solovay, unpublished). A sequence is 1-random if and only if it is Solovay
random.

Proof. See e.g., Theorem 6.2.8 in [12].

4.1.2 1-randomness and stochasticity

A natural observation can be made about the relation between Ko stochasticity
and 1-randomness, namely, that every 1-random sequence is Ko stochastic. This can
be shown in many different ways. In this section, we will rely on the fact that every
1-random sequence is normal and that a predictor applied to a 1-random sequence
produces a 1-random sequence of errors. In the Section 4.2, a different (and perhaps
simpler) proof via martingales will be also provided.
We will start by proving that 1-randomness indeed implies normality.

Lemma 78. If x ∈ 2N is 1-random then

lim
n→∞

∑n
i=1 xi
n

=
1

2

Proof. Let ε > 0 and consider V = V1, V2, . . . such that

Vn = J{σ ∈ 2<N : |σ| = n ∧ |
∑n

i=1 xi
n

− 1

2
| ≥ ε}K

Observe that the sequence V is uniformly Σ0
1. One simply needs to enumerate all words

and check whether the ratio of nonzero bits exceeds the given threshold (which is com-
putable). Moreover,

∑n
i=1 xi/n may be seen as an empirical average of n independent

coin tosses, while 1/2 is the expected value of the unbiased toss. Hence, by Hoeffding’s
inequality, for each n:

λ(Vn) ≤ 2e−2nε
2

.

Hence, V is Solovay test. Consequently, the ratio of nonzero bits in 1-random sequence
x deviates from 1/2 more than ε only finitely many times. Since ε was arbitrary, we
may conclude that x is normal.

Now, we only need to change the previous proof slightly to obtain the following:

Proposition 79. Fix a 1-random sequence A ∈ 2N. Let f be a proper predictor. Then
ς(f, A) is defined and equal 1

2
.

Proof. Consider a sequence V = V1, V2, . . . defined by

Vn = J{σ : |σ| = n ∧ |#1{σi : 0 < i ≤ n ∧ f(σi−11 ) = 1}
n

− 1

2
| ≥ ε}K
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for some arbitrary ε > 0. Since λ(Vn) is bounded by a computable sufficiently fastly
decreasing function (by Hoeffding’s inequality), V is a Solovay test. This test tells us
that in the limit the predictor f is half time wrong when predicting a bit of 1-random
sequence to be nonzero. By similar reasoning, we conclude that the same is true for the
bits predicted to be zero.

Corollary 80. Every 1-random sequence is Ko stochastic.

As we already know, the converse is not true. In the following section, the notion
of martingales will be introduced. By combined results of Ambos-Spies et al. [3] and
Schnorr [34], we will be able to provide an alternative definitions for Ko stochasticity,
Church stochasticity and 1-randomness in terms of martingales. Some relations between
these notions will become easily provable.

4.2 Unpredictability via martingales

In the standard presentations of algorithmic randomness theory ([31],[12]), predic-
tion and predictability come into play in a form of martingales or betting strategies.
This particular notion of martingale is somewhat different from its probabilistic coun-
terpart, namely the notion of martingale process (as defined in Definition 51)—although
these concepts are related, as we are about to see. Martingale formalizes the idea of
prediction through betting.

A gambler starts with some amount of capital—without any loss of generality we
may asume that the initial capital is equal to 1. Again, at each step, information about
past observations is available. But instead of guessing the exact outcome of the future
observation, the gambler bets some amount of capital on the outcome. This notion is
more general and it may be also seen as representing the degree of confidence that the
gambler has in his prediction. In fact, the gambler may consider both outcomes to be
equiprobable and effectively abstain from prediction by making a zero bet.

As the new bit is unraveled, the gambler either get richer or loses part of his wealth.
The evolution of the capital is governed by a simple fairness condition.

Definition 81. A function d : 2<N → R≥0 is called a martingale if for all σ:

d(σ) =
d(σ0) + d(σ1)

2

A martingale d succeeds on a sequence x if

lim sup
n

d(xn1 ) =∞.

Suppose that X is a process given by independent unbiased coin tosses i.e., with
the probability distribution given by the uniform measure λ. The value d(σ) may be
interpreted as the amount of capital available after |σ| bets, assuming that σ represents
the past outcomes of the process. One can observe that every martingale d is equivalent
to a martingale process Yn = d(Xn

1 ). Indeed, martingales may be seen a special case
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of martingale processes. By Doob’s convergence theorem, for every martingale, the
amount of capital is bounded from above λ-almost surely.

One of the fundamental ideas in algorithmic randomness is to use Doob’s theorem
as a starting point for defining various notions of randomness and stochasticity. A class
C of martingales will define a class S of sequences in the following way: a sequence
belongs to S if no martingale from C makes an unbounded amount of capital on the
sequence. As we are about to see, some very natural classes of martingales correspond
to classes of sequences defined earlier in the text.

Definition 82. A martingale d is simple if there exists some q ∈ Q with 0 ≤ q ≤ 1 such
that for every σ ∈ 2<N and j ∈ {1, 0} we have d(σj) ∈ {d(σ), (1− q)d(σ), (1 + q)d(σ)}

In other words, a simple martingale always bet a fraction q of the accumulated
capital or nothing. Furthermore, we may also require the martingale to always bet
something:

Definition 83. A martingale d is strict if for every σ and j ∈ {1, 0} we have d(σ) 6=
d(σj).

Downey and Hirschfeldt ascribe the following theorem to Ambos-Spies, Mayordomo,
Wang and Zheng [3]. However, the result is implicit in the work of Muchnik, Semenov
and Uspensky [30]. In fact, the proof presented here follows their line of reasoning.

Theorem 84 (Muchnik, Semenov and Uspensky [30]; Ambos-Spies, Mayordomo, Wang
and Zheng [3]). A sequence is Church stochastic if and only if no simple computable
martingale succeeds on it.

Proof. (⇐) Suppose that x is not Church stochastic. We will contruct a simple com-
putable martingale that succeeds on it. Let f be a computable selection function which
witnesses that x is not Church stochastic. Let y denote the subsequence selected by
f from x. Without loss of generality assume that the frequency of ones in y is larger
than the frequency of zeros. Precisely, assume that for some rational p = 1/2 + δ with
1/2 ≥ δ > 0, there are infinitely many prefixes yn1 such that there are at least pn ones
in yn1 .

Let the initial capital of d be equal to 1. Suppose that d(σ) is already defined for
some σ ∈ 2<N. Let

d(σ1) =

{
d(σ0) if f(σ) = no (4.1)
(1 + δ)d(σ) otherwise. (4.2)

That this, d bet some amount of capital on 1 if the bit is selected by f or abstain from
betting if it is not. Let mn be the index of the n-th bit selected by f from x. Now, for
every n such that the number of ones in yn1 is at least pn, the following holds

d(xmn
1 ) ≥

(
(1 + δ)1/2+δ(1− δ)1/2−δ

)n
. (4.3)

Now, observe that
(1 + δ)1/2+δ(1− δ)1/2−δ > 1.
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for 0 < δ < 1/2. As we have assumed that there are infinitely many n satisfying the
condition 4.3, the amount of capital d is unbounded on x. It remains to observe that d
is indeed simple and computable.

(⇒) Now, suppose that some simple martingale d succeeds on x. Define a selection
function f

f(σ) =

{
no if d(σ1) = d(σ0) (4.4)
yes otherwise. (4.5)

Following the reasoning from the first part of the proof, we conclude that f must select
an unbalanced subsequence from x. Hence, x is not Church stochastic.

Theorem 85 (Ambos-Spies, Mayordomo, Wang and Zheng [3]). A sequence is Ko
stochastic if and only if no strict and simple computable martingale succeeds on it.

Proof. This proof is very similar to the previous one.
(⇐) For the implication to the left side, suppose that x is not Ko stochastic. Let f

be a predictor which witnesses that x is not Ko stochastic. Recall (see Proposition 66)
that f effectively acts as two selection functions partitioning x into two subsequences
y and z — corresponding to f predicting 1 and 0, respectively. At least one of them
is not balanced. Without loss of generality assume that y has density larger than 1/2.
Now, there is such rational 1/2 ≥ δ > 0 that one of the following strict and simple
martingales succeeds on x,

d1(σ1) =

{
(1 + δ)d(σ) if f(σ) = 1 (4.6)
(1− δ)d(σ) otherwise. (4.7)

d2(σ1) = (1 + δ)d(σ).

Following the reasoning from the previous proof, we can see that either d1 or d2 succeeds
on x.

(⇒) This implication is analogous.

On the other hand, the celebrated theorem by Schnorr [34] gives us a martingale
definition of 1-randomness.

Theorem 86 (Schnorr). A sequence ω is 1-random if and only if no c.e. martingale
succeeds on ω.

Proof. See e.g. Theorem 6.3.4 in [12].

Corollary 87. Every Church stochastic sequence is Ko stochastic. Every 1-random
sequence is Church stochastic.

Proof. Simply observe that every simple computable martingale is computably enumer-
able and that every simple and strict computable martingale is also a simple computable
martingale. Thus, the result follows from Theorems 84, 85 and 86.
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4.3 Complexity of unpredictable

Considering various notions of prediction and predictability, one may quickly observe
that our ability to predict a sequence is strongly connected to complexity of the sequence
as measured by some familiar notions while being completely uninfluenced by others.
Intuitively, there should be some trade-offs between simplicity and predictability. A
natural notion of simplicity (albeit not the only sound) is given by Turing degrees. In
this part we study the levels of Turing hierarchy inhabited by Ko stochastic sequences.

Let us start with a well-known observation based on the famous low basis theorem
by Jockusch and Soare [20].

Definition 88. A degree a is low if its Turing jump a′ is 0′.

Theorem 89 (Jockusch and Soare [20]). Every nonempty class of sequences defined by
a Π0

1 formula contains an element which is of a low degree.

Then, we can recall a folklore observation based on the fact that the class of 1-
random sequences is, in fact, Π0

1.

Proposition 90 (folklore, see: [12]). There exists a low 1-random sequence.

Corollary 91. There exists a ∆0
2 Ko stochastic sequence.

Proof. Every low sequence is ∆0
2 and every 1-random sequence is Ko stochastic.

On the other hand, trivially no 1-random sequence may be c.e. Then again, Ko
stochasticity is a much weaker notion that 1-randomness. This prompts a following
question—are there any Ko stochastic c.e. sequences? We answer this question nega-
tively below.

Theorem 92. Let x be c.e. Suppose that x is normal. Then there exists a predictor g
such that ς(g, x) 6= 1

2
.

Proof. Let x be a c.e. sequence. Suppose that x is normal. Let z be a naive predictor
that always predicts zero, i.e., z[2<N] = {0}. Since x is normal, we have ς(z, x) = 1

2
.

Since x is c.e. we can easily construct a predictor g such that g is always correct when
z is correct but, for some prefixes, g is correct but z is not. This does not lead us to a
contradiction as long as g is better than z infrequently—that is, as long as the difference
between predictions of g and z is asymptotically negligible. We will try to construct g
for which this does not hold.

As a consequence of A being normal, we have

lim sup
n→∞

#1(x
n
1 )

n
> 0

In other words, for some ε > 0 there are infinitely many k such that

#1(x
k
1)

k
> ε.
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Hence, we can enumerate x and thus obtain a computable approximation (x(1), x(2), . . .)
of x such that, for all s ∈ N, x(s) ⊆ x and, for infinitely many k,

#1((x(s))
k
1)

|k|
> ε.

In the subsequent paragraph, we define a computable function f : N → 2<N which,
based on x(s), produces strings that approximate subsequent fragments of x in the

following sense: α(t) ⊆ x
|α(t)|
1 , where α(t) := f(0)f(1) . . . f(t). Crucially, we want from

f to satisfy, for each t ∈ N :
#1(α(t))

|α(t)|
> ε. (4.8)

To calculate f(t), we might want to find stages s0 < s1 < · · · < st and values 0 = k−1 <
k0 < k1 < · · · < kt such that the proportion of ones in x(si)

ki
1 is > ε, and output f(t) = τ

such that x(st)
kt−1

1 τ = x(st)
kt
1 . However, it might happen that the proportion of ones in

x(st)
kt
1 is > ε while (4.8) is not satisfied because x(st) has enumerated many elements

below kt−1 which do not contribute to f(t) but to α(t−1) = f(0)f(1) . . . f(t − 1) and
these has been already fixed by that time. The algorithm for computing f(t) presented
below takes this caveat into account and adjusts for the new elements that lag behind.

Algorithm for f . To compute f(t), we will use the following variables: c informs
us that f(c) is in preparation, k stores the length of f(0)f(1) . . . f(c− 1), s is for stages
in (x(s)), i counts new elements and subtracts lags. Initially, all variables are set to 0.
(†) Set s := s + 1. Let S := S ∪ x(s)s1 − x(s−1)s1. If S = ∅, go to (†). Otherwise, set
i := i + #{x ∈ S : x ≥ k} − #{x ∈ S : x < k} (count new elements ≥ k, and make
allowance for new elements that lag behind k). If i ≤ 0, go to (†). We have i > 0. Let
m := maxS + 1.

Check if there is l such that k < l ≤ m and

#(Sl1)

l
> ε. (4.9)

If the is such l, check if c = t. If so, output f(t) = S(k)S(k+1) . . . S(l−1). If c < t,
increase c by 1, set k := l and go to (†). If there is no such l, also go to (†). This ends
the description of the algorithm for f .

Now, we can give the algorithm for the predictor g. Let σ ∈ 2<N. Find t such that
|σ| < |α(t)| and output α(t)|σ|.

Now, suppose that g acts on prefixes of x. f was constructed is such a way that
it gives us approximations of prefixes of x and by this, for every i, if g predicts xi to
be nonzero, then xi is indeed nonzero. On every other bit, g is correct if and only if z
would be. Furthermore, we know that there are infinitely many k such that∣∣∣ς(g, xk1)− ς(z, xk1)

∣∣∣ > ε

where
lim
k→∞

ς(z, xk1) =
1

2
.
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Thus, we can conclude that

ς(g, x) 6= 1

2
.

Corollary 93. No c.e. set is Ko stochastic.

Proof. Suppose that A is c.e. and Ko stochastic. Consider a naive predictor z that
always place zero as the prediction, i.e., z[2<N] = {0}. Since A is Ko stochastic, for
every f we have ς(f, A) = 1

2
. In particular, this is true for z, i.e., ς(z, A) = 1

2
. This

means that A is normal. By Theorem 92, there is a predictor g such that ς(g, A) 6= 1
2

and so, A cannot be Ko stochastic.

4.3.1 n-c.e. sequences

A natural generalization of computable enumerability is given by the so-called Er-
schov hierarchy [13][33]. We start by recalling a definitions of ω-c.e. and n-c.e. sets.
ω-c.e. sequences are such that may be computably approximated and for each bit
the number of ”changes of mind” in the approximation is bounded by a computable
function. A sequence will be called n-c.e. if this computable function is constant.

Definition 94. A sequence A is ω-c.e. if there is a computable collection of sequences
{A(s)}s∈N with A0 = ∅ and a computable function g such that, for all i

Ai = lim
s→∞

(A(s))i ∧#{s : (A(s))i 6= (A(s+1))i} ≤ g(i).

We will say that A is n-c.e. if and only if g(i) ≤ n, for all i. The value #{s : (A(s))i 6=
(A(s+1))i} is called the number of mind changes in the approximation on the i-th bit.

n-c.e. sequences may be also defined as finite combinations of unions and differences
of c.e. sequences.

Lemma 95. Let C be a 2-c.e. set. There exist A and B such that A and B are c.e.
and C = A−B.

Proof. Consult e.g. section 3.8.4 of [35].

The relation between the Ershov hierarchy and 1-randomness was studied, for ex-
ample, by Figueira et al. [14].

Proposition 96 ([14]). There exists an ω-c.e. 1-random sequence.

Corollary 97. There exists an ω-c.e. Ko-stochastic sequence.

The results by Figueira et al. [14] show that no 1-random sequence may be n-c.e.
Here, we give a similar observation for Ko stochasticity.

Problem 98. Are there any n-c.e. Ko stochastic sequences?
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We will show that no n-c.e. sequence is Ko stochastic. To this end we generalize
some ideas contained in Theorem 92. This generalization is contained in the subsequent
lemma.

Lemma 99. Let n > 0. Suppose that (B(s)) is a computable approximation to B such
that, for all x ∈ N, {x : ∃≥ns (B(s))x 6= (B(s+1))x} has density 6= 0. Then there is a
predictor g such that for every k, if g(Bk

1 ) = 1, then there is at least n mind changes in
the approximation on the k-th bit. Moreover, the density of bits on which this happens
is nonzero.

Proof. We only provide an outline of the proof. The main idea is similar to the one
used in constructing the predictor g in the proof of Theorem 92 for a c.e. set A having
density 6= 0. The main difference is that, in place of such A, we consider elements for
which (B(s)) makes at least n mind changes (note that this set is c.e.). At any given
stage s of the algorithm computing f(t), we put such new elements into S. We then
proceed without changes. Having f , we define g as earlier.

Theorem 100. No n-c.e. sequence is Ko stochastic.

Proof. We proceed by induction on n. Corollary 93 proves this statement for n = 1.
Moreover, by Corollary 93, for each 1-c.e. sequence A there is a predictor h such that
ς(h,A) 6= 1/2 and h depends only on the length of the input (i.e., for every σ, τ ∈ 2<N,
if |σ| = |τ | then h(σ) = h(τ)).

Let n > 0 and assume that, for each n-c.e. sequence A, there exists a predictor h
such that ς(h,A) 6= 1/2 and h depends only on the length of the input. It is sufficient
to show that a similar predictor exists for every (n+ 1)-c.e. sequence.

Fix an (n + 1)-c.e. sequence B with a computable approximation (B(s)). We ask
about the density of the set of bits on which there are exactly n + 1 mind changes in
(B(s)). We consider two cases: when this set is of density zero or otherwise.

Suppose that the set of bits on which there are exactly n + 1 mind changes in the
approximation (B(s)) is of density zero. Take a computable approximation (A(s)) which
is exactly as (B(s)) except that it ignores each (n + 1)th mind change and keeps its
previous answer. (A(s)) is a computable approximation of an n-c.e. sequence, denote it
by A. By the inductive assumption, there exists a prefix independent predictor h such
that ς(h,A) 6= 1/2. Since h is prefix independent, we have h(Ai1) = h(Bi

1), for all i ∈ N.
But ς(h,B) 6= 1/2 must hold as well, because A and B differ at the set of density zero.
Hence, B is not Ko stochastic.

Now, suppose that the density of bits with exactly n + 1 mind changes in (B(s)) is
nonzero. Let g be the predictor from Lemma 1 defined for n+1 mind changes in (B(s)).
Consider two predictors, fn and fn+1, such that

fn(σ) = 1− b ⇐⇒ g(σ) = 1,

fn+1(σ) = b ⇐⇒ g(σ) = 1.

where b = 1 if n is even and b = 0 otherwise.
Observe that, for every i,

g(Bi
1) = 1 =⇒ fn(Bi

1) 6= Bi ∧ fn+1(B
i
1) = Bi.
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Since the density of bits with n + 1 changes is not zero (and thus the density of bits
i such that g(Bi

1) = 1 is not zero) we may conclude that, for some ε > 0, there are
infinitely many k such that

|ς(fn, Bk
1 )− ς(fn+1, B

k
1 )| > ε.

Consequently, it is not possible that ς(fn, B) = 1/2 and ς(fn+1, B) = 1/2 at the same
time. Therefore, B is not Ko stochastic. Moreover, both fn and fn+1 depend only on
the length of the input.
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5

Unstable prediction

We have defined the prediction error of f on the infinite sequence A as the limit of
ratio of correct and wrong answers on the initial segments of A. In some cases such
limit exists, in some it does not. For the sake of notational simplicity we introduce the
following:

Definition 101 (error stability). A sequence 2N is error stable if there is a predictor
f such that ς(f, A) exists. If the sequence is not error stable then we say it is error
unstable.

There are many examples of error stable sequences. For example, every computable
sequence is necessarily stable. Indeed, every computable sequence has a perfect pre-
dictor. On the other hand, stability does not imply that the sequence is effectively
predictable. We have already mentioned the natural notion of unpredictability in this
framework, namely, Ko stochasticity. Every Ko stochastic sequence is necessarily error
stable. However, not every sequence is error stable. In the sequel of this section, we
consider several methods for obtaining error unstable sequences.

5.1 Weak genericity

An easy way to obtain error unstable sequence is via weak genericity. We begin
with Proposition 103 which states that every weakly generic set is not error stable.1

But first some notation is in order. Given S ⊆ 2<N and A ∈ 2N, we say that A meets
S if there is an n > 0 such that An1 ∈ S.

Definition 102. A ∈ 2N is weakly generic if for every nonempty Σ0
1 set S of words, A

meets S.

The existence of weak generics might be established by a straightforward construc-
tion, recursive in 0′. The notion of (weak) genericity has been studied extensively, see
[25], and [12] for an overview.

1This was suggested to us by an anonymous referee of an early version of [23]
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Proposition 103. Let A ∈ 2N be weakly generic. Then for every predictor f , the
prediction error ς(f, A) is undefined.

Proof. Let A ∈ 2N be a weakly generic set and let f be a predictor. For the sake of
contradiction, suppose that ς(f, A) exists and let p = ς(f, A). Without loss of generality,
assume that 0 < p ≤ 1

2
. Fix ε > 0 and k such that for every n > k, ς(f, An1 ) < 1

2
+ ε.

Let S ⊆ 2<N be the set of words σ such that |σ| > k and ς(f, σ) ≥ 1
2
+ε. This guarantees

that no prefix An1 is in S. So, A does not meet S.
Obviously, S is a Σ0

1 set of words. Since A does not meet S, A is not weakly generic—a
contradiction.

As a corollary we get a strengthened version of the known separation between weak
genericity and Martin-Löf randomness (since every Martin-Löf random sequence is Ko
stochastic).

Corollary 104. No weakly generic sequence is Ko stochastic.

5.2 Unstable prediction in c.e. degrees

By the result reported in [12] (Proposition 2.24.2), every noncomputable c.e. set
computes a weakly generic set. Hence, by Proposition 103, for each c.e. set B >T 0
there is a computable in B sequence A that is not error stable.

Can a set be c.e. and not error stable? This question cannot be settled by further
appeal to weak genericity, since no weak generic set is c.e. Nonetheless, in Theorem
106, we provide a construction of a c.e. set that is not error stable. We start with a
construction in 0′ (Theorem 105) which shows how to construct a sequence that is not
error stable using requirements based solely on predictors. Theorem 106 is essentially an
effectivization of this idea, drawing heavily on the finite-injury priority method [16, 29].

Theorem 105. There is a sequence A that is not error stable and 0 <T A ≤T 0′.

Informal description. We want to construct a sequence A such that for every predic-
tor f , ς(f, A) is undefined. We use an effective enumeration of all partial computable
functions from 2<N to {0, 1} (such an enumeration contains all predictors). We proceed
with the finite extension method. The key idea is to take care of each predictor at
infinitely many stages and at each such stage force its prediction error to go sufficiently
up or down—this will prevent the predictor from having a defined prediction error on
the constructed sequence. As we shall see, it suffices to ensure that for every predictor
the prediction error goes below some fixed level infinitely many times. The essential
idea is that each predictor occurs infinitely often in the effective canonical enumeration
of partial computable functions.

Proof. Fix a canonical enumeration of all partial computable functions Φ0,Φ1,Φ2, . . .
from 2<N to {0, 1}. The construction proceeds by stages. We start with α(0) = ∅. At
each stage s+ 1 we construct a finite sequence α(s+1) � α(s). The constructed sequence
is defined by A =

⋃∞
s=0 α(s).
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Construction
Stage 0 : α(0) = ∅.
Stage s+1 : Check whether there exists τ 6= � such that for every ρ ≺ α(s)τ we have

Φs(ρ) ↓, and

ς(Φs, α(s)τ) <
1

4
.

Now, if such τ do exist, let τ(0) be the least one and set α(s+1) = αsτ(0). If such τ does
not exist, set α(s+1) = α(s). This ends the construction.

Verification First, observe that A is infinite. For a contradiction, let A = α, for some
α ∈ 2<N. Let t be the least stage such that, for all s ≥ t, α(s) = α. Write a program
with an index u satisfying ς(Φu, α0) = 0 and u ≥ t. But then α(u+1) = α(u)0 6= α, a
contradiction.

Now, we show that no predictor has a defined prediction error for A. Let f be a
predictor. By totality of f , at each stage s + 1 with Φs = f , αs is extended to some
α(s+1) satisfying

ς(Φs, α(s+1)) <
1

4
.

(For example, we can obtain such an extension as follows: set b1 = 1 − f(α(s)),
b2 = 1 − f(αsb1), ..., bk = 1 − f(α(s)b1b2...bk−1). For sufficiently large k, we will
have ς(Φs, α(s)τ) < 1/4, where τ = b1b2...bk.) Now, f occurs infinitely often in the
enumeration Φ0,Φ1,Φ2, . . . . Therefore, our construction ensures that for every k ∈ N
there is an n > k such that ς(f, An1 ) < 1

4
.

On the other hand, let f ′ be the predictor defined by f ′(σ) = 1 − f(σ), for all
σ ∈ 2<N. Note that ς(f ′, An1 ) < 1/4 for infinitely many n. Observe that for every n ∈ N
we have ς(f, An1 ) = 1 − ς(f ′, An1 ). This, in turn, guarantees that for every k ∈ N there
is an n > k such that ς(f, An1 ) > 3

4
. Consequently, ς(f, A) does not exist, as required.

To show that 0 <T A, it suffices to observe that every computable sequence has
a predictor with a defined prediction error. Obviously, A ≤T 0′: to compute An in
0′, perform the construction up to the first stage s satisfying |α(s)| > n and return
(α(s))n.

Theorem 106. There exists a noncomputable c.e. set that is not error stable.

In the proof of Theorem 105 we attempted to satisfy, for each e ∈ N, the following
requirement (denote it by Re): if Φe is total then there exists n such that ς(Φe, A

n
1 ) < p

(for p = 1
4
). Now, we want to satisfy each Re in an effective way. We define a computable

approximation (A(s))s∈N with lims→∞A(s) = A. To ensure that A is c.e., we make sure
that we always have A(s) ⊆ A(s+1), for all s ∈ N.

Strategy in isolation Suppose we are at stage s of the construction and we start
to care about satisfying Re. We choose a fresh starting point ne (fresh means, among
other things, that (A(s))n = 0 for n ≥ ne), big enough number f(ne) and we initialize
a variable he, called head, with ne. At every subsequent stage t > s, we perform the
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following steps: if he ≤ f(ne) then we check whether Φe,t((A(t))
he
1 ) ↓ holds, and if it

holds, we set (A(t))he = Φe(A
he
1 ) and move the head to the right, i.e. we set he = he+ 1.

The above description states how to satisfy a single requirement in isolation. If Φe is
total then, eventually, Φe will make correct predictions Φe(A

k
1) = Ak for k ∈ [ne, f(ne)],

and thus ς(Φe, A
f(ne)
1 ) < p, provided f(ne) is sufficiently large.

Strategies together When multiple requirements act together, some conflicts may
appear. Suppose we have a requirement Ri which we try to satisfy on [ni, f(ni)] and
there is a different requirement Rj which we try to satisfy on [nj, f(nj)] with f(ni) < nj
(in general, we will always make sure that such intervals are disjoint). Ri may want
to put some number k ∈ [ni, f(ni)] into A. But this may destroy computations made
earlier for Rj (for example, we had Φj(A

k′
1 ) = 1 for some k′ ∈ [nj, f(nj)] when k was

not in A, but now, when k is in A, Φj(A
k′
1 ) = 0). In such a case, we simply reset

all requirements j > i, i.e. we set their heads hj back to their corresponding starting
points nj. It is possible that such Rj will succeed on its current segment [nj, f(nj)].

It may happen, however, that Ri cannot be satisfied on its current segment. This
occurs when a number k has already been enumerated into A but later in the construc-
tion, during our attempts to satisfy Ri, it turns out that Φi(A

k
1) = 0 and so we should

withdraw k from A. We cannot let it happen as we want (A(s))s∈N to be a non-decreasing
sequence of sets. Therefore, we stop our attempts to satisfy Rj on [nj, f(nj)], for j ≥ i,
and try to find new values for nj and f(nj) in the future.

Construction Let Φ0,Φ1, . . . be a fixed effective enumeration of all partial com-
putable functions from 2<N to {0, 1}. Let 0 < p < 1 be such that checking whether
x < p is computable. We construct A such that for all e:

Φe is total =⇒ ς(Φe, A
k
1) < p (Re)

R0 > R1 > R2 > . . . is the priority ordering. For each Re we have variables ne, he
and ϕ(e) for storing, respectively, the current starting point, head and constraint of
Re. Contents of these variables may change during construction. We define f(n) = n+
min{k ∈ N : n

n+k
< p}.

Ri will make changes to certain segments of the sequence under construction, be-
ginning with a starting point ni, and ending with f(ni). hi will be used to navigate
through bits ni, ni + 1, . . . , f(ni).

We say that Re requires attention at stage s+1 if ne is defined at stage s, he ≤ f(ne)
and Φe,s((A(s))

he
1 ) ↓.

Stage 0. A(0) = ∅. All he, ne, ϕ(e) are undefined.
Stage s + 1. If no requirement needs our attention, let Rj be the highest-priority

requirement with nj being undefined. Let n0 be the new fresh number, i.e. the least
number m such that: ∀r ≥ m (A(s))r = 0 and m > every currently defined constraint
ϕ(e) (at each stage, only finitely many values of ϕ are defined). Reserve n0 as the
starting point for Rj (i.e. set nj = n0), put a constraint ϕ(j) = f(nj) and set hj = nj.
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Proceed to the next stage. In simple words, we chose n0 so that the greatest integer
enumerated so far into A is < n0; moreover, we want Rj to operate on a segment that
is separate from the segments attached to other the requirements.

If some requirement needs our attention, let Ri be the one with the highest priority.
Suppose Φi,s((A(s))

hi
1 ) = 0. If (A(s))hi = 1 then cancel all requirements Rj with j ≥ i (it

means that nj, hj, ϕ(j) become undefined). If (A(s))hi = 0 then set hi = hi + 1. Now,
suppose Φi,s((A(s))

hi
1 ) = 1. If (A(s))hi = 1 then set hi = hi + 1. If (A(s))hi = 0 then set

(A(s+1))hi = 1, hi = hi + 1 and reset all requirements j with j > i (i.e., make hj = nj
again).

Lemma 107. Every requirement receives attention only finitely often.

Proof. Let i ∈ N and assume that all requirements j < i receive attention only finitely
often. Let s be the least stage such that: Ri has an attached starting point ni = n at
this stage and Rj does not receive attention at stages t ≥ s, for all j < i. It means that
at these stages Ri cannot be canceled or reset by any other requirement.

Observe that Ri operates on at most two different segments at stages t ≥ s. At first,
it operates on [n, f(n)]. Suppose that Ri receives attention at some stage t ≥ s when
operating on [n, f(n)] and the conditions Φi,t((A(t))

hi
1 ) = 0, (A(t))hi = 1 are not satisfied

at the same time. Given that, Ri receives attention at most f(n)−n times while being
attached to ni = n. This is because Ri starts operating on [n, f(n)] with hi = n and
whenever we see Φi,u((A(u))

hi
1 ) ↓, we possibly modify Ahi (by making (A(s+1))hi = 1) and

we advance hi. But from now on, for the current value of hi, A
hi
1 remains unchangeable,

i.e. Ahi1 = (A(u+1))hi . Hence, either hi gets stuck because of a divergent computation
of Φi for some Ahi1 , or it eventually reaches f(n) + 1 and from that stage on we always
have hi > f(n). In either case, Ri never receives attention anymore which means that
Ri receives attention at most f(n)− n times while being attached to ni = n.

Now, suppose that at some stage t ≥ s the requirement Ri receives attention and
we have Φi,t((A(t))

hi
1 ) = 0 and (A(t))hi = 1. Let r be the number of times Ri has

received attention while being attached to ni = n. According to the construction, Rj

with j ≥ i are cancelled. Hence, Ri is cancelled itself and gets new values ni = n′,
hi = n′, ϕ(i) = f(n′) at the next stage t + 1. Observe that [n′, f(n′)] is a completely
fresh segment with no numbers enumerated so far into A. Hence, if Ri receives attention
at some later stage u > t + 1, we cannot have (A(u))hi = 1 and hence we cannot have
Φi,u((A(u))

hi
1 ) = 0 and (A(u))hi = 1 simultaneously. The reasoning from the previous

paragraph convinces us that Ri receives attention at most f(n′) times while being
attached to ni = n′. Hence, Ri has received attention at most r+f(n′)−n′ times while
being attached first to n and then to n′.

Lemma 108. Every requirement is eventually satisfied.

Proof. Let Φe be total. By Lemma 107, as of a certain stage, Re is never injured by
other requirements and eventually operates on at most two final segments. Since Φe is
total, the head he gets updated until it reaches f(n) + 1 where [n, f(n)] is one of these
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segments. Hence, we have Am+1 = Φe(A
m
1 ) for m ∈ [n, f(n)]. By the definition of f ,

we have
ς(Φe, A

f(n)
1 ) ≤ n

f(n)
< p,

which is as desired.

The proof of Theorem 105 shows that Lemma 108 is sufficient to guarantee that
ς(Φe, A) is undefined for all total Φe. This completes the proof of Theorem 106.
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6

Optimality

Intuitively, some sequences can be better predicted then others. Hence, we might
want to compare them with respect to the level of their predictability. How this intuition
could be made precise?

Suppose we have sequences A and B. We want to know if we can predict A better
than we can predict B. One idea would be to look whether the best possible predictor for
A is better than the best predictor for B. Apparently, this is the approach taken by C.W.
Granger in his seminal paper on causality tests where he measures the predictability in
terms of the error series of an optimum, unbiased, least-squares predictor [17].

It comes as no surprise that the existence of an optimal predictor is not guaran-
teed in every case. As we will see, in case of binary sequences, there exists a sequence
with no optimal predictor. Furthermore, the existence of an optimal predictor turns
out not to be so important—as we can have infinite progressions of better and better
predictors approaching some level of predictability but never attaining it. Therefore,
the comparison of optimal predictors does not form a good basis for the comparison of
the sequences’ predictability.

We start with the formal definition and then proceed to present the results.

Definition 109 (optimal predictor). f is called an optimal predictor for S if ς(f, S) is
defined and for every proper predictor g we have:

ς(f, S) ≤ ς(g, S)

or ς(g, S) is not defined.

Proposition 110. Fix A ∈ 2N and let f be an optimal predictor for A. Suppose that
ς(f, A) = 1

2
. Then, for every predictor g for A, if ς(g, A) is defined, then ς(g, A) = 1

2
.

Proof. This is a corollary of Proposition 62.
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6.1 Optimal predictors with an uncomputable pre-
diction error

Theorem 111. For every real number 0 ≤ r ≤ 1
2

there exists a sequence A and a
predictor f such that f is optimal for A and ς(f, A) = r.

Proof. Fix a real number 0 ≤ r ≤ 1
2
. Let I ∈ 2N be such that

lim
n→∞

∑n
i=1 Ii
n

= 2r. (6.1)

We use I to construct A. We want to put Ai = 0 for every i such that Ii = 0. We know
that there are 1−2r such bits (in the limit). As for the subsequence of A corresponding
to the nonzero bits of I, we want it to be unpredictable in the sense that for every
predictor f

lim
n→∞

#{0 ≤ i < n− 1 : Ai+1 6= f(Ai1) ∧ Ii+1 = 1}
n

=
1

2
.

This can be done using Theorem 67. Each predictor g gives rise to two selection
functions: g itself and g = 1 − g .1 Note that if g and g both select a balanced
subsequence on some sequence Y , then ς(g, Y ) = 1

2
.

We want to have an unpredictable subsequence corresponding to the nonzero bits
from I. Hence, for each g, we consider g

′
and g

′
such that for all σ ∈ 2<N:

g
′
(σ) = g(σ)I|σ|+1 (6.2)

g
′
(σ) = g(σ)I|σ|+1 (6.3)

Now, let g0, g1, . . . be a complete list of all proper predictors. Consider a countable
collection of selection functions G = g

′
0, g

′
0, g

′
1, g

′
1, . . .. By Theorem 67, there is a sequence

A such that every function from G is balanced on A. Moreover, Ii = 0 implies Ai = 0
for every i ∈ N.

Now, consider a predictor f which always predicts zero. Obviously, it correctly
predicts every bit of the subsequence of A corresponding to zero bits of I. As for the
rest of A (where I has ones), the construction guarantees that the relative limiting
frequency of zeros (and ones) equals one half on the places selected by f

′
. But these

are precisely all nonzero bits of I. Hence, in the limit, f erroneously predicts half of
these bits. Since the frequency of nonzero bits of I approaches 2r (see Equation (6.1)),
the frequency of errors made by f on A approaches r, i.e. ς(f, A) = r.

It remains to observe that no other predictor is better. It follows from the fact that
all predictors are equally good on bits selected by f

′
but none is better than f on the

rest of bits (which are all zeroes).

1This observation is due to an anonymous reviewer of an early version of the paper [23].
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Table 6.1: The assigment of bits Xi to predictors hk
h1 −→ · · · X3 · X5 · X7 · X9 · X11 · X13 · . . .
h2 −→ · · X2 · · · X6 · · · X10 · · · · . . .
h3 −→ · · · · X4 · · · · · · · X12 · · . . .
...

6.2 Sequences with no optimal predictor

By the fundamental theorem of arithmetic we notice the following fact.

Lemma 112. For every even number k > 0 there exist natural m ≥ 1 and n ≥ 0 such
that

k = (1/2 + n)2m.

Every number can be uniquely represented by such m and n. Moreover, k is odd if and
only if m = 1.

Theorem 113. There exists X ∈ 2N and an infinite sequence of proper predictors
f1, f2, . . . such that for all n ∈ N

ς(fn, X) > ς(fn+1, X),

but no predictor is optimal for X.

Proof. Let h0, h1, . . . be a listing of all proper predictors. We construct X inductively.
Set X1 = 0. Let i > 1 and assume that Xj has been defined for j < i. By Lemma 112,
let n, k be the unique integers such that i = (1/2 + n)2k+1. We set

Xi = 1− hk(X i−1
1 ). (6.4)

Table 6.1 shows in a visual way how bits of X are assigned to the predictors that are
used to define them.
First, we show that there is a proper predictor f such that ς(f,X) exists. We define
total computable f : 2<N → {0, 1} as follows:

f(σ) =


0 if |σ| is even (6.5)
1− h0(σ) if |σ| is odd and σ ends with 1 (6.6)
h0(σ) if |σ| is odd and σ ends with 0 (6.7)

We prove the following claim: for every n ∈ N, if n is even, then either f(Xn
1 ) or

f(Xn+1
1 ) is correct.

To see this, let n be even. We have two cases depending on whether f(Xn
1 ) is

correct. First, assume that f(Xn
1 ) is correct, i.e. Xn+1 = f(Xn

1 ). We want to show that
f(Xn+1

1 ) is incorrect. |Xn
1 | is even so, by (6.5), f(Xn

1 ) = 0. Consequently, Xn+1 = 0.
Hence, Xn+1

1 ends with 0. |Xn+1
1 | is odd and ends with 0, so, by (6.7) and (6.4),

f(Xn+1
1 ) = h0(X

n+1
1 ) = 1−Xn+2 which means that f(Xn+1

1 ) is incorrect.

49



As for the second case, we assume that f(Xn
1 ) is incorrect and show that f(Xn+1

1 ) is
correct. The reasoning is similar, except that we obtain X(n= 1 and apply case (6.6).

Having the above claim proven, it is routine to see that

ς(f,X) =
1

2
.

Now, suppose that g is a proper predictor and ς(g,X) is defined. Since g is a proper
predictor, there is an i such that hi = g. Choose such an i. By the definition of X, g
makes mistakes on every bit Xj such that j = (1/2 + k)2i+1 for some k. Consider a
predictor h having the following property: for every such bit j, h(j) = 1− g(j) and for
any other bit m, h(m) = g(m). Therefore,

ς(h,X) = ς(g,X)− 1

2i+1
.

This means that h is better than g on X.
From the above paragraph it follows easily that no proper predictor is optimal for

X. It remains to show that there is an infinite sequence f1, f2, . . . of increasingly better
predictors for X. Start with f1 = f . By the earlier considerations, f1 has a defined
prediction error. Given fn with a defined ς(fn, X), obtain fn+1 from fn by an application
of the procedure described in the previous paragraph. This yields ς(fn, X) > ς(fn+1, X).
This ends the proof.

We can combine proofs of Theorem 111 and Theorem 113 to get the following:

Corollary 114. Let p ∈ R be such that 0 < p < 1
2

and

lim
n→∞

∑n
i=1 Pi
n

= p,

for some computable sequence P . Then there exists a sequence A ∈ 2N and an infinite
sequence of predictors f1, f2, . . . such that

lim
n→∞

ς(fn, A) = p,

and for every predictor g with a defined prediction error, ς(g, A) > p.

Proof. Fix a number p which satisfies the antecedent of the implication and let P be
such that

lim
n→∞

∑n−1
i Pi
n

= 2p.

The proof is then straightforward. We construct a sequence A recursively. On every
i-th bit of A such that Pi = 0 we will place bits in similar manner as in the proof
of Theorem 113. That is, every second such bit will correspond to some predictor h0,
then every second of the rest corresponds to predictor h1 and so on (where h0, h1, . . .
is some fixed canonical enumeration of predictors). Again, we want the subsequence of
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A corresponding to nonzero bits of P to be unpredictable. That is, we ensure that for
every predictor f

lim
n→∞

#{0 ≤ i < n− 1 : Ai+1 6= f(Ai1) ∧ Pi+1 = 1}
n

=
1

2
.

Combining this with the argument from the proof of Theorem 113 we get the consequent
of the implication.

Observe that we have to be able to approximate p computably. Otherwise, we could
not compute P and the diagonal argument of Theorem 113 would fail. This raises the
following question:

Problem 115. Is the consequent of the implication from Corollary 114 true for every
real number p such that 0 < p < 1/2?
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7

Related approaches

7.1 Tadaki predictability

A different notion of ‘predictability’ was proposed by K. Tadaki [36]. He considered a
slightly different model, where predictors may sometimes abstain from giving an answer.
This is similar to martingales which in general may bet zero capital on their guesses
(thus, effectively the answer does not matter). On the other hand, Tadaki is interested
only in such prediction where either we are correct or the predictions are suspended.
The notion introduced below is denoted as total strong predictability in [36]. Here, we
will use the name Tadaki-predictability. Note that in [36] both prediction is restrained
by either (total) computable or, more broadly, partial computable functions. Here, we
will only deal with the computable prediction in Tadaki sense.

Definition 116 (T-predictor). A predictor in the Tadaki sense or simply — a T-
predictor — is a total computable function 2<N → {0, 1,�}.

The � here is interpreted as a suspension of the prediction.

Definition 117 (Tadaki Strong Predictability). Let A ∈ 2N. We say that A is Tadaki-
predictable if there exists a T-predictor f for which the following conditions hold:

1. For every n ∈ N, if f(An1 ) 6= � then f(An1 ) = An+1.

2. The set {i ∈ N : f(Ai1) 6= �} is infinite.

In [36] Tadaki studied the relation between such notion of ‘predictability’ and var-
ious classes of randomness. In particular, he observed that computable randomness
implies that a sequence is not Tadaki-predictable. Recall the definition of computable
randomness.

Definition 118 (Computable Randomness). A sequence A is computably random if
and only if there is no computable martingale succeeds on A.

Without much effort we get this simple observation
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Proposition 119 (Tadaki [36]). If A ∈ 2N is computably random then it is not Tadaki-
predictable.

Tadaki proves it by contradiction via a direct construction of a succeeding martin-
gale. However, Proposition 119 becomes self-evident if we recall the Theorem 84.

Proposition 120. Every computably random sequence is Church stochastic.

Proof. By Theorem 84 a sequence is Church stochastic if and only if no simple com-
putable martingale succeeds on it. A sequence is computably random if no computable
martingale succeeds on it. In particular, if the sequence is computably random, then
no simple computable martingale succeeds on it.

Now, it remains to observe that

Proposition 121. No Church stochastic sequence is Tadaki predictable.

Proof. Suppose that A is Church stochastic and Tadaki predictable. There is a T -
predictor f such that

1. For every n ∈ N, if f(An1 ) 6= � then f(An1 ) = An+1.

2. The set {i ∈ N : f(Ai1) 6= �} is infinite.

Fix such an f and consider a selection function g such that for all σ ∈ 2<N the following
holds:

f(σ) = 1⇔ g(σ) = 1.

Observe that g is not balanced on A and conclude that A is not Church stochastic.

Now we turn our relation to the interplay between the Tadaki predictability and
prediction based on the predictors. The notion of the Tadaki predictability may be
seen as being ’orthogonal’ to predictability based on prediction errors. Often, these
two approaches disagree. For example, a Ko stochastic sequence (which is a notion of
‘unpredictability’) may still be predictable in the Tadaki sense.

Proposition 122. There is a sequence A which is Ko stochastic and Tadaki predictable.

Proof. Consider a Ko stochastic sequence A and construct a sequence B as follows

Bi =

{
0 if i = 2j for some j (7.1)
Ai otherwise. (7.2)

Observe that B is also Ko stochastic. On the other hand, we have a T -predictor f

f(σ) =

{
0 if |σ| 6= 2j for any j (7.3)
� otherwise. (7.4)

Note that f is always correct when it do not return �. So, A is Tadaki predictable.
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On the one hand, we are tempted to say that the sequence for which we can have a
prediction error approaching 0 is quite ‘predictable’. But such sequence does not have
to be Tadaki predictable.

Proposition 123. There is a sequence A and a predictor f such that ς(f, A) = 0 but
A is not Tadaki predictable.

Proof. We will construct A by direct diagonalization. Let h0, h1, . . . be a listing of all
T-predictors. The construction proceeds by stages. We start with α(0) = ∅. At each
stage s + 1 we construct a finite sequence α(s+1) � α(s). The constructed sequence is
defined by A =

⋃∞
s=0 α(s).

Construction.
Stage 0 : α(0) = ∅.
Stage s+1 : Check whether there exists τ = α(s)00 . . . 0 such that hs(τ) 6= � and
|τ | − |α(s)| ≥ 2s+1. If so, take the minimal such τ and let

α(s+1) =

{
τ0 if hs(τ) = 1 (7.5)
τ1 if hs(τ) = 0. (7.6)

Otherwise, α(s+1) = α(s) 00 . . . 0︸ ︷︷ ︸
2s+1

.

Verification.
Now, observe that for every T-predictor h, if there exists such k that h(Ak1) 6= � then
there also exists such k that h(Ak1) 6= Ak+1. Therefore, A is not Tadaki-predictable.
Furthermore, we know that for every step s of the construction |α(s+1)| ≥ (|α(s)|+ 2s+1)
and #1(α(s+1)) ≤ (#1(α(s)) + 1). As a consequence, limn→∞#1(A) = 0. Consider a
predictor χ such that χ[2<N] = {0} and observe that ς(χ,A) = 0.

We can observe that every c.e. sequence is Tadaki predictable. Therefore, there is
a Tadaki predictable sequence that is not error stable.

Proposition 124. If A is c.e. then A is Tadaki predictable.

Proof. Let A be a c.e. sequence. Since A is c.e., there exists an infinite set B ⊂ A such
that B is computable. Therefore, we have a T -predictor f

f(σ) =

{
1 if B|σ|+1 = 1 (7.7)
� otherwise. (7.8)

Observe that f is always correct when it places a nonzero bit after some prefix. Thus,
A is Tadaki predictable.

Corollary 125. There is a Tadaki predictable sequence which is not error stable.

Proof. By Theorem 106, there is a c.e. sequence that is not error stable. By Proposition
124, every c.e. sequence is Tadaki predictable.
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In fact, the Proposition 124 can be easily generalized to n-c.e. case. On the other
hand, we know that a Church stochastic sequence is not Tadaki predictable. Recall
that there is a Church stochastic sequence in ω-c.e. degrees. So

Corollary 126. There is an ω-c.e. sequence that is not Tadaki predictable.

We have already managed to show that Church stochasticity implies unpredictability
in the Tadaki sense. Therefore, we know that Church stochasticity implies both Ko
stochasticity and Tadaki unpredictability. It remains to check if the converse implication
is true. Unfortunately, it is not.

Proposition 127. There exists a sequence A that is Ko stochastic and not Tadaki
predictable but is not Church stochastic.

Proof. We will construct a Ko stochastic sequence X. On most of the bits we will
just use the standard Ville’s construction (see the proof of the Theorem 67). However,
on every bit with index of form 2i for some i ∈ N instead of going through Ville’s
construction, we will chose bits according to the procedure that we have used in the
proof of Proposition 123.
Strictly speaking, we will construct a sequence A. Let h0, h1, . . . be a listing of all T-
predictors. The construction proceeds by stages. We start with α(0) = ∅. At each stage
s+ 1 we construct a finite sequence α(s+1) � α(s). The constructed sequence is defined
by A =

⋃∞
s=0 α(s). We will also use auxiliary variables e (which will be used to denote

the index of a T -predictor) and c (a counter).

Construction.
Stage 0 : α(0) = ∅, e = 0, c = 0.
Stage s+1 : Check if s = 2i for some i ∈ N. If not, simply act as in the Ville construction.
Otherwise, check if he(αs) = �. If so, let α(s+1) = α(s)0 and increase c by 1 (i.e.
c := c+ 1).
Otherwise, check if c > 1. If so, let

α(s+1) =

{
α(s)0 if hs(α(s)) = 1 (7.9)
α(s)1 if hs(α(s)) = 0. (7.10)

Additionally, reset the counter c to 0 and increase e by 1.
In case that c > 1 did not hold, let α(s+1) = α(s)0.

Verification.
Observe that A is infinite, since at every step of construction |α(s+1)| > |α(s)|. Moreover,
A was constructed in such a way that A is stochastic in respect to every computable
selection function f such that f(σ) = 0 if |σ| = 2i for some i ∈ N. We already know
that in such a case, A is Ko stochastic. (See Theorem 66 and Corollary 69.

Furthermore, consider three indexes i, j, k such that for some m ∈ N we have i = 2m,
j = 2m+1 and k = 2m+2. Note that at least two bits in bits of indexes i, j, k are zero
(we used the counter c to ensure that — a nonzero bit could be placed only after c
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was increased twice after the last reset or increased twice and never reset yet). Then,
consider a selection function g such that g(σ) = 1 if and only if |σ| = 2i for some i ∈ N
and observe that the subsequence selected by g on A is not balanced (between every
nonzero bit there are at least two zero bits). So, A is not Church stochastic.

It remains to observe that for every T-predictor h there exists such k that h(Ak1) 6= �
but also h(Ak1) 6= Ak+1. Therefore, A is not Tadaki-predictable.

7.2 Coarse computability

The notion of coarse computability was firstly introduced by Jokusch and Schupp
in [21] and was subsequently studied in, e.g., [18][4][27] .

Definition 128 (Coarse computability). A sequence A is said to be coarsely computable
in density r if there exists a computable f : N→ N such that

lim inf
n→∞

#1{n : f(n) = An}
n

= r.

Moreover, we will simply say that A is coarsely computable if it is coarsely computable
in density 1.

Definition 129 (Coarse computability bound). A coarse computability bound γ(A) of
a sequence A is defined as the lowest upper bound for r such that A is coarsely com-
putable in density r.

If an uncomputable set A is coarsely computable then it means it can be well approx-
imated with some computable set. In a way, this allows us to neglect uncomputability of
A. If that is not the case, then γ measures how far A is from being coarsely computable.

Coarse computation may be recognized as a special case of prediction, i.e., such
where the predictor trajectories only depend on the length of the input prefixes. Thus,
we get a simple observation

Observation 130. Let A ∈ 2N and suppose that A is coarsely computable in density r.
There exists a predictor f such that ς−(f, A) = r.

But we also can easily get a separation result for these two notions.

Proposition 131. There exists a sequence X such that γ(X) = 1/2 but X is predictable
with error 1/4.

Proof. By Ville’s theorem, for every F — a countable collection of functions from
words into {0, 1} we can construct a sequence A such that every f from F we have
ς(f, A) = 1/2. Let F be a collection of all computable functions f such that for each
σ, τ

|σ| = |τ | ⇒ f(σ) = f(τ).
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Let A be a corresponding sequence stochastic with respect to F . Note that γ(A) = 1/2.
Consider X = A ⊕ A. We are going to prove that γ(X) = 1/2. Suppose otherwise.
Then, there exists a computable function f which select an unbalanced sequence on A.
But then f selects an unbalanced subsequence on all odd or all even indexes. Therefore,
we can easily construct a function g which selects an unbalanced subsequence on A, a
contradiction.
Subsequently, contemplate the function g such that

g(σ) =

{
0 if |σ| = 2k (7.11)
σ|σ| if |σ| = 2k + 1 (7.12)

On even indexes, g behaves as a function from F — so it makes exactly 1/2 correct
answers on these bits, by the construction of A and X. On odd indexes g simply
copies the last bit of the prefix and hence it is always correct there. Consequently,
ς(f,X) = 1/4.

Problem 132. Can we strengthen this to get ς(f,X) = 0?

An important question in coarse computability concerned the following concept.

Definition 133 (Big gamma). Let a be a Turing degree.

Γ(a) = inf{γ(A) : A is a-computable}

.

Theorem 134 (Monin [27]). There is no degree a such that 0 < Γ(a) < 1/2.

We can define an analogue of Γ for prediction.

Definition 135 (Lower predictability bound). A predictability bound ξ(A) of a sequence
A is defined as the lowest upper bound for r such that there exists a predictor f with
ς−(f, A) = r.
Furthermore, for a degree a let

Ξ(a) = inf{ξ(A) : A is a-computable}

Question 136. What can we say about Ξ? Does it behave similar to Γ?
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Part III

Prediction in probabilistic
framework
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8

Randomness and nonuniform
measures

Such was of old, quoth Epistemon, the custom of the grand vaticinator and
prophet Tiresias, who used always, by way of a preface, to say openly and
plainly at the beginning of his divinations and predictions that what he was
to tell would either come to pass or not. And such is truly the style of all
prudently presaging prognosticators. He was nevertheless, quoth Panurge, so
unfortunately misadventurous in the lot of his own destiny, that Juno thrust
out both his eyes.

– François Rabelais, The Third Book1

8.1 Randomness and nonuniform measures

The familiar notion of Martin-Löf tests and Martin-Löf randomness may be gener-
alized to arbitrary computable measures on 2N in a very natural way.

Definition 137 (uniformly Σ0
1 collection of sets of sequences). A collection U0, U1, . . .

of sets of sequences is uniformly Σ0
1 if and only if there is a collection V0, V1, . . . ⊂ 2<N

such that Ui = JViK for every i ∈ N and V0, V1, . . . are uniformly Σ0
1.

Definition 138 (Martin-Löf µ-test). Let µ be a computable measure on 2N. A uni-
formly Σ0

1 sequence U0, U1, . . . of sets of sequences is called a Martin-Löf µ-test if there
exists a computable f such that limn→∞ f(n) = 0 and µ(Un) ≤ f(n) for every n ∈ N.

Definition 139 (Martin-Löf µ-randomness). Let µ be a computable measure on 2N. A
sequence A ∈ 2N is called Martin-Löf µ-random (or simply, µ-random) if there is no
such Martin-Löf µ-test U1, U2 . . . that A ∈

⋂
i∈N Un.

So far, we have dealt only with one-sided infinite binary sequences. We can, however,
think of these as subsequences of some two-sided infinite sequences. This will prove

1as translated by Thomas Urquhart and Peter Antony Motteux.
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useful as we go further and turn our attention to stationary measures. It is known that
every stationary measure on one-sided infinite sequences may be uniquely extended to
a measure on two-sided infinite sequences. To make a proper use of this fact, we first
need to extend the conceptual apparatus of algorithmic randomness to the universe of
two-sided infinite sequences.

While warming-up, observe that every two-sided infinite binary sequence y corre-
sponds to a one-sided infinite sequence x in a simple manner. For each k ∈ N let

yk = x2k+1

and for all k ∈ N+

y−k = x2k.

Hence, computability-theoretic notions are easily transfered onto two-sided infinite se-
quences. We introduce the following notation for cylinder sets of two-sided infinite
sequences. For all w ∈ 2<N with |w| = 2k + 1 for some k ≥ 0

JwKZ = {x ∈ 2Z : xk−k = w}.

Similarly, for a set of words S ⊂ 2<N let

JSKZ =
⋃
w∈S

JwKZ.

Definition 140 (uniformly Σ0
1 collection of sets of two-sided sequences). A collection

U0, U1, . . . of sets of two-sided infinite sequences is uniformly Σ0
1 if and only if there is

a collection V0, V1, . . . ⊂ 2<N such that Ui = JViKZ for every i ∈ N and V0, V1, . . . are
uniformly Σ0

1.

Definition 141 (two-sided Martin-Löf µ-test). Let µ be a computable measure on 2 Z.
An uniformly Σ0

1 sequence U0, U1, . . . of sets of two-sided infinite sequences is called a
Martin-Löf µ-test if there exists computable f such that limi→∞ f(i) = 0 and µ(Ui) ≤
f(i) for every i ∈ N.

Definition 142 (two-sided Martin-Löf µ-randomness). Let µ be a computable measure
on 2 Z. A two-sided infinite sequence A ∈ 2Z is called Martin-Löf µ-random (or simply,
µ-random) if there is no such two-sided infinite Martin-Löf µ-test U0, U1 . . . that A ∈
∩i∈NUn.

8.2 Effective almost-everywhere theorems

Let µ be a probability measure on infinite sequences. In modern probability theory,
many results are stated in the following form

µ({ω : φ(ω)}) = 1,
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where φ is some formula — often stating a pointwise convergence. The above is usually
stated as ‘φ(ω) for µ-almost every ω’. In the algorithmic approach to probability, we
seek for an effective version of such theorems, that is we want to see if

φ(ω) for every µ-random ω.

(Note that the set of all µ-random sequences is of measure one.) Such an effectivization
may be done for various different notions of randomness. In the following chapters
we will seek effective theorems formulated for Martin-Löf randomness. From historical
perspective, this research program originates from von Mises’s concept of Kollektive.
For an overview see [41].

8.3 Effective Borel-Cantelli lemma

As in the case of randomness for the uniform measure, besides the definition by
Martin-Löf tests, we have an equivalent definition based on Solovay tests. We note that
this observation may be seen as an effective Borel-Cantelli lemma.

Definition 143 (Solovay test). Let µ be a computable measure. A Solovay µ-test is
a collection S0, S1, . . . of uniformly Σ0

1 sets of sequences such that
∑

n∈N µ(Sn) < ∞.
A sequence x ∈ 2Z is called Solovay µ-random if for every such test, x belongs only to
finitely many Sn.

Theorem 144 (Solovay, unpublished). A sequence is Martin-Löf µ-random if and only
if it is Solovay µ-random.

Proof. See e.g., Theorem 6.2.8 in [12].

8.4 Martingale convergence

As an example of the effectivization, we will now state an effective version of Doob’s
martingale convergence theorem. Typically, to obtain an effective theorem of form ‘φ(ω)
for all µ-random ω’ we have to to put some computability constraint on φ. Hence, to get
an effective martingale convergence theorem, we need to define a notion of a computable
martingale process. The standard notion of a computable function applies to mappings
from countable sets into countable sets. On the other hand, a martingale process is
a function which acts on points of the probability space, i.e., on infinite sequences. A
definition of a computable martingale process was proposed, for example, by Takahashi
[37], who also proved a version of an effective Doob’s theorem. Given a process X,
Takahashi simply requires that for all numbers n, the value Xn depends only on the
first n bits of the sequence. This definition is rather crude and not sufficient for our
purpose. We want the process to depend on a finite fragment of a sequence but we do
not want to bound the length of that fragment a priori. An elegant way to introduce
computability with respect to a finite but potentially infinite input is given by oracle
machines, as exemplified by the following definitions.
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Definition 145 (sequences as oracles). Fix a computable bijection h : N→ Z. Choose
ω ∈ 2Z. We will say that a set is computable with oracle ω if and only if it is computable
with oracle W , where

W = {n ∈ N : ωh(n) = 1}.

Definition 146 (computable martingale process). We will say that X = X1, X2, . . . is
a computable martingale process if it is a martingale process and there exists a program
for the register oracle machine which computes the set

{(n, q) : n ∈ N+ ∧ q ∈ Q ∧ q < Xn(ω)}

for each oracle ω.

The martingale process may be seen as an algorithm acting on some fragment of the
sequence ω to produce a rational approximation of a real value (the left cut). Before
we can prove the effective Doob’s theorem, we need to recall an important probabilistic
lemma.

Lemma 147. Let X = X1, X2, . . . be a martingale process and let Cn will be the random
variable denoting the number of upcrossings of interval [a, b] (with a, b ∈ R) by time n,
i.e., it is the largest number t such that

1 ≤ l1 < u1 < l2 < u2 < . . . < lt < ut ≤ n

where for each i ≤ t we have Xli < a and Xui > b. Moreover, suppose that supn E(|Xn|) <
∞. Then the following holds for each n

E(Cn) ≤ |a|+ E(|Xn|)
b− a

.

Proof. See e.g. [8].

Applying the monotone convergence theorem we get

Corollary 148. Let X = X1, X2, . . . be a martingale process and let Cn will be the
random variable denoting the number of upcrossings of interval [a, b] (with a, b ∈ R) by
time n and suppose that supn E(|Xn|) <∞. Then the following holds for each n

E(sup
n
Cn) ≤ |a|+ supn E(|Xn|)

b− a
.

Theorem 149 (effective Doob’s martingale convergence). Set a measure µ on two-sided
infinite sequences and let Y = Y1, Y2, . . . be a computable martingale process. Then, the
limit limn→∞ Yn exists for each µ-random ω.

Proof. Fix arbitrary a, b ∈ Q and let Cn be the random variable denoting the number
of upcrossings of interval [a, b] by the process Y by the time n. Let C∞ denote supnCn.
Consider a collection of sets U = U0, U1, . . . such that for all i ∈ N+

Ui = {ω ∈ 2Z : C∞(ω) > i}
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By Corollary 148 and the Markov inequality, we have

µ(Ui) ≤
|a|+ supn E(|Yn|)

i(b− a)

To see that U is a Martin-Löf µ-test we only need to argue that collection U0, U1, . . . is
uniformly Σ0

1. Since Y is a computable martingale process then given an ω ∈ 2Z and k ∈
N, the question whether Ck(ω) > i is computable with oracle ω. Moreover, the answer
depends only on a finite fragment of ω. It follows that we can effectively enumerate
elements of the set Vi generating Ui = JViK. Indeed, we can fix an enumeration of words
and iterate via pairs (w, k) ∈ 2<N × N. At each step we ask whether Ck(x) > i, where
x = . . . 00w00 . . . (with x

d|w|/2e
−b|w|/2c = w). If so, then we include w into Vi.

Finally, since a, b are arbitrary and U is a Martin-Löf µ-test, it follows that C∞(ω) <
∞ for every µ-random ω and hence, limn→∞ Yn exists for all µ-random sequences.

Again, we have a version of Lévy’s law as a corollary.

Theorem 150 (effective Lévy’s law). Let X be a two-sided infinite process with the
computable probability distribution µ. Let F0,F1, . . . be a filtration and define F∞ to be
σ-algebra generated by the union

⋃
n∈NFn. For every µ-random sequence x ∈ 2Z and

for each k ∈ N, limn→∞ E(Xk|Fn) exists and is a version of E(Xk|F∞).

8.5 Stationary ergodic processes

In this section a certain class of processes is introduced, namely, the class of sta-
tionary ergodic processes. These processes have received much attention in probability
and information theory. This attention comes, in particular, from the group of results
called the ergodic theorems (see Section 8.6). These theorems guarantee that empirical
realizations of the processes have well-behaved statistical properties. As we will see
later on, we can use it as an advantage for prediction of such processes.

Definition 151 (measure preserving transformation). Let (Ω,F , P ) be a probability
space. A measurable transformation T : Ω → Ω is said to preserve measure P if and
only if for all A ∈ F

P (T−1(A)) = P (A).

Definition 152 (stationary measure and process). Let X be a one-sided (two-sided)
infinite binary process with a probability distribution µ. Let I = N or I = Z. Let T be
a right shift, that is for all k ∈ N+ (k ∈ Z) and every ω ∈ 2N (ω ∈ 2Z):

T (ω)k = ωk+1.

We will say that µ is stationary if T preserves µ. We will also say that X is a stationary
process if its probability distribution is stationary.

Definition 153 (ergodic transformation). Let (Ω,F , P ) be a probability space. A mea-
sure preserving transformation T : Ω→ Ω is called ergodic if and only if for each A ∈ F
such that T−1(A) = A either P (A) = 1 or P (A) = 0.
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Definition 154 (ergodic measure and process). Let X be a one-sided (two-sided infi-
nite) binary process with a probability distribution µ. We will say that µ is ergodic if
the right shift is an ergodic transformation with respect to µ. Similarly, the process is
called ergodic if its probability distribution is ergodic.

Any stationary measure defined for one-sided infinite sequences may be uniquely
extended to a stationary measure on two-sided infinite sequences.

Proposition 155 (Kolmogorov process theorem II). If ν is a stationary probability
measure on one-sided infinite sequences, then there exists a unique process X with
probability distribution µ on two-sided infinite sequences such that for every i ∈ Z
and xn1 ∈ 2<N

µ(X i+n
i+1 = xn1 ) = ν(xn1 )

The following proposition allow us to transfer various results about algorithmically
random two-sided infinite sequences to the realm of one-side infinite sequences.

Proposition 156. Let X be a two-sided infinite stationary process with probability
distribution µ and let ν be a stationary measure on one-sided infinite sequences such
that for every i ∈ N and xn1 ∈ 2<N

µ(X i+n
i+1 = xn1 ) = ν(xn1 ).

Suppose that x ∈ 2Z is µ-random. Then y = x∞1 is ν-random.

Proof. Fix measures µ and ν on two-sided and one-sided infinite sequences respec-
tively. Suppose that x ∈ 2Z is µ-random but x∞1 is not ν-random. Hence, there exists
JV1K, JV2K, . . . — a ν-test which witnesses non-randomness of x∞1 . Now, suppose that µ
and ν satisfy

µ(X i+n
i+1 = yn1 ) = ν(yn1 )

for every i ∈ N and yn1 ∈ 2<N. Let define Ui for each i ∈ N as a set of all two-sided
infinite sequences satisfying X∞1 = y for all y ∈ JViK. In other words, we take all the
generators for Vi (which is the set of one-sided infinite sequences) and use them to
obtain cylinder sets on two-sided infinite sequences. The collection U1, U2, . . . forms a
µ-test which witnesses that x is not µ-random.

8.6 Ergodic theorems

The fundamental ergodic theorem is Birkhoff’s ergodic theorem

Theorem 157 (Birkhoff’s ergodic theorem [9]). Let µ be a stationary ergodic measure
on binary sequences and let f : 2Z → R be measurable and integrable. Then for almost
every sequence ω ∈ 2Z

lim
i→∞

1

i

i∑
k=1

f(T k(ω)) = E(f).

64



The above theorem has an effective version

Theorem 158 (effective Birkhoff’s ergodic theorem [15][7]). Let µ be a computable
stationary ergodic measure on binary sequences and let f : 2Z → R+ be left c.e.. For
every µ-random sequence ω ∈ 2Z,

lim
i→∞

1

i

i∑
k=1

f(T k(ω)) = E(f).

Breiman [10] proved a generalization of Birkhoff’s ergodic theorem. We start by
stating its classical version.

Theorem 159 (Breiman’s ergodic theorem [10]). Let µ be a stationary ergodic measure
on binary sequences and let g1, g2, . . . : 2Z → R such that the limit limi→∞ gi exists
almost surely and E(supi |gi|) <∞. For almost every sequence ω ∈ 2Z,

lim
i→∞

1

i

i∑
k=1

gk(T
k(ω)) = E( lim

k→∞
gk).

Similarly, we can derive an effective version of Breiman’s theorem

Theorem 160 (effective Breiman’s ergodic theorem). Let µ be a computable stationary
ergodic measure on binary sequences and let g1, g2, . . . : 2Z → R+ such that gi are
uniformly computable and E(supi |gi|) <∞. Then for every µ-random sequence ω ∈ 2Z,

lim sup
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≤ E(lim sup

k→∞
gk)

and

lim inf
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≥ E(lim inf

k→∞
gk).

Proof. Let Gk = supt>k gt. If so, then gt ≤ Gk for all t > k and consequently,

lim sup
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≤ lim

i→∞

1

i

i∑
k=1

Gk(T
k(ω)).

Observe that a supremum of uniformly computable functions gk, gk+1, . . . is left-c.e..
Indeed, to enumerate the left cut of the supremum we simply simultaneously enumer-
ate left cuts of gk(ω), gk+1(ω), . . .. This is possible since every computable function is
also c.e.. Moreover, we are considering only countably many functions, hence we can
guarantee that an element of each left cut appears in the enumeration at least once.

Now, since for all j ∈ N, Gj is left-c.e., by the effective Birkhoff’s ergodic theorem,
for every µ-random sequence ω,

lim sup
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≤ E(Gj).
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Random variables G1, G2, . . . are bounded from above by an integrable function. Hence,
by the dominated convergence theorem,

lim
i→∞

E(Gi) = E( lim
i→∞

Gi) = E(lim sup
t→∞

gt).

Thus,

lim sup
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≤ E(lim sup

t→∞
gt).

For the second inequality, consider variables Hk = supt>k−gt. Following similar rea-
soning as above, we obtain for every µ-random ω

lim sup
i→∞

1

i

i∑
k=1

−gk(T k(ω)) ≤ E(lim sup
t→∞

−gt).

This is equivalent to

lim inf
i→∞

1

i

i∑
k=1

gk(T
k(ω)) ≥ E(lim inf

k→∞
gk).
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9

Lower bounds for zero-one loss

Suppose that the measure of the underlying process is known in advance. It seems
that the optimal strategy should simply consist in predicting the more probable out-
come. Indeed, in what follows we will prove that this is the case. While, in general, the
measure is usually not known, it does provide a lower bound on the prediction error for
every proper predictor.

Lemma 161. Let X = X1, . . . be a binary process with a probability distribution µ.
The following is satisfied:

lim
n→∞

∣∣∣∣∣∣ς(f, xn1 )− 1

n

n∑
i=1

µ(f(X i−1
1 ) 6= Xi|X i−1

1 = xi−11 )

∣∣∣∣∣∣ = 0

for each µ-random x and computable f .

Proof. Fix X, µ, g and f as needed. Consider a process Y = Y0, Y1, . . . with Y0 = 0 and

Yn = nς(f,Xn
1 )−

n∑
i=1

µ(f(X i−1
1 ) 6= Xi|X i−1

1 ).

Note that

E(Yn+1|Xn
1 ) = Yn + E

(
|f(Xn

1 )−Xn+1| − µ(f(Xn
1 ) 6= Xn+1|Xn

1 )|Xn
1

)
= Yn.

Hence, Y is a martingale process. Fix an ε > 0. By Azuma’s inequality, for t > 0, we
obtain

µ
(
|Yn − Y0| > t

)
≤ 2e−2t

2/n.

Consequently, for each t > 0

µ
(
|Yn − Y0| > nt

)
≤ 2e−2nt

2

.

Fix ε > 0 and set t = nε to obtain

µ


∣∣∣∣∣∣ς(f,Xn

1 )− 1

n

n∑
i=1

µ(f(X i−1
1 ) 6= Xi|X i−1

1 )

∣∣∣∣∣∣ > ε

 ≤ 2e−2nε
2

.
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It remains to consider the following family of sets U = JU0K, JU1K, . . .

Un =

x ∈ 2<N :

∣∣∣∣∣∣ς(f, xn1 )− 1

n

n∑
i=1

µ(f(X i−1
1 ) 6= Xi)|X i−1

1 = xi−11 ))

∣∣∣∣∣∣ > ε

 .

Since µ(Un) is bounded by a summable function, U forms a Solovay µ-test. Suppose
that for some x ∈ 2Z

lim sup
n→∞

∣∣∣∣∣∣ς(f, xn1 )− 1

n

n∑
i=1

µ(f(X i−1
1 ) 6= Xi|X i−1

1 = xi−11 )

∣∣∣∣∣∣ > 0.

But then, if ε is sufficiently small, then the sequence x is in infinitely many JUiK. Since
U is a Solovay test, we conclude that x is not µ-random. This ends the proof.

Theorem 162. Let X be a binary process with a probability distribution µ. Let predictor
h be defined as

h(Xn
1 ) = 1⇔ µ(Xn+1 = 1|Xn

1 ) > 1/2.

Then for every proper predictor f and every µ-random x ∈ 2Z

lim inf
n→∞

(ς(f, xn1 )− ς(h, xn1 )) ≥ 0.

Proof. Fix a binary process X with the probability distribution µ and h defined as in
the assumption of the theorem. Firstly, fix x ∈ 2Z. Obviously, for all n ∈ N+ either
f(xn1 ) = 0 or f(xn1 ) = 1. Consequently, one of the following is true:

µ(f(Xn
1 ) 6= Xn+1|Xn

1 = xn1 ) = µ(Xn+1 = 1|Xn
1 = xn1 )

or
µ(f(Xn

1 ) 6= Xn+1|Xn
1 = xn1 ) = µ(Xn+1 = 0|Xn

1 = xn1 ).

In other words, since h always chooses a more probable outcome, we have

µ(f(Xn
1 ) 6= Xn+1|Xn

1 = xn1 ) ≥µ(h(Xn
1 ) 6= Xn+1|Xn

1 = xn1 )

= min{µ(Xn+1 = 1|Xn
1 = xn1 ), 1− µ(Xn+1 = 1|Xn

1 = xn1 )}

Consequently,

1

n

n−1∑
i=0

µ(f(X i
1) 6= Xi+1|X i

1 = xi1) ≥
1

n

n−1∑
i=0

µ(h(X i
1) 6= Xi+1|X i

1 = xi1).

and so

lim inf
n→∞

(
1

n

n−1∑
i=0

µ(f(X i
1) 6= Xi+1|X i

1 = xi1)−
1

n

n−1∑
i=0

µ(h(X i
1) 6= Xi+1|X i

1 = xi1)) ≥ 0.

The claim follows by Lemma 161.
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10

Universal prediction

In the previous section we have seen that the best strategy is to base the prediction
on the knowledge of the underlying measure. Such strategy is optimal but not neces-
sarily computable. Moreover, in real scenarios, the underlying probability measure is
usually unknown. Therefore, it is natural to ask about some form of a universal strategy
that could guess the underlying measure from the experience. Is goes without saying,
that there is no universal learning scheme for an arbitrary measure. Hence, we need
to limit our attention to some class of processes, e.g. the class of stationary ergodic
processes. In the following section we are going to describe an universal strategy and
prove its optimality with respect to every stationary ergodic process.

10.1 Backward measure estimation

The following theorem was proven by Ornstein [32].

Theorem 163 (Ornstein [32]). There exists a sequence of functions g1, g2, . . . such
that for every two-sided infinite process X = . . . X−1, X0, X1 . . . with the stationary
probability distribution µ,

lim
n→∞

gn(ω−1−n) = µ(X0 = 1|X−1−∞ = ω−1−∞)

for µ-almost every sequence ω.

Our proof of the effective version of the theorem uses a simplified algorithm of
Morvai-Yakovitz-Györfi [28].

Theorem 164. There exists a sequence of functions g1, g2, . . . such that for every two-
sided infinite process X = . . . X−1, X0, X1 . . . with the stationary probability distribution
µ,

lim
n→∞

gn(ω−1−n) = lim
n→∞

µ(X0 = 1|X−1−n = ω−1−n)

for every µ-random sequence ω.
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Proof. Firstly, we define sequences of random variables λk−1 and τk (for k = 1, 2 . . .).
Let λ0 = 1 and for k ≥ 1 let

τk = min{t ≥ 1 : X−1−t−λk−1−t = X−1−λk−1
}. (10.1)

That is, τk is the time between the occurrence of word X−1−λk−1
at time −1 and the last

occurrence of this word prior to time −1. Finally, let λk = τk + λk−1. The sequence of
functions f1, f2, . . . is then defined as

fk(X
−1
−τk) =

1

k

∑
1≤j≤k

X−τj . (10.2)

Now, we proceed to show that the sequence f1, f2, . . . is as needed. Consider the
filtration F0,F1, . . . with Fj being the σ-algebra generated by sets of form

{x ∈ 2Z : x−1−m = w ∧ λj = m}

(with w ∈ 2<N and m ∈ N). For each k ∈ N we have

fk(X
−1
−τk)− µ(X0 = 1|X−1−∞) =

1

k

∑
1≤j≤k

X−τj − µ(X0 = 1|X−1−∞) (10.3)

=
1

k

∑
1≤j≤k

(X−τj − µ(X−τj = 1|Fj) (10.4)

+ µ(X−τj = 1|Fj)− µ(X0 = 1|X−1−∞)) (10.5)

We start by considering a process Y with Y0 = 0 and

Yn =
∑

1≤j≤n

(
X−τj − µ(X−τj = 1|Fj)

)
=
∑

1≤j≤n

(
X−τj − E(X−τj |Fj)

)
.

Note that
E(Yn+1|Fn) = Yn + E(X−τn+1 − µ(X−τn+1 = 1|Fn)) = Yn.

Hence, Yn forms a martingale process with respect to F0,F1, . . .. Fix an ε > 0. Consider
a collection of sets U = JU0K, JU1K, . . .

Ui =

x ∈ 2N :

∣∣∣∣∣∣1k
∑

1≤j≤k

(
X−τj − µ(X−τj = 1|Fj)

)∣∣∣∣∣∣ > ε

 .

Applying Azuma’s inequality we may conclude that U is a Solovay µ-test, so that

lim
k→∞

1

k

∑
1≤j≤k

(
X−τj − µ(X−τj = 1|Fj)

)
= 0

is satisfied by all µ-random sequences. We continue by showing that for each natural k

µ(X−τj = 1|Fj) = µ(X0 = 1|Fj).
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Let T denote the right shift operator. Consider a sequence of random variables

τ̄j = min{t > 0 : X−1+t−λj−1+t
= X−1−λj−1

}
Observe that τi and τ̄i are defined in an analogous way. Indeed, while the former

one is a return time measured to the left side of the sequence, the latter one is a return
time measured to the right. Hence, in particular:

T l(X−1−m = σ ∧λj−1 = m∧ τj = l∧X−l = 1) = (X−1−m = σ ∧λj−1 = m∧ τ̄j = l∧X0 = 1)

for all j,m ∈ N and each σ ∈ 2<N. Now, by stationarity of µ we may further observe
that for all natural j,m and each σ ∈ 2<N

µ(X−1−m = σ ∧ λj−1 = m ∧X−τj = 1)

=
∞∑
l=1

µ(X−1−m = σ ∧ λj−1 = m ∧ τj = l ∧X0 = 1)

=
∞∑
l=1

µ(T l[X−1−m = σ ∧ λj−1 = m ∧ τj = l ∧X0 = 1])

=
∞∑
l=1

µ(X−1−m = σ ∧ λj−1 = m ∧ τ̄j = l ∧X0 = 1)

= µ(X−1−m = σ ∧ λj−1 = m ∧X0 = 1)

Hence, for each natural k

µ(X−τj = 1|Fj)(ω) = µ(X−τj = 1|X−1−τj = ω−1−τj)

= µ(X0 = 1|X−1−τj = ω−1−τj)

= µ(X0 = 1|Fj)(ω).

Now, given a µ-random sequence, the values τj and λj are defined and finite for all j, by
the effective version of Birkhoff’s ergodic theorem. Note that if a sequence converges,
then every its infinite subsequence converges too. Hence, by the effective version of
Lévy’s law,

lim
j→∞

µ(X0 = 1|Fj)(ω) = lim
n→∞

µ(X0 = 1|X−1−n = ω−1−n)

Now, functions f1, f2, . . . act on fragments X−1−τ1 , X
−1
−τ2 , . . . respectively. These may

be straightforwardly used to construct a sequence of functions g1, g2, . . . acting on
X−1, X

−1
−2 , . . . and so on. Simply, for each j > 0 and τj ≤ k < τj+1 let g(X−1−k) =

fj(X
−1
−τj).

Bailey [6] showed that Ornstein’s estimators may be also used in a forward fashion.

Theorem 165 (Bailey [6]). There exists a sequence of functions f1, f2, . . . such that
for every two-sided infinite process X = . . . X−1, X0, X1 . . . with the stationary ergodic
distribution µ

lim
n→∞

1

n

n∑
i=1

∣∣∣fi(ωi−11 )− µ(Xi = 1|X i−1
1 = ωi−11 )

∣∣∣ = 0

for µ-almost every ω.
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Theorem 166 (effective Bailey’s theorem). There exists a sequence of functions f1, f2, . . .
such that for every two-sided infinite process X = . . . X−1, X0, X1 . . . with the stationary
ergodic distribution µ

lim
n→∞

1

n

n∑
i=1

∣∣∣fi(ωi−11 )− µ(Xi = 1|X i−1
1 = ωi−11 )

∣∣∣ = 0

for each µ-random sequence ω.

Proof. By Theorem 164, there exists a sequence of functions f1, f2, . . . such that for
every two-sided infinite process X = . . . X−1, X0, X1 . . . with corresponding computable
probability measure µ

lim
n→∞

fn(ω−1−n) = lim
n→∞

µ(X0 = 1|X−1−n = ω−1−n)

for each µ-almost every ω. Consequently,

lim
n→∞

|fn(ω−1−n)− µ(X0 = 1|X−1−n = ω−1−n)| = 0

Note that the sequence of the absolute values in the above equation is bounded from
above. Moreover, these are uniformly computable. Hence, we can apply the effective
Breiman’s ergodic theorem (Theorem 160) to get

lim
n→∞

1

n

n∑
i=1

∣∣∣fi(ωi−11 )− µ(Xi = 1|X i−1
1 = ωi−11 )

∣∣∣ = E(0) = 0.

for each µ-random ω. The claim follows from this immediately.

10.2 A universal predictor

Combining earlier results we arrive at the finale. The following theorem follows from
the results by Algoet [2].

Theorem 167. There exists a predictor f such that for every stationary ergodic process
X = . . . , X−1, X0, X1, . . ., with a computable probability distribution µ, predictor f is
optimal µ-almost surely.

We now turn to prove the effective version of the Theorem 167.

Theorem 168. There exists a proper predictor f such that for every stationary ergodic
process X = . . . , X−1, X0, X1, . . ., with the probability distribution µ, the predictor f is
optimal for every µ-random sequence ω.

Proof. We start by noting that for every predictor f

µ(f(Xn
1 ) 6= Xn+1|Xn

1 ) = 1− µ(f(Xn
1 ) = Xn+1|Xn

1 )

≤ 1−
(
1{f(Xn

1 ) = 1}µ(Xn+1 = 1|Xn
1 ) + 1{f(Xn

1 ) = 0}(1− µ(Xn+1 = 1|Xn
1 ))
)
.

(10.6)
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Let h be defined as
h(Xn

1 ) = 1⇔ µ(Xn+1 = 1|Xn
1 ) > 1/2. (10.7)

These yield, for arbitrary predictor f

|µ(f(Xn
1 ) 6= Xn+1|Xn

1 )− µ(h(Xn
1 ) 6= Xn+1|Xn

1 )|
≤ |µ(Xn+1 = 1|Xn

1 )(1{h(Xn
1 ) = 1} − 1{f(Xn

1 ) = 1})
+(1− µ(Xn+1 = 1|Xn

1 ))(1{h(Xn
1 ) = 0} − 1{f(Xn

1 ) = 0})|
= 2|(µ(Xn+1 = 1|Xn

1 )− 1)(1{h(Xn
1 ) = 1} − 1{f(Xn

1 ) = 1})|
≤ 2|µ(Xn+1 = 1|Xn

1 )− 1/2|.

(10.8)

Now, let g1, g2, . . . be the sequence of functions from the Theorem 164 and define a
predictor f as

f(Xn
1 ) = 1⇔ gn(Xn

1 ) > 1/2.

Note that f(Xn
1 ) 6= h(Xn

1 ) implies

|µ(Xn+1 = 1|Xn
1 )− gn(Xn

1 )| ≥ |µ(Xn+1 = 1|Xn
1 )− 1/2|. (10.9)

Finally, fix x ∈ 2Z and consider

|ς(f, xn+1
1 )− 1

n+ 1

n∑
i=0

µ(h(X i
1) 6= Xi+1|X i

1 = xi1)|

≤ |ς(f, xn+1
1 )− 1

n+ 1

n∑
i=0

µ(f(X i
1) 6= Xi+1|X i

1 = xi1)|

+
1

n+ 1

n∑
i=0

|µ(f(X i
1) 6= Xi+1|X i

1 = xi1)− µ(h(X i
1) 6= Xi+1|X i

1 = xi1)|

≤ |ς(f, xn+1
1 )− 1

n+ 1

n∑
i=0

µ(f(X i
1) 6= Xi+1|X i

1 = xi1)|

+
2

n+ 1

n∑
i=0

|µ(Xi+1 = 1|X i
1 = xi1)− gi(xi1)|.

Now, the first term of the last upper bound converges to zero for each µ-random sequence
x by Lemma 161. The second one has limit zero for each µ-random sequence by Theorem
166. The optimality of f follows from Lemma 162.

It remains to show that f is proper. In general, computability of gn does not
guarantee that f is computable (See Proposition 36). However, in our case f is indeed
computable. Consult equations (10.1) and (10.2) to see that for each k the value of gk
is an average of finite number of integers. Hence, that number of bits needed to write
the value of gk down is bounded from above. Consequently, it is possible to check in
finite number of steps if gk(σ) ≥ 1/2. Therefore, f is a proper predictor.
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11

Optimality

In this section, a probabilistic version of the results from Chapter 6 is presented.

Theorem 169. There exists a binary process X = X1X2... such that for every proper
predictor f

ς−(f,X) > 0 almost surely. (11.1)

Moreover, for every ε > 0 there exists a proper predictor f such that

ς+(f,X) < ε almost surely. (11.2)

Consequently, for every proper predictor f there exists a proper predictor g such that

ς+(g,X) < ς−(f,X) almost surely. (11.3)

Proof. Let h1, h2, . . . be an (uncomputable) listing of all proper predictors. We start by
defining an assignment p : N → N, so that the predictor hp(i) will be assigned to the
i-th random bit of the process X. By Lemma 112, for each natural number i there are
unique integers k ≥ 1 and n ≥ 0 such that

i = (1/2 + n)2k.

We set p(i) := k. It is easy to verify that for each k, the predictor hk is assigned to a
bit of the process X once per 2k bits. We will use this observation later on. Table 6.1
shows in a visual way how the bits of process X are assigned to the predictors.

Now, we proceed to construct the probability distribution of process X inductively.
Firstly, set

P (X1 = hp(1)(λ)) = 1.

Subsequently, we set iteratively for i ∈ N that

P (Xi+1 = hp(i+1)(σ)|X i
1 = σ) =

1

(i+ 1)2
.

In other words, the probability that hp(k) makes a correct prediction on k-th bit is equal
to 1/k2. Now, let i1 < i2 < . . . be all natural numbers such that for some m,

m = p(i1) = p(i2) = . . .
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Observe that ∑
i∈{i1,i2...}

P (hm correctly predicts i-th bit) <∞.

Hence, by the Borel-Cantelli lemma, predictor hm is correct on finitely many bits with
indices from {i1, i2, . . .} almost surely.

Observe that in+1 − in = 2m. Consequently, we have

ς−(hm) > 2−m almost surely.

To demonstrate the second part of Theorem 169, we will show that for every ε > 0
there is a predictor f such that

ς+(f,X) < ε almost surely.

Fix an ε > 0. Let k > 0 be the smallest number such that

2−k = 1−
k∑
i=1

1

2i
< ε.

We will construct a predictor f such that

ς+(f,X) ≤ 2−k almost surely.

We already know that, in the limit, the first predictor h1 is almost surely wrong at least
on the half of the bits, the second predictor h2 is almost surely wrong at least once for
every four bits, and so on. We can compute the indexes on which this happens. We will
require that f makes a different prediction than h1, . . . , hk on the corresponding bits.
This will guarantee that almost surely f is asymptotically correct at least on fraction

1− 2−k =
k∑
i=1

1

2i

of the bits. To be precise, we set

f(σ) =

{
1− hp(|σ|)(σ) p(|σ|) ≤ k,

0 otherwise.

Since k is finite and we can compute p(|σ|) for every σ, f is a proper predictor. Con-
sequently,

ς+(f,X) ≤ 2−k < ε almost surely.
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and Computation 210, 21–30 (2012)

[8] Billingsley, P.: Probability and measure. John Wiley & Sons (2008)

[9] Birkhoff, G.D.: Proof of the ergodic theorem. Proceedings of the National Academy
of Sciences 17(12), 656–660 (1931)

[10] Breiman, L.: The individual ergodic theorem of information theory. The Annals of
Mathematical Statistics 28(3), 809–811 (1957)

[11] Cooper, S.B.: Computability theory. Chapman and Hall/CRC (2017)

[12] Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. The-
ory and Applications of Computability, Springer New York, New York, NY (2010),
http://dx.doi.org/10.1007/978-0-387-68441-3

[13] Ershov, Y.L.: A hierarchy of sets. I. Algebra and Logic 7(1), 25–43 (1968)

76

http://dx.doi.org/10.1007/978-0-387-68441-3


[14] Figueira, S., Hirschfeldt, D.R., Miller, J.S., Ng, K.M., Nies, A.: Counting the
changes of random ∆2

0 sets. Journal of Logic and Computation 25(4), 1073–1089
(2013)

[15] Franklin, J., Greenberg, N., Miller, J., Ng, K.M.: Martin-Löf random points satisfy
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