
Artur Męski

Model Checking for Reaction
and Multi-Agent Systems

PhD dissertation

Supervisor:
prof. dr hab. inż. Wojciech Penczek

Institute of Computer Science, PAS

Institute of Computer Science
Polish Academy of Sciences

Warsaw, 2019

Acknowledgments

Firstly, I would like to thank Wojciech Penczek for his help, support, infectious
enthusiasm over the years it has taken me to complete this thesis. This research
would not have been possible without him trusting in me by agreeing to be my
supervisor.

I am grateful to Grzegorz Rozenberg for his invaluable comments and for initially
suggesting the idea of applying model checking to reaction systems. My thanks also
go to Maciej Koutny for inviting me to Newcastle and providing an environment in
which many ideas of this thesis were conceived.

This research would not have been possible without Agata Półrola introducing
me to Wojciech, explaining to me how to write my first paper, for coaching me
for my initial conference presentations and for all the conversations that we had.
I was fortunate to have a position at the Institute of Computer Science of Polish
Academy of Sciences, where I was able to call Michał Knapik and Maciek Szreter
both colleagues and very good friends.

Mariusz Jarocki’s belief in me, and in offering me my first academic job, cannot
be understated, and my appreciation goes to Mariusz Frydrych for introducing me
to many interesting problems and for the subsequent discussions.

My gratitude also goes to Andrew Jones for his support, for reading drafts of
this thesis and also for being a true friend.

And last but by no means least, to my family for their support, to my daughter
for her patience, and my wife for her love and understanding.

The study was partially funded by the European Union, European Social Fund. Project PO KL
“Information technologies: Research and their interdisciplinary applications”, agreement UDA-
POKL.04.01.01-00-051/10-00.

3

Contents

1 Introduction 13
1.1 Research hypothesis . 14
1.2 Related work . 14
1.3 Contributions . 18

1.3.1 Publications . 20
1.3.2 Collaborations . 21

1.4 Structure of this thesis . 21

2 Preliminaries 23
2.1 Reaction systems . 23
2.2 Examples of reaction systems . 26

2.2.1 Basic examples . 26
2.2.2 Heat shock response model 28

2.3 Summary . 30

3 Model checking for rsctl 31
3.1 Controlling context sequences . 31
3.2 Examples . 32
3.3 Logic for reaction systems . 33

3.3.1 Syntax and semantics . 33
3.3.2 Examples of properties expressible in rsctl 37

3.4 Verification of rsctl properties . 38
3.4.1 Complexity analysis . 40

3.5 Bounded model checking using bdds 45
3.6 Encoding ICRRS into Boolean formulae 49
3.7 Experimental results . 51

3.7.1 Heat shock response model 52
3.7.2 Binary counter . 54
3.7.3 Mutual exclusion protocol 57
3.7.4 Abstract pipeline system . 58
3.7.5 Summary . 63

3.8 Concluding remarks . 63

5

4 Model checking for rsctlk 65
4.1 Context automata . 65
4.2 Multi-agent reaction systems . 66
4.3 Logic for temporal-epistemic properties 73
4.4 Model checking for rsctlk . 76
4.5 Bounded model checking using bdds 83
4.6 Boolean encoding . 85
4.7 Experimental results . 88

4.7.1 Train-gate-controller . 89
4.7.2 Distributed abstract pipeline 89
4.7.3 Observations . 95

4.8 Summary . 95

5 Model checking for rsltl 101
5.1 Reaction systems with discrete concentrations 101
5.2 Linear-time temporal logic for reaction systems 104

5.2.1 rsltl as ltl . 108
5.2.2 Complexity analysis . 109
5.2.3 Bounded semantics . 112

5.3 smt-based encoding . 113
5.4 Experimental evaluation . 118

5.4.1 Macro-reactions . 118
5.4.2 Eukaryotic heat shock response 119
5.4.3 Scalable chain . 121

5.5 Concluding remarks . 123

6 Parametric model checking for rsltl 127
6.1 Parametric reaction systems . 127

6.1.1 Parameter constraints . 130
6.1.2 Complexity analysis . 132

6.2 smt-based encoding . 133
6.3 Experimental evaluation . 137
6.4 Concluding remarks . 140

7 Reaction systems model checking toolkit 143
7.1 Reactics-bdd . 143

7.1.1 Reaction systems specification language 144
7.2 Reactics-smt . 147

7.2.1 Interacting with Reactics-smt 147
7.3 Final remarks . 152

6

8 Conclusions 155
8.1 Overview and summary . 155
8.2 Future work and other research problems 158
8.3 Final remarks . 159

7

Abstract

Reaction systems are a formal model inspired by the functioning of living cells.
This model allows for specifying and analysing computational processes in which
reactions operate on sets of molecules.

The behaviour of a reaction system is determined by the interactions of its reac-
tions, which are based on the mechanisms of facilitation and inhibition. The formal
treatment of reaction systems is qualitative and there is no direct representation of
the number of molecules involved in reactions.

In this thesis we introduce formal verification methods for reaction systems.
Behaviour of reaction systems depends on interactions of the system with its
environment. We show extensions of reaction systems that allow for generating the
behaviours of the environment, which are considered realistic or relevant for the
verification. We introduce an extension of reaction systems, which allows for direct
quantitative modelling of discrete consternation levels. We also propose multi-agent
reaction systems that allow for modelling of distributed and multi-agent systems
in the reaction systems setting.

To allow for specifying properties of reaction systems and their extensions we
introduce temporal logics for reaction systems: rsctl, which is a branching-time
temporal logic, and rsltl, which is a linear-time temporal logic. Additionally, to
enable reasoning about temporal and epistemic properties of multi-agent reaction
systems we propose rsctlk, which is a temporal-epistemic logic. Operators of the
introduced logics allow for selecting the desired environment behaviours.

We define parametric reaction systems where reactions may be defined partially,
by using parameters in place of ordinary reaction elements. We demonstrate a
parameter synthesis approach which under a set of rsltl specifications calculates a
valuation for the parameters which meets the provided specification.

For the defined formalisms we propose symbolic model checking methods based
on binary decision diagrams and satisfiability modulo theories. We implement and
evaluate these methods experimentally. For the experimental results we introduce
a number of scalable reaction systems modelled using the proposed extensions.
Finally, we introduce a verification toolkit for reaction systems, which implements
the methods proposed in this thesis.

9

Streszczenie

Systemy reakcji to formalny model zainspirowany funkcjonowaniem komórek
żywych i pozwalający na specyfikowanie oraz analizę procesów obliczeniowych, w
których reakcje operują na zbiorach molekuł.

Zachowanie systemu reakcji jest określone przez interakcje jego reakcji, które
oparte są na mechanizmie umożliwiania i inhibicji. Systemy reakcji w ujęciu formal-
nym są modelem jakościowym, w którym nie istnieje bezpośrednia reprezentacja
liczby molekuł biorących udział w reakcjach.

W niniejszej rozprawie wprowadzamy metody weryfikacji formalnej dla systemów
reakcji. Ponieważ zachowanie tych systemów zależy od interakcji ze środowiskiem,
w którym funkcjonują, wprowadzamy rozszerzenia systemów reakcji pozwalające na
generowanie zachowań środowiska, które uważane są za realistyczne i znaczące dla
procesu weryfikacji. Definiujemy również rozszerzenie, które pozwala na bezpośred-
nie modelowanie zależności ilościowych przez wprowadzenie dyskretnych poziomów
koncentracji molekuł. Ponadto, proponujemy formalizm pozwalający na mode-
lowanie systemów rozproszonych oraz wieloagentowych.

W celu umożliwienia specyfikowania własności systemów reakcji oraz ich rozsz-
erzeń, wprowadzamy specjalizowane logiki temporalne: rsctl do określania włas-
ności czasu rozgałęzionego oraz rsltl do określania własności czasu liniowego.
Ponadto, aby pozwolić jednocześnie na określanie własności temporalnych oraz
epistemicznych, proponujemy logikę temporalno-epistemiczną rsctlk. Operatory
wprowadzonych logik pozwalają na określanie zachowań środowiska.

W rozprawie definiujemy również pojęcie parametrycznych systemów reakcji,
gdzie reakcje mogą być zdefiniowane jedynie częściowo, przez użycie parametrów
w miejscu zbiorów występujących w reakcjach. Demonstrujemy również metodę
pozwalającą na syntezę wartościowań dla parametrów przy założeniach specy-
fikowanych za pomocą formuł logiki rsltl.

Dla zdefiniowanych formalizmów, proponujemy metody symbolicznej weryfikacji
modelowej, które oparte są o zastosowanie binarnych diagramów decyzyjnych oraz
teorii spełnialności (ang. satisfiability modulo theories). Przedstawione metody
zostały zaimplementowane i poddane ewaluacji eksperymentalnej. Na potrzeby
opracowania wyników eksperymentalnych, wprowadzone zostały skalowalne modele
systemów, które zamodelowane zostały z wykorzystaniem zdefiniowanych rozszerzeń
systemów reakcji. Implementacje metod zaproponowanych w niniejszej rozprawie
stanowią narzędzie do weryfikacji systemów reakcji.

11

Chapter 1

Introduction

Reaction systems are a formal model for processes inspired by living cells. They
capture the basic mechanisms responsible for the dynamic behaviour of living
cells. The biochemical interactions of living cells are based on the mechanisms of
facilitation and inhibition: reactions and their products, may facilitate or inhibit
each other. The simplicity of reaction systems comes from the fact that they model
the reactions, states, and dynamic processes using finite sets, and so they directly
capture qualitative aspects of systems. There is no direct representation of the
number of molecules involved in biochemical reactions, nor the number of molecules
present in the current system state. For applications in which correct behaviour of
the verified system is crucial, it is essential to provide methods for their analysis.
Despite the simplicity of reaction systems, they are capable of representing large
numbers of complex processes and understanding the properties of these systems
might be challenging.

Model checking is a method that allows for verifying whether a system in question
satisfies a given formula specifying either a desired or an undesired property of
that system. Typically, the verified properties are expressed using mathematical
logic. Model checking is fully automatic and it does not require expert knowledge
of verification techniques.

Multi-agent systems are distributed systems composed of interacting autonomous
agents, where the agents communicate with each other to solve problems. Their
applications can be found in domains such as, e.g., robotics, biology, logistics, and
defence systems.

In this doctoral dissertation we introduce formal verification methods based on
model checking, which will allow for verification of reaction systems and multi-agent
systems modelled in the reaction systems setting.

13

1.1 Research hypothesis

In this thesis we introduce model checking methods for reaction systems, intro-
duce logics for specifying properties of reaction systems, and propose extensions
of reaction systems that facilitate verification. We state the following research
hypothesis:

Formal verification methods based on model checking will allow for verifica-
tion of reaction systems.

1.2 Related work

In this section we provide an overview of the related work.

Model checking. Model checking was introduced independently by Clarke and
Emerson [Clarke and Emerson, 1981, Clarke et al., 1986] and by Queille and
Sifakis [Queille and Sifakis, 1982]. The idea of model checking consists of represent-
ing a system to be verified in a form of a transition system (model), representing
a specification as a temporal logic formula, and checking automatically whether
the formula holds in the model. Unfortunately, the practical applicability of the
approach is usually limited due to the state explosion problem: the analysed state
space of the verified system grows significantly for large concurrent systems.

One of the methods used to alleviate the above problem is to apply symbolic
model checking [McMillan, 1993], where the state-space is not represented explicitly,
and binary decision diagrams (bdd) [Bryant, 1986] are used to store the states of
the system and perform operations on them.

Bounded model checking (bmc) [Biere et al., 1999a] is an efficient verifica-
tion method whose main idea consists in considering a model truncated up to a
specific depth. There exist numerous papers which deal with that approach in
the context of sat-based verification for existential temporal properties: a model
checking problem on a fraction of the model is translated into the sat problem,
which is then performed using a sat-solver. Alternatively, the problem can be
translated into a satisfiability modulo theory (smt), which is a generalisation of
the Boolean satisfiability problem, where some functions and predicate symbols
have interpretations from the underlying theory [Armando et al., 2006, Kroening
and Strichman, 2016]. Another approach to bmc involves using bdds [Cabodi
et al., 2002, Jones and Lomuscio, 2010, Męski et al., 2011a]. Originally, model
checking was introduced for computation tree logic (ctl) [Clarke et al., 1986]
and model checking for linear-time temporal logic (ltl) specifications was given
in [Lichtenstein and Pnueli, 1985].

There also exist model checking methods for verification of timed systems
modelled using time Petri nets and timed automata [Penczek and Półrola, 2006].

14

An smt-based bmc method for verification of reachability in bounded time Petri
nets was introduced in [Półrola et al., 2014]. bdd and sat-based bmc methods
for verification of distributed time Petri nets and properties expressed in ltl and
ctl without the next-step operator were proposed and compared in [Męski et al.,
2011b].

Parameter synthesis. In this thesis we also tackle the problem of parameter
synthesis (or parametric model checking). In practice, the analysed system or
the verified property of the system may be specified partially: parameters might
be used in place of the unspecified or unknown elements in the system or in the
formula expressing the verified property. The parameter synthesis problem consists
in calculating the values for the parameters, given some constraints. Parametric
timed automata which extend ordinary timed automata with parameters used in
place of unspecified timing constraints were introduced by Alur et al. in [Alur
et al., 1993b]. In [Hune et al., 2002] the authors present an extension of the
Uppaal [Bengtsson et al., 1995, Behrmann et al., 2004] model checker, which
allows for parameter synthesis of linear parameter constraints of parametric timed
automata. A parameter synthesis method for a parametric variant of action-
restricted ctl (arctl) [Pecheur and Raimondi, 2006b] and Kripke structures was
proposed in [Knapik et al., 2015]. In [Jones et al., 2012] an approach to synthesis
for a temporal-epistemic logic and multi-agent systems, where groups of agents
occurring in the formulae are synthesised is considered.

Comprehensive overviews of model checking and other verification methods
can be found in [Clarke et al., 1999, Huth and Ryan, 2004, Baier and Katoen,
2008, Grumberg and Veith, 2008].

Reaction systems. The formalism of reaction systems was introduced by Ehren-
feucht and Rozenberg in [Ehrenfeucht and Rozenberg, 2007b].

An important strand of research focuses on applying reaction systems to mod-
elling of different kinds of problems and real-world systems. The paper [Brijder
et al., 2011a] presents an introduction to reaction system, proposes a reaction
systems model for a binary counter system, and demonstrates how to translate
any transition system into a reaction system. In [Corolli et al., 2012] the authors
modelled the gene regulation mechanism for lactose operon of Escherichia coli and
explored modelling possibilities for several well-known computer science problems.
A reaction systems model of the eukaryotic heat shock response, which we use in
this thesis as a benchmark, was described in [Azimi et al., 2014a] together with
properties that specify its behaviour. Different reaction system models of the
biochemical reactions for self-assembly of vimentin tetramers into intermediate
filaments are studied in [Azimi et al., 2015b]. Boolean networks are a formalism
used for simulating gene regulatory networks. A translation of Boolean networks
into reaction systems was presented in [Barbuti et al., 2018].

There exist extensions of the basic model of reaction systems that allow for

15

modelling of different classes of systems. The paper [Ehrenfeucht and Rozenberg,
2009] introduces reaction systems with measurements, which allow for expressing
quantitative dependencies and are used to introduce time into reaction systems. In
reaction systems entities vanish if they are not sustained by reactions. Reaction
systems with duration [Brijder et al., 2011c] relax this property by allowing entities
to decay in a specified number of steps. In evolving reaction systems [Ehrenfeucht
et al., 2017a] the set of the available reactions is allowed to change with each
state transition. Quantum and probabilistic reaction systems were proposed
in [Hirvensalo, 2012]. In reaction automata [Okubo et al., 2012b], which are
a model of computation inspired by reaction systems, only one reaction can take
place at a time. In [Okubo et al., 2012b] it is also shown that this model is Turing
universal. Reaction automata were studied further in [Okubo et al., 2012a, Okubo,
2014, Okubo and Yokomori, 2015, Okubo and Yokomori, 2016]. A model of
exploration systems [Ehrenfeucht and Rozenberg, 2014] extending the framework
of reaction systems was defined by introducing zoom structures for representing
a depository of knowledge of a discipline of science. The model was also studied
in [Ehrenfeucht and Rozenberg, 2015].

There also exist other biologically-inspired modelling formalisms. The most
notable ones include chemical reaction networks [Horn and Jackson, 1972], Boolean
automata networks [Kauffman, 1969, Shmulevich and Dougherty, 2010], and mem-
brane systems [Paun, 2002]. Simulating reaction systems by membrane systems
was discussed in [Alhazov et al., 2016].

A significant part of the research on reaction systems has been focused on their
mathematical properties. Minimal reaction systems are defined with reactions using
the minimal number of reactants or inhibitors. The paper [Ehrenfeucht et al., 2012b]
provided a classification of functions defined by reaction systems with minimal
resources. This classification was refined in [Teh and Atanasiu, 2017]. According
to the definition of reaction system, the minimal number of resources required
to define a reaction is exactly two. The consequences of assuming the minimal
number of resources to be three were studied for almost minimal reaction systems
in [Salomaa, 2013b]. In [Salomaa, 2014] it was demonstrated that everything
generated by an arbitrary reaction system can be also generated in three steps by
a minimal reaction system, while [Salomaa, 2015] provided a similar result for two
steps. Minimal reaction systems with duration were studied in [Salomaa, 2017].

Checking if an entity appears at a given step m in at least one state sequence
of a reaction system is the occurrence problem. The problem of convergence is
the universal version of that problem and it amounts to checking if the entity
appears at the mth step of all the state sequences. These two problems were
studied in [Salomaa, 2013a, Salomaa, 2013b, Formenti et al., 2015].

Different classes and properties of reaction systems related to their state se-
quences were studied in [Salomaa, 2012a, Salomaa, 2012b], while [Ehrenfeucht and
Rozenberg, 2007a] tackled the problem of modules and events in reaction systems.

A method for representing reactions of reaction systems using trees was shown

16

in [Brijder et al., 2012]. Predictors characterise the environment of reaction systems,
which leads to production of a certain molecule after a given number of step.
Predictors for reaction systems were introduced in [Brijder et al., 2010]. Dynamic
causalities in reaction systems together with different notions for representing
predictors were studied in [Barbuti et al., 2016a]. These notions were investigated
further in [Barbuti et al., 2017] and [Barbuti et al., 2016b], where in the latter it is
assumed that the environment provides molecules according to what is expressed
by a temporal logic formula.

The complexity of problems related to computing preimages in reaction sys-
tems was studied in [Dennunzio et al., 2015c, Dennunzio et al., 2015b]. Several
combinatorial problems related to reaction systems are discussed in [Dennunzio et
al., 2014, Dennunzio et al., 2015a]. In [Dennunzio et al., 2016] it is shown that the
complexity of the reachability problem is pspace-complete in reaction systems for
several classes of resource-bounded reaction systems and the complexity is lower
when a certain restriction is applied.

The dynamics of reaction systems may result in, e.g., existence of fixed points,
attractors, and cycles. Problems related to detecting such properties were investi-
gated in [Formenti et al., 2014a, Formenti et al., 2014b].

Verification of reaction systems. In [Azimi et al., 2015a] the authors investi-
gate the property of mass conservation using dependency graphs, and introduce a
simulator for reaction systems. A reaction systems simulator focusing on efficiency
and implemented on graphics processing units (GPU) is proposed in [Nobile et al.,
2017]. A web-based version of the simulator introduced in [Azimi et al., 2015a] is
presented in [Ivanov et al., 2018]. The relationship between reaction systems and
synchronous digital circuits is studied in [Shang et al., 2019], leading to a simulation
method for reaction systems based on translating them into hardware circuits that
are emulated using field-programming gate arrays (FPGA). In [Azimi et al., 2016]
the authors define several biologically inspired properties for reaction systems and
study their verification problems together with their computational complexity. The
defined problems include mass conservation, invariants, steady states, stationary
processes, elementary fluxes, and periodicity. Steady states of reaction systems are
introduced in [Azimi et al., 2016]. A polynomial time algorithm for finding all the
steady states of a constrained reaction system is given in [Azimi, 2017]. In [Azimi
et al., 2017] the authors introduce a reaction systems framework for dealing with
properties important in biology, such as multiple steady states, bistability, limit
cycle oscillation, and period-doubling bifurcation.

Multi-agent systems. In this dissertation we also tackle aspects of verification of
multi-agent systems. Interpreted systems [Fagin et al., 2003] are the most commonly
used formalism for modelling multi-agent systems for model checking. Temporal-
epistemic properties of multi-agent systems can be expressed using ctl∗k [van der
Meyden and Wong, 2003], which is a logic combining epistemic operators with

17

temporal operators of ctl∗ [Emerson and Halpern, 1986]. A symbolic model
checking method for interpreted systems and ctlk specifications was proposed
in [Raimondi and Lomuscio, 2005] and a bounded model checking approach for
multi-agent systems and temporal-epistemic properties was put forward in [Penczek
and Lomuscio, 2003]. A comparison of methods for bounded model checking and
ltlk specifications for interpreted systems, based on bdds and sat was given
in [Męski et al., 2014b]. There also exist other modelling formalisms for multi-agent
systems, e.g., modular interpreted systems [Jamroga and Ågotnes, 2007, Jamroga
et al., 2013].

1.3 Contributions

The high-level outcomes of the research work presented in this thesis are:

– model checking methods for reaction systems,

– a parametric model checking approach for reaction synthesis,

– a reaction systems model checking toolkit implementing the introduced
verification methods.

Below we provide a detailed overview of the contributions of the individual chapters.

Chapter 3. We introduce rsctl, computation tree logic for reaction systems,
which is a logic for specifying properties of reaction systems, as well as a method
for verifying these properties. The processes of reaction systems are guided by
the context sequences (which model interactions with the environment), to enable
the verification we introduce a generalisation of reaction systems which allows to
specify context entities generating all the context sequences for the processes of the
given reaction system. Moreover, we describe an encoding of the model for reaction
systems into Boolean formulae that can be used for symbolic model checking. We
also provide complexity results for the problem of model checking reaction systems
and prove that the complexity of rsctl model checking is pspace-complete.

Chapter 4. We extend the basic reaction systems to allow for modelling of
distributed and multi-agent systems, and provide support for different synchroni-
sation schemes. The formalism allows for modelling of systems employing both
synchronous and asynchronous execution semantics. We demonstrate how the for-
malism of multi-agent reaction systems can be applied to modelling of multi-agent
systems.

The model brings together advantages of reaction systems, membrane sys-
tems [Alhazov, 2006, Kleijn and Koutny, 2011] and tissue systems [Paun, 2002, Păun
and Rozenberg, 2002, Paun et al., 2010] to model networks of cells. This is achieved

18

by extending the basic reaction systems model with the idea of compartmentali-
sation derived from membrane and tissue systems which allows for modelling of
distributed systems.

Further, we introduce context automata, which represent the influence of the
bigger system in which the reaction system models are situated. We also introduce
an extended notion of context automata allowing conditional generation of contexts
(based on the current state of a reaction system).

To enable specifying temporal-epistemic properties of multi-agent reaction
systems we introduce a new logic for reaction systems: rsctlk, which combines
rsctl (Chapter 3) with ctlk [Penczek and Lomuscio, 2003]. We introduce model
checking for multi-agent reaction systems and properties expressed in rsctlk. The
proposed method is implemented using binary decision diagrams for symbolic model
checking and the method is evaluated experimentally. Additionally, we prove that
model checking for rsctlk is pspace-complete.

Chapter 5. We introduce a formalism supporting quantitative modelling by
considering reaction systems with discrete concentrations of entities.

Although reaction systems with discrete concentrations are semantically equiv-
alent to the original qualitative reaction systems, they provide much more succinct
representations in terms of the number of entities being used, and allow for more
efficient verification. Our experimental results show a significant improvement in
the execution times in favour of reaction systems with discrete concentrations.

We define a variant of linear-time temporal logic (rsltl) interpreted over models
of reaction systems with discrete concentrations. We provide an encoding into
smt, together with a bounded model checking method, and present experimental
results showing the efficiency of verification for reaction systems with discrete
concentrations.

Chapter 6. In practical applications, a reaction system may have only partially
specified reactions, where reactants, inhibitors, or products might be initially un-
known. In such situations, we propose to use parameters in place of the unspecified
reaction parts. We develop a reaction mining approach where the missing inputs
are computed automatically. To develop such an approach, we introduce reaction
systems with parameters. The main result is a methodology that calculates the
valuations of the parameters in such a way that the resulting reaction system
satisfies a given rsltl formula when operating in a given external environment.
Intuitively, such a formula might correspond to a number of observations (runs) of
the behaviour of a partially specified system.

We provide a suitable encoding of parametric reaction systems in smt, and
propose a procedure based on bounded model checking for solving the synthesis
problem. We also provide experimental results demonstrating the scalability of
this method and its potential applications.

19

Chapter 7. We present a toolkit for verification of reaction systems which com-
bines all the implementations prepared for the preceding chapters. The toolkit
consists of two separate modules, which are responsible for supporting bdd-based
and smt-based verification methods. An overview of the modules and their ar-
chitecture is provided. We also introduce rssl, which is an input language for
specifying reaction systems and their properties.

1.3.1 Publications

I was the lead author of the following papers:

– “Model checking temporal properties of reaction systems”, on which Chapter 3
is based. The co-authors of this paper were: Wojciech Penczek and Grzegorz
Rozenberg. It was published in Information Sciences, 2015 ([Męski et al.,
2015]). This paper is an extended version of [Męski et al., 2014a] published
as Technical Report 1028 of Institute of Computer Science, Polish Academy
of Sciences, April 2014.

– “Model Checking for Temporal-Epistemic Properties of Distributed Reaction
Systems”, on which Chapter 4 is based. The co-authors of this paper were:
Maciej Koutny and Wojciech Penczek. It was published as a technical report
of School of Computing, University of Newcastle upon Tyne ([Męski et al.,
2019]).

– “Verification of Linear-Time Temporal Properties for Reaction Systems with
Discrete Concentrations”, on which Chapter 5 is based. The co-authors of this
paper were: Maciej Koutny and Wojciech Penczek. It was published in Fun-
damenta Informaticae, 2017 ([Męski et al., 2017]). This paper is an extended
version of the paper “Towards Quantitative Verification of Reaction Systems”,
published in the proceedings of Unconventional Computation and Natural
Computation – 15th International Conference, UCNC 2016, Manchester, UK,
July 11-15, 2016 ([Męski et al., 2016]).

– “Reaction Mining for Reaction Systems”, on which Chapter 6 is based. The
co-authors of this paper were: Maciej Koutny and Wojciech Penczek. It was
published in the proceedings of Unconventional Computation and Natural
Computation – 17th International Conference, UCNC 2018, Fontainebleau,
France, June 25-29, 2018 ([Męski et al., 2018]).

Citations

The paper [Męski et al., 2015], on which Chapter 3 is based, was cited in papers
on the following topics:

1. Dependency graphs for investigation of the mass conservation property, and
simulation of reaction systems [Azimi et al., 2015a].

20

2. Analysis of dynamic causalities using predictors involving temporal logic
formulae [Barbuti et al., 2016b].

3. Verification problems for reaction systems and their computational complex-
ity [Azimi et al., 2016].

4. An overview of research on reaction systems [Ehrenfeucht et al., 2017b].

5. Simulation of reaction systems using graphics processing units [Nobile et al.,
2017].

6. Equivalence notions for reaction systems [Kleijn et al., 2018].

7. Web-based reaction systems simulator [Ivanov et al., 2018].

8. Reaction systems which communicate with their environment [Bottoni et al.,
2019].

9. Translation of reaction systems into a process algebra [Brodo et al., 2019].

10. Relationship between synchronous digital circuits and reaction systems [Shang
et al., 2019].

1.3.2 Collaborations

Grzegorz Rozenberg suggested the idea of introducing model checking for reaction
systems and for the verification of context-independent sequences of reaction systems.
This resulted in defining the model checking approach presented in Chapter 3.

Maciej Koutny helped with the formalisation of the translation of context
restricted reaction systems with discrete concentrations into context restricted
reaction systems. The translation was presented in Section 5.1. He also participated
in the initial discussions about the definition of multi-agent reaction systems
introduced in Chapter 4. The generalisation of context automata which follows
the idea of state-aware context controllers of [Kleijn et al., 2018] was suggested
by Maciej Koutny. This has resulted in Definition 4.2.6 which defines extended
context automata.

1.4 Structure of this thesis

Chapter 1 provides an introduction to the subject of this thesis, describes its
most important contributions, and gives an overview of the literature.

Chapter 2 introduces reaction systems and basic notions used in the remainder
of the thesis.

Chapter 3 defines rsctl, a branching time temporal logic for reaction systems.
The logic is interpreted over the models for context restricted reaction systems
which generalise standard reaction systems by controlling context sequences.
A translation from the context restricted reaction systems into Boolean
formulae is defined. The Boolean formulae encoding is then used to implement

21

symbolic model checking for rsctl. The proposed method is implemented
into a model checking tool using binary decision diagrams. The chapter
concludes with an experimental evaluation which validates various reaction
systems.

Chapter 4 focuses on multi-agent reaction systems, an extension of reaction
systems for modelling of distributed and multi-agent systems. To allow for
expressing temporal-epistemic properties of multi-agent reaction systems
we introduce rsctlk. The model checking problem for rsctlk is defined
together with a symbolic model checking method based on binary decision
diagrams. Finally, for an implementation of the proposed verification method
experimental results are provided.

Chapter 5 introduces reaction systems with discrete concentrations that allow
for direct quantitative modelling. A linear-time temporal logic for reaction
systems, rsltl, is introduced. We define the bounded model checking problem
for rsltl as well as a translation into smt. The presented smt-based bounded
model checking method is evaluated by comparing quantitative reaction
systems modelling approach for model checking with the direct modelling
approach of reaction systems with discrete concentrations.

Chapter 6 introduces parametric reaction systems in which reactions can be
defined partially. To allow for specifying restrictions on parameters and
relationships between them, a language of parameter constrains is introduced.
We propose an approach to parameter synthesis, given a set of observations
expressed in rsltl. Using the example of the mutual exclusion problem, we
demonstrate how to synthesise a malicious reaction whose presence invalidates
the integrity of the system. We provide an experimental evaluation with
an analysis of the efficiency of the synthesis method and the smt encoding,
which is compared with the non-parametric encoding (Chapter 5).

Chapter 7 presents a reaction systems verification toolkit which implements the
methods developed in the dissertation. It gives an overview of the architecture
and the relationships between the modules of the system. A language for
specifying reaction system models and their properties is also introduced.

Chapter 8 provides a summary, concluding remarks, and suggests possible future
research directions.

22

Chapter 2

Preliminaries

In this chapter we recall some basic notions for reaction systems that are used in
this dissertation.

2.1 Reaction systems

First of all, we recall the notion of a reaction. This section is based on [Brijder et
al., 2011a].

In this thesis, by ZZ we denote the set of integers and by IN the set of natural
numbers including 0.

Definition 2.1.1. A reaction is a triple b = (R, I, P) such that R, I, P are finite
nonempty sets with R ∩ I = ∅.

The sets R, I, P are called the reactant set of b, the inhibitor set of b, and the
product set of b, respectively – they are also denoted by Rb, Ib, and Pb, respectively.
The requirement that all three sets R, I, and P are nonempty is motivated by
biological considerations: there is no creation from nothing (R 6= ∅), each reaction
may be inhibited (I 6= ∅), and if a reaction takes place then this creates a “material”
effect – something is produced (P 6= ∅).

If R, I, P ⊆ Z for a finite set Z, then we say that b is a reaction in Z. We use
rac(Z) to denote the set of all reactions in Z.

The above formal notion of a reaction corresponds closely to the basic intuition
behind a biochemical reaction. Such a reaction will take place if all of its reactants
are present and none of its inhibitors is present, and if it takes place it produces
its set of products.

Definition 2.1.2. Let Z be a finite set, and let T ⊆ Z.
1. We say that b ∈ rac(Z) is enabled by T , denoted enb(T), if Rb ⊆ T , and
Ib∩T = ∅. The result of b on T , denoted by resb(T), is defined by: resb(T) =
Pb if enb(T), and resb(T) = ∅ otherwise.

23

2. For B ⊆ rac(Z), the result of B on T , denoted by resB(T), is defined by
resB(T) =

⋃
{resb(T) | b ∈ B}.

The intuition underlying the above definition is that T formalises a state of a
biochemical system under consideration: it is simply the set of all biochemical
entities present in the given state. A reaction b is enabled by T (can take place
in T) if all the reactants of b are present in T and none of the inhibitors of b is
present in T . Therefore we require that Rb ∩ Ib = ∅ – in this way we do not
consider “trivial reactions”, i.e., reaction that are never enabled.

The result of a set of reactions B is cumulative, i.e., it is the union of the results of
the individual reactions of B – clearly, resB(T) =

⋃
{resb(T) | b ∈ B and enb(T)}.

We are ready now to define the notion of reaction system.

Definition 2.1.3. A reaction system, RS for short, is an ordered pair R = (S,A),
where S is a finite set and A ⊆ rac(S).

The set S is the background set of R. The elements of S are called entities,
each subset of S is called a state of R, and A is the set of reactions from R.

Example 2.1.4. Consider the set S = {1, 2, 3, 4} and the following set A of
reactions from rac(S):

– a1 = ({1, 4}, {2}, {1, 2}),
– a2 = ({2}, {4}, {1, 3, 4}),
– a3 = ({1, 3}, {2}, {1, 2}), and
– a4 = ({3}, {2}, {1}).

Then, R1 = (S, {a1, a2, a3, a4}) is a rs.
Consider the state T = {1, 3, 4}. Then reactions a1, a3, a4 are enabled by

T , while a2 is not enabled by T . Consequently resA(T) = resa1(T) ∪ resa3(T) ∪
resa4(T) = {1, 2} ∪ {1, 2} ∪ {1} = {1, 2}.

Since the successor state T ′ of a current state T (thus T ′ = resA(T)) is the
union of the products of all reactions from A which are enabled by T , an entity x
from T will vanish (i.e., will not be present in T ′) unless it is produced (sustained)
by a reaction enabled by T . This non-permanency of entities in reaction systems
is motivated by basic bioenergetics of the living cell: without supply of energy the
living cell with all its molecules disintegrates. But absorbing energy is a chemical
process achieved through biochemical reactions – thus a molecule (an entity) is
sustained if it is sustained by a biochemical reaction. The vanish of a non-sustained
entity in the basic model of a reaction system happens within a single transition
step (from T to T ′). However, in other more elaborated models in the broad
framework of reaction systems the basic biochemical effect of decay is taken into
account and so the vanishing takes place within a number of transition steps (see,
e.g., [Ehrenfeucht et al., 2012a]).

24

Also, since the successor state of a current state T is the union of the products
of reactions enabled by T , there are no conflicts between reactions enabled by T .
Therefore there is no counting in reaction systems, and so it is a qualitative model.
This follows from the level of abstraction adopted for the basic model. However, in
the broad framework of reaction systems (see, e.g., [Ehrenfeucht et al., 2012a]) one
considers models which include counting.

Hence a reaction system is basically a set of reactions over a finite background
set. There is no structure involved (such as tapes, counters, pushdowns) – reactions
are primary here. This reflects our point of view that the living cell is basically a
reactor in which reactions (from a finite set of reactions) interact. The processes
resulting from these interactions underlie the functioning of the living cell. These
dynamic processes are formalised as follows.

Definition 2.1.5. Let R = (S,A) be a RS and let n ≥ 1.

1. An (n-step) interactive process of R is a pair π = (γ, δ) of finite sequences of
finite sets such that:

(a) γ = (C0, C1, · · · , Cn) and δ = (D0, D1, · · · , Dn),
(b) C0, C1, · · · , Cn ⊆ S,
(c) D0, D1, · · · , Dn ⊆ S, with D0 = ∅, and
(d) Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

2. The state sequence of π is the sequence τ = (W0,W1, · · · ,Wn) such that
Wi = Ci ∪Di for all i ∈ {0, . . . , n}.

The sequence γ is the context sequence of π and the sequence δ is the result
sequence of π. The sequence (C1, C2, · · · , Cn) is the proper context sequence of
π, and the set C0 is the initial state of π. If Ci ⊆ Di for all i ∈ {1, . . . , n}, then
we say that π (and τ) are context-independent. Clearly, the context sequence γ
of an interactive process π = (γ, δ) determines π because the result sequence δ is
obtained from γ by reactions of R (through resA). The proper context sequence
of an interactive process reflects the fact that the living cell is an open system, i.e.,
its behaviour is influenced by its context/environment.

Note that:

1. The non-permanency of entities carries over to processes in the obvious way:
an entity x from a current state Wi is not sustained in the successor state
Wi+1 unless x is produced by a reaction enabled by Wi (x ∈ Di+1) or x is
provided by the context (x ∈ Ci+1).

2. There is no restriction on the context sequence: any sequence of subsets of
the background set S can be a context sequence of an interactive process.

It is important to observe that reaction system is a strictly finite system in the
sense that the size of each state is a priori limited (by the size of the background
set, which is finite).

25

2.2 Examples of reaction systems

In this section we provide examples of reaction systems found in literature.

2.2.1 Basic examples

Example 2.2.1. Now we provide a reaction system implementation of an n-bit
cyclic binary counter (bc) given in [Brijder et al., 2011b, Section 4.1]. A current
value of the counter can be increased by one or decreased by one depending on
the controller’s request. If no such request is present in a current state, then the
value of the counter remains the same. The background set of the reaction system
implementing this counter is defined as:

Sn = {p0, . . . , pn−1, inc, dec}.

The entities {p0, . . . , pn−1} allow to provide a set representation of the numbers
from the range {0, . . . , 2n−1} represented in the positional binary notation: entity
pi represents the enabled bit corresponding to the value of 2i, for i ∈ {0, . . . , n− 1}.
For example, with n = 5, the value 01011 (i.e., 11 in base-ten) is represented by
the set {p0, p1, p3}. Thus, for each W ⊆ Sn, the value represented by W equals∑

pi∈(W\{inc,dec})

2i.

The entities inc and dec are used to represent the instructions to increment by
one, and to decrement by one the value of the current state of the counter. If one
attempts to increment and decrement the counter value at the same time, then the
value of the counter is reset to zero.

Then we need the following reactions:

– Retention:

– For all j ∈ {0, . . . , n− 1}: aj = ({pj}, {dec, inc}, {pj}).

– Increment:

– b0 = ({inc}, {dec, p0}, {p0}),
– For all j ∈ {1, . . . , n− 1}:

bj = ({inc, p0, . . . , pj−1}, {dec, pj}, {pj}),

– For all j, k ∈ {0, . . . , n− 1}, j < k:

cj,k = ({inc, pk}, {dec, pj}, {pk}).

– Decrement:

26

– For all j ∈ {0, . . . , n− 1}:

dj = ({dec}, {inc, p0, . . . , pj}, {pj}),

– For all j, k ∈ {0, . . . , n− 1}, j < k:

ej,k = ({dec, pj , pk}, {inc}, {pk}).

Let then:

Bn = {aj : 0 ≤ j ≤ n} ∪ {bj : 0 ≤ j ≤ n} ∪ {dj : 0 ≤ j ≤ n}
∪ {cj,k : 0 ≤ j < k < n} ∪ {ej,k : 0 ≤ j < k < n}.

Finally the desired RS is defined as Rnbc = (Sn, Bn).

Example 2.2.2. We consider here an implementation by a RS of a small generic
regulatory system1 grs discussed in [Ehrenfeucht et al., 2012a, Section 3].

The regulatory system contains three (abstract) genes x, y, z expressing proteins
X, Y , Z, respectively, protein U , and protein complex Q formed by X and U . The
expression of X by x is inhibited by Y and Z, the expression of Z by z is inhibited
by X, and expression of Y by y is inhibited by the protein complex Q.

The background set S = {x, x̂,X, y, ŷ, Y, z, ẑ, Z,Q,U, h}, where x̂, ŷ, and ẑ
denote RNA polymerase sitting on the promoter of genes x, y, and z, respectively.
Here h is a “dummy entity” to be used as an inhibitor whenever we do not specify
other inhibitors for a reaction. For example, h could represent a high level of
radiation that may inhibit a reaction.

Finally, the set of reactions consists of four subsets (Ax, Ay, Az, and AQ)
defined as follows:

– Ax = {({x}, {h}, {x}), ({x}, {Y, Z}, {x̂}), ({x, x̂}, {h}, {X})},

– Ay = {({y}, {h}, {y}), ({y}, {Q}, {ŷ}), ({y, ŷ}, {h}, {Y })},

– Az = {({z}, {h}, {z}), ({z}, {X}, {ẑ}), ({z, ẑ}, {h}, {Z})}, and

– AQ = {({U,X}, {h}, {Q})}.

The intuition behind the reactions above corresponds closely to the biological
actions taking place in a genetic regulatory system. For example:

– ({x}, {h}, {x}) says that if gene x is present and functional in a current state,
then x will be present and functional in the successor state, unless something
“bad” (inhibition) happens – since grs does not specify such inhibitions, this
inhibition is expressed by the dummy inhibitor h.

1The definition of these biological terms is out of scope of this thesis; we refer the motivated
reader to [Sneppen, 2014].

27

– ({x}, {Y, Z}, {x̂}) says that if gene x is present and functional in current
state, then RNA polymerase will sit on its promoter field meaning that x̂ will
be present in the successor state (thus x̂ represents RNA polymerase sitting
on the promoter field of gene x). This will happen providing that neither
protein Y or Z are present in the current state.

– ({x, x̂}, {h}, {X}) says that if gene x is present and functional in the current
state and RNA polymerase sits on its promoter field, then eventually protein
X will be expressed. This can be inhibited by a whole set of reasons which
are not relevant for our story here, and so (again) we set here the dummy
inhibitor h.

– ({U,X}, {h}, {Q}) says that if both proteins X and U are present in the
current state, then protein complex Q will be present in the successor state,
unless inhibited by something (not specified in grs) formalised by the dummy
h.

Consequently, the reaction system for the regulatory system is modelled by
Rgrs = (S,A), where: A = Ax ∪Ay ∪Az ∪AQ.

2.2.2 Heat shock response model

Example 2.2.3. A qualitative model of the eukaryotic heat shock response2 (hsr)
was introduced in [Azimi et al., 2014b]. hsr is an internal repair mechanism trig-
gered when a cell is subjected to an environmental stressor – increased temperature
that is not ideal for its functioning.

A temperature exceeding the ideal temperature causes the proteins (prot) of a
cell to misfold (mfp), which in turn may cause its malfunctioning. To facilitate
refolding of the proteins, heat shock response proteins (hsp) are produced, which are
molecular chaperones for the misfolded proteins. The production of hsp is initiated
by heat shock factors (hsf) which are, dimerised (hsf2), and then trimerised (hsf3).
Next, hsf3 activates hsp production by binding to the heat shock element (hse)
which is the promoter-site of the gene encoding the heat shock proteins.

Next, we define the reaction system Rhsr = (S,A) modelling hsr. The
background set is defined as follows:

S = {hsp, hsf , hsf2 , hsf3 , hse,mfp, prot , hsf3 :hse, hsp:hsf , hsp:mfp,

stress,nostress, h}.

The entities used in the model are summarised in Table 2.1. The entities stress
and nostress indicate, respectively, presence and absence of an environmental
stressor triggering heat shock response. For instance, stress might correspond to
temperature greater than 42 ◦C, and nostress to temperature lower than 37 ◦C.

The set A of the reactions is composed of the following elements:
2For an in-depth study of the problem we refer the interested reader to [Voellmy and Boellmann,

2007].

28

entity description
hsp heat shock protein
hsf heat shock factor
hsf2 dimerised heat shock factor
hsf3 trimerised heat shock factor
hse heat shock element
mfp misfolded protein
prot protein

hsf3 :hse hsf3 bound with hse
hsp:mfp hsp bound with mfp
hsp:hsf complex consisting of hsp and hsf
stress presence of heat shock♦

nostress absence of heat shock♦

h dummy inhibitor

Table 2.1: Summary of the entities used in the heat shock response model. The en-
tities used in the context sets are marked with ♦.

– ({hsf }, {hsp}, {hsf3}),
– ({hsf , hsp,mfp}, {h}, {hsf3}),
– ({hsf3}, {hsp, hse}, {hsf }),
– ({hsp, hsf3 ,mfp}, {hse}, {hsf }),
– ({hsf3 , hse}, {hsp}, {hsf3 :hse}),
– ({hsp, hsf3 ,mfp, hse}, {h}, {hsf3 :hse}),
– ({hse}, {hsf3}, {hse}),
– ({hsp, hsf3 , hse}, {mfp}, {hse}),
– ({hsf3 :hse}, {hsp}, {hsp, hsf3 :hse}),
– ({hsp,mfp, hsf3 :hse}, {h}, {hsp, hsf3 :hse}),
– ({hsf , hsp}, {mfp}, {hsp:hsf }),
– ({hsp:hsf , stress}, {nostress}, {hsf , hsp}),
– ({hsp:hsf ,nostress}, {stress}, {hsp:hsf }),
– ({hsp, hsf3}, {mfp}, {hsp:hsf }),
– ({hsp, hsf3 :hse}, {mfp}, {hse, hsp:hsf }),
– ({stress, prot}, {nostress}, {mfp, prot}),
– ({nostress, prot}, {stress}, {prot}),
– ({hsp,mfp}, {h}, {hsp:mfp}),
– ({mfp}, {hsp}, {mfp}),

29

– ({hsp:mfp}, {h}, {hsp, prot}).

2.3 Summary

In this section we recalled some basic notions related to reaction systems. We have
also given some examples of modelling with reaction systems found in literature.
In the following chapters we use these examples to demonstrate the verification
methods introduced in this thesis.

30

Chapter 3

Model checking for rsctl

In this chapter we introduce a model checking method for a branching-time logic
and reaction systems.

3.1 Controlling context sequences

For the purpose of model checking we need to decide, which context sequences
should be considered in the verification. This requires a method in which one would
be able to select these context sequences, which are relevant for the system under
analysis. Considering all the possible context sequences generated by the entire
background set could result in unnecessarily large state spaces, which would have
a negative impact on the efficiency of the verification algorithms.

We will consider now a basic method to control/restrict proper context sequences,
just by restricting the set of entities that can occur in them. This leads to the
following definition.

Definition 3.1.1. A simple context restricted reaction system, SCRRS for short,
is a triple scr-R = (S,A, E) where:

1. S is the (finite) background set,

2. A ⊆ rac(S) is the set of reactions,

3. E ⊆ S is the set of context entities.

Our next step to control/restrict interactive processes of reaction systems is to
allow only some states to be initial states. This yields the following definition.

Definition 3.1.2. Let scr-R = (S,A, E) be an SCRRS. An initialised context
restricted reaction system, ICRRS for short, is a pair icr-R = (scr-R, S0), where
S0 ⊆ 2S is the set of initial states such that S0 6= ∅.

31

We need to modify now the notion of an interactive process for SCRRS
and ICRRS so that it reflects the role of the corresponding restrictions on proper
context sets and initial states.

Definition 3.1.3. Let scr-R = (S,A, E) be a SCRRS and let n ≥ 0 be an integer.
An (n-step) interactive process in scr-R is a pair π = (γ, δ) of finite sequences of
finite sets such that:

1. γ = (C0, C1, · · · , Cn) and δ = (D0, D1, · · · , Dn),

2. C0 ⊆ S, C1, · · · , Cn ⊆ E ,
3. D0, D1, · · · , Dn ⊆ S, D0 = ∅, and

4. Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

The above definition differs from Definition 2.1.5 by restricting in (2) the proper
context sets to be subsets of E .

To define an interactive process in ICRRS the definition for SCRRS is aug-
mented with a restriction on the initial context set.

Definition 3.1.4. Let icr-R = ((S,A, E), S0) be a ICRRS and let n ≥ 0 be an
integer. An (n-step) interactive process in icr-R is a pair π = (γ, δ) of finite
sequences of finite sets such that:

1. γ = (C0, C1, · · · , Cn) and δ = (D0, D1, · · · , Dn),

2. C0 ∈ S0, C1, · · · , Cn ⊆ E ,
3. D0, D1, · · · , Dn ⊆ S, D0 = ∅, and

4. Di = resA(Di−1 ∪ Ci−1) for all i ∈ {1, · · · , n}.

Next, we give a simple example of an ICRRS.

Example 3.1.5. Consider the ICRRS icr-R1 =
(
(S,A, {4}),

{
{1, 4}

})
, where

(S,A) is the RS R1 from Example 2.1.4.
Let γ = ({1, 4},∅, {4}, {4}) and δ = (∅, {1, 2}, {1, 3, 4}, {1, 2}). Then, π =

(γ, δ) is a 3-step interactive process ofR1. It is also an interactive process of icr-R1,
because all proper context sets are subsets of {4} and the initial context set
equals {1, 4}. However π is not an interactive process of the SCRRS (S,A, {1, 3}),
because the context set {4} is not a subset of {1, 3}.

3.2 Examples

Example 3.2.1. Here we define an ICRRS for the reaction system defined in
Example 2.2.2. Let us assume that we want to look into the processes starting
from the states that already contain x and y. Then, the ICRRS for this model is
defined as

icr-Rgrs =
(
(S,A, {U}),

{
{x, y}

})
,

where: A = Ax ∪Ay ∪Az ∪AQ and U is the unique context entity.

32

Example 3.2.2. Now we provide an ICRRS that uses the RS implementing an n-bit
cyclic binary counter and defined in Example 2.2.1 as Rnbc = (Sn, Bn). The desired
ICRRS is then defined as icr-Rnbc = ((Sn, Bn, E), {∅}) where E = {inc, dec}.
Thus, with this implementation of an n-bit cyclic binary counter by an ICRRS,
the only allowed initial state (for interactive processes in icr-Rnbc) is the empty
set – it represents the state of the corresponding counter where all bits are set to 0
and no controller request (inc or dec) is present.

3.3 Logic for reaction systems

Our aim is to describe properties of reaction systems by using a branching time logic
and, later on, to verify these properties by means of a model checking technique. In
this section we introduce the syntax and semantics of a logic for reaction systems.

3.3.1 Syntax and semantics

Let icr-R = ((S,A, E), S0) be an ICRRS, and PV be a nonempty set of proposi-
tional variables. Without loss of generality, we assume that PV = S, i.e., we will
be using the entities of S as propositional variables. The language of computation
tree logic for reaction systems, rsctl for short, is defined by the following grammar:

φ := ℘ | ¬φ | φ ∨ φ | φ ∧ φ | EΨXφ | EΨGφ | EΨ[φUφ],

where ℘ ∈ PV, Ψ ⊆ 2E and Ψ 6= ∅.
The operators of rsctl are composed of the path quantifier EΨ and temporal

operators (X, G, U). The path quantifier EΨ means ‘there exists a path over Ψ’: the
argument Ψ restricts the set of the considered paths by describing the set of actions
allowed along the paths. The temporal operators are used to express requirements
imposed on the paths selected by the path quantifiers. The Xφ operator means ‘in
the next state φ holds’, Gφ means ‘in each state of the path (globally) φ holds’.
The φUψ operator uses two properties and means ‘ψ holds eventually, and φ must
hold at every preceding state’.

With every rsctl formula we associate its maximal nesting depth, corresponding
to the number of levels at which rsctl subformulae appear. The following notion
is used in complexity considerations of model checking algorithms in Section 3.4.

Definition 3.3.1. Let φ be an rsctl formula. Then, d(φ) is the depth of φ and is
defined recursively as follows:

– if φ = ℘, where ℘ ∈ PV, then d(φ) = 1,

– if φ ∈ {¬φ1,EΨXφ1,EΨGφ1}, then d(φ) = d(φ1) + 1,

– if φ ∈ {φ1 ∨ φ2, φ1 ∧ φ2,EΨ[φ1Uφ2]}, then d(φ) = max({d(φ1), d(φ2)}) + 1.

For Ψ ⊆ 2E , the number of the context sets in Ψ is denoted by |Ψ|.

33

Definition 3.3.2. Let φ be an rsctl formula. By c(φ) we mean the size of the
largest set Ψ of the subformulae of φ defined recursively as follows:

– if φ = ℘, where ℘ ∈ PV, then c(φ) = 0,

– if φ = ¬φ1, then c(φ) = c(φ1),

– if φ ∈ {¬φ1,EΨXφ1,EΨGφ1}, then c(φ) = max({|Ψ|, c(φ1)}),
– if φ ∈ {φ1 ∨ φ2, φ1 ∧ φ2,EΨ[φ1Uφ2]}, then c(φ) = max({|Ψ|, c(φ1), c(φ2)}).

Next, we define the models for rsctl that are used for interpreting the rsctl
formulae.

Definition 3.3.3. Let icr-R = ((S,A, E), S0) be an ICRRS. Then, the model for
icr-R is defined asM(icr-R) = (W,W0,−→, L) where:

1. W = 2S is the set of the states,

2. W0 = {resA(α) | α ∈ S0} ⊆W is the set of the initial states,

3. −→ ⊆ W × 2E ×W is the transition relation such that for all w,w′ ∈ W,
α ∈ 2E : (w,α,w′) ∈ −→ iff w′ = resA(w ∪ α),

4. L : W→ 2PV is a valuation function such that L(w) = w for all w ∈W.

The set of the initial states defined in (2) consists of the results of applying the
reactions to the initial context sequences.

For simplicity, in the sequel of this chapter we fix icr-R = ((S,A, E), S0) and
its modelMicr-R = (W,W0,−→, L). Additionally, each element (w,α,w′) ∈ −→
is denoted by w α−→ w′.

The next lemma follows immediately from Definition 3.3.3. It states that the
transition relation is serial, i.e., every state of the model has a successor.

Lemma 3.3.4. For each w ∈ W there exists α ∈ 2E and w′ ∈ W such that
w

α−→ w′.

The formulae of rsctl are interpreted in each state, but they express properties
of the paths initialised in a given state. In the models for ctl [Clarke et al., 1999],
the paths are defined as sequences of states. However, in the models for rsctl, the
paths contain additional elements, which represent context sets. Thus, they are
defined as sequences of states interleaved with actions, which are the subsets of
the set E .

Definition 3.3.5. Let Ψ ⊆ 2E and Ψ 6= ∅. A path over Ψ is an infinite sequence
σ = (w0, α0, w1, α1, . . .) of states and actions such that wi

αi−→ wi+1 and αi ∈ Ψ
for each i ≥ 0.

The set of all the paths over Ψ is denoted by Πinf
Ψ . For each i ≥ 0, the ith state

of the path σ is denoted by σs(i), and the ith action of the path σ is denoted

34

{1, 2}start {1, 3, 4}

∅

∅

{4}

∅

{4}

∅ {4}

Figure 3.1: The reachable part of the model for icr-R1 from Example 3.1.5

by σa(i). By Πinf
Ψ (w) we denote the set of all the paths over Ψ that start in w ∈W,

that is, Πinf
Ψ (w) = {σ ∈ Πinf

Ψ | σs(0) = w}.
Let w,w′ ∈ W and Ψ ⊆ 2E . We say that w′ is a Ψ-successor of w (denoted

by w −→Ψ w′) iff there exists α ∈ Ψ such that w α−→ w′.
Next, we introduce the notion of a reachable state and, later on, we present an

example of the reachable part of a model.

Definition 3.3.6. Let icr-R = ((S,A, E), S0) be an ICRRS and let Micr-R =
(W,W0,−→, L) be the model for icr-R. We say that a state w ∈W is reachable
over Ψ ⊆ 2E inMicr-R if there exists w′ ∈W0 and a path σ ∈ Πinf

Ψ (w′) such that
σs(i) = w for some i ≥ 0.

Example 3.3.7. Consider the ICRRS icr-R1 from Example 3.1.5. Then, the
reachable part of the model Micr-R1 is shown in Figure 3.1. The states of the
model are depicted as the ellipsis.

Now we are ready to define the semantics of rsctl.

Definition 3.3.8. Let Micr-R = (W,W0,−→, L) be a model and w ∈ W be a
state of Micr-R. The fact that φ holds in the state w of the model Micr-R is
denoted byMicr-R, w |= φ, where the relation |= is defined recursively as follows:

Micr-R, w |= ℘ iff ℘ ∈ L(w) for ℘ ∈ PV,
Micr-R, w |= ¬φ iff Micr-R, w 6|= φ,
Micr-R, w |= φ ∨ ψ iff Micr-R, w |= φ orMicr-R, w |= ψ,
Micr-R, w |= φ ∧ ψ iff Micr-R, w |= φ andMicr-R, w |= ψ,

Micr-R, w |= EΨXφ iff (∃σ ∈ Πinf
Ψ (w)) Micr-R, σs(1) |= φ,

Micr-R, w |= EΨGφ iff (∃σ ∈ Πinf
Ψ (w))(∀i ≥ 0)(Micr-R, σs(i) |= φ

)
,

Micr-R, w |= EΨ[φUψ] iff (∃σ ∈ Πinf
Ψ (w))(∃i ≥ 0)

(
Micr-R, σs(i) |= ψ

and (∀0 ≤ j < i) Micr-R, σs(j) |= φ
)
.

35

We define now derived operators, which also introduce the universal path
quantifier AΨ meaning ‘for all the paths over Ψ’:

true
def
= ℘ ∨ ¬℘ for any ℘ ∈ S,

φ⇒ ψ
def
= ¬φ ∨ ψ,

φ⊕ ψ def
= (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ),

EΨFφ
def
= EΨ[trueUφ],

AΨFφ
def
= ¬EΨG¬φ,

AΨXφ
def
= ¬EΨX¬φ,

AΨGφ
def
= ¬EΨ[trueU¬φ].

Moreover, we assume Ψ = 2E when the set Ψ is unspecified for any of the rsctl

operators, e.g., EFφ def
= E2EFφ.

We assume that a formula φ holds in the model Micr-R iff Micr-R, w |= φ
for all w ∈ W0, that is, the formula φ holds in all the initial states. This fact is
denoted byMicr-R |= φ.

The language of our logic resembles the language of action-restricted ctl (arctl)
of [Pecheur and Raimondi, 2006a]. However, rsctl is specialised for reaction sys-
tems and it facilitates a direct and intuitive specification of the context sets. This
approach also allows, as explained in the following section, for easy specification
of context independent sequences by using path quantifiers with Ψ = {∅}. To
the best of our knowledge, none of the existing logics could be directly used for
our purpose. This follows from the fact that the classes of models for existing
logics, arctl in particular, are different than the models for reaction systems.
For example, there are models of arctl that do not correspond to any reaction
system. To restrict the path quantifier we use families of sets of entities instead
of propositional formulae. We could have exploited the language of arctl by
reinterpreting it over the models for reaction systems. Then, the propositional
formulae built over the entities could be used in place of families of sets of entities.
For each formula of this kind there is a family of sets of entities, which defines all
the valuations that satisfy that formula. However, given that our tool (presented
in Section 3.7) is intended for non-logicians we decided to use a more intuitive
language where we use families of sets. This approach is also in line with the
definition of a reaction in reaction systems, which is also set-based. On the other
hand, our tool also accepts propositional formulae over the entities in place of
families of sets. In Chapter 4 we formally define a logic extending rsctl, in which
path quantifiers use propositional formulae built over the entities.

36

3.3.2 Examples of properties expressible in rsctl

The following lemma states that there exists a context-independent sequence, if and
only if, there exists a proper context sequence where all the context sets are empty.

Lemma 3.3.9. Let icr-R = ((S,A, E), S0) be an ICRRS andMicr-R be the model
for icr-R. There exists a path σ such that σa(i) ⊆ σs(i) for each i ≥ 0, if and only
if, there exists a path σ′ such that σ′s(i) = σs(i) and σ′a(i) = ∅ for each i ≥ 0.

Proof. First, we assume that there exists a path σ such that σa(i) ⊆ σs(i) for
each i ≥ 0. We construct the path σ′ with the same states as in σ, i.e., σ′s(i) = σs(i)
for each i ≥ 0. Next, we show the states of σ′ can be reached by following actions
that are empty context sets only, i.e., σ′s(i)

∅−→ σ′s(i + 1) for each i ≥ 0. From
the definition of the transition relation and the fact that σa(i) ⊆ σs(i), it follows
that resA(σs(i) ∪ σa(i)) = resA(σs(i) ∪ ∅) = resA(σs(i)). From this and the
definition of the transition relation, the states of the path σ′ may be defined as:
σ′s(i+ 1) = resA(σ′(i)), therefore σ′s(i)

∅−→ σ′s(i+ 1), i.e., σ′a(i) = ∅ for each i ≥ 0.
The converse follows immediately.

This allows to choose only from the paths with all the context sets being empty
in order to verify properties over context-independent sequences. This follows from
the fact that in σ and σ′ we preserve the order of the states, and the rsctl formulae
are interpreted in the states.

The following examples demonstrate how rsctl can be used for expressing
properties of ICRRS.

Example 3.3.10. For the ICRRS icr-Rgrs defined in Example 3.2.1 we can
describe the following properties interpreted in the model Micr-Rgrs , i.e., they
must hold in the initial states of the model:

1. It is possible that the protein Q will be finally produced:

EFQ.

2. If Q is present, then the polymerase will not land on the gene y (that is, ŷ
will not be present in any of the immediate successors):

AG (Q⇒ (AX¬ŷ)) .

3. Always, if the gene x is present, the polymerase lands on x (that is, x̂ is
present), and the protein U is supplied in the context, then always when we
supply U the protein Q is produced:

A{{U}}G
(
(x ∧ x̂)⇒ A{{U}}FQ

)
.

4. It is possible that the protein Q will never be produced:

EG(¬Q).

37

5. If we do not supply U in the context, then Q will never be produced:

AΨG(¬Q), where Ψ = {α ⊆ E | U 6∈ α} = {∅}.

The set Ψ contains only ∅, since this is the only possible context set when
we disallow U .

6. There exists a context-independent sequence (see Lemma 3.3.9) over which
the state where X and Y are present is reachable:

E{∅}F(X ∧ Y).

Example 3.3.11. For the ICRRS icr-Rbc from Example 3.2.2 we can describe
the following properties interpreted according to their validity inMicr-Rbc :

1. Always, if the counter is at its minimal value, then it is possible to reach the
maximal value by supplying as context sets only inc or dec entities:

AG
(
(¬b0 ∧ · · · ∧ ¬bn)⇒ E{{inc},{dec}}F(b0 ∧ · · · ∧ bn)

)
.

2. Always, if the counter reaches its maximal value, then always in the next
step the counter will make a transition to the minimal value when we supply
only inc entity:

AG
(
(b0 ∧ · · · ∧ bn)⇒ A{{inc}}X(¬b0 ∧ · · · ∧ ¬bn)

)
.

3.4 Verification of rsctl properties

In this section we describe a model checking method for verification of the rsctl
properties. The method described here leads to a symbolic model checking problem,
which we define in Section 3.6.

To be able to verify rsctl properties of a given ICRRS icr-R, we need the
set of the reachable states of the modelMicr-R. Firstly, we describe an algorithm
for computing all the reachable states and, later on, we provide a method for
computing the set of states, where a given rsctl formula holds.

For the purpose of computing the set of all the reachable states we need the
notion of a fixed point (we use |W | to denote the cardinality of a set W).

Let W be a finite set and τ : 2W −→ 2W be a monotone function, i.e.,
X ⊆ Y implies τ(X) ⊆ τ(Y) for all X,Y ⊆W . Let τ i(X) be defined inductively
by τ0(X) = X and τ i+1(X) = τ(τ i(X)). We say that X ′ ⊆W is a fixed point of τ
if τ(X ′) = X ′. It can be proved [Tarski, 1955] that if τ is monotone and W is
a finite set, then there exist m,n ≤ |W | such that τm(∅) is the least fixed point

38

of τ (denoted by µX.τ(X)) and τn(W) is the greatest fixed point of τ (denoted
by νX.τ(X)).

Let Micr-R = (W,W0,−→, L) be a model. From Definition 3.3.3 it follows
that any w ∈W may have many different successors (at most 2|E|). Thus we define
the function that assigns the set of the Ψ-successors to the states in W ⊆W:

postΨ(W)
def
= {w′ ∈W | (∃w ∈W) w −→Ψ w′)} where Ψ ⊆ 2E .

The set of all the reachable states over 2E in the modelMicr-R is denoted by
Reach(icr-R). The set Reach(icr-R) can be characterised by the following fixed
point equation:

Reach(icr-R) = µX.
(
W0 ∪X ∪ post2E (X)

)
.

Algorithm 1: The algorithm for computing the set Reach(icr-R)

1: X := W0

2: Xp := ∅
3: while X 6= Xp do
4: Xp := X
5: X := X ∪ post2E (X)
6: end while
7: return X

Algorithm 1 implements the fixed-point computation of the reachable states
for a given modelMicr-R = (W,W0,−→, L). Line 7 of the algorithm returns the
set X, which is equal to Reach(icr-R).

The set of all the reachable states of the model Micr-R at which φ holds
is denoted by JMicr-R, φK or by JφK if Micr-R is implicitly understood. For
W ⊆ Reach(icr-R) we define a function that assigns the set of the Ψ-predecessors
to W :

pre∃Ψ(W) = {w ∈ Reach(icr-R) | (∃w′ ∈W) w −→Ψ w′)}.
Let φ1, φ2 be some rsctl formulae. We define the following sets:

J¬φ1K
def
= Reach(icr-R) \ Jφ1K,

Jφ1 ∧ φ2K
def
= Jφ1K ∩ Jφ2K,

Jφ1 ∨ φ2K
def
= Jφ1K ∪ Jφ2K,

JEΨXφ1K
def
= pre∃Ψ(Jφ1K).

The remaining operators are defined as the following fixed points:

JEΨGφ1K
def
= νX.

(
Jφ1K ∩ pre∃Ψ(X)

)
,

JEΨ[φ1Uφ2]K def= µX.
(
Jφ2K ∪ (Jφ1K ∩ pre∃Ψ(X))

)
.

39

In the case of JEΨGφ1K the greatest fixed point computation is involved, which
in each iteration removes states that do not have a Ψ-predecessor in which φ1 is
satisfied. In the case of JEΨ[φ1Uφ2]K the least fixed point computation is involved,
such that in each iteration the Ψ-predecessors, in which φ1 is satisfied, are added to
the set of states in which φ2 is satisfied. See Algorithm 2 and 3 for the pseudo-code

Algorithm 2: Procedure checkEG(Ψ, φ1)

1: X := Reach(icr-R), Xp := ∅
2: Yφ := checkrsctl(φ)
3: while X 6= Xp do
4: Xp := X
5: X :=

(
Yφ1 ∩ pre∃Ψ(X)

)
6: end while
7: return X

Algorithm 3: Procedure checkEU(Ψ, φ1, φ2)

1: X := ∅, Xp := Reach(icr-R))
2: Yφ1 := checkrsctl(φ1), Yφ2 := checkrsctl(φ2)
3: while X 6= Xp do
4: Xp := X
5: X := Yφ2 ∪ (Yφ1 ∩ pre∃Ψ(X))
6: end while
7: return X

of the procedures implementing the described fixed point computations. The overall
procedure checkrsctl(φ) for computing the set of states in which a given rsctl
formula φ holds is outlined in Algorithm 4.

3.4.1 Complexity analysis

We consider now the complexity of checkrsctl(φ). The algorithm processes φ
recursively, at each recursion level dealing with a single subformula of φ. The
entire algorithm requires time O(2|S| · (22·|S| + c(φ)) · |A| · |S| · d(φ)). This follows
from the complexity of computations at a single recursion level and the number of
recursion levels required to process the subformulae. To process all the subformulae
the algorithm requires O(d(φ)) recursion levels. Let us consider a single recursion
level where a subformula of the form EΨ[φ1Uφ2] is processed (Algorithm 3). In each
iteration of the loop we find the new value of X, which is a set consisting of all the
states in which φ2 holds, and all the Ψ-predecessors of the states in X, in which φ1

also holds (Line 5 of Algorithm 3). Firstly, we consider the complexity of computing
the intersection Yφ1 ∩ pre∃Ψ(X). The operation could be implemented as finding all
w ∈ Jφ1K by checking if w′ = resA(w ∪ α) for each w ∈ Jφ1K, α ∈ Ψ, and w′ ∈ X.

40

Algorithm 4: Procedure checkrsctl(φ)

1: if φ ∈ PV then
2: return {w ∈W | φ ∈ w} ∩ Reach(icr-R) // This is because PV = S
3: else if φ = ¬φ1 then
4: return Reach(icr-R) \ checkrsctl(φ1)
5: else if φ = φ1 ∨ φ2 then
6: return checkrsctl(φ1) ∪ checkrsctl(φ2)
7: else if φ = EΨXφ1 then
8: return pre∃Ψ(checkrsctl(φ1))
9: else if φ = EΨGφ1 then
10: return checkEG(Ψ, φ1)
11: else if φ = EΨ[φ1Uφ2] then
12: return checkEU(Ψ, φ1, φ2)
13: end if

This involves three nested loops iterating over Jφ1K, X ⊆ 2S and Ψ ⊆ 2E , thus the
operation requires time O((22·|S| + |Ψ|) · |A| · |S|). The result for resA(w ∪ α) is
obtained in O(|A| · |S|), while the computation of the sum with the set Yφ2 has the
complexity of O(|S|), giving us the overall complexity of O((22·|S| + |Ψ|) · |A| · |S|)
for the sum and the intersection. The loop of the algorithm may iterate at most 2|S|

times. Therefore, the complexity of the algorithm for computing JEΨ[φ1Uφ2]K
is O(2|S| · (22·|S| + |Ψ|) · |A| · |S|). In the case of EΨGφ1, in each iteration of the
loop we find all the Ψ-predecessors of the states in X, in which φ1 also holds
(Line 5 of Algorithm 2). Similarly as in the case of EΨGφ1, this is the same as
finding all w ∈ Jφ1K by checking if w′ = resA(w ∪ α) for each w ∈ Jφ1K, α ∈ Ψ,
and w′ ∈ X, which requires time O((22·|S| + |Ψ|) · |A| · |S|). Given the main loop
iterates at most 2|S| times, the procedure requires time O(2|S| ·(22·|S|+ |Ψ|) · |A| · |S|).
The remaining operators do not involve fixed point computations and they require at
most time O((22·|S|+ |Ψ|) · |A| · |S|). Therefore, the time complexity of the algorithm
for computing JφK for an rsctl formula φ is O(2|S| · (22·|S| + c(φ)) · |A| · |S| · d(φ)).

Next, we prove that the rsctl model checking problem for ICRRS is pspace-
complete.

Lemma 3.4.1. Given an ICRRS icr-R = ((S,A, E), S0) and an rsctl formula φ,
the problem of deciding whetherMicr-R |= φ is pspace-hard.

Proof. The proof is by reduction of qsat1, which is a known pspace-complete
problem [Stockmeyer and Meyer, 1973], to the rsctl model checking problem. The
construction used for the reduction is similar to the one of [Laroussinie et al., 2004]
for timed automata and tctl. Let PV = {x1, x2, . . . , xn} be a set of propositional

1Quantified sat (qsat) is a problem, which consists in checking whether a quantified Boolean
formula is in the language of tqbf (true quantified Boolean formulae).

41

variables, β be a Boolean formula over PV and in 3-cnf, and

γ = Q1x1Q2x2 . . .Qnxnβ

be a quantified Boolean formula, where Qi = ∃ if i is odd, Qi = ∀ if i is even.
Then, the qsat problem consists in deciding if the formula γ is true. We define an
additional set of the negated propositional variables

PV = {x̄ | x ∈ PV }

and assume that β is represented as the conjunction of m clauses:

β = c1 ∧ c2 ∧ · · · ∧ cm

where ci = (li,1 ∨ li,2 ∨ li,3) with li,j ∈ (PV ∪PV) for all 0 < i ≤ m, 1 ≤ j ≤ 3. For
each clause c we define:

vars(c) = {0 < k ≤ n | xk ∈ PV is in c},
vars(c) = {0 < k ≤ n | x̄k ∈ PV is in c}.

Next, we define the ICRRS, which we use for the translation. Let V = {p1, p̄1, . . . ,
pn, p̄n} be a set of the entities that represent the propositional variables and their
negations, and C = {ĉ1, ĉ2, . . . , ĉm} be the set of the entities that correspond to
the clauses. The entity t is used to indicate that under the considered valuation the
formula γ is true. The entity h is used as the inhibitor of the reactions where no
inhibitors are needed for the translation to work. This guarantees that the inhibitor
set is non-empty. Then, the background set is defined as S = V ∪ C ∪ {t, h}. We
define the following sets of reactions:

– Pi = {({pi}, {h}, {pi}), ({p̄i}, {h}, {p̄i})} for 0 < i ≤ n,
– Li = {({pk}, {p̄k}, {ĉi}) | k ∈ vars(i)}∪{({p̄k}, {pk}, {ĉi}) | k ∈ vars(i)} for

0 < i ≤ n,
– F = {({ĉ1, ĉ2, . . . , ĉm}, {h}, {t})}.

The set Pi contains the reactions responsible for preserving the valuations of the
variables along the execution sequences. The reactions of Li produce entities that
indicate whether a single clause is satisfied, whereas the reaction of F produces the
entity indicating that all the clauses are satisfied. The set of all the reactions of

the ICRRS is defined as A =
n⋃
i=1

Pi∪
n⋃
i=1

Li∪F . As the context entities E we use the

entities corresponding to the propositional variables, i.e., E = {p1, p̄1, . . . , pn, p̄n}.
We assume that the set of the initial states contains only the empty set, i.e.,
S0 = {∅}. Then, the ICRRS for the described qsat problem and the formula γ is
defined as icr-Rqsat = ((S,A, E), S0). We define the following rsctl formulae for
all 1 ≤ i ≤ n:

φi =

A{
{pi},{p̄i}

}Xφi+1 if Qi = ∀,

E{
{pi},{p̄i}

}Xφi+1 if Qi = ∃,

42

φn+1 = E{∅}Xt.

The formula φ1 consists of n nested next-state operators that restrict the choice
of entities either to pi or p̄i (no contradictions are allowed) at each level 0 < i ≤ n.
For the level n + 1 in the formula, we check if there exists a successor state in
which the entity t exists, indicating that γ is true. The assumed set E allows us
to generate all the valuations that need to be considered. Then, we restrict these
valuations using the rsctl formula according to the qsat quantification.

Finally, it is easy to see that γ is true if and only ifMicr-Rqsat |= φ1.

Lemma 3.4.2. Given an ICRRS icr-R = ((S,A, E), S0) and an rsctl formula φ,
the problem of deciding whetherMicr-R |= φ is in pspace.

Proof. To prove that the problem is in pspace we show that there exists a non-
deterministic algorithm for deciding whetherMicr-R |= φ that requires at most
polynomial space in the size of the input, i.e., the formula φ and the ICRRS icr-R.
The proof is similar to the one of [Alur et al., 1993a] for tctl interpreted over
timed graphs.

The algorithm uses the recursive procedure label(w, φ), which returns true iff
Micr-R, w |= φ, where w ⊆ S; otherwise, it returns false. The encoding of each
state requires space O(|S|) and each successor can be generated in space O(|S|),
whereas the overall algorithm requires space O

(
|S| · d(φ)

)
.

The proof follows by the induction on the length of the formula φ. The cases
where φ does not contain temporal operators or φ = EΨXφ1 are straightforward.

The nondeterministic procedure for checking φ = EΨ[φ1Uφ2] in w ⊆ S is
outlined in Algorithm 5. It nondeterministically chooses states and actions of a
path over Ψ, checks at each step if the state chosen is a successor of the previous
state via the action chosen, and if φ1 holds in that state. If not, then an action
and a state are selected again. At each step of the procedure, only two states are
stored: the current state and its successor. If in the current state φ2 holds, then
the algorithm returns true.

The procedure for checking φ = EΨGφ1 in w ⊆ S is outlined in Algorithm 6.
Similarly to the previous case, the algorithm guesses a path over Ψ, and nondeter-
ministically chooses a state of that path, for the purpose of detecting a loop. At
each step only three states are stored: the current state, its successor, and a state
for detecting a loop. The procedure ensures that φ1 holds in the current state and
generates its successor. If the state used for detecting a loop has appeared again in
the sequence, then the search stops, and the algorithm returns true.

The procedure returns false if no sequence for which the procedure returns true
could be found. To ensure that the procedure terminates, for each sequence guessed
the procedure nondeterministically chooses a state ŵr of that sequence. The
guessing of the sequence stops when the newly guessed state is ŵr. For simplicity
of the presentation, this part of the procedure is not included in Algorithm 5 and
Algorithm 6.

43

Algorithm 5: Nondeterministic procedure for checking EΨ[φ1Uφ2]

1: ŵ := w
2: checking :
3: if label(ŵ, φ2) then
4: return true
5: end if
6: if ¬label(ŵ, φ1) then
7: return false
8: end if
9: guessing :

10: guess ŵ′ ⊆ S
11: guess α ∈ Ψ
12: if ŵ′ 6= resA(ŵ ∪ α) ∨ ¬label(ŵ′, φ1) then
13: goto guessing
14: else
15: ŵ := ŵ′

16: goto checking
17: end if

To check ifMicr-R |= φ, the procedure label is executed for all the initial states to
check if φ holds for all w ∈ S0. For each execution, the procedure is called recursively
for each subformula of φ. At a given recursion level the procedure requires only a
constant number of variables to be stored. The total space requirement depends
on O(d(φ)) calls of the label procedure, where a single call needs space O(|S|). The
space requirement for the procedure is not affected by the size of Ψ as it is only
used in nondeterministic choices. For each call of the label procedure, i.e., for each
nesting level of φ, the label procedure is called recursively at most twice, as each
operator of rsctl has at most two arguments. Thus, the overall space requirement
of the procedure is O

(
|S| · d(φ)

)
. However, if we assume that we include the size

of the formula in our space complexity considerations, then the procedure needs
space O

(
(|S|+ c(φ)) · d(φ)

)
. Therefore, by Savitch’s theorem, the deterministic

algorithm can be implemented in polynomial space.

The following theorem follows directly from Lemma 3.4.1 and Lemma 3.4.2:

Theorem 3.4.3. The model checking problem for rsctl is pspace-complete.

This rsctl verification method can be performed symbolically using binary deci-
sion diagrams (bdds) [Bryant, 1986]. The operations on sets of states, such as union,
intersection, and difference, can be carried out efficiently on bdds representing
Boolean functions.

44

Algorithm 6: Nondeterministic procedure for checking EΨGφ1

1: ŵ := w
2: L := false
3: if ¬label(ŵ, φ1) then
4: return false
5: end if
6: guessing :
7: guess ŵ′ ⊆ S
8: guess α ∈ Ψ
9: if ŵ′ 6= resA(ŵ ∪ α) ∨ ¬label(ŵ′, φ1) then
10: goto guessing
11: end if
12: if ¬L then
13: guess γ ∈ {true, false}
14: if γ then
15: ŵl := ŵ′

16: L := true
17: end if
18: else
19: if ŵ′ = ŵl then
20: return true
21: end if
22: end if
23: ŵ := ŵ′

24: goto guessing

3.5 Bounded model checking using bdds

Bounded model checking (bmc) is a method, which allows to check existential
properties on a fragment of the verified model. Typically, bmc is implemented by
reduction to the satisfiability problem (sat) (we demonstrate such a translation
in Chapter 5). However, it is also possible to implement bounded model checking
using bdds [Copty et al., 2001, Cabodi et al., 2002], which does not involve reducing
the problem to sat.

We define rsectl, which is the existential fragment of rsctl, where negation
can be applied to propositional variables only. This fragment of rsctl is defined
by the following grammar:

φ := ℘ | ¬℘ | φ ∨ φ | φ ∧ φ | EΨXφ | EΨGφ | EΨ[φUφ],

where ℘ ∈ PV, Ψ ⊆ 2E and Ψ 6= ∅.
The rsectl formulae are interpreted in structures, which are obtained from rsctl

models by restricting the set of states. We call these structures submodels and

45

define them as follows.

Definition 3.5.1. Let icr-R = ((S,A, E), S0) be an ICRRS and let Micr-R =
(W,W0,−→, L) be the model for icr-R. Let U ⊆ W be a subset of the states
ofMicr-R containing all the initial states, i.e.,W0 ⊆ U. The submodel subU (Micr-R)
generated fromMicr-R by U is defined as follows:

subU (Micr-R) = (U,W0,−→U , LU),

where:

– −→U = −→∩ (U × 2E × U),

– LU : U −→ 2PV is defined by LU (w) = L(w) for all w ∈ U .

Introducing the above restriction on the transition relation may result in
sequences, which are not paths in the sense of Definition 3.3.5. This follows from
the fact that some states in the submodel may not have successors, which are
also in U . This was not the case for the models of rsctl (Definition 3.3.3) and
Lemma 3.3.4 does not hold for submodels. The semantics of rsctl considers only
paths, which are infinite sequences. To be able to interpret rsectl formulae in
submodels, we extend the semantics to take into consideration also maximal finite
paths. Firstly, we define a path to be an infinite or a maximal finite sequence.

Definition 3.5.2. Let icr-R be an ICRRS andMicr-R = (W,W0,−→, L) be the
model for icr-R. Let U ⊆W such that subU (Micr-R) is the submodel ofMicr-R
generated by U , and let Ψ ⊆ 2E such that Ψ 6= ∅.

– An finite path over Ψ in subU (Micr-R) is a finite sequence σ = (w0, α0, w1,

α1, . . . , αn−1, wn) of length n ∈ IN, such that wi
αi−→U wi+1, αi ∈ Ψ for

each 0 ≤ i < n and the sequence is maximal, i.e., there does not exist
wn+1 ∈ U and αn ∈ Ψ such that wn

αn−→U wn+1.

– An infinite path over Ψ in subU (Micr-R) is an infinite sequence σ = (w0, α0,

w1, α1, . . .) of states and actions such that wi
αi−→U wi+1 and αi ∈ Ψ for

each i ≥ 0.

If a sequence σ is a finite or an infinite path over Ψ, we simply call it a path over Ψ.
We define the length of σ as

len(σ) =

{
n+ 1 if σ is finite,
ω if σ is infinite.

Definition 3.5.3. Let σ be a path over Ψ ⊆ 2E and let a ∈ IN, b ∈ ZZ. We define
non+(b) such that non+(b) = 1 if b ≤ 0 and non+(b) = 0 if b > 0. The set of the
indices of σ restricted with a and b is defined as follows:

Iσ[a|b] =

{
{i ∈ IN | a ≤ i < min({len(σ),non+(b) · len(σ) + b})} if σ is finite,
{i ∈ IN | i ≥ a} if σ is infinite.

46

Example 3.5.4. Let us consider a finite path such that len(σ) = 6. We can take
the path indices obtained by skipping the first two path indices and truncate the
path length to 4, by taking the set Iσ[2|4] = {2, 3}. Using negative values for b
allows us to skip trailing indices. We can skip the first and the last two path indices,
e.g., Iσ[1|−2] = {1, 2, 3}. To skip only the first index, we can simply use 0 in place
of the argument b, i.e., Iσ[1|0] = {1, 2, 3, 4, 5}. This is the same as Iσ[1|len(σ)].

For Iσ[0|len(σ)] and Iσ[0|0] we simply write Iσ. The set of all the paths
over Ψ is denoted by ΠΨ. For each i ∈ Iσ, the ith state of the path σ is denoted
by σs(i), and for each i ∈ Iσ[0|−1] the ith action of the path σ is denoted by σa(i).
By ΠΨ(w) we denote the set of all the paths over Ψ that start in w ∈W, that is,
ΠΨ(w) = {σ ∈ ΠΨ | σs(0) = w}. The set of all the infinite paths over Ψ that start
in w ∈W is defined as Πinf

Ψ (w) = {σ ∈ ΠΨ(w) | len(σ) = ω}.

Definition 3.5.5. Let icr-R be an ICRRS andMicr-R = (W,W0,−→, L) be the
model for icr-R. Let U ⊆W such that W0 ⊆ U , andM = subU (Micr-R), i.e.,M
is the submodel generated fromMicr-R by U . The fact that an rsectl formula φ
holds in a state w ∈ U of M is denoted by M, w |= φ, where the relation |= is
defined recursively as follows:

M, w |= ℘ iff ℘ ∈ L(w) for ℘ ∈ PV,
M, w |= ¬℘ iff ℘ 6∈ L(w) for ℘ ∈ PV,
M, w |= φ ∨ ψ iff M, w |= φ orM, w |= ψ,
M, w |= φ ∧ ψ iff M, w |= φ andM, w |= ψ,
M, w |= EΨXφ iff (∃σ ∈ ΠΨ(w)) 1 ∈ Iσ andM, σs(1) |= φ,

M, w |= EΨGφ iff (∃σ ∈ Πinf
Ψ (w))(∀i ∈ Iσ)(M, σs(i) |= φ

)
,

M, w |= EΨ[φUψ] iff (∃σ ∈ ΠΨ(w))(∃i ∈ Iσ)
(
M, σs(i) |= ψ

and (∀0 ≤ j < i) M, σs(j) |= φ
)
.

It is easy to check that the above semantics for infinite paths is identical to the
one of Definition 3.3.8. When considering finite paths, the main difference is the
requirement that EΨGφ can be satisfied only on an infinite path. In Definition 3.3.8,
when referring to the ith state of the path σ the value of i is only required to be
non-negative. Here, we limit the scope of i by writing i ∈ Iσ, which handles finite
and infinite paths.

We describe Algorithm 7 that is used to perform bounded model checking on
submodels ofMicr-R. The computation stops when the verified formula holds, or
all the submodels generated fromMicr-R were obtained.

The algorithm operates on submodels of the modelMicr-R to verify an rsectl
formula φ. The complete set of reachable states is obtained by computing the
least fixed point according to Algorithm 1. The set of reachable states Reach of
the model initially contains only the initial states W0 (line 1). In each iteration
(except the last one, when φ holds) the set Reach is extended with the successors
of the states in Reach (line 8). Until the algorithm reaches the fixed point, in
each iteration it checks if φ holds in the submodel subReach(Micr-R) (Line 4). If

47

Algorithm 7: The bounded model checking algorithm used with bdds
1: Reach := W0

2: Reachp := ∅
3: while Reach 6= Reachp do
4: if W0 ⊆ JsubReach(Micr-R), φK then
5: return true
6: end if
7: Reachp := Reach
8: Reach := Reach ∪ post2E (Reach)
9: end while

10: return false

the formula holds, the algorithm terminates returning true. For the purpose of
checking if the fixed point has been reached i.e., if the set Reach has changed from
the previous iteration (line 3), we keep its last value in Reachp. When we reach the
fixed point, the loop terminates (line 9) and the algorithm returns false.

The presented bmc algorithm is complete in the sense that it always terminates
with a result indicating whether the verified formula holds in the model.

The following lemma states that we can verify rsectl formulae on submodels
of the original model.

Lemma 3.5.6. Let icr-R be an ICRRS andM = (W,W0,−→, L) be the model
for icr-R. Let φ be an rsectl formula and let w ∈ W be a state of M. Then,
M, w |= φ iff there exists U ⊆W such that w ∈ U and subU (M), w |= φ.

Proof. →: In this direction, follows simply for U = W.
←: The converse follows by induction on the length of the formula φ. The base
case is straightforward as the lemma follows directly for the propositional variables
and their negations. We assume the statement holds for the subformulae of φ.
Let U ⊆W, w ∈ U and subU (M), w |= φ.

1. Let φ = φ1 ∨ φ2. By the semantics of rsectl we have subU (M), w |= φ1

or subU (M), w |= φ2. By the induction hypothesis and the definition of
submodel (Definition 3.5.1), the state w exists also in the model M, and
M, w |= φ1 orM, w |= φ2, thusM |= φ1 ∨ φ2.

2. Let φ = φ1 ∧ φ2. By the semantics of rsectl we have subU (M), w |= φ1

and subU (M), w |= φ2. By the induction hypothesis and the definition of
submodel, the state w exists also in the model M, and M, w |= φ1 and
M, w |= φ2, thusM |= φ1 ∧ φ2.

3. Let φ = EΨXφ1. By the semantics of rsectl there exists a path σ ∈ ΠΨ(w)
in subU (M) such that 1 ∈ Iσ and subU (M), σs(1) |= φ1. By the induction
hypothesis and the definition of submodel, there exists a path σ′ inM such
that σ is the prefix of σ′, i.e., σs(i) = σ′s(i) for each i ∈ Iσ and σa(i) = σ′a(i)

48

for each i ∈ Iσ[0|−1]. Therefore, 1 ∈ Iσ′ ,M, σ′s(1) |= φ1, and σ′s(0) = w. It
follows thatM, w |= EΨXφ1.

4. Let φ = EΨGφ1. By the semantics of rsectl, there exists an infinite path
σ ∈ Πinf

Ψ (w) in subU (M) such that subU (M), σs(i) |= φ1 for each i ∈ Iσ.
By the induction hypothesis and the definition of submodel, the path σ
also exists in M, and M, σs(i) |= φ1 for each i ∈ Iσ and σs(0) = w, thus
M, w |= EΨGφ1.

5. Let φ = EΨ[φ1Uφ2]. By the semantics of rsectl there exists a path σ ∈ ΠΨ(w)
in subU (M) and there exists i ∈ Iσ such that subU (M), σs(i) |= φ2 and
subU (M), σs(j) |= φ1 for each 0 ≤ j < i. By the induction hypothesis and
the definition of submodel, there exists a path σ′ inM such that σ is the
prefix of σ′. Therefore,M, σ′s(i) |= φ2 andM, σ′s(j) |= φ1 for each 0 ≤ j < i,
and σ′s(0) = w, thusM, w |= EΨ[φ1Uφ2].

3.6 Encoding ICRRS into Boolean formulae

In this section we provide an encoding of the initialised context restricted reaction
systems into Boolean formulae, which we use for symbolic model checking. Firstly,
we define the symbolic model checking problem for rsctl.

Let icr-R be an ICRRS and φ be an rsctl formula. The symbolic model
checking problem for rsctl consists in deciding whetherMicr-R |= φ; however, the
model is not represented explicitly. Instead, we use Boolean formulae to encode the
states and the transition relation ofMicr-R. To verify the formula φ, we traverse
the model according to the algorithms defined in Section 3.4.

The general idea of the encoding into Boolean formulae is similar to the one
introduced for reaction systems in [Ehrenfeucht and Rozenberg, 2007b], but it
differs in how the encoding of the transitions between states is defined.

Let icr-R = ((S,A, E), S0) be an ICRRS and Micr-R = (W,W0,−→, L) be
its model. We denote the elements of S by e1, . . . , en, where n = |S|. We introduce
sets of the propositional variables used in the encoding. The states of the model are
encoded using the set P = {p1, . . . , pn}. The actions representing context entities
are encoded with the variables PE = {pE1 , . . . , pEn}. To encode the successors in the
transition relation, we use the setP′ = {p′1, · · · , p′n} of the primed variables. The set
of reactions producing e ∈ S is defined as Prod(e) = {a ∈ A | e ∈ Pa}. For brevity,
we use the following vectors of variables: p = (p1, . . . , pn), pE = (pE1 , . . . , p

E
n),

p′ = (p′1, . . . , p
′
n). Moreover, we define the following functions: m : S → P,

m′ : S → P′, mE : S → PE , such that m(ei) = pi, m′(ei) = p′i, m
E(ei) = pEi , for all

1 ≤ i ≤ n. The functions map the background set entities to the corresponding
variables of the encoding.

49

Single state. A state w ∈W is encoded as the conjunction of all the variables
corresponding to the entities that are present in w, and the conjunction of all the
negations of the variables that are not present in w:

Stw(p) =
(∧
e∈w

m(e)
)
∧
(∧
e∈(S\w)

¬m(e)
)
.

Sets of states. A set W ⊆W is encoded as the disjunction of all the encoded
states that are in W:

SetStW (p) =
∨
w∈W

Stw(p).

Context sets. A set α ⊆ S of context entities is encoded as follows:

Ctα(pE) =
(∧
e∈α

mE(e)
)
∧
(∧
e∈(S\α)

¬mE(e)
)
.

Sets of context sets. A set Ψ ⊆ 2E of sets of context entities is encoded as the
disjunction of all the encoded sets of Ψ:

SetCtΨ(pE) =
∨
α∈Ψ

Ctα(pE).

Entity production condition. A single entity e ∈ S can be produced if there
exists a reaction a ∈ Prod(e) that is enabled, that is, all of the variables corre-
sponding to reactants of a (including the variables representing the context) are
true and all of the variables corresponding to inhibitors of a (also including the
variables representing the context) are false. The formula encoding this is defined
as follows:

– if Prod(e) 6= ∅, then

Ene
(
p,pE

)
=

∨
a∈Prod(e)

(∧
e′∈Ra

(m(e′) ∨ mE(e′)) ∧
∧
e′∈Ia

¬(m(e′) ∨ mE(e′))
)

;

– if Prod(e) = ∅, then
Ene
(
p,pE

)
= false.

Entity production. The function Pre
(
p,pE ,p′

)
encodes the production of a

single entity e ∈ S. When the production of e is enabled, then the variable
corresponding to e is required to be true; otherwise, the variable is required to be
false.

Pre
(
p,pE ,p′

)
=
(
Ene
(
p,pE

)
∧ m′(e)

)
∨
(
¬Ene

(
p,pE

)
∧ ¬m′(e)

)
.

50

Permitted context sets. The following formula encodes the permitted context
sets by blocking the not allowed context entities.

PCt
(
pE
)

=
∧

e∈(S\E)

¬mE(e).

Transition relation. To encode the transition relation, we define the function
that is the conjunction of the entity production encodings for all the background
set entities and restricts the allowed context sets.

Tr
(
p,pE ,p′

)
=
∧
e∈S

Pre
(
p,pE ,p′

)
∧ PCt

(
pE
)
.

The described encoding method can be used for the symbolic model checking
problem for rsctl. In the following theorem we state the complexity of this
problem.

Theorem 3.6.1. The symbolic model checking problem for rsctl is pspace-
complete.

Proof. The theorem follows from the fact that the symbolic model checking for
ctl is pspace-complete [McMillan, 1993] and that the transition relation of an
ICRRS can be represented (encoded in polynomial time) with a Boolean function,
as demonstrated above. Moreover, the complexity of the verification algorithm
for rsctl does not change with respect to ctl. This follows from the fact that
rsctl only restricts the choice of the transitions to be considered. Therefore, in
the symbolic model checking algorithm we replace the function computing the
predecessors of a given state with the function pre∃Ψ(X), which restricts the choice
of the predecessors to only those accessible via Ψ (see Section 3.4). In the symbolic
model checking algorithm this requires one more conjunction to be computed at
each iteration, therefore the modification introduces only a difference of a constant
in the overall complexity.

3.7 Experimental results

We implemented a model checker for ICRRS, based on the encoding presented in
Section 3.6, and binary decision diagrams (bdds) for storing and manipulating the
encoded Boolean functions. The tool allows for verification of rsctl properties, as
described in Section 3.3. It was implemented using the C++ programming language,
and it uses CUDD library [Somenzi, 1994] for operations on bdds.

In the experimental evaluation we use our implementation with the parameters
summarised in Table 3.1.

Partitioning of transition relation The encoded transition relation of the ver-
ified system can be stored and applied in two different ways: by using a

51

parameter description
x partitioned transition relation
z reordering of bdd variables

Table 3.1: Parameters of the model checking tool

monolithic or partitioned encoding [Burch et al., 1991]. When computing
successors (or predecessors) of a set of states, we compute the conjunction
of the formula encoding the set of states and of the formula encoding the
transition relation. In the case of the monolithic encoding, there is only
one bdd encoding the transition relation, while in the partitioned encoding
for each agent we store a separate decision diagram encoding its transition
relation, and the conjunction is calculated on the fly.

BDD reordering The size of a bdd depends on the selected order of the Boolean
variables, thus in most cases it will have a significantly impact on the perfor-
mance. We apply two different approaches to ordering the variables: a fixed
interleaving order and an automatic reordering of the variables. For the fixed
order we apply the interleaving order, where primed and the corresponding
unprimed bdd variables are interleaved. While in the case of the automatic
reordering we attempt to adapt the order of the variables with each iteration
of the algorithm extending the bdd for the reachable states and the transition
relation. To this aim we use the Rudell’s sifting algorithm [Rudell, 1993]
implemented in the CUDD library.

Bounded model checking The implementation uses the bdd-based bounded
model checking heuristic for testing rsectl formulae, as described in Sec-
tion 3.5. This allows for early termination of the verification when a witness
for the verified formula is found. The approach consists in verifying the
formula at each iteration of the algorithm computing the set of the reachable
states. This feature is enabled automatically when verifying rsectl formulae.

We test our implementation using four different benchmarks which we describe
next, together with the experimental results.

3.7.1 Heat shock response model

Firstly, we test our implementation using the heat shock response (hsr) model
described in Example 2.2.3 and introduced in [Azimi et al., 2014b]. We define the
ICRRS modelling hsr as follows:

icr-Rhsr = ((S,A, {stress,nostress}), S0),

where S and A are as defined in Example 2.2.3, and

S0 = {{hsf , prot , hse,nostress}, {hse, prot , hsp:hsf , stress},
{hsp, prot , hsf3 :hse,mfp, hsp:mfp,nostress}}.

52

The definition of S0 corresponds to the initial context sets used in the processes
analysed in [Azimi et al., 2014b]. In the same paper, six properties essential to the
functioning of the hsr model were formulated. It is assumed that either stress or
nostress is supplied by the context sets, but never both. The following properties
are specified:

P1. mass-conservation: if hse or hsf3 :hse is present, then always hse or hsf3 :hse
will be present in the next state;

P2. a single form of hse: if hse and hsf3 :hse are not present simultaneously, then
they will never be present in the next state;

P3. mass-conservation of prot : if prot is present, then it will be present in the
next state as well;

P4. misfolded proteins must be addressed : presence of mfp must always result in
mfp of hsp:mfp in the next state;

P5. a single form of hsf : if at most one form of hsf is present (hsf , hsf3 , hsf3 :hse,
hsp:hsf), then it will also be present in at most one form in the next state;

P6. stability of hsp: in the absence of stress, if hsp:hsf is present, then it is
preserved in the next state as well.

The above properties can be formalised using rsctl. Following the assumption
about context sets, we use the set C = {{stress}, {nostress}} which appears in
some formulae as the set of the allowed context sets specifying that the system is
either under stress or it is operating in normal conditions, i.e., conditions which do
not trigger the heat shock response. The following formulae express the properties
specified in P1–P6:

– P1: ψ1 = ACG(hse ∨ hsf3 :hse ⇒ ACX(hse ∨ hsf3 :hse)),

– P2: ψ2 = ACG(¬(hse ∧ hsf3 :hse)⇒ ACX¬(hse ∧ hsf3 :hse)),

– P3: ψ3 = ACG(prot ⇒ ACXprot),

– P4: ψ4 = ACG(mfp ⇒ ACX(mfp ∨ hsp:mfp)),

– P5: ψ5 = ACG(((hsf ⊕ hsf3 ⊕ hsf3 :hse ⊕ hsp:hsf)∨¬(hsf ∨ hsf3 ∨ hsf3 :hse ∨
hsp:hsf))⇒ ACX((hsf ⊕hsf3 ⊕hsf3 :hse⊕hsp:hsf)∨¬(hsf ∨hsf3 ∨hsf3 :hse∨
hsp:hsf))),

– P6: ψ6 = A{{nostress}}G(hsp:hsf ⇒ A{{nostress}}Xhsp:hsf).

The specified properties were verified using our tool and proved to hold in the
defined model. The verification of the heat shock response model appeared to be
computationally easy for the tool – each property was successfully verified in under
one second with less than 25MB of memory.

In the remainder of this section we introduce scalable benchmarks which allow
us to test the efficiency of our implementation in more demanding settings.

53

0 2 4 6 8 10 12 14 16 18 20 22 24 26

10−3

10−1

101

103

number of bits

ti
m
e
(i
n
se
co
nd

s)
–
x
z
xz

Figure 3.2: Verification results for bc and ψ1: execution time

0 2 4 6 8 10 12 14 16 18 20 22 24 26

24

26

number of bits

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.3: Verification results for bc and ψ1: memory consumption

3.7.2 Binary counter

We test our implementation by verifying properties of the bit counter system (bc)
from Example 3.2.2 using the following formulae:

ψ1 = AG((¬p0 ∧ ... ∧ ¬pn−1)⇒ E{{inc},{dec}}F(p0 ∧ ... ∧ pn−1)),

ψ2 = AG((¬p0 ∧ ... ∧ ¬pn−1)⇒ A{{inc}}X(p0 ∧ ... ∧ pn−1)),

ψ3 = E{{inc}}F(p0 ∧ ... ∧ pn−7 ∧ ¬pn−8 ∧ ... ∧ ¬pn−1) for n > 8,

ψ4 = AG(pn−1 ⇒ EF¬pn−1).

The first two formulae that we use in our benchmarks were specified in Ex-
ample 3.3.11. The formula ψ3 expresses that it is possible to finally reach the
value 2n−8 by only increasing the counter, whereas ψ4 means that it is always
possible to finally change the value of the last bit from enabled to disabled.

In the case of ψ1 (Fig. 3.2–3.3), ψ2 (Fig. 3.4–3.5), and ψ4 (Fig. 3.8–3.9) it
was necessary to compute all the reachable states of the verified model and in
these cases the verification results were similar in terms of time and memory
consumption. The use of the partitioned transition relation induced an obvious
time consumption penalty in the analysed cases, with no significant memory

54

0 2 4 6 8 10 12 14 16 18 20 22 24 26

10−3

10−1

101

103

number of bits

ti
m
e
(i
n
se
co
nd

s)
–
x
z
xz

Figure 3.4: Verification results for bc and ψ2: execution time

0 2 4 6 8 10 12 14 16 18 20 22 24 26

23

24

25

26

number of bits

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.5: Verification results for bc and ψ2: memory consumption

8 10 12 14 16 18 20 22 24 26

10−3

10−1

101

number of bits

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.6: Verification results for bc and ψ3: execution time

55

8 10 12 14 16 18 20 22 24 26

24

26

number of bits

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.7: Verification results for bc and ψ3: memory consumption

0 2 4 6 8 10 12 14 16 18 20 22 24 26

10−3

10−1

101

103

number of bits

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.8: Verification results for bc and ψ4: execution time

0 2 4 6 8 10 12 14 16 18 20 22 24 26

23

24

25

26

number of bits

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.9: Verification results for bc and ψ4: memory consumption

56

consumption improvements. In the case of ψ3 (Figure 3.6–3.7), the bounded model
checking heuristic was applied, because the formula is in the existential form. This
allowed for earlier termination of the state-space search resulting in a significant
speed up – when the monolithic transition relation encoding was used, all the
verification results for up to 25 bits were obtained in under one minute. The use
of the automatic reordering of the bdd variables did not significantly affect the
performance in any of the analysed cases of the bit counter system.

3.7.3 Mutual exclusion protocol

Here we use ICRRS to define a mutual exclusion protocol (mutex). The system
consists of n processes competing for exclusive access to the critical section. The
background set of the ICRRS modelling the mutual exclusion protocol is defined as:

Sn = {out1 , . . . , outn , req1 , . . . , reqn , in1 , . . . , inn , lock , done, act1 , . . . , actn , s}.

Initially all the processes are not in their critical sections and are not requesting
the access, which is indicated by the presence of outi for each i ∈ {1, . . . , n}. The
context may be any subset of {act1 , . . . , actn}. We assume that if the context
contains acti for some i ∈ {1, . . . , n}, then it is the ith process’ turn to perform
an action. The ith process requests an access to its critical section by producing
reqi . It is possible for the process to enter the critical section when it is allowed
to perform an action and the critical section is not locked (the lock entity is not
present). In the case of entering a critical section, to avoid the situation where
two processes enter their critical sections synchronously, the assumption on acti
is stricter: only one acti for some i ∈ {1, . . . , n} is allowed to be present for the
process to enter the critical section. When a process enters its critical section,
the critical section is locked by production of the lock entity. The lock entity is
preserved until the entity done appears, which is produced when a process leaves
its critical section. Any reaction in the system may be inhibited by the s entity.

Let Pi be the set of reactions of the ith process, for i ∈ {1, . . . , n}. Then, Pi
consists of the following reactions:

– ({outi , acti}, {s}, {reqi}),
– ({outi}, {acti}, {outi}),
– ({reqi , acti , actj }, {s}, {reqi}) for each j ∈ {1, . . . , n} such that i 6= j,
– ({reqi}, {acti}, {reqi}),
– ({reqi , acti}, {actj | j ∈ {1, . . . , n} and j 6= i} ∪ {lock}, {ini , lock}),
– ({ini , acti}, {s}, {outi , done}),
– ({ini}, {acti}, {ini}).

The set of reactions is defined as An =
n⋃
i=1

Pi ∪ {({lock}, {done}, {lock})}. The

ICRRS for the system of n processes is defined as follows:

icr-Rnmutex = ((Sn, An, {act1 , . . . , actn}), {{out1 , . . . , outn}}).

57

0 2 4 6 8 10 12 14 16 18 20 22 24

10−3

10−1

101

103

number of processes

ti
m
e
(i
n
se
co
nd

s)
–
x
z
xz

Figure 3.10: Verification results for mutex and ψ1: execution time

In our experiments, we test the following formulae:

ψ1 = A{{act1 }}Fin1 ,

ψ2 = E{{act1 }}Fin1 ,

ψ3 = AG

 n∧
i 6=j
¬(ini ∧ inj)

 .

The formula ψ1 means that for all the executions with the act1 supplied by
the context sets, meaning that the first process is requesting access to its critical
section, it is possible that the first process enters its critical section. The formula ψ2

expresses the existential counterpart of the same property. The formula ψ3 expresses
the mutual exclusion property, i.e., in all the possible executions (with no context
restrictions), globally it is the case that two processes are never in their critical
sections at the same time.

The obtained results are presented in Fig. 3.10–3.15. Our implementation
appears to be the most efficient, when the monolithic encoding of the transition
relation is combined with the reordering of the variables. Such an approach allowed
for a significant memory consumption reduction and improved the verification time.
In the case of ψ2, partitioning of the transition relation proved to be superior to
the monolithic encoding, when reordering of the variables was disabled.

3.7.4 Abstract pipeline system

We consider an abstract system (aps) which resembles the pipeline protocol of [Peled,
1993]. The aim of the system is to produce the entity r from the entity x. This is
performed by n modules which produce intermediate entities needed to produce
x. The system consisting of n modules is modelled by the ICRRS icr-Rnp =
((Sn, An, En), S0), where the background set Sn is defined as:

Sn = {x, s, a1, . . . , an+1, b1, . . . , bn, c1, . . . , cn, d1, . . . , dn, y1, . . . , yn, r}.

58

0 2 4 6 8 10 12 14 16 18 20 22 24

0

500

1,000

1,500

number of processes

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.11: Verification results for mutex and ψ1: memory consumption

0 2 4 6 8 10 12 14 16 18 20 22 24

10−3

10−1

101

103

number of processes

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.12: Verification results for mutex and ψ2: execution time

0 2 4 6 8 10 12 14 16 18 20 22 24

0

500

1,000

number of processes

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.13: Verification results for mutex and ψ2: memory consumption

59

0 2 4 6 8 10 12 14 16 18 20 22 24

10−3

10−1

101

103

number of processes

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.14: Verification results for mutex and ψ3: execution time

0 2 4 6 8 10 12 14 16 18 20 22 24

0

500

1,000

1,500

number of processes

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.15: Verification results for mutex and ψ3: memory consumption

60

0 5 10 15 20 25 30 35 40

10−3

10−2

10−1

100

101

number of modules

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.16: Verification results for aps variant 1: execution time

To define An we first give the following sets of reactions:

T =
{

({x}, {s}, {a1})
}
,

Mi =
{

({ai}, {s}, {yi}), ({yi}, {s}, {yi}),
({ai}, {s}, {bi}), ({bi}, {s}, {ci}), ({ci}, {s}, {di}),
({di, yi}, {s}, {ai+1})

}
for i ∈ {1, . . . , n},

Rn =
{

({an+1, y1, . . . , yn}, {s}, {r})
}
.

The reaction of T initialises the process of producing x, the reactions of Mi for
0 < i ≤ n define the reactions of the modules, and the reaction of Rn gathers the
products of the modules and produces r which is the final product.

The set of reactions of icr-Rnaps is defined as An = T ∪
n⋃
i=1

Mi∪Rn. The initial

context set contains only x, i.e., S0 = {{x}}. We consider two variants of the
system, where:

1. En = {s}, or

2. En = {s} ∪ {ai | 0 < i ≤ n and i is even}.

For the tests, we verified the formula E{∅}Fr expressing that it is possible to reach r
regardless of the context.

Fig. 3.16–3.17 and Fig. 3.18–3.19 present the results, respectively, for the first
and the second variant of the system. In the second variant, partitioning of the
transition relation resulted in a lower memory consumption when more than nine
modules were verified. Verification of the second variant of the system proved to
be much more demanding for our tool. When considering the differences between
the two variants of the system, we observe that in the second variant there are
more reactions enabled at every stage of the state-space exploration of the system
due to the fact that some entities are provided earlier by the context sets. This
results in the inferior performance.

61

0 5 10 15 20 25 30 35 40
20

40

60

number of modules

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.17: Verification results for aps variant 1: memory consumption

2 3 4 5 6 7 8 9 10 11
10−3

10−1

101

103

number of modules

ti
m
e
(i
n
se
co
nd

s)

–
x
z
xz

Figure 3.18: Verification results for aps variant 2: execution time

2 3 4 5 6 7 8 9 10 11
0

200

400

number of modules

m
em

or
y
(i
n
M
B
)

–
x
z
xz

Figure 3.19: Verification results for aps variant 2: memory consumption

62

3.7.5 Summary

In most cases, the monolithic encoding of the transition relation proved to be the
most efficient when combined with the automatic reordering of the bdd variables.
Partitioning of the transition relation in some cases may further improve the
memory efficiency. However, in most cases the use of partitioned transition relation
comes with a time penalty. When dealing with existential formulae, the bounded
model checking heuristic can be used to improve the performance by terminating
the state-space search as soon as a witness for the verified property is found without
computing the entire state-space first.

3.8 Concluding remarks

We introduced a branching-time temporal logic for reaction systems (rsctl) allowing
to express properties that depend on the context sequences specified by the context
sets in the temporal operators. We also described a symbolic verification method
for rsctl and provided complexity results for the problems of model checking and
symbolic model checking for rsctl. The model checking problem for rsctl was
proved to be pspace-complete. The proposed symbolic model checking approach
was implemented. This allowed for an experimental evaluation, which proved,
despite the complexity of the verification problem, that our approach is promising
for possible applications of the proposed verification method.

63

Chapter 4

Model checking for rsctlk

In this chapter, we propose an extension of reaction systems that allows for the
modelling of distributed and multi-agent systems. We introduce rsctlk, a logic for
specifying temporal-epistemic properties and define its model checking problem.

4.1 Context automata

The method for generating context sequences in context-restricted reaction systems
described in Chapter 3 assumes that, for the context sets of the proper context
sequences, we always allow the subsets of a fixed subset of the background set.
This means that one may be forced to model behaviours that will be irrelevant in
reality. For instance, we may want to restrict the context sequences in such a way
that some entities never appear at the same time. For example, in the hsr system
used in Section 3.7.1, it would be desired for stress and nostress to never occur
simultaneously, since they contradict each other. As demonstrated in Chapter 3,
these unrealistic processes can be ignored by selecting only the relevant context
sets when specifying the properties of the system in rsctl. However, to solve this
problem at the level of the representation of the system, we use finite automata to
generate context sequences.

Definition 4.1.1. A context automaton (CA) over Σ, is a triple A = (Q, qinit , R),
where:

– Σ is a finite set of labels,

– Q is a finite set of locations,

– qinit ∈ Q is the initial location,

– and R ⊆ Q× Σ×Q is a transition relation labelled with elements of Σ.

We assume that R is serial, i.e., for all q ∈ Q there exists c ∈ Σ and q′ ∈ Q such
that (q, c, q′) ∈ R.

65

Definition 4.1.2. A context restricted reaction system (CRRS) is a pair

cr-R = (R,A)

such that R = (S,A) is a reaction system and A = (Q, qinit , R) is a context
automaton over 2S .

The dynamic behaviour of cr-R is then captured by the sequences of states of
its interactive processes.

Definition 4.1.3. An n-step interactive process in cr-R is π = (ζ, γ, δ), where:

– ζ = (z0, z1, . . . , zn), γ = (C0, C1, . . . , Cn), and δ = (D0, D1, . . . , Dn)

– z0, z1, . . . , zn ∈ Q with z0 = qinit

– C0, C1, . . . , Cn, D0, D1, . . . , Dn ⊆ S with D0 = ∅
– (zi, Ci, zi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
– Di = resA(Di−1 ∪ Ci−1), for every i ∈ {1, . . . , n}.

The state sequence of π is τ = (W0, . . . ,Wn) = (C0 ∪D0, . . . , Cn ∪Dn).

Intuitively, the state sequence of π captures the behaviour of cr-R by recording
the states obtained by the evolution of the reaction system R in the environment
modelled by the context automaton A.

In the following chapters we use context automata to generate context se-
quences (Section 2.1). In the next section, we show how this notion can be further
extended to introduce extended context automata, where for the transitions in the
context automaton additional conditions on the current state of the reaction system
are specified.

4.2 Multi-agent reaction systems

A multi-agent reaction system models a system that consists of many agents. Each
agent has its own set of reactions defined over a common background set.

Definition 4.2.1. Let A be an nonempty finite set, the elements of which are
called agents. A multi-agent reaction system (MARS) is a tuple D = (S, {Ai}i∈A),
where S is a finite nonempty set, and Ai ⊆ rac(S) for each i ∈ A.

As with reaction systems, given a MARS D, we refer to S as D’s background set.
Throughout this chapter, A = {1, . . . ,m} is a fixed set of agents, unless it is
specified otherwise. Each agent maintains its own local state, and the tuples of

StD = 2S × · · · × 2S︸ ︷︷ ︸
m times

are called the states of D.

66

At each transition from a global state to its successor, the environment provides
a MARS with a context. Each context contains a set of entities for each agent, and
specifies the activated agents. The contexts are defined as pairs CtD = StD × 2A,
and we use Cc and Ca to respectively denote the first and the second component
of a context C ∈ CtD. Thus Cc represent a tuple of sets of entities provided by
the environment, and Ca denotes the activated agents.

The evolution of a MARS in an unconstrained environment is captured by
a suitably redefined notion of an interactive process, where the activated agents
combine (share) their local states to derive the next local states.

For dealing with tuples we use the following notation: if x = (x1, x2, . . . , xn) is
a tuple, then x[i] = xi, for every i ≤ n. With ∅m we denote the tuple consisting
of m empty sets.

We now introduce the notion of an interactive process for MARS.

Definition 4.2.2. Let D = (S, {Ai}i∈A) be a MARS. An n-step interactive process
in D is π = (γ, δ), where:

– γ = (C0,C1, . . . ,Cn) and δ = (D0,D1, . . . ,Dn),

– C0,C1, . . . ,Cn ∈ CtD,

– D0,D1, . . . ,Dn ∈ StD with D0 = ∅m,

– for each k ∈ {0, . . . , n− 1} and each i ∈ A:

Dk+1[i] =

{
resAi

(
Cc
k[i] ∪

⋃
j∈Ca

k
Dk[j]

)
if i ∈ Ca

k

Dk[i] if i 6∈ Ca
k

.

Now we give an intuition for the above definition. For an activated agent i ∈ A,
i.e., i ∈ Ca

k, to calculate its local successor state Dk+1[i], we take its context
set Cc

k[i] and the union of all the local states of the activated agents (state sharing).
If i ∈ A is not activated, i.e., i 6∈ Ca

k, then the local state Dk[i] remains unchanged,
i.e., Dk+1[i] = Dk[i].

Example 4.2.3. Let us consider a simple example where two agents synchronise
to produce an entity by combining their local states. Let D = (S, {A1, A2, A3}),
where:

– S = {e1, e2, e3, e4, ?},
– A1 = {({e1}, {?}, {e2})},
– A2 = {({e2}, {?}, {e3})},
– A3 = {({e4}, {?}, {e5})}.

The entity ? is used as a dummy inhibitor. Consider the process π = (γ, δ) in D such
that γ = (C0,C1,C2) and δ = (D0,D1,D2) where Ci and Di for i ∈ {0, . . . , 2}
are defined as follows:

67

i Ci Di

0 (({e1},∅, {e4}), {1, 3}) ∅3

1 (∅3, {1, 2}) ({e2},∅, {e5})
2 (∅3,∅) (∅, {e3}, {e5})

We begin with the state D0 = ∅3 and the context C0 = (({e1},∅, {e4}), {1, 3}),
where the agents 1 and 3 are active and receive e1 and e4, respectively. By
combining the local states of 1 and 3 we get ∅. As the result, we get the state D1 =
({e2},∅, {e5}), where resA1({e1} ∪∅) = {e2} is the local state of the agent 1 and
resA3({e4} ∪ ∅) = {e5} is the local state of the agent 3. The local state of the
inactive agent 2 remains the same as in D0, i.e., ∅.

In the next step, i.e., to obtain D2, we consider C1 = (∅3, {1, 2}) and D1

calculated in the previous step. The context C1 indicates that 1 and 2 are the
active agents and they receive no entities, i.e., their the context sets are empty. To
calculate the local states of D2, we need to combine the local states of the active
agents from D1, obtaining the set {e2, e5}. For each active agent, we take the
union of its context set with the combined local states. As the result, we get the
state D2 = (∅, {e3}, {e5}), where resA1(∅∪ {e2, e5}) = ∅ is the new local state of
the agent 1 and resA2(∅ ∪ {e2, e5}) = {e3} is the new local state of the agent 2.
The local state of the agent 3 remains unchanged from D1, i.e., it retains the
previously produced entity e5 without any reaction being executed locally. Notice
that e2 is required for e3 to be produced in 2 and the entity is provided by 1 by
sharing the local states of the active agents.

The context C2 is defined only for completeness and it could be used only to
calculate the successor of D2.

Interactive processes for MARS capture all possible evolutions of a MARS. In
practice, however, the behaviour of an environment is constrained and may depend
on the current state of the MARS. We capture such an environment through the
notion of an extended context automaton, which is a variant of context automaton
where the transitions between the states are guarded by formulae restricting the
allowed transitions for local states of the agents.

Definition 4.2.4. The state constraints SCD are Boolean formulae with propo-
sitions in the form of i.ent , where i ∈ A and ent ∈ S. Their grammar is as
follows:

sc ::= true | i.ent | ¬sc | sc ∨ sc.

Definition 4.2.5. The fact that sc ∈ SCD holds in W ∈ StD is denoted by
W |=sc sc. The satisfaction relation |=sc is defined as follows:

– W |=sc true,

– W |=sc i.ent iff ent ∈W[i],

– W |=sc ¬sc iff W 6|=sc sc,

68

– W |=sc sc1 ∨ sc2 iff W |=sc sc1 or W |=sc sc2.

Definition 4.2.6. An extended context automaton (ECA) over a MARS D, is a
triple E = (Q, qinit , R) where:

– Q is a finite set of locations,

– qinit ∈ Q is the initial location, and

– R ⊆ Q× SCD × CtD ×Q is a transition relation.

For (q, sc,C, q′) ∈ R we also write q
sc,C−−→ q′. An extended context automaton

over D is simply called extended context automaton if D is clear from the context.

We say that E is progressive if for all q ∈ Q and W ∈ StD there exist sc ∈ SCD,
C ∈ CtD, and q′ ∈ Q such that (q, sc,C, q′) ∈ R and W |=sc sc.

We formalise the notion of a MARS evolving in an environment provided by a
progressive ECA.

Definition 4.2.7. A context-restricted multi-agent reaction system (CRMARS) is
a pair cr-D = (D,E) such that D is a MARS and E is a progressive ECA.

The set of states of cr-D is defined as Stcr-D = StD × Q. Let S ∈ Stcr-D
and S = (W, q), then we write D(S) for W and E(S) for q.

In CA (Definition 4.1.1) we assume that the transition relation is serial. This
allows us to avoid the situation where ‘the environment dies’, i.e., where the context
automaton stops providing contexts to the reaction system. Similarly, given
a CRMARS, we assume that the ECA is progressive. In ECAs, for a transition to
be enabled, the state constraint associated with the transition must be satisfied.
Checking progressiveness of an ECA amounts to checking, if for each location and
each W ∈ StD there exists a transition for which its state constraint is satisfied.
This means that checking if an ECA is progressive could be involved. Therefore,
we take a different approach and instead of checking if a given ECA is progressive,
we construct a corresponding progressive ECA.

Progressiveness can be easily imposed on any extended context automaton
E = (Q, qinit , R). Let ⊥ 6∈ Q be a location, Q′ = Q ∪ {⊥}, and let prg(E) =
(Q′, qinit , R′) be an ECA such that R′ = R ∪R⊥ ∪ {(⊥, true, (∅m,∅),⊥)}, where
R⊥ = {(q,¬scq, (∅m,∅),⊥) | q ∈ Q} and scq =

∨
{sc | (q, sc,C, q′) ∈ R}, for

every q ∈ Q.
In the above construction, we add a special location ⊥ with a self-loop, and for

each transition we add an additional transition with the state constraint negated.
The added transitions lead to ⊥, provide empty contexts, and do not activate any
agents.

The following result follows immediately from the above construction.

Lemma 4.2.8. prg(E) is a progressive ECA, for every E.

Definition 4.2.9. Let cr-D = (D,E) be a CRMARS such that D = (S, {Ai}i∈A)
and E = (Q, qinit , R). An n-step interactive process in cr-D is π = (ζ, γ, δ), where:

69

– ζ = (q0, q1, . . . , qn), γ = (C0,C1, . . . ,Cn), and δ = (D0,D1, . . . ,Dn),

– q0, q1, . . . , qn ∈ Q with q0 = qinit ,

– C0,C1, . . . ,Cn ∈ CtD,

– D0,D1, . . . ,Dn ∈ StD with D0 = ∅m,

– for each k ∈ {0, . . . , n − 1} there exists sc ∈ SCD such that Dk |=sc sc
and (qk, sc,Ck, qk+1) ∈ R and for each i ∈ A:

Dk+1[i] =

{
resAi(C

c
k[i] ∪

⋃
j∈Ca

k
Dk[j]) if i ∈ Ca

k,

Dk[i] if i 6∈ Ca
k.

Example 4.2.10. We now introduce the train-gate-controller system (tgc) mod-
elled using CRMARS. It is a commonly considered benchmark when dealing with
multi-agent systems [Lomuscio et al., 2009, Męski et al., 2014b]. It consists ofm ≥ 2
trains trying to access a tunnel and a controller that regulates access to the tunnel.
At any given time at most one train is allowed in the tunnel. The set of agents
is defined as A = {t1, . . . , tm}. In this model, the controller is modelled in the
context automaton and there is no interaction between the agents. We define the
background set of the MARS modelling the system:

S = {req , allowed , in, out , leave, ?}.

For each train i ∈ A we define the set of its reactions as Ai = {atr1 , atr2 , atr3 , atr4 ,
atr5 }, where the reactions are defined as follows:

– atr1 = ({out}, {?}, {approach}),
– atr2 = ({approach}, {req}, {req}),
– atr3 = ({allowed}, {?}, {in}),
– atr4 = ({in}, {?}, {out , leave}),
– atr5 = ({req}, {in}, {req}).

The multi-agent reaction system is defined as Dtgc = (S, {Ai}i∈A).
Now we give an intuition for the functioning of the system and the interpretation

of the entities used. Initially all the trains are outside of the tunnel and are not
trying to access it, which is indicated by the presence of out . The agent modelling
a train approaching the tunnel produces approach (atr1). Any train may request
access to the tunnel by producing the entity req (atr2). If access to the tunnel
is requested and, provided the tunnel is empty, it is granted in the next step
to one of the processes making the request via a nondeterministic choice in the
context automaton. If a train is allowed to access the tunnel the context automaton
provides it with the allowed entity as the context and then the agent produces in
as a consequence, meaning it has entered the tunnel (atr3). When a train leaves the
tunnel it produces leave and out (atr4). The train requesting access to the tunnel

70

keeps producing the req entity until it enters the tunnel, i.e., the production of req
is inhibited by the in entity (atr5).

To define a context-restricted multi-agent reaction system we introduce the
context automaton Etgc = (Q, q0, R) such that Q = {q0, qgreen , qred}, and the
set R consists of the following transitions:

1. q0
true,(({out},...,{out}),{t1,...,tm})−−−−−−−−−−−−−−−−−−−−→ qgreen ,

2. for each ti ∈ A:

(a) qgreen
sc,(∅m,{ti})−−−−−−−→ qgreen , where sc = ¬

∨
j∈A tj .req ,

(b) qgreen
ti.req,C−−−−−→ qred , where: Ca = {ti} and for each tj ∈ A:

Cc[j] =

{
{allowed} j = i,

∅ j 6= i,

(c) qred
sc,(∅m,{ti})−−−−−−−→ qred , where sc = ¬

∨
tj∈A tj .leave,

(d) qred
ti.leave,(∅m,{ti})−−−−−−−−−−−→ qgreen .

The transition (1) in the context automaton provides the set {out} as the initial
context sets to all the agents. When the trains are not requesting access to the
tunnel, in (2a) the automaton nondeterministically selects and provides the empty
context set to an agent which executes its actions. The transition (2b) allows
one of the trains to enter the tunnel, when it is requesting access and the tunnel
is empty, i.e., the automaton is in qgreen . The mutual exclusion is enforced here
by using the activated agents set Ca, where only one of the requesting agents is
activated, and it receives the allowed entity. In (2c), if the trains are not leaving
the tunnel, then the automaton activates and provides the empty context set to a
nondeterministically selected agent, allowing it to perform an action. If there is a
train leaving the tunnel, the automaton transitions from qred to qgreen (2d).

Finally, the CRMARS for tgc is defined as:

cr-Dtgc = (Dtgc, prg(Etgc)).

Example 4.2.11. We now present a variant of the model from Example 4.2.10,
where the controller is modelled as an agent, and the system relies entirely on the
communication between the agents. The system consists of n ≥ 2 trains. The
set of agents is defined as A = {t1, . . . , tn, c} and m = |A|. The agents t1, . . . , tn
represent trains and c is the controller agent. We define the background set of
the MARS:

S = {req , lock , in, out , leave, ?}.
For each train i ∈ {t1, . . . , tn} we define the set of its reactions as Ai = {atr1 , atr2 ,
atr3 , a

tr
4 , a

tr
5 }, where the reactions are defined as follows:

71

– atr1 = ({out}, {?}, {approach}),

– atr2 = ({approach}, {req}, {req}),

– atr3 = ({req}, {lock}, {in}),

– atr4 = ({in}, {?}, {out , leave}),

– atr5 = ({req}, {in}, {req}).

The set An = {actr1 , actr2 } consists of the reactions for the controller agent that are
defined as follows:

– act1 = ({lock}, {leave}, {lock}),

– act2 = ({req}, {?}, {lock}).

The reaction act1 ensures the tunnel is locked until the train that is currently inside
leaves. The reaction act2 immediately acquires the lock reserving its exclusive access
to the tunnel after a train requests access to it. Finally, the multi-agent reaction
system modelling the protocol is defined as:

Dtgc = (S, {Ai}i∈A).

To define the context-restricted multi-agent reaction system we introduce the
extended context automaton Etgc = (Q, q0, R) such that Q = {q0, q1}, and the
set R consists of the following transitions:

– q0
true,(x,{t1,...,tn,c})−−−−−−−−−−−−→ q1, where x is an m-tuple such that x[i] = {out} for

i ∈ {1, . . . , n} and x[m] = ∅,

– q1
true,(∅m,{ti,c})−−−−−−−−−−→ q1 for all ti ∈ {t1, . . . , tn}.

Such a definition of the context automaton allows for the agents to communicate
with the controller in pairs only. Note that Etgc can be regarded as an extended
state-oblivious context controller [Kleijn et al., 2018]. Finally, the CRMARS for
the train-gate-controller system is defined as cr-Dtgc = (Dtgc, prg(Etgc)).

If access to the critical section is requested then, provided the tunnel is empty,
it is granted in the next step to one of the agents making the request. The access is
provided via a nondeterministic choice in the context automaton, and the requesting
agent produces in. This results in producing lock entity by the controller that
prevents other processes from entering the critical section. When a train leaves the
tunnel it produces the leave entity, which inhibits the controller from sustaining
the lock entity.

72

4.3 Logic for temporal-epistemic properties

The language of computation tree logic of knowledge for reaction systems, rsctlk
for short, is defined by the following grammar:

φ := i.ent | ¬φ | φ ∨ φ | φ ∧ φ | EscXφ | EscGφ | Esc[φUφ] | Kiφ | CΓφ,

where i ∈ A, ent ∈ S, sc ∈ SCD and Γ ⊆ A.
The aim of the logic is to resemble ctlk [Penczek and Lomuscio, 2003], while

retaining the expressive power of rsctl. The grammar uses the propositional and
temporal operators of rsctl (Chapter 3). In place of propositional variables we use
i.ent , which allows for specifying entities in local states of the individual agents.
Additionally, the logic uses epistemic operators for specifying knowledge properties:
the operators Kiφ and CΓφ are the existential counterparts of the universal Kiφ
and CΓφ, respectively, which we derive later. Here we provide the intuitive meaning
of the universal operators: Kiφ means the agent i ∈ A knows φ and CΓφ means φ
is common knowledge amongst the agents of Γ.

In contrast to rsctl defined in Chapter 3, to restrict the scope of the path
quantifiers in this logic we use state constraints. One advantage of such an approach
is the ability to obtain compact representations for families of sets of entities (sets
of the allowed actions) under path quantifiers.

Definition 4.3.1. Let φ be an rsctlk formula. Then, d(φ) is the depth of φ and
is defined recursively as follows:

– if φ = i.ent , where i ∈ A and ent ∈ S, then d(φ) = 1,

– if φ ∈ {¬φ′,EscXφ
′,EscGφ

′,Kiφ
′,CΓφ

′}, then d(φ) = d(φ′) + 1,

– if φ ∈ {φ′ ∨ φ′′, φ′ ∧ φ′′,Esc[φ
′Uφ′′]}, then d(φ) = max({d(φ′), d(φ′′)}) + 1.

Definition 4.3.2. Let cr-D = (D,E) where D = (S, {Ai}i∈A) is a multi-agent
reaction system and E = (Q, qinit , R) is an extended context automaton over D.
The model for cr-D is a tupleMcr-D = (Stcr-D,Sinit ,−→), where:

1. Stcr-D is the set of states ofMcr-D,

2. Sinit =
(
qinit , (∅, . . . ,∅)

)
∈ Stcr-D is the initial state,

3. −→ ⊆ Stcr-D × CtD × Stcr-D is the transition relation such that for all
S,S′ ∈ StD, q, q′ ∈ Q, C ∈ CtD: ((S, q),C, (S′, q′)) ∈ −→ iff

(a) (q, sc,C, q′) ∈ R for some sc ∈ SCD and S |=sc sc,

(b) for each k ∈ A:

– S′[k] = resAi

(
Cc[k] ∪

⋃
j∈Ca

S[j]

)
if k ∈ Ca,

– S′[k] = S[k] if k 6∈ Ca.

73

Each element (S,C,S ′) ∈ −→ is denoted by S C−→ S ′.

The following lemma follows from Definition 4.3.2 and seriality of the transition
relation of E.

Lemma 4.3.3. For each S ∈ Stcr-D there exists C ∈ CtD and S ′ ∈ Stcr-D such
that S C−→ S ′.

Definition 4.3.4. Let cr-D = (D,E). A path over sc ∈ SCD in Mcr-D is an
infinite sequence σ = (S0,C0,S1,C1, . . .) such that Si

Ci−→ Si+1 and Cc
i |=sc sc for

each i ≥ 0.

The set of all the paths over sc is denoted by Πinf
sc . For each i ≥ 0, the ith state

of the path σ is denoted by σs(i) and the ith action of the path σ is denoted by σa(i).
By Πinf

sc (S) we denote the set of all the paths over sc that start in S ∈ Stcr-D, i.e.,
Πinf

sc (S) = {σ ∈ Πinf
sc | σs(0) = w}.

Let S,S ′ ∈ Stcr-D and sc ∈ SCD. We say that S ′ is an sc-successor of S
(denoted by S −→sc S ′) iff there exists C ∈ CtD such that Cc |=sc sc and S C−→ S ′.
The relation � ⊆ Stcr-D × Stcr-D is defined as follows:

(S,S ′) ∈� iff there exists C ∈ CtD such that S C−→ S ′.

The relation �r ⊆ Stcr-D × Stcr-D is the transitive closure of �.

Definition 4.3.5. A state S ∈ Stcr-D is reachable iff Sinit�rS.

Then, Reach(cr-D) ⊆ Stcr-D is the set of the reachable states ofMcr-D, i.e.,

Reach(cr-D) = {S ∈ Stcr-D | Sinit�rS}.

We also write Reach(Mcr-D) to denote Reach(cr-D).

Definition 4.3.6. Let cr-D = (D,E) where D = (S, {Ai}i∈A). For each agent
i ∈ A, the epistemic indistinguishability relation ∼i⊆ Stcr-D×Stcr-D is defined by:

S ∼i S ′ iff D(S)[i] = D(S ′)[i] and S,S ′ ∈ Reach(cr-D).

For a group of agents Γ ⊂ A, the union of the indistinguishability relations of Γ is
defined as ∼E

Γ =
⋃
i∈Γ ∼i. By ∼C

Γ we denote the transitive closure of ∼E
Γ .

If S ∼i S ′ for some i ∈ Γ, we say S is a Γ-neighbour, or an i-neighbour, of S ′.

Definition 4.3.7. Let Mcr-D = (Stcr-D,Sinit ,−→) be a model for cr-D, S ∈
Stcr-D be a state ofMcr-D, and φ be an rsctlk formula. The fact that φ holds
in S is denoted byMcr-D,S |= φ, or simply S |= φ whenMcr-D is clear from the
context. The relation |= is defined recursively as follows:

74

S |= i.ent iff ent ∈ D(S)[i],
S |= ¬φ iff S 6|= φ,
S |= φ ∨ ψ iff S |= φ or S |= ψ,
S |= φ ∧ ψ iff S |= φ and S |= ψ,

S |= EscXφ iff (∃σ ∈ Πinf
sc (S)) σs(1) |= φ,

S |= EscGφ iff (∃σ ∈ Πinf
sc (S))(∀i ≥ 0)(σs(i) |= φ

)
,

S |= Esc[φUψ] iff (∃σ ∈ Πinf
sc (S))(∃i ≥ 0)

(
σs(i) |= ψ

and (∀0 ≤ j < i) σs(j) |= φ
)
,

S |= Kiφ iff (∃S ′ ∈ Stcr-D)(S ∼i S ′ and S ′ |= φ),

S |= CΓφ iff (∃S ′ ∈ Stcr-D)(S ∼C
Γ S ′ and S ′ |= φ).

Next, we define derived operators, which also introduce the universal path
quantifier Asc meaning ‘for all the paths over sc’:

– true
def
= i.ent ∨ ¬i.ent for any i ∈ A, ent ∈ S,

– φ⇒ ψ
def
= ¬φ ∨ ψ,

– EscFφ
def
= Esc[trueUφ],

– AscFφ
def
= ¬EscG¬φ,

– AscXφ
def
= ¬EscX¬φ,

– AscGφ
def
= ¬Esc[trueU¬φ].

Moreover, we assume sc = true when sc is not explicitly specified for any of
the rsctlk operators, e.g., EFφ def

= EtrueFφ. We also define the following derived
epistemic operators:

– Kiφ
def
= ¬Ki¬φ,

– CΓφ
def
= ¬CΓ¬φ,

– EΓφ
def
=
∨
i∈Γ Kiφ, and

– EΓφ
def
= ¬EΓ¬φ.

We say that an rsctlk formula φ holds in the modelMcr-D if and only if φ holds
in the initial state ofMcr-D:

Mcr-D |= φ iffMcr-D,Sinit |= φ.

Example 4.3.8. Here we specify some rsctlk properties of the tgc system
presented in Example 4.2.10.

1. It is possible for each train to eventually enter the tunnel, in one step from
receiving the allowed entity in the context:

φ1 =
∧

ti∈{t1,...,tm}

EF (Eti.allowedX (ti.in)) .

75

2. In all the states of all the paths, if the ith train is in the tunnel, then it knows
that no other train is in the tunnel, i.e., it is the only train that is in the
tunnel:

φ2 = AG

ti.in =⇒ Kti

 ∧
tj∈{t1,...,tm},

i 6=j

¬tj .in

 .

3. We take all the states of all the paths such that the trains do not receive the
allowed entity, with the exception of the ith train. In these states, the ith

train knows that no other train is in the tunnel:

φ3 = AscG

Kti

 ∧
tj∈{t1,...,tm}

j 6=i

¬tj .in

 ,

where:
sc =

∧
tj∈{t1,...,tm}

j 6=i

¬tj .allowed .

4. In all the states of all the paths the ith train knows about the mutual exclusion
property of the access to the tunnel:

φ4 = AG

Kti

∧
tj ,tk∈{t1,...,tm}

j<k

¬ (tj .in ∧ tk.in)

 .

5. In all the states of all the paths if the ith train is in the tunnel then it is a
common knowledge amongst all the agents that it is the only train in the
tunnel:

φ5 = AG

ti.in =⇒ C{t1,...,tm}

 ∧
tj∈{t1,...,tm}

i6=j

¬tj .in

 .

4.4 Model checking for rsctlk

In this section we describe a model checking method for rsctlk, which is based
on computing fixed points. To calculate the set of the reachable states and the
results for temporal operators we use algorithms similar to the ones presented in

76

Section 3.4. The difference is in how the set of successor and predecessor states
are defined. In this section we restrict the sets of states to only those, which are
obtained via transitions restricted with state constraints, whereas in Chapter 3
we used sets of actions. Firstly, we describe an algorithm for computing all the
reachable states ofMcr-D and, later on, we provide a method for computing the
set of states, where a given rsctlk formula holds.

Let Mcr-D = (Stcr-D,Sinit ,−→) be a model. We define the function that
assigns the set of the sc-successors to the states in W ⊆ Stcr-D:

postsc(W) = {S ′ ∈ Stcr-D | (∃S ∈W) S −→sc S ′)},

where sc ∈ SCD.
The set Reach(cr-D) ⊆ S can be characterised by the following fixed point

equation:

Reach(cr-D) = µX.
(
Sinit ∪X ∪ posttrue(X)

)
.

Algorithm 8: The algorithm for computing the set Reach(cr-D)

1: X := Sinit
2: Xp := ∅
3: while X 6= Xp do
4: Xp := X
5: X := X ∪ postCtD(X)
6: end while
7: return X

Algorithm 8 implements the fixed-point computation of the reachable states
for a given modelMcr-D = (Stcr-D,Sinit ,−→). On Line 7 the procedure returns
the set X, which is equal to Reach(cr-D).

The set of all the reachable states of Mcr-D in which φ holds is denoted
by JMcr-D, φK or by JφK ifMcr-D is implicitly understood. ForW ⊆ Reach(cr-D)
we define a function that assigns the set of the sc-predecessors to W :

pre∃sc(W)
def
= {S ∈ Reach(cr-D) | (∃S ′ ∈W) S −→sc S ′)}.

Let φ1, φ2 be some rsctlk formulae. For the non-epistemic formulae of rsctlk

77

the sets of states in which they hold are defined similarly as in Section 3.4:

J¬φ1K
def
= Reach(cr-D) \ Jφ1K,

Jφ1 ∨ φ2K
def
= Jφ1K ∪ Jφ2K,

Jφ1 ∧ φ2K
def
= Jφ1K ∩ Jφ2K,

JEscXφ1K
def
= pre∃sc(Jφ1K),

JEscGφ1K
def
= νX.

(
Jφ1K ∩ pre∃sc(X)

)
,

JEsc[φ1Uφ2]K def= µX.
(
Jφ2K ∪ (Jφ1K ∩ pre∃sc(X))

)
.

The above definitions differ from the ones presented in Section 3.4 in how the
predecessors are defined – here we restrict the set of predecessors with state
constraints. See Algorithm 2 and 3 in Chapter 3 for the pseudo-code of the
procedures for calculating JEscGφ1K and JEsc[φ1Uφ2]K, respectively.

For a group of agents Γ ⊆ A we introduce the set of Γ-neighbours of the states
in W :

nbΓ(W)
def
= {S ∈ Reach(cr-D) | (∃S ′ ∈W)(∃i ∈ Γ) S ∼i S ′}.

The sets for the epistemic operators [Fagin et al., 2003] are defined as follows:

JKiφ1K
def
= nb{i}(Jφ1K),

JCΓφ1K
def
= µX. (Jφ1K ∪ nbΓ(X)) .

To compute the set of states for Kiφ1 we find all the i-neighbours of the states in
which φ1 holds. In the case of CΓφ1, to obtain the set of states in which the formula
holds, we calculate the least fixed point. The procedures for JKiφ1K and JCΓφ1K
are presented in Algorithm 9 and 10, respectively.

Algorithm 9: checkNK(i, φ1)

1: X := checkrsctlk(φ1)
2: return nb{i}(X)

The overall procedure checkrsctlk(φ) for computing the set of states in which
an rsctlk formula φ holds is outlined in Algorithm 11.

Definition 4.4.1. Given cr-D and an rsctlk formula φ, rsctlk model checking
is the problem of deciding whetherMcr-D |= φ.

Lemma 4.4.2. The rsctlk model checking problem is pspace-hard.

78

Algorithm 10: checkNC(Γ, φ1)

1: X := ∅, Xp := Reach(cr-D)
2: Yφ1 = checkrsctlk(φ1)
3: while X 6= Xp do
4: Xp := X
5: X := nbΓ(Yφ1 ∪X)
6: end while
7: return X

Algorithm 11: checkrsctlk(φ)

1: if φ = i.ent then
2: return {S ∈ Stcr-D | ent ∈ D(S)[i]} ∩ Reach(cr-D)
3: else if φ = ¬φ1 then
4: return Reach(cr-D) \ checkrsctlk(φ1)
5: else if φ = φ1 ∨ φ2 then
6: return checkrsctlk(φ1) ∪ checkrsctlk(φ2)
7: else if φ = EscXφ1 then
8: return pre∃sc(checkrsctlk(φ1))
9: else if φ = EscGφ1 then
10: return checkEG(sc, φ1)
11: else if φ = Esc[φ1Uφ2] then
12: return checkEU(sc, φ1, φ2)
13: else if φ = Kiφ1 then
14: return checkNK(i, φ1)
15: else if φ = CΓφ1 then
16: return checkNC(Γ, φ1)
17: end if

79

Proof. Follows from the fact that qsat can be reduced to the rsctlk model
checking problem. It is easy to see that every initialised context restricted reaction
system (ICRRS) can be translated into CRMARS with a single agent and rsctl
is a subset of rsctlk. Therefore, the reduction is similar to the one for ICRRS
and rsctl (Chapter 3).

Lemma 4.4.3. The rsctlk model checking problem is in pspace.

Proof. We show a nondeterministic algorithm for deciding whetherMcr-D |= φ,
which requires at most polynomial space in the size of the input, i.e., the formula φ
and cr-D. The proof is similar to the one for rsctl and initialised context-restricted
reaction systems.

The algorithm uses a recursive procedure label(S, φ), which returns true iff
Mcr-D,S |= φ, where S ⊆ Stcr-D; otherwise, it returns false. The encoding
of each state requires space O(|S| · |A|) and each successor can be generated in
space O(|S| · |A|), whereas the overall algorithm requires space O

(
|S| · |A| · d(φ)

)
.

The proof follows by the induction on the length of the formula φ. The cases in
which φ does not contain any temporal and epistemic operators, or φ = EscXφ1,
are straightforward.

The intuition for the nondeterministic procedures for checking φ = Esc[φ1Uφ2]
and φ = EscGφ1 in S ⊆ Stcr-D are outlined in Algorithm 12 and 13, respectively.
The algorithms are similar to the ones presented in the proof of Lemma 3.4.2.
However, the successor state is guessed differently: the algorithms nondetermin-
istically select a state and a context C ∈ CtD of a path over sc (e.g., Line 10 of
Algorithm 12), verifying at each step if the state chosen is an sc-successor of the
previous state via the action C, and if φ1 holds in that state. If not, then a context
and a state are selected again.

The intuition for the procedure for checking φ = Kiφ1 in S ∈ Stcr-D is outlined
in Algorithm 14. The procedure nondeterministically selects a state Ŝ and checks
if S ∼i Ŝ and if Ŝ is reachable in Mcr-D. The reachability is tested by using
the label procedure to check if EFφD(Ŝ)

holds in the initial state of the model,

where φD(Ŝ)
is the formula corresponding to the state D(Ŝ), i.e., where the state is

encoded using the rsctlk syntax.
The intuition for the procedure for checking φ = CΓφ1 in S ∈ Stcr-D is outlined

in Algorithm 15. The algorithm searches for a path via the relation ∼C
Γ from S to

a state in which φ1 holds and it is a reachable state of the model. Initially, Ŝ is set
to S. If φ1 holds in Ŝ and the state is reachable, then the algorithm returns true;
otherwise it nondeterministically selects Ŝ ′ ∈ Stcr-D accessible via ∼i for i ∈ Γ
and then it jumps to the beginning of the procedure and checks if φ1 holds in that
state.

The procedure returns false if no sequence for which the procedure returns true
could be found. To ensure the procedure terminates for each sequence guessed, the
procedure nondeterministically selects a state Ŝr of that sequence. The guessing
of the sequence stops when Ŝr is the newly guessed state. For simplicity of the

80

Algorithm 12: Nondeterministic procedure for checking Esc[φ1Uφ2]

1: Ŝ := S
2: checking :
3: if label(Ŝ, φ2) then
4: return true
5: end if
6: if ¬label(Ŝ, φ1) then
7: return false
8: end if
9: guessing :
10: guess Ŝ ′ ∈ Stcr-D and C ∈ CtD
11: if Cc 6|=sc sc then
12: goto guessing
13: else if ¬label(Ŝ ′, φ1) then
14: goto guessing
15: else if

(
(S,C, Ŝ ′) 6∈ −→

)
then

16: goto guessing
17: end if
18: Ŝ := Ŝ ′
19: goto checking

presentation, this part of the procedure is not included in Algorithm 12 and
Algorithm 13. We do not explicitly refer to the context automaton of cr-D in
the algorithms as it does not affect the complexity considerations. However, when
selecting a CRMARS state Ŝ, in fact, a state of D and a location of E are selected.

To verify if the rsctlk formula φ holds in the modelMcr-D, the label procedure
is called for the initial state: Mcr-D |= φ iff label(Sinit , φ).

The procedure is called recursively for each subformula of φ. At a given recursion
level the procedure requires only a constant number of variables to be stored.

The total space requirement depends on O(d(φ)) calls of the label procedure,
where a single call needs space O(|S| · |A|). The space requirement for the procedure
is not affected by the size of sc as it is only used in nondeterministic choices. For
each call of the label procedure, i.e., for each nesting level of φ, the label procedure
is called recursively at most twice, as each operator of rsctlk has at most two
arguments. Thus, the overall space requirement of the procedure is O

(
|S|·|A|·d(φ)

)
.

Therefore, by Savitch’s theorem, the deterministic algorithm can be imple-
mented in polynomial space.

The following theorem follows directly from Lemma 4.4.2 and Lemma 4.4.3.

Theorem 4.4.4. The rsctlk model checking problem is pspace-complete.

81

Algorithm 13: Nondeterministic procedure for checking EscGφ1

1: Ŝ := S
2: L := false
3: if ¬label(Ŝ, φ1) then
4: return false
5: end if
6: guessing :
7: guess Ŝ ′ ∈ Stcr-D and C ∈ CtD
8: if Cc 6|=sc sc then
9: goto guessing

10: else if ¬label(Ŝ ′, φ1) then
11: goto guessing
12: else if (S,C, Ŝ ′) 6∈ −→ then
13: goto guessing
14: end if
15: if ¬L then
16: guess γ ∈ {true, false}
17: if γ then
18: Ŝl := Ŝ ′
19: L := true
20: end if
21: else
22: if Ŝ ′ = Ŝl then
23: return true
24: end if
25: end if
26: Ŝ := Ŝ ′
27: goto guessing

Algorithm 14: Nondeterministic procedure for checking Kiφ1

1: guessing :
2: guess Ŝ ∈ Stcr-D
3: if ¬(label(Sinit ,EFφŜ) ∧ S ∼i Ŝ) then
4: goto guessing
5: else
6: return true
7: end if

82

Algorithm 15: Nondeterministic procedure for checking CΓφ1

1: Ŝ := S
2: checking :
3: if label(Ŝ, φ1) and label(Sinit ,EFφŜ) then
4: return true
5: end if
6: guessing :
7: guess Ŝ ′ ∈ Stcr-D and i ∈ Γ
8: if ¬(Ŝ ∼i Ŝ ′) then
9: goto guessing
10: end if
11: Ŝ := Ŝ ′
12: goto checking

4.5 Bounded model checking using bdds

Similarly as for rsctl (Section 3.5), we provide bdd-based bounded model checking
for a fragment of rsctlk. We define rsectlk, which is the existential fragment of
rsctlk, where negation can be applied only to the entities belonging to agents.
This fragment of rsctlk is defined by the following grammar:

i.ent | ¬i.ent | φ ∨ φ | φ ∧ φ | EscXφ | EscGφ | Esc[φUφ] | Kiφ | CΓφ,

where i ∈ A, ent ∈ S, sc ∈ SCD and Γ ⊆ A.

Definition 4.5.1. Let cr-D = (D,E) be a CRMARS and let

Mcr-D = (Stcr-D,Sinit ,−→)

be the model for cr-D. Let U ⊆ Stcr-D be a subset of the states of Mcr-D
containing all the initial states, i.e., Sinit ⊆ U. The submodel subU (Mcr-D)
generated fromMcr-D by U is defined as subU (Mcr-D) = (U,Sinit ,−→U), where:
−→U = −→∩ (U × CtD × U).

Similarly to bmc for rsctl (Section 3.5), with the above restriction some states
in the submodel may not have successors, which are also in U . Therefore, we define
a path to be an infinite or a maximial finite sequence.

Definition 4.5.2. Let cr-D = (D,E) be a CRMARS andMcr-D be the model
for cr-D. Let U ⊆ Stcr-D such that subU (Mcr-D) is the submodel of Mcr-D
generated by U .

– A finite path over sc ∈ SCD in subU (Mcr-D) is a finite sequence σ = (S0,C0,

S1,C1, . . . ,Cn−1,Sn) of length n ∈ IN, such that Si
Ci−→U Si+1, Ci |=sc sc

for 0 ≤ i < n and the sequence is maximal, i.e., there does not exist Cn ∈ CtD

and Sn+1 ∈ U such that Cn |=sc sc and Sn
Ci−→U Sn+1.

83

– An infinite path over sc ∈ SCD in subU (Mcr-D) is an infinite sequence
σ = (S0,C0,S1,C1, . . .) such that Si

Ci−→U Si+1 and Cc
i |=sc sc for i ≥ 0.

If a sequence σ is a finite or an infinite path over sc ∈ SCD, we simply call it a path
over sc ∈ SCD. We define the length of σ as

len(σ) =

{
n+ 1 if σ is finite,
ω if σ is infinite.

We use notation for the sets of path indices introduced in Definition 3.5.3 and
we write Iσ for Iσ[0|len(σ)] and Iσ[0|0].

The set of all the paths over sc is denoted by Πsc. For each i ∈ Iσ, the ith state
of the path σ is denoted by σs(i), and for each i ∈ Iσ[0|−1] and the ith action of the
path σ is denoted by σa(i). By Πsc(S) we denote the set of all the paths over sc that
start in S ∈ Stcr-D, i.e., Πsc(S) = {σ ∈ Πsc | σs(0) = w}. The set of all the infinite
paths over sc that start in S is defined as Πinf

sc (S) = {σ ∈ Πsc(S) | len(σ) = ω}.
The epistemic indistinguishability relation uses the definition of the reach-

able states. The set Reach(subU (Mcr-D)) of the reachable states of the sub-
model subU (Mcr-D) is defined as Reach(subU (Mcr-D))

def
= Reach(Mcr-D) ∩ U .

For each agent i ∈ A, the epistemic indistinguishability relation ∼i⊆ U × U is
defined by: S ∼i S ′ iff D(S)[i] = D(S ′)[i] and S,S ′ ∈ Reach(subU (Mcr-D)).

Definition 4.5.3. Let cr-D = (D,E) be a CRMARS andMcr-D be the model
for cr-D. Let U ⊆ Stcr-D such that subU (Mcr-D) is the submodel of Mcr-D
generated by U . The fact that an rsectlk formula φ holds in S ∈ U is denoted by
subU (Mcr-D),S |= φ, or simply by S |= φ when subU (Mcr-D) is clear from the
context. The relation |= is defined recursively as follows:

S |= i.ent iff ent ∈ D(S)[i],
S |= ¬i.ent iff ent 6∈ D(S)[i],
S |= φ ∨ ψ iff S |= φ or S |= ψ,
S |= φ ∧ ψ iff S |= φ and S |= ψ,
S |= EscXφ iff (∃σ ∈ Πsc(S)) 1 ∈ Iσ and σs(1) |= φ,

S |= EscGφ iff (∃σ ∈ Πinf
sc (S))(∀i ∈ Iσ)(σs(i) |= φ

)
,

S |= Esc[φUψ] iff (∃σ ∈ Πsc(S))(∃i ∈ Iσ)
(
σs(i) |= ψ

and (∀0 ≤ j < i) σs(j) |= φ
)
,

S |= Kiφ iff (∃S ′ ∈ Stcr-D)(S ∼i S ′ and S ′ |= φ),

S |= CΓφ iff (∃S ′ ∈ Stcr-D)(S ∼C
Γ S ′ and S ′ |= φ).

It is easy to check that the above semantics for infinite paths is identical to the
one of Definition 4.3.7.

To implement bounded model checking on submodels ofMcr-D we use Algo-
rithm 7, which we recall as Algorithm 16, where we use the notation for CRMARS.

84

Algorithm 16: The bdd-based bmc algorithm for rsectlk
1: Reach := Sinit
2: Reachp := ∅
3: while Reach 6= Reachp do
4: if Sinit ⊆ JsubReach(Mcr-D), φK then
5: return true
6: end if
7: Reachp := Reach
8: Reach := Reach ∪ posttrue(Reach)
9: end while
10: return false

The algorithm operates on submodels of the modelMcr-D to verify an rsectlk
formula φ. The following lemma states that we can verify rsectlk formulae on
submodels of the original model.

Lemma 4.5.4. Let cr-D be a CRMARS, Mcr-D = (Stcr-D,Sinit ,−→) be the
model for cr-D, let φ be an rsectlk formula, and let S ∈ Stcr-D be some state
of the model. Then, M,S |= φ iff there exists U ⊆ Stcr-D such that S ∈ U and
subU (M),S |= φ.

Proof. →: In this direction, follows simply for U = Stcr-D.
←: The converse follows by induction on the length of the formula φ. The base
case is straightforward as the lemma follows directly for i.ent and ¬i.ent . We
assume the statement holds for the subformulae of φ.

Let U ⊆ Stcr-D, S ∈ U , and subU (M),S |= φ. We focus on the epistemic
operators. For the remaining operators the proof follows as for Lemma 3.5.6.

1. Let φ = Kiφ1 and i ∈ A. By the semantics of rsectlk we have that
there exists S ′ ∈ Stcr-D such that S ∼i S ′ and subU (M),S ′ |= φ1. By the
induction hypothesis and the definition of submodel (Definition 4.5.1), the
states S and S ′ exist inM, andM,S ′ |= φ1 and S ∼i S ′, thusM,S |= Kiφ1.

2. Let φ = CΓφ1 and Γ ⊆ A. By the semantics of rsectlk we have that
there exists S ′ ∈ Stcr-D such that S ∼C

Γ S ′ and subU (M),S ′ |= φ1. By the
induction hypothesis and the definition of submodel, the states S and S ′
exist inM, andM,S ′ |= φ1 and S ∼C

Γ S ′, thusM,S |= CΓφ1.

4.6 Boolean encoding

In this section we provide an encoding for the context-restricted multi-agent reaction
systems into Boolean formulae intended for symbolic model checking.

85

This encoding differs from the encoding for the models of rsctl presented in
Chapter 3. For the rsctlk models we need to represent the local states of all
the agents. In this chapter we also control the context sequences via an extended
context automaton and this involves encoding the local states of the automaton.
Moreover, we represent richer contexts that encode separate context sets for all
the agents, but also indicate, which agents are active. To this aim, for each agent
we introduce a variable indicating activity of the agent.

Let cr-D = (D,E) where D = (S, {Ai}i∈A) and E = (Q, qinit , R) is an ECA
over D. Then, Mcr-D = (Stcr-D,Sinit ,−→) is the model for cr-D. In the re-
mainder of this section we describe an encoding ofMcr-D. The elements of the
background set S are denoted by e1, . . . , en where n = |S|. The following sets of
propositional variables are used in the encoding:

P = {p1,1, . . . , p1,n, . . . , pm,1, . . . , pm,n}
PE = {pE1,1, . . . , pE1,n, . . . , pEm,1, . . . , pEm,n}
P′ = {p′1,1, . . . , p′1,n, . . . , p′m,1, . . . , p′m,n}
Pa = {pa1, . . . , pam}

The variables of P are used to encode the states of D. The actions representing
context entities are encoded with the variables of PE . To encode the successors in
the transition relation, we use the primed variables of P′. To distinguish active
and inactive agents in each step of the execution we use the set Pa of the activity
variables. The states of E are encoded using nE = dlog2 |Q|e variables. Therefore,
for the encoding of the locations of E we use the set Q = {q1, . . . , qnE

}. To encode
the successors in the transition relation of E we use the set Q′ = {q′1, . . . , q′nE

}
of the primed variables of Q. The set of the reactions of the jth component that
produce e ∈ S is defined as Prodj(e) = {a ∈ Aj | e ∈ Pa}, where j ∈ {1, . . . ,m}.
Additionally, we introduce the following vectors of variables:

p = (p1,1, . . . , p1,n, . . . , pm,1, . . . , pm,n)

pE = (pE1,1, . . . , p
E
1,n, . . . , p

E
m,1, . . . , p

E
m,n)

p′ = (p′1,1, . . . , p
′
1,n, . . . , p

′
m,1, . . . , p

′
m,n)

pa = (pa1, . . . , p
a
m)

Moreover, we define the following functions: m : S → P, m′ : S → P′, mE : S → PE ,
such that m(ei) = pi, m′(ei) = p′i, m

E(ei) = pEi , for all 1 ≤ i ≤ n. These functions
map the background set entities to the corresponding variables of the encoding.
For the encoding of E we use two additional vectors of variables: q = (q1, . . . , qnca),
q′ = (q′1, . . . , qnca). To denote an encoded location q ∈ Q of E we write e(q), and
to denote its primed encoding used to encode that q is a successor we write e′(q).
We introduce functions e : Q → B(Q) and e′ : Q → B(Q′), which map the states
of E and their successors to their encodings using unprimed and primed variables,
respectively. To encode the state constraints, which serve as transition guards of E

86

we introduce a function esc : SCD → B(P), which maps the state constraints to
their corresponding Boolean encodings over the set P of unprimed variables. We
do not define the function explicitly as its encoding is straightforward.

Single state. A state S ∈ Stcr-D is encoded as the conjunction of all the variables
corresponding to the entities that are in S, and the conjunction of all the negations
of the variables that are not in S:

StS(p) =
∧

1≤i≤m

 ∧
e∈S[i]

mi(e)

 ∧
 ∧
e∈(S\S[i])

¬mi(e)

 .

Sets of states. A setW ⊆ Stcr-D is encoded as the disjunction of all the encoded
states that are in Stcr-D:

SetStW (p) =
∨
S∈W

StS(p).

The sets of states are not directly encoded in the translation – we provide their
encoding only for completeness.

Contexts. A context C ⊆ CtD is encoded as follows:

CtC(pE ,pa) =
∧

1≤i≤m

 ∧
e∈Cc[i]

mEi (e)

 ∧
 ∧
e∈(S\Cc[i])

¬mEi (e)

∧

(∧
i∈Ca

pai

)
∧

 ∧
i∈(A\Ca)

¬pai

 .

Entity production condition. Let j ∈ A. A single entity e ∈ S can be
produced in the jth agent if there exists a reaction a ∈ Prodj(e) that is enabled,
that is, all of the variables corresponding to reactants of a (including the variables
representing the context) evaluate to true and all of the variables corresponding to
inhibitors of a (also including the variables representing the context) are false. For
the jth agent the formula encoding this is defined as follows:

– if Prodj(e) 6= ∅, then

Enje
(
p,pE ,pa

)
=

∨
b∈Prodj(e) ∧
e′∈Rb

mEj (e′) ∨
∨

1≤i≤m

(
mi(e′) ∧ pai

)
∧

 ∧
e′∈Ib

¬mEj (e′) ∧
∧

1≤i≤m

(
¬mi(e′) ∨ ¬pai

)
87

– if Prodj(e) = ∅, then
Enje
(
p,pE ,pa

)
= false.

Entity production. For j ∈ A, the function Pre
(
p,pE ,p′

)
encodes the produc-

tion of a single entity e ∈ S in the jth agent. If the jth agent is active, i.e., paj
holds, and the production of e is enabled, then the variable corresponding to e in
the successor state is required to be true. If the production of e is not enabled,
then the variable corresponding to e in the successor state is required to be false.
If the jth agent is inactive, i.e., paj does not hold, then the presence of e in the
successor state is encoded to remain unchanged.

Prje
(
p,pE ,pa,p′

)
=

(
paj ∧

((
Enje
(
p,pE ,pa

)
∧ m′(e)

)
∨
(
¬Enje

(
p,pE ,pa

)
∧ ¬m′(e)

)))

∨

(
¬paj ∧

(
mj(e)↔ m′j(e)

))
.

Transition relation for reactions. To encode the state changes introduced
by the reactions of D we define a function that is the conjunction of the entity
production encodings for all the background set entities and restricts the allowed
context sets.

TrD
(
p,pE ,pa,p′

)
=

∧
1≤j≤m,

e∈S

Prje
(
p,pE ,pa,p′

)
.

Transition relation for context automaton. The encoding of the transition
relation of E is a disjunction of the encodings for each transition.

TrE
(
q,pE ,pa,q′

)
=

∨
(q,sc,C,q′)∈R

(
e(q) ∧ esc(sc) ∧ CtC(pE ,pa) ∧ e′(q′)

)
.

Global transition relation. To encode the transition relation of Mcr-D we
build a conjunction of the transition relation for reactions and the transition relation
for context automaton providing the conditions for the active components and the
context sets.

Tr
(
(p,q),pE ,pa, (p′,q′)

)
= TrD

(
p,pE ,pa,p′

)
∧ TrE

(
q,pE ,pa,q′

)
.

4.7 Experimental results

The proposed model checking method has been implemented in our reaction systems
model checking toolkit. The implementation uses C++ as the implementation

88

parameter description
x partitioned transition relation
z reordering of bdd variables
b bounded model checking heuristic disabled

Table 4.1: Parameters of the model checking tool

language and the CUDD library [Somenzi, 1994] for creating binary decision
diagrams and handling the operations on them. The tool uses the encoding
presented in Section 4.6 and implements the algorithms from Section 4.4.

In the experimental evaluation we use our implementation with the parameters
summarised in Table 4.1. The implementation provides the same features as
described in Section 3.7. Bounded model checking for rsectlk was described in
Section 4.5. For reordering of the bdd variables we use the group sifting algorithm
of [Panda and Somenzi, 1995] implemented in the CUDD library. All of the rsctlk
formulae used in our benchmarks hold in the tested models.

4.7.1 Train-gate-controller

We test our implementation by verifying the following properties of the train-gate-
controller system from Example 4.2.10 in all the configurations of the described
implementation parameters:

φ1 =
∧
ti∈A

EF (Eti.allowedX (ti.in)) ,

φ2 = EF

 ∧
ti∈A

ti.approach

 ,

φ3 = AG

t1.in =⇒ Kt1

 ∧
tj∈{t2,...,tm}

¬tj .in

 ,

φ4 = AG

t1.in =⇒ CA

 ∧
tj∈{t2,...,tm}

¬tj .in

 .

The experimental results are presented in Fig. 4.1–4.8. For each scaling parameter
and formula we set an execution time limit, i.e., the verification is allowed to run
for at most 5 minutes and then the process is terminated. We consider values of
the scaling parameter between 0 and 20.

4.7.2 Distributed abstract pipeline

Here we introduce distributed abstract pipeline (dap) system similar to the abstract
pipeline system introduced in Chapter 3.

89

2 4 6 8 10 12 14

10−2

10−1

100

101

102

n

ti
m
e
(i
n
se
co
nd

s)

φ1 –
φ1 b
φ1 x
φ1 xb
φ1 xz
φ1 xzb
φ1 z
φ1 zb

Figure 4.1: Verification results for tgc and φ1: execution time

2 4 6 8 10 12 14
0

100

200

300

n

m
em

or
y
(i
n
M
B
)

φ1 –
φ1 b
φ1 x
φ1 xb
φ1 xz
φ1 xzb
φ1 z
φ1 zb

Figure 4.2: Verification results for tgc and φ1: memory consumption

2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

101

102

n

ti
m
e
(i
n
se
co
nd

s)

φ2 –
φ2 b
φ2 x
φ2 xb
φ2 xz
φ2 xzb
φ2 z
φ2 zb

Figure 4.3: Verification results for tgc and φ2: execution time

90

2 4 6 8 10 12 14 16 18 20
0

100

200

300

n

m
em

or
y
(i
n
M
B
)

φ2 –
φ2 b
φ2 x
φ2 xb
φ2 xz
φ2 xzb
φ2 z
φ2 zb

Figure 4.4: Verification results for tgc and φ2: memory consumption

2 4 6 8 10 12 14 16 18

10−2

10−1

100

101

102

n

ti
m
e
(i
n
se
co
nd

s)

φ3 –
φ3 b
φ3 x
φ3 xb
φ3 xz
φ3 xzb
φ3 z
φ3 zb

Figure 4.5: Verification results for tgc and φ3: execution time

2 4 6 8 10 12 14 16 18
0

100

200

300

n

m
em

or
y
(i
n
M
B
)

φ3 –
φ3 b
φ3 x
φ3 xb
φ3 xz
φ3 xzb
φ3 z
φ3 zb

Figure 4.6: Memory consumption for tgc and φ3

91

2 4 6 8 10 12 14 16 18

10−2

10−1

100

101

102

n

ti
m
e
(i
n
se
co
nd

s)

φ4 –
φ4 b
φ4 x
φ4 xb
φ4 xz
φ4 xzb
φ4 z
φ4 zb

Figure 4.7: Verification results for tgc and φ4: execution time

2 4 6 8 10 12 14 16 18
0

100

200

300

n

m
em

or
y
(i
n
M
B
)

φ4 –
φ4 b
φ4 x
φ4 xb
φ4 xz
φ4 xzb
φ4 z
φ4 zb

Figure 4.8: Verification results for tgc and φ4: memory consumption

92

The background set is defined as S = {a, b, c, d, y, dy, r, ?}. The system consists
of m agents producing dy from a. For dy to be produced, a sequence of reactions
must take place and for the sequence to be activated the entity a needs to be
provided. The entity a is provided to the ith agent by the context automaton
when dy is produced in the (i−1)th agent, or when i = 1 and the context automaton
is in the initial location. This means that the agents are activated sequentially.
The set of agents is defined as A = {1, . . . , n}, where m = n− 1 is the last agent
producing dy and n is the receiver of the final entity r. The set Ai for i ∈ {1, . . . ,m}
consists of the following reactions:

– ({a}, {?}, {y}),

– ({y}, {?}, {y}),

– ({a}, {?}, {b}),

– ({b}, {?}, {c}),

– ({c}, {?}, {d}),

– ({d, y}, {?}, {dy}).

The receiver agent has only one reaction: An = {({r}, {?}, {r})}. We define Edap =
(Q, q0, R) such that Q = {q0, q1}, and the set R consists of the following transitions:

1. q0
true,(({a},∅,...,∅),{1})−−−−−−−−−−−−−−→ q1,

2. q1
¬i.dy,((∅,...,∅),{i})−−−−−−−−−−−−→ q1 for all i ∈ {1, . . . ,m}.

3. for each i ∈ {2, . . . ,m}: q1
(i−1).dy,C−−−−−−−→ q1, where: Ca = {i} and for each j ∈ A:

Cc[j] =

{
{a} j = i,

∅ j ∈ A \ {i},

4. q1
(1.dy)∧...∧(m.dy),((∅,...,∅,{r}),{n})−−−−−−−−−−−−−−−−−−−−−−→ q1.

Finally, we define cr-Ddap = ((S, {Ai}i∈A), prg(Edap)). We test the following
rsctlk formulae:

φ1 = EF (n.r)

φ2 = AG (m.d =⇒ Km ((m− 1) .y))

The formula φ1 expresses the possibility of producing the final entity by the receiver.
The formula φ2 means that for all the paths when m has d in its local state, then
m knows that (m− 1) has y.

The experimental results are presented in Fig. 4.9–4.12. The execution time
limit was set to 10 minutes.

93

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10−2

100

102

n

ti
m
e
(i
n
se
co
nd

s)

φ1 –
φ1 b
φ1 x
φ1 xb
φ1 xz
φ1 xzb
φ1 z
φ1 zb

Figure 4.9: Verification results for dap and φ1: execution time

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

100

200

300

n

m
em

or
y
(i
n
M
B
)

φ1 –
φ1 b
φ1 x
φ1 xb
φ1 xz
φ1 xzb
φ1 z
φ1 zb

Figure 4.10: Verification results for dap and φ1: memory consumption

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10−2

100

102

n

ti
m
e
(i
n
se
co
nd

s)

φ2 –
φ2 b
φ2 x
φ2 xb
φ2 xz
φ2 xzb
φ2 z
φ2 zb

Figure 4.11: Verification results for dap and φ2: execution time

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

200

400

600

800

n

m
em

or
y
(i
n
M
B
)

φ2 –
φ2 b
φ2 x
φ2 xb
φ2 xz
φ2 xzb
φ2 z
φ2 zb

Figure 4.12: Verification results for dap and φ2: memory consumption

4.7.3 Observations

The experimental results for tgc demonstrate the benefits of using automatic
reordering of bdd variables and partitioned transition relation. These heuristics
led to smaller decision diagrams, which results in lower memory consumption
and operations on the diagrams being more efficient. For tgc, in most cases the
verification is the most efficient with xz. However, for φ1 using partitioned transition
relation results in longer execution times than using only bdd reordering. The
benefit of using the bmc approach can be observed when verifying existential rsctlk
formulae, e.g., in the results for tgc and φ2. However, for φ1 of dap the bmc
heuristic is inefficient, which follows from the fact that the formula is existential but
for its witness to be obtained the entire model needs to be explored (n.r is produced
in the last step of the generation of the reachable state-space). This results in
redundant checks at each step of unfolding of the model, i.e., when calculating
the set of reachable states of the model. Therefore, when the bmc heuristic is
disabled for φ1, the execution times and memory consumption are improved. For
dap, reordering of bdd variables is the most efficient and using partitioning of the
transition relation results in longer execution times. Using bdd reordering heuristic
may result in a performance, which could be difficult to predict, e.g., in dap and φ1

for 11 agents the performance is inferior than for 12 agents. We attribute this
behaviour to the implementation of the reordering heuristic in CUDD.

Since in our experiments we consider eight different configurations of the model
checking tool, which might affect the readability of the graphs, we additionally
provide tables with the results in the appendix to this chapter.

4.8 Summary

We introduced a generalisation of reaction systems that allows for modelling
distributed systems. We also extended the notion of context automata by allowing
the behaviour of the environment also depend on the state of the reaction system.
To allow for expressing temporal and epistemic properties of multi-agent systems,

95

we defined rsctlk, which is a logic combining rsctl with ctlk. For the introduced
formalisms we described a symbolic model checking method based on binary decision
diagrams. The approach was implemented and evaluated experimentally on two
scalable benchmarks.

96

Appendix

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.58 0.0 14.5 0.0 14.41 0.0 14.73 0.17 14.44 0.22 14.59 0.03 14.4 0.04 14.41

3 0.03 16.51 0.03 16.32 0.01 15.25 0.03 16.25 0.61 14.63 0.99 14.74 0.09 14.38 0.09 14.72

4 0.49 37.31 0.47 37.54 0.05 20.09 0.26 25.38 1.74 14.7 2.9 14.82 0.24 14.72 0.25 15.29

5 14.51 168.5 15.04 168.5 0.78 83.98 3.15 141.8 3.93 14.85 7.05 15.16 0.66 15.41 0.69 16.2

6 - - - - 14.46 350.3 132.8 357.2 7.84 14.96 14.22 15.31 2.83 18.76 2.9 19.01

7 - - - - - - - - 14.3 15.05 28.69 15.38 3.68 17.87 3.81 18.92

8 - - - - - - - - 24.8 15.25 47.5 15.43 5.1 18.02 5.24 18.18

9 - - - - - - - - 42.85 15.29 85.05 15.84 6.55 17.21 6.63 18.91

10 - - - - - - - - 61.4 15.48 135.6 16.25 73.78 45.81 78.98 45.2

11 - - - - - - - - 94.47 15.78 194.9 16.59 114.5 47.7 121.3 47.41

12 - - - - - - - - 142.3 18.01 285.8 18.09 154.8 48.65 160.7 47.95

13 - - - - - - - - 209.1 19.88 - - 172.9 71.34 180.8 71.45

14 - - - - - - - - 274.8 16.47 - - 188.5 47.64 194.0 47.81

15 - - - - - - - - - - - - - - - -

Table 4.2: Verification results for tgc and φ1

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.49 0.0 14.59 0.0 14.46 0.0 14.55 0.06 14.31 0.13 14.51 0.03 14.41 0.03 14.43

3 0.02 16.39 0.03 16.39 0.01 14.96 0.02 16.08 0.14 14.47 0.55 14.66 0.09 14.55 0.09 14.61

4 0.46 37.53 0.49 37.48 0.03 18.61 0.17 24.45 0.3 14.62 1.52 14.81 0.24 14.77 0.25 15.12

5 14.67 168.4 15.05 168.6 0.61 78.36 2.02 135.2 0.56 14.64 3.77 15.23 0.67 15.46 0.68 15.88

6 - - - - 12.27 349.1 74.86 357.4 0.95 14.69 7.84 15.39 2.87 18.78 2.87 18.84

7 - - - - - - - - 1.43 14.76 15.83 15.31 3.73 17.81 3.75 19.08

8 - - - - - - - - 2.16 14.88 27.78 15.7 5.21 17.98 5.16 17.97

9 - - - - - - - - 3.3 15.06 50.14 16.49 6.51 17.33 6.63 19.0

10 - - - - - - - - 4.58 15.27 81.99 17.04 74.72 45.21 79.36 45.21

11 - - - - - - - - 6.31 15.42 138.6 17.79 116.8 46.89 121.6 47.01

12 - - - - - - - - 8.62 17.75 207.2 18.38 158.5 48.22 161.3 48.3

13 - - - - - - - - 11.48 19.8 - - 174.9 70.82 180.3 70.5

14 - - - - - - - - 13.9 16.4 - - 188.1 47.99 194.5 48.35

15 - - - - - - - - 18.8 25.36 - - - - - -
16 - - - - - - - - 22.71 21.89 - - - - - -
17 - - - - - - - - 31.24 117.8 - - - - - -
18 - - - - - - - - 49.24 184.8 - - - - - -
19 - - - - - - - - 95.46 331.5 - - - - - -
20 - - - - - - - - 69.38 138.1 - - - - - -

Table 4.3: Verification results for tgc and φ2

97

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.59 0.0 14.59 0.0 14.52 0.0 14.52 0.08 14.41 0.09 14.53 0.03 14.45 0.03 14.45

3 0.03 16.49 0.03 16.45 0.01 15.57 0.01 15.43 0.3 14.64 0.3 14.63 0.09 14.58 0.09 14.53

4 0.51 37.44 0.48 37.48 0.08 21.62 0.08 21.64 0.74 14.82 0.74 14.74 0.24 14.81 0.24 14.74

5 14.94 168.5 14.86 168.5 1.15 127.5 1.15 127.5 1.69 15.11 1.69 15.26 0.68 15.41 0.68 15.4

6 - - - - 26.32 356.3 26.48 356.7 3.19 15.25 3.2 15.23 2.86 18.89 2.84 18.83

7 - - - - - - - - 5.48 15.2 5.5 15.2 3.72 17.87 3.73 17.75

8 - - - - - - - - 8.09 15.29 8.08 15.32 5.25 18.02 5.14 17.94

9 - - - - - - - - 13.72 15.55 13.69 15.6 6.66 17.28 6.67 17.35

10 - - - - - - - - 20.91 15.84 21.09 15.85 78.34 45.12 78.85 45.41

11 - - - - - - - - 32.18 16.51 32.19 16.6 120.2 46.9 121.5 46.72

12 - - - - - - - - 44.32 18.03 44.39 17.97 162.3 48.11 161.6 48.54

13 - - - - - - - - 62.25 19.98 61.44 19.95 181.3 70.71 181.3 70.87

14 - - - - - - - - 87.65 17.35 87.47 17.24 195.3 47.6 193.6 48.13

15 - - - - - - - - 120.3 25.23 118.7 25.47 - - - -
16 - - - - - - - - 164.2 22.05 164.1 22.29 - - - -
17 - - - - - - - - 252.9 118.1 252.7 118.0 - - - -
18 - - - - - - - - 288.9 184.7 289.8 184.7 - - - -
19 - - - - - - - - - - - - - - - -

Table 4.4: Verification results for tgc and φ3

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.59 0.0 14.47 0.0 14.52 0.0 14.56 0.08 14.46 0.08 14.49 0.03 14.45 0.03 14.45

3 0.03 16.44 0.03 16.39 0.01 15.57 0.01 15.52 0.3 14.62 0.3 14.64 0.09 14.6 0.08 14.63

4 0.48 37.47 0.49 37.37 0.08 21.84 0.08 21.63 0.73 14.82 0.73 14.73 0.24 14.82 0.25 14.85

5 14.3 168.5 15.14 168.5 1.12 127.5 1.15 127.5 1.7 15.13 1.7 15.13 0.68 15.38 0.67 15.4

6 - - - - 26.16 356.6 26.38 356.5 3.21 15.25 3.19 15.23 2.84 18.71 2.84 18.89

7 - - - - - - - - 5.41 15.27 5.46 15.25 3.74 17.81 3.7 17.87

8 - - - - - - - - 8.09 15.34 8.1 15.28 5.11 17.99 5.21 17.9

9 - - - - - - - - 13.64 15.63 13.8 15.67 6.54 17.44 6.67 17.21

10 - - - - - - - - 21.18 15.82 21.07 15.84 78.84 45.1 79.17 45.12

11 - - - - - - - - 32.14 16.54 32.08 16.47 120.9 47.2 121.7 47.51

12 - - - - - - - - 44.49 18.03 44.42 17.96 160.2 48.54 160.3 48.27

13 - - - - - - - - 62.43 19.94 62.41 19.9 180.0 71.06 180.0 70.65

14 - - - - - - - - 87.99 17.32 87.84 17.38 195.6 47.92 194.3 47.93

15 - - - - - - - - 120.8 25.29 120.6 25.23 - - - -
16 - - - - - - - - 165.4 21.86 164.8 21.77 - - - -
17 - - - - - - - - 252.5 118.2 253.3 117.8 - - - -
18 - - - - - - - - 290.4 184.6 289.8 184.8 - - - -
19 - - - - - - - - - - - - - - - -

Table 4.5: Verification results for tgc and φ4

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.5 0.0 14.53 0.0 14.53 0.0 14.71 0.31 14.52 0.28 14.64 0.03 14.43 0.03 14.36

3 0.02 17.42 0.02 17.44 0.04 18.43 0.05 17.33 1.12 14.69 1.16 14.72 0.08 14.61 0.08 14.73

4 0.34 42.84 0.31 43.07 1.75 75.33 1.62 74.25 4.63 15.47 6.03 15.55 0.2 15.32 0.21 15.81

5 3.47 194.0 3.39 194.2 104.0 341.5 71.08 317.8 21.96 18.79 21.47 18.25 0.63 17.2 0.66 17.9

6 57.69 256.3 59.28 257.3 - - - - 91.59 25.73 61.98 22.84 2.22 17.5 2.22 17.47

7 - - - - - - - - 120.9 20.19 94.46 18.79 5.34 25.18 5.45 35.35

8 - - - - - - - - 351.2 24.46 251.4 22.18 26.09 135.7 28.6 128.3

9 - - - - - - - - - - 423.9 26.61 14.73 40.47 14.93 41.32

10 - - - - - - - - - - - - 20.01 43.21 19.39 21.69

11 - - - - - - - - - - - - 273.6 363.8 118.8 70.17

12 - - - - - - - - - - - - 56.05 77.72 54.08 36.77

13 - - - - - - - - - - - - 195.9 264.0 112.4 67.86

14 - - - - - - - - - - - - - - - -

Table 4.6: Verification results for dap and φ1

98

- b x xb xz xzb z zb
time mem time mem time mem time mem time mem time mem time mem time mem

2 0.0 14.62 0.0 14.62 0.0 14.47 0.0 14.59 0.17 14.54 0.18 14.49 0.03 14.33 0.03 14.38

3 0.02 17.46 0.02 17.32 0.02 16.8 0.02 16.74 0.73 14.78 0.72 14.82 0.08 14.53 0.08 14.53

4 0.3 42.87 0.3 42.92 0.58 40.98 0.55 41.01 3.9 15.53 3.92 15.47 0.2 15.17 0.2 15.14

5 3.43 193.6 3.36 193.3 13.65 183.1 13.84 183.2 10.39 17.85 10.46 17.97 0.61 17.28 0.61 17.33

6 58.39 257.4 58.42 257.1 495.7 787.3 496.6 787.3 32.97 17.87 33.07 18.06 2.2 16.93 2.19 17.02

7 - - - - - - - - 53.05 18.71 53.82 18.66 5.31 22.89 5.26 22.66

8 - - - - - - - - 153.0 22.13 152.7 22.44 26.04 39.76 26.08 40.11

9 - - - - - - - - 260.9 26.56 263.0 27.03 14.62 40.21 14.7 40.05

10 - - - - - - - - 434.9 27.29 435.0 27.02 19.06 21.1 19.11 21.1

11 - - - - - - - - - - - - 117.2 67.03 117.5 67.08

12 - - - - - - - - - - - - 54.19 26.71 54.3 26.68

13 - - - - - - - - - - - - 111.6 51.94 112.0 51.36

14 - - - - - - - - - - - - - - - -

Table 4.7: Verification results for dap and φ2

99

Chapter 5

Model checking for rsltl

In this chapter we define reaction systems with discrete concentrations and a variant
of linear-temporal logic. For the introduced formalisms we provide a bounded
model checking method.

5.1 Reaction systems with discrete concentrations

The enabling of some of biochemical reactions encountered in practical applications
depends not only on the availability of the necessary reactants and the absence
of inhibitors, but also on their concentration levels. To address this aspect in
biochemical modelling, we introduce an extension of the basic reaction systems
supporting an explicit representation of the discrete concentration levels of entities.
The resulting model uses multisets of entities, but otherwise it retains key features
of the original framework. The main new idea is that the kth level of concentration
of an entity x is represented by a multiset containing k copies of x.

In what follows, a multiset over a set X is any mapping b : X → {0, 1, . . . }, and
the empty multiset ∅X is one which always returns 0. For ∅X we simply write ∅,
when X is clear from the context. If b is a multiset over X, we write b ∈ B(X),
where B(X) is the set of all multisets over X. For a finite set B of multisets over X,
!(B) is the union of multisets, i.e., is the multiset over X such that !(B)(x) =
max({0} ∪ {b(x) | b ∈ B}), for every x ∈ X. For two multisets, b and b′, we
denote b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X. The carrier of a multiset b is the
set carr(b) = {x ∈ X | b(x) > 0}.

Definition 5.1.1. A reaction system with discrete concentrations (RSC) is a
pair C = (S,A), where:

– S is a finite background set

– and A is a nonempty finite set of c-reactions over the background set.

101

Each c-reaction in A is a triple a = (r, i,p) such that r, i, p are multisets over S
with r(e) < i(e), for every e ∈ carr(i).

The multisets r, i, and p are respectively denoted by ra, ia, and pa and called
the reactant, inhibitor, and product concentration levels of c-reaction a. An entity e
is an inhibitor of a whenever e ∈ carr(ia).

A c-reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and
t(e) < ia(e), for every e ∈ carr(ia). The result of a on t is given by resa(t) = pa
if ena(t), and by resa(t) = ∅S otherwise. Then the result of A on t is:

resA(t) = !{resa(t) | a ∈ A} = !{pa | a ∈ A and ena(t)}.

In the above, t is a state of a biochemical system being modelled such that,
for each entity e ∈ S, t(e) is the concentration level of e (e.g., t(e) = 0 indicates
that e is not present in the current state, and t(e) = 1 indicates that e is present
at its lowest concentration level). A c-reaction a is enabled by t and can take
place if the current concentration levels of all its reactants are at least as high as
those specified by ra, and the current concentration levels of all its inhibitors (i.e.,
entities in the carrier of ia) are below the thresholds specified by ia.

Definition 5.1.2. A context restricted reaction system with discrete concentra-
tions (CRRSC) is a pair cr-C = (C,A) such that C = (S,A) is a reaction system
with discrete concentrations, and A = (Q, qinit , R) is a context automaton over B(S).

The dynamic behaviour of cr-C is then captured by the state sequences of its
interactive processes.

Definition 5.1.3. An interactive process in cr-C is π = (ζ, γ, δ), where:

– ζ = (q0, q1, . . . , qn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)

– q0, q1, . . . , qn ∈ Q with q0 = qinit

– c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅B(S)

– qi, ci, qi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
– di = resA(!{di−1, ci−1}), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (w0, . . . ,wn) = (!{c0,d0}, . . . ,!{cn,dn}).

An intuitive representation of an interactive process in CRRSC is depicted in
Figure 5.1.

A context restricted reaction system with discrete concentrations cr-C = (C,A)
is a finite state system since it comprises finitely many c-reactions and finitely many
multisets labelling the arcs of its context automaton. More precisely, let #cr-C(e)
be the maximum integer assigned to e ∈ S in all the multisets of entities occurring
in both C and A. Then, w(e) ≤ #cr-C(e), for all e ∈ S and all states occurring in
the state sequences of the interactive processes in cr-C. (Note that this bound

102

i = 0 i = 1 i = 2 i = n− 1 i = n

q0 q1 q2 · · · qn−1 qn

c0 c1 c2 · · · cn−1 cn

d0 d1 d2 · · · dn−1 dn

c0 c1 cn−1

Figure 5.1: Interactive process in CRRSC

can be improved by ignoring the reactant and inhibitor multisets in c-reactions.)
Moreover, the behaviour of cr-C can be simulated by a suitable context restricted
reaction system.

To construct such a system, for every t ∈ B(S), we define two sets of entities:

Γ(t) = {e.i | e ∈ S ∧ t(e) = i > 0}

and
Γall(t) = {e.i | e ∈ S ∧ 1 ≤ i ≤ t(e)}.

The e.i’s will be entities of the system we are going to construct. Note that Γall(t)
is a downward-closed set in the sense that if e.i ∈ Γall(t) and i > 1, then
e.1, . . . , e.(i-1) ∈ Γall(t). In fact, Γall is a bijection from B(S) to all the downward-
closed sets, and its inverse Γ−1

all is given by Γ−1
all (Z)(e) = max{{0} ∪ {i | e.i ∈ Z}},

for every e ∈ S. In what follows, Γall and Γ−1
all will be applied component-wise to

sequences of respectively multisets and downward-closed sets. For such cr-C, we
define the corresponding context restricted reaction system as Θ(cr-C) = (R,A) =
((S′, A′), (Q, qinit , R′)), where:

– S′ = {e.i | e ∈ S and 1 ≤ i ≤ #cr-C(e)},
– A′ = {(Γ(r),Γ(i),Γall(p)) | (r, i,p) ∈ A}, and
– R′ = {(z,Γall(c), z′) | (z, c, z′) ∈ R}.

It is straightforward to see that Θ(cr-C) is well-defined.
As to the complexity of the translation, the number of reactions, states and

arrows remains the same. Moreover, the representations of reactions and inhibitors
are of the same order. What changes is the size of the background set, in the worst
case by the factor max{#cr-C(e) | e ∈ S} as well as the representations of products
and contexts (again by the same factor).

We will now investigate a very close correspondence between Θ(cr-C) and cr-C.
First, we observe that, by the definitions of A′ and R′, all sets of entities occurring
in the interactive processes of Θ(cr-C) are downward-closed. Then we obtain that
all interactive processes of cr-C can be simulated by Θ(cr-C).

103

Theorem 5.1.4. If π = (ζ, γ, δ) is an interactive process in cr-C, then π′ =
(ζ,Γall(γ),Γall(δ)) is an interactive process in Θ(cr-C).
Proof. It suffices to show for w in the state sequence of π, Γall(resA(w)) =
resA′(Γall(w)). Suppose a = (r, i,p) ∈ A and a′ = (Γ(r),Γ(i),Γall(p)) ∈ A′. We
first observe that a is enabled in w (i.e., r ≤ w and w(e) < i(e), for all e ∈ carr(i))
iff a′ is enabled in Γall(w) (i.e., Γ(r) ⊆ Γall(w) and Γ(i)∩ Γall(w) = ∅). Moreover,
it is easy to check that Γall(resa(w)) = resa′(Γall(w)).

Moreover, all interactive processes of Θ(cr-C) simulate those of cr-C.
Theorem 5.1.5. If π = (ζ, γ, δ) is an interactive process in Θ(cr-C), then

π′ = (ζ,Γ−1
all (γ),Γ−1

all (δ))

is an interactive process in cr-C.
The proof of Theorem 5.1.5 is similar to the proof of Theorem 5.1.4. We have

therefore obtained a one-to-one correspondence between the interactive processes
of Θ(cr-C) and cr-C.
Remark 5.1.6. From the point of view of enabling c-reactions, not all concentration
levels are important and, consequently, they do not need to be represented in the
states of Θ(cr-C). To achieve the desired effect, all one needs to do is redefine Γall,
in the following way:

Γ′all(t) = Γ(t) ∪ (Γall(t) ∩
⋃
a∈A

Γ(ra) ∪ Γ(ia)).

Note that syntactically CRRS are a subclass of CRRSC, such that all the
concentration levels in CRRSC are limited to the value of at most one, that is, for
any t ∈ B(S) and for any e ∈ carr(t) we have t(e) = 1.

When dealing with concentration levels we often need to perform incrementation
and decrementation operations. For this we need an additional notation: in the
remainder of this dissertation we use the notation e 7→ i to indicate the multiplicity
of an entity e in a multiset of entities, e.g., {x 7→ 1, y 7→ 2} is a multiset with one
copy of x, two copies of y, and nothing else. If the multiplicity of an entity is 1, we
may also simply omit the value, e.g., {x, y 7→ 2}.

5.2 Linear-time temporal logic for reaction systems

In this section we demonstrate how linear-time temporal logic can be used to express
properties of reaction systems. Firstly, for the convenience of specifying multisets
over a given set S we introduce the following grammar of multiset expressions:

a ::= true | e ∼ c | e ∼ e | ¬a | a ∨ a,

where ∼∈ {<,≤,=,≥, >}, e ∈ S, and c ∈ IN. The set of all the multiset expressions
over S is denoted by BE (S). Let b be a multiset over S. The fact that a holds
in b is denoted by b |=b a, where the relation |=b is defined recursively as follows:

104

b |=b true for any b ∈ B(S),
b |=b e1 ∼ c iff b(e1) ∼ c,
b |=b e1 ∼ e2 iff b(e1) ∼ b(e2),
b |=b ¬a iff b 6|=b a,
b |=b a1 ∨ a2 iff b |=b a1 or b |=b a2.

Next, we derive the conjunction operator: a1 ∧ a2
def
≡ ¬(¬a1 ∨ ¬a2). Notice that

for ∼ the entire set of relations is not required since we can use the logical operators
to obtain the same expressiveness with a minimal set of those operators.

The language of reaction systems linear-time temporal logic (rsltl, for short)
is defined by the following grammar:

φ ::= a | φ ∧ φ | φ ∨ φ | Xaφ | φUaφ | φRaφ,

where a ∈ BE (S).
The logic captures requirements imposed on paths in the model of a CRRSC.

Intuitively, Xaφ means ‘following an action satisfying a, φ holds in the next state‘,
φ1Uaφ2 means ‘φ2 holds eventually, and φ1 must hold at every preceding state,
following only actions satisfying a’, and φ1Raφ2 means ‘following only actions
satisfying a, φ2 holds up to and including the first state where φ1 holds’.

For a given cr-C we define its model, which is then used to formally define the
semantics of the introduced operators.

Definition 5.2.1. Let cr-C = (C,A), where C = (S,A) is a reaction system with
discrete concentrations, and A = (Q, qinit , R) is a context automaton over B(S).
Then, the model for cr-C is a tripleM = (W, w0,−→), where:

1. W = B(S)×Q is the set of states,

2. winit = (∅, qinit) is the initial state,

3. −→ ⊆W× B(S)×W is the transition relation such that for all w,w′, α ∈
B(S), q, q′ ∈ Q:

(
(w, q), α, (w′, q′)

)
∈ −→ iff: (q, α, q′) ∈ R and w′ =

resA(!{w, α}). Each element (w, α, w′) ∈ −→ is denoted w
α−→ w′.

The paths in rsltl are defined as sequences of states interleaved with actions,
i.e., the context multisets.

Definition 5.2.2. A path is an infinite sequence σ = (w0, α0, w1, α1, . . .) of states
and actions such that: wi

αi−→ wi+1 and αi ∈ B(S) for i ≥ 0.

Let σ be a path. For each i ≥ 0, the ith state wi of the path σ is denoted by σs(i),
and the ith action αi of the path σ is denoted by σa(i). Let σs(i) = (wi, qi) for each
i ≥ 0. Then, with σb(i) and σca(i) we denote wi and qi, respectively. Let i ≥ 0, then
by σi we denote the suffix of σ such that σi = (σs(i), σa(i), σs(i+ 1), σa(i+ 1), . . .),
i.e., σis(j) = σs(j + i) and σia(j) = σa(j + i) for each j ≥ 0. By ΠM we denote the
set of all the paths of the modelM, whereas by ΠM(w) we denote the set of all
the paths that start in w ∈W, that is, ΠM(w) = {σ ∈ Π | σs(0) = w}.

105

Definition 5.2.3. Let M = (W, winit,−→) be a model and σ ∈ ΠM be a path
ofM. The fact that φ holds over σ is denoted byM, σ |= φ (or σ |= φ ifM is
implicitly understood), where the relation |= is defined recursively as follows:

σ |= a iff σb(0) |=b a,
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2,
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2,
σ |= Xaφ1 iff σa(0) |=b a and σ1 |= φ1,
σ |= φ1Uaφ2 iff (∃j ≥ 0)

(
σj |= φ2

and (∀0 ≤ l < j)(σl |= φ1 and σa(l) |=b a)
)
,

σ |= φ1Raφ2 iff (∀j ≥ 0)
(
(σj |= φ2 and (∀0 ≤ l < j)(σa(l) |=b a))

or (∃0 ≤ l < j)(σl |= φ1)
)
.

Next, we derive the following operators: a ⇒ φ
def
≡ ¬a ∨ φ, Gaφ

def
≡ falseRaφ,

Faφ
def
≡ trueUaφ. Moreover, we assume a = true when a is unspecified for any

of the rsltl operators, e.g., Fφ is the same as Ftrueφ. The fragment of rsltl
where a = true for all the multiset expressions a is called ltl. Moreover, if the
exact concentration levels are irrelevant, we may simply write e for e > 0 and ¬e
for e = 0.

An rsltl formula holds in a model iff it holds in all the paths starting in its
initial state, i.e.,M |= φ iff σ |= φ for all σ ∈ ΠM(winit). Additionally, a formula
may also hold existentially in a model, i.e.,M |=∃ φ iff there exists σ ∈ ΠM(winit)
s.t. σ |= φ.

Given cr-C and an rsltl formula φ, rsltl model checking is the problem of
deciding whetherM |= φ, whereM is the model for cr-C. The existential rsltl
model checking problem is the problem of deciding whetherM |=∃ φ.

Example 5.2.4. We consider an abstract RSC C = ({x, y, h,m}, {a1, a2, . . . , a6}),
where:

– a1 = ({y 7→ 1, x 7→ 1}, {y 7→ 2, h 7→ 1}, {y 7→ 2}),
– a2 = ({y 7→ 2, x 7→ 2}, {y 7→ 3, h 7→ 1}, {y 7→ 3}),
– a3 = ({y 7→ 3, h 7→ 1}, {y 7→ 4, h 7→ 2}, {y 7→ 4}),
– a4 = ({y 7→ 4, h 7→ 1}, {h 7→ 2}, {y 7→ 3}),
– a5 = ({y 7→ 4, x 7→ 2}, {h 7→ 1}, {y 7→ 2}),
– a6 = ({m 7→ 1}, {y 7→ 3}, {m 7→ 1}).

We define a context automaton A = ({q0, q1}, q0, {r1, r2, . . . , r7}), where:

– r1 = q0
{x 7→1,y 7→1,m 7→1}−−−−−−−−−−−→ q1,

– r2 = q1
{x 7→1}−−−−→ q1,

– r3 = q1
{x 7→2}−−−−→ q1,

106

– r4 = q1
{x 7→1,h 7→1}−−−−−−−→ q1,

– r5 = q1
{x 7→2,h 7→1}−−−−−−−→ q1,

– r6 = q1
{h 7→1}−−−−→ q1,

– r7 = q1
{h 7→2}−−−−→ q1.

Finally, we define cr-C = (C,A). Intuitively, the system produces the entities y
and m at different concentration levels. If there is y present with the concentration
level of exactly one unit, the entity x is provided, and h is not present, then the
concentration level of y is increased by one unit, i.e., y 7→ 2 is produced. In the
next step, the concentration of y is increased further, but the concentration of x
is required to be at the level of two units. The level of y increases from three to
four units when the level of h is exactly one unit. Then, if h is being continuously
provided at the level of exactly one unit, the concentration of y oscillates between
four and three units. When y is present at the concentration level of at least four
units, x is at the concentration level of two units, and h is not provided, the level
of y drops to two units. Additionally, when m is provided, it is sustained at the
level of one unit unless y reaches the level of three units.

LetM be the model for CRRSC. We formulate the following rsltl properties
interpreted inM:

φ1 = Gx>0((y = 2)⇒ Xx>1(y ≥ 3)),

φ2 = Fx>0((y = 2) ∧ Xx>1(y < 3)),

φ3 = X((y = 3)R(m ≥ 1)).

The formula φ1 states that, globally, when x > 0 is supplied in the context (by
the context automaton), and if y = 2 then in the next state y ≥ 3, if x > 1 is supplied
in the context. This property holds existentially in the model, i.e., M |=∃ φ1.
However, it does not hold universally, i.e., M 6|= φ1. Let us consider φ2 ≡ ¬φ1.
The formula holds existentially in the model, i.e.,M |=∃ φ2 and φ2 expresses the
property for the counterexample of φ1.

The property described by φ3 holds in a path, where: when y = 3 holds, it
releases m ≥ 1 from holding, otherwise m ≥ 1 is required to hold. The release
property is required to hold after one step, i.e., by using the next-step operator we
skip the first step of the path where σb(0) = ∅.

Next we define additional notation that will be used in complexity considerations
for rsltl.

Definition 5.2.5. Let a ∈ BE (S). Then, |a| is the size of a, which is defined
recursively as follows:

– if a = true, then |a| = 1,

– if a = e1 ∼ c or a = e1 ∼ e2, where e1, e2 ∈ S and c ∈ IN, then |a| = 2,

107

– if a = ¬a′, then |a| = |a′|+ 1,

– if a = a′ ∨ a′′, then |a| = |a′|+ |a′′|.

Definition 5.2.6. Let φ be an rsltl formula. Then, op(φ) is the number of
operators used in φ, which is defined recursively as follows:

– if φ = a, where a ∈ BE (S), then op(φ) = 0,

– if φ = Xaφ1, then op(φ) = op(φ1) + 1,

– if φ ∈ {φ1 ∨ φ2, φ1 ∧ φ2, φ1Uaφ2, φ1Raφ2}, then op(φ) = op(φ1) + op(φ2) + 1.

Definition 5.2.7. Let φ be an rsltl formula, then mbe(φ) is the size of the largest
expression a ∈ BE (S) with respect to |a| used in φ. Then, mbe(φ) is defined
recursively as follows:

– if φ = a, where a ∈ BE (S), then mbe(φ) = 0,

– if φ ∈ {φ1 ∨ φ2, φ1 ∧ φ2}, then mbe(φ) = max ({mbe(φ1),mbe(φ2)}),
– if φ = Xaφ1, then mbe(φ) = max ({|a|,mbe(φ1)}),
– if φ ∈ {φ1Uaφ2, φ1Raφ2}, then mbe(φ) = max ({|a|,mbe(φ1),mbe(φ2)}).

5.2.1 rsltl as ltl

Here we demonstrate how the model checking problem for rsltl can be trans-
lated into ltl model checking. The verification method presented in Section 5.3
encodes CRRSC and rsltl directly and does not use this translation.

Let φ be an rsltl formula and cr-C = (C,A) where A = (Q, qinit , R) and the
set of transitions of A is defined as R = {t1, . . . , tm}. The aim of the translation
is to define cr-C′ and an ltl formula φ′ such that M and M′ are the models
for cr-C and cr-C′, respectively, andM |= φ iffM′ |= φ′.

Intuitively, the translation consists of defining CRRSC that for each context
entity provided by the context automaton produces the corresponding entity in
the state of RSC. These entities indicate which context entities were provided
immediately before the system transitioned to a given state, i.e., via which context
the current state was reached. Then, the original rsltl formula is translated into
an ltl formula where all the multiset expressions restricting contexts are expressed
as constraints on the states.

First, we define a set of entities corresponding to the transitions of A:

S? = {?i | ti ∈ R}.

Next, we define the set of the entities that are used to distinguish from the ordinary
entities the entities that were supplied by the context:

Sc = {ẽ | e ∈ S}.

108

Alternatively, the set can be made smaller by only selecting the entities that are
used in the context automaton, i.e., Sc = {ẽ | (∃t ∈ R)(t = (q

c−→ q′)∧e ∈ carr(c))}.
Let cr-C′ = (C′,A′), then C′ = (S′, A′) where:

S′ = S ∪ S? ∪ Sc.

The set of reactions of C′ is defined as A′ = A ∪ Ac where the set Ac consists of
the following reactions defined for each transition ti ∈ R:

({?i 7→ 1},∅S′ , {ẽ 7→ c(e) | ti = (q
c−→ q′) ∧ e ∈ carr(c)}).

The context automaton uses a modified transition relation and is defined as A′ =
(Q, qinit , R′) where:

R′ = {q c−→ q′ | (∃ti ∈ R)(ti = (qi
ci−→ q′i) ∧ c = !(ci, {?i 7→ 1}))}.

Finally, we define the translation of multiset expressions interpreted over context
sets with repl(a) we denote the expression a where each occurrence of e ∈ S in a
is replaced with ẽ. For an rsltl formula φ we recursively define the translation
trltl(φ) such that trltl(φ) is an ltl formula.

– if φ = a and a ∈ BE (S), then trltl(φ) = φ,

– if φ = φ1 ∨ φ2, then trltl(φ) = trltl(φ1) ∨ trltl(φ2),

– if φ = φ1 ∧ φ2, then trltl(φ) = trltl(φ1) ∧ trltl(φ2),

– if φ = Xaφ1, then trltl(φ) = X(repl(a) ∧ trltl(φ1)),

– if φ = φ1Uaφ2, then trltl(φ) = (repl(a) ∧ trltl(φ1))Utrltl(φ2),

– if φ = φ1Raφ2, then trltl(φ) = trltl(φ1)R (repl(a) ∧ trltl(φ2)).

Construction of S?, Ac and A′ require O(|R|) steps, while the set Sc can be built
in O(|S|) steps. The translation of the formula φ runs in O(op(φ) ·mbe(φ)), since
for each temporal operator the associated expression a ∈ BE (S) needs to be re-
written using the entities of Sc, each rsltl operator has a constant number of
arguments, and mbe(φ) is the largest a used in φ. Therefore, the translation runs
in O(|R|+ |S|+ op(φ) ·mbe(φ)).

5.2.2 Complexity analysis

In this section we show that rsltl model checking is pspace-complete.
Firstly, we define the reachability problem for CRRSC. Let n ≥ 0 be an integer.

A result d ∈ B(S) is n-step reachable in cr-C if there exists an interactive process
π = (ζ, γ, δ) in cr-C such that δ = (d0,d1, . . . ,dn) and dn = d. We say that d is
reachable in cr-C if there is n ≥ 0 such that d is n-step reachable in cr-C.

Lemma 5.2.8. The reachability problem for CRRSC is pspace-hard.

109

Proof. The proof is by reduction of a pspace-complete problem to the reachability
problem for CRRSC. Let us take the problem of reachability of configurations of
polynomial-space Turing machines, which is a pspace-complete problem [Papadim-
itriou, 1994]. The presented reduction is similar to the ones of [Formenti et al.,
2014a] and [Dennunzio et al., 2016].

Let TM = (Q,Σ,Γ, δ, qI , qF) be a deterministic single-tape Turing machine,
where Q = {q1, . . . , qm} is the set of states, Σ = {0, 1} is the input alphabet,
Γ = Σ ∪ {.} is the tape alphabet, and qI , qF ∈ Q are, respectively, the initial and
the accepting state of TM . The transition function is defined as δ : Q × Γ −→
Q× Γ× {−1, 0, 1}. The input string always starts with the symbol . that is never
written or changed by TM , i.e., for all the transitions δ(q, γ) = (q, γ′, d) we have
γ = . iff γ′ = .. Moreover, if γ = ., then the tape head moves right, i.e., d = 1.
A configuration of TM is a tuple C = (q, x, pos), where q ∈ Q is a state, x ∈ Σ∗ is
the tape content and pos is the head position. The initial configuration of TM is
defined as Cinit = (qI , γ1 . . . γN , 1), where the current state of TM is qI , the tape
head is at position 1, and γ1 . . . γN ∈ Σ∗ is an input string of length N . We also
assume TM is polynomially space-bounded [Baier and Katoen, 2008], i.e., there is
a polynomial P such that for an input γ1 . . . γN ∈ Σ∗ the machine visits at most
the first P (N) cells of the tape. We assume P (N) ≥ N .

The aim of this construction is to define cr-C = ((S,A),A) that preserves the
following property: a configuration C is reachable in TM from Cinit if and only if
the state of cr-C corresponding to the configuration C is reachable in cr-C.

We begin by introducing the background set S = {e, h, w1, . . . , wP (N)}. The
concentration levels of e are used to encode the states of Q: we define a bijection
c : Q −→ {1, . . . ,m} assigning concentration levels to the states, i.e., {e 7→ c(q)}
encodes q ∈ Q. The concentration of h denotes the position of the tape head (the
concentration level values for h are taken from the set {0, . . . , P (N) + 1}). The
entities w1, . . . , wP (N) encode the symbols on the tape, i.e., tape contents.
Configurations of TM . Let n ≤ P (N). The configuration C = (q, γ1 . . . γn, pos) is
encoded in cr-C as follows:

conf cr-C(C) =

{e 7→ c(q), h 7→ pos} ∪
⋃

j∈{1,...,n}

{wj 7→ γj}

 . (5.1)

Next, we define the reactions of A that aim to emulate the steps of TM in cr-C.
Transition function. For each transition δ(q, γ) = (r, γ′, d) and each tape head
position pos ∈ {1, . . . , P (N)} we define the following reaction:

({e 7→ c(q), h 7→ pos,wpos 7→ γ},
{e 7→ (c(q) + 1), h 7→ (pos + 1),wpos 7→ (1− γ)},
{e 7→ c(r), h 7→ (pos + d),wpos 7→ γ′}).

The reactants encode the concentration levels encoding the state, the head position,
and the symbol for the transition to be enabled. The inhibitors are used to enforce

110

exact concentration levels by not allowing concentrations higher than specified
by the reactants. Finally, the products encode the successor state, the new head
position, and the symbol written on the tape.
Tape contents. For all i, pos ∈ {1, . . . , P (N)} such that i 6= pos, we define reactions
that preserve the ith symbol of the tape if the tape head is at a different position pos.

({wi 7→ 1, h 7→ pos}, {h 7→ (pos + 1)}, {wi 7→ 1}).

Tape boundaries. If the tape reaches ., then the enforced move right is encoded
using the following reaction:

({e 7→ 1}, {h 7→ 1}, {h 7→ 1}).

The reaction is enabled in any state q ∈ Q as there is no upper bound on the
concentration level of e. We do not need to handle the remaining boundary of the
tape since we assume TM visits only the first P (N) cells of the tape; however if
the head reaches the position P (N) + 1 the computation halts since no transitions
are enabled when the tape head at the position P (N) + 1.
Context automaton. We define A = ({q0, q1}, q0, R) with the following transition
relation:

R = {q0
Cinit−−−→ q1, q1

∅S−−→ q1}.

The role of the context automaton is to provide the encoded initial configuration
as the initial context and allow for the subsequent computation steps by providing
transitions with empty contexts.

The reduction runs in polynomial time since the encoding of the transition
function requires O(P (N) · |δ|) reactions1 and the encoding of the preservation of
the tape contents requires O(P (N)2) reactions. The construction of cr-C ensures
that a configuration C is reachable in TM if and only if conf cr-C(C) is reachable
in cr-C. Therefore, the reachability problem for CRRSC is pspace-hard.

The reachability of d ∈ B(S) can be expressed in terms of existential rsltl
model checking using the following formula:

F

 ∧
e∈carr(d)

(e = d(e))

 .

Therefore, from Lemma 5.2.8 we also get the following result.

Corollary 5.2.9. The existential rsltl model checking problem is pspace-hard.

Let φ be an rsltl formula, cr-C be a CRRSC, andM be the model for cr-C.
The existential decision problem yields true if M |=∃ φ, and false otherwise.
SinceM |= φ if and only ifM 6|=∃ ¬φ, the universal decision problem yields true
if and only if the existential variant of the problem for ¬φ yields false.

1The size of the transition function δ is denoted by |δ|.

111

Therefore, from the pspace-hardness of the existential rsltl model checking
problem we get pspace-hardness of its universal variant. This follows from the
fact that copspace = pspace, i.e., the complement of any pspace-hard problem
is also pspace-hard [Papadimitriou, 1994].

Corollary 5.2.10. The rsltl model checking problem is pspace-hard.

Lemma 5.2.11. The rsltl model checking problem is in pspace.

Proof. Since there is a polynomial translation of the rsltl model checking problem
to the ltl model checking problem, it is sufficient to show the ltl model checking
problem for CRRS is in pspace.

The proof follows the same reasoning as the one for Lemma 5.47 in [Baier and
Katoen, 2008]. It gives a nondeterministic polynomial space-bounded algorithm
solving the existential ltl model checking problem. The algorithm nondetermin-
istically guesses a path in TS ⊗ Gφ, i.e., in the product of, respectively, a finite
transition system and a generalised nondeterministic Büchi automaton for the
verified ltl formula φ.

However, here TS is not given as the input and needs to be obtained from CRRS.
In fact, it only must be possible to obtain a successor state in polynomial space
and a method for that is demonstrated in the proof of Lemma 4.4.3 for the rsctlk
model checking problem. The proof also uses the same technique as the proof of
Lemma 3.4.2 for rsctl but the proof for rsctlk additionally shows how to handle
the context automaton.

The following theorem follows directly from Corollary 5.2.10 and Lemma 5.2.11.

Theorem 5.2.12. The rsltl model checking problem is pspace-complete.

5.2.3 Bounded semantics

Motivated by various successful applications of bounded model checking to practical
problems such as software verification [Kroening and Strichman, 2016], we focus
on the bounded model checking approach defined for finite prefixes of paths. This
approach requires us to specify when a given formula holds while considering only
a finite number of states and actions that belong to the prefix of the considered
path.

Definition 5.2.13. A path σ = (w0, α0, w1, α1, . . .) is a (k, l)-loop (or k-loop) if
there exist k ≥ l > 0 such that wl−1 = wk and σ = (w0, α0, . . . , αl−2, wl−1)(αl,
wl+1, αl+1, . . . , αk−1, wk)

ω.

The bounded semantics for rsltl is defined for finite path prefixes. We define
a satisfiability relation that for a given path considers its first k states and k − 1
actions only.

Definition 5.2.14. The fact that a formula φ holds in a path σ with bound k ∈ IN
is denoted by σ |=k φ. Then, σ |=k φ if and only if:

112

– σ is a (k, l)-loop for some 0 < l ≤ k and σ |= φ, or

– σ |=nl φ, where:

σ |=nl a iff σs(0) |=b a,
σ |=nl φ1 ∧ φ2 iff σ |=nl φ1 and σ |=nl φ2,
σ |=nl φ1 ∨ φ2 iff σ |=nl φ1 or σ |=nl φ2,
σ |=nl Xaφ iff k > 0, σa(0) |=b a, and σ1 |=nl φ,
σ |=nl φ1Uaφ2 iff (∃0 ≤ j ≤ k)

(
σj |=nl φ2

and (∀0 ≤ l < j)(σl |=nl φ1 and σa(l) |=b a)
)

σ |=nl φ1Raφ2 iff (∃0 ≤ j ≤ k)
(
σj |=nl φ1 and ((∀0 ≤ l ≤ j)(σl |=nl φ2)

and (∀0 ≤ l < j)(σa(l) |=b a))
)

Lemma 5.2.15. Let k ∈ IN, φ be an rsltl formula, and σ be a path. Then,
σ |=k φ implies σ |= φ.

Lemma 5.2.16. Let φ be an rsltl formula and M be a model. Then, M |= φ
implies that there exists k ∈ IN such thatM |=k φ.

The proofs for these lemmas are similar to the ones for ltl [Biere et al.,
1999b]. The only difference in these proofs is related to the augmented temporal
operators that impose additional restrictions on the considered path by using
multiset expressions.

For a bound k ∈ IN we define the relation |=k
∃ for models as follows: M |=k

∃ φ
iff there exists σ ∈ ΠM(winit) s.t. σ |=k φ. The bounded model checking problem
for rsltl is defined as the decision problem of checking if M |=k

∃ φ for a given
bound k ∈ IN.

Based on Lemma 5.2.15 and 5.2.16 we state the following theorem:

Theorem 5.2.17. Let φ be an rsltl formula andM be a model. Then,M |=∃ φ
iff there exists k ∈ IN such thatM |=k

∃ φ.

5.3 smt-based encoding

In this section we provide a translation of the bounded model checking problem for
rsltl into the satisfiability modulo theory (smt) [Kroening and Strichman, 2016]
with the integer arithmetic theory. The smt problem is a generalisation of the
Boolean satisfiability problem, where some functions and predicate symbols have
interpretations from the underlying theory.

Let cr-C = (R,A) be a CRRSC where R = (S,A), A = (Q, qinit , R), and
let M be the model for cr-C and φ an rsltl formula. For an integer k ≥ 0 we
construct a formula [M, φ, k] such that: M |=k

∃ φ iff [M, φ, k] is satisfiable. We
encode all the paths of the modelM that are bounded with k. The entities of S
are denoted by e1, . . . , em, where m = |S|. For each i ∈ {0, . . . , k} we introduce

113

the following sets of positive integer variables used in the encoding:

Pi = {pi,1, . . . , pi,m},
PEi = {pEi,1, . . . , pEi,m}.

Let σ be a path ofM. Then, pi,1, . . . , pi,m and pEi,1, . . . , p
E
i,m encode σb(i) and σa(i),

respectively. We also introduce the variables q0, . . . , qk which are used to encode
the locations of A. The location σca(i) of the context automaton is then encoded
with qi. Then, we define pi = (pi,1, . . . , pi,m) and pEi = (pEi,1, . . . , p

E
i,m). With pi[j]

and pEi [j] we denote, respectively, pi,j and pEi,j . Then, we also define P =
⋃k
i=0 Pi

and PE =
⋃k
i=0 P

E
i .

We define the following functions that map background set entities to the
corresponding variables of the encoding: for all 0 ≤ i ≤ k we define ti : S → Pi

and tEi : S → PEi such that ti(ej) = pi,j , tEi (ej) = pEi,j for all 1 ≤ j ≤ m. The
function e : Q → {0, . . . , |Q| − 1} maps states of the context automaton to the
corresponding natural values used in the encoding. The set of the reactions that
are capable of producing e ∈ S is defined as Prod(e) = {a ∈ A | pa(e) > 0}.
Let f1, f2, f3 be expressions over P ∪PE , then we define the if-then-else operator:

f1 → f2 | f3 = (f1 ∧ f2) ∨ (¬f1 ∧ f3).

To define the smt encoding of the paths we need auxiliary functions that
correspond to elements of the encoding.

The encoding of the reactions is defined in two steps: we define a formula
encoding the condition for when a reaction is enabled and a formula encoding what
that reaction produces when it is enabled.

Enabledness. The enabledness of a reaction a ∈ A is encoded as follows:

Ena
(
pi,p

E
i

)
=
∧
e∈S

(
ti(e) ≥ ra(e) ∨ tEi (e) ≥ ra(e)

)
∧
∧
e∈S

(
ti(e) < ia(e) ∧ tEi (e) < i(e)

)
.

The formula encodes the conditions for a ∈ A to be enabled, i.e., in the current
state and in the context, the concentration levels of the reactants specified in ra
need to be sufficient and the concentration levels of all its inhibitors need to be
below the threshold specified by ia.

Entity concentration. To encode the produced entity concentration level of an
entity e ∈ S we take all the reactions that have e in their products, i.e., all the
reactions of Prod(e) and order them with respect to the produced concentration
levels of e. Let a1, a2, . . . , aw ∈ Prod(e) and assume paj ≤ paj+1 for all 1 ≤ j < w.
First, we encode the produced concentration level of entity e where j ∈ {1, . . . , w}

114

when there exist reactions producing e, i.e., w > 0, and at least one such reaction
is enabled (the remaining cases are handled later). The encoding is recursive and
is defined as follows:

Cje
(
pi,p

E
i ,pi+1

)
={

Enaj
(
pi,p

E
i

)
→ (ti+1(e) = paj) | C

j−1
e

(
pi,p

E
i ,pi+1

)
if 1 < j ≤ w,

Enaj
(
pi,p

E
i

)
∧ (ti+1(e) = paj) if j = 1.

In the definition of Cje
(
pi,p

E
i ,pi+1

)
with the use of the if-then-else operator we

always encode the highest available concentration of e if the corresponding reaction
producing e with that concentration level is enabled. Finally, we define the complete
entity concentration encoding for all the reactions:

Ce
(
pi,p

E
i ,pi+1

)
=

ti+1(e) = 0 if w = 0,

Cwe (pi,p
E
i ,pi+1) ∨

((∧
a∈Prod(e)

¬Ena(pi,pEi)

)
∧ (ti+1(e) = 0)

)
if w > 0.

In the above, we handle the remaining cases: (1) when w = 0, i.e., if there are
no reactions producing e, and (2) there are reactions producing e or (3) none of
them are enabled. In (1) and (3) the entity e is produced with the concentration
level 0. In (2) the recursive encoding of Cwe

(
pi,p

E
i ,pi+1

)
ensures production of e

and selection of its maximal concentration level by starting the encoding from aw,
i.e., the reaction producing the highest concentration level of e.

Context. Let c ∈ B(S) be a multiset of context entities. The encoding of c is
defined as follows:

Ctc(pEi) =
∧
e∈S

(tEi (e) = c(e)).

Transitions of context automaton. The encoding of the transition relation
of the context automaton is a disjunction of the encodings for each transition:

TrA(qi,p
E
i , qi+1) =

∨
(q,c,q′)∈R

(
qi = e(q) ∧ Ctc(pEi) ∧ qi+1 = e(q′)

)
.

Transition relation. We build a conjunction of the produced concentration
levels for all entities and the transition relation for the context automaton to
encode the transition relation of the model:

Trcr-C(pi, qi,p
E
i ,pi+1, qi+1) =

(∧
e∈S

Ce(pi,p
E
i ,pi+1)

)
∧ TrA(qi,p

E
i , qi+1).

115

Initial state. To encode the initial state of the model where all the concentration
levels are set to zero and the context automaton is in its initial state we define the
following formula:

Init(pi, qi) =
∧
e∈S

(ti(e) = 0) ∧
(
qi = e(qinit)

)
.

Paths. To encode the paths ofM that are bounded with k we unroll the transition
relation up to k and combine it with the encoding of the initial state of the model:

Pathsk = Init(p0, q0) ∧
k−1∧
i=0

Trcr-C(pi, qi,p
E
i ,pi+1, qi+1).

Formulae of rsltl. Next, we present a translation of the rsltl formulae into
an smt encoding. The rsltl encoding is based on the fixed point encoding for ltl
presented in [Biere et al., 2006].

In rsltl, in place of propositional variables appearing in standard ltl formulae,
we use multiset expressions. Let a be a multiset expression, encbi(a) and enccti (a)
denote the encoding of a using the variables of, respectively, pi and pEi . The former
refers to states of RSC, while the latter refers to actions (or contexts). Since we
are defining a translation into smt, the encodings of multisets are defined in a
straightforward way. To deal with (k, l)-loops we introduce an integer variable L.
When L = l holds for a path then the path is a (k, l)-loop:

Loopsk = ¬(L = 0) ∧
k∧
i=1

(
(L = i)⇒ E(pi−1, qi−1,pk, qk)

)
,

where E encodes the equivalence of two states of the model:

E(pi, qi,pj , qj) = (qi = qj) ∧
m∧
c=1

(pi[c] = pj [c]).

The encoding of an rsltl formula φ at the position i ∈ {0, . . . , k} is defined as |[φ]|ki .
Firstly, we introduce the encoding for propositional formulae:

|[φ]|ki 0 ≤ i ≤ k
|[a]|ki encbi(a)

|[φ1 ∧ φ2]|ki |[φ1]|ki ∧ |[φ2]|ki
|[φ1 ∨ φ2]|ki |[φ1]|ki ∨ |[φ2]|ki

Next, we define the encoding for temporal formulae. The translations of the until
and release operators are based on the fixed point encoding for ctl [Clarke et al.,
1999]. The encoding introduces an auxiliary translation 〈〈φ〉〉ki that corresponds to
computing fixed point approximations.

116

|[φ]|ki 0 ≤ i < k

|[Xaφ1]|ki |[φ1]|ki+1 ∧ enccti (a)
|[φ1Uaφ2]|ki |[φ2]|ki ∨

(
|[φ1]|ki ∧ (|[φ1Uaφ2]|ki+1 ∧ enccti (a))

)
|[φ1Raφ2]|ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (|[φ1Raφ2]|ki+1 ∧ enccti (a))

)
i = k

|[Xaφ1]|ki
∨k
j=1((L = j) ∧ |[φ1]|kj) ∧ enccti (a)

|[φ1Uaφ2]|ki |[φ2]|ki ∨
(
|[φ1]|ki ∧ (

∨k
j=1((L = j) ∧ 〈〈φ1Uaφ2〉〉ki+1) ∧ enccti (a))

)
|[φ1Raφ2]|ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (

∨k
j=1((L = j) ∧ 〈〈φ1Raφ2〉〉ki+1) ∧ enccti (a))

)
〈〈φ〉〉ki 0 ≤ i < k

〈〈φ1Uaφ2〉〉ki |[φ2]|ki ∨
(
|[φ1]|ki ∧ (〈〈φ1Uaφ2〉〉ki+1 ∧ enccti (a))

)
〈〈φ1Raφ2〉〉ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (〈〈φ1Raφ2〉〉ki+1 ∧ enccti (a))

)
i = k

〈〈φ1Uaφ2〉〉ki |[φ2]|ki
〈〈φ1Raφ2〉〉ki |[φ2]|ki

The cases for |[φ]|ki when i = k are considered separately: additional transitions
for j ∈ {1, . . . , k} are encoded when (k, j)-loop exists, i.e., when L = j holds.
In contrast to the ltl encoding of [Biere et al., 2006], we require for all the
transitions to be constrained by the parameter a encoded with enccti (a).

Finally, the bounded model checking problem for rsltl is reduced to satisfiability
checking, i.e., to verify ifM |=k

∃ φ we check the satisfiability of the following formula:

[M, φ, k] = Pathsk ∧ Loopsk ∧ |[φ]|k0.

Theorem 5.3.1. Let cr-C = (C,A) be a CRRSC,M be its model and φ an rsltl
formula. For any k ∈ IN, the formula [M, φ, k] is satisfiable iffM |=k

∃ φ.

Proof. We assume an arbitrary k ∈ IN. The formula [M, φ, k] is satisfiable iff there
exists a valuation of the variables used in the encoding such that the formula is
satisfied. The valuation then represents the path prefix of a path inM for which
the formula φ holds. We first show that Pathsk encodes path prefixes of paths
inM. There exists a path σ inM and σk is its prefix of length k iff there exists a
valuation representing σk that satisfies Pathsk. Let i ∈ {0, . . . , k − 1}. We observe
the formula Trcr-C is satisfied for the valuation encoding σs(i), σa(i) and σs(i+ 1)

iff σs(i)
σa(i)−−−→ σs(i+1). This follows from the encoding of Ce and TrA. Let us recall

that σs(i) = (σb(i), σca(i)). For an entity e ∈ S it is clear from the construction
that the formula Ce is satisfied iff the valuation encodes the concentration level of
the entity e in σb(i+ 1) that is produced by the reactions enabled in σb(i) with
the context σa(i). The encoding Ce is applied to all e ∈ S, i.e., the valuation must
encode in σb(i+ 1) the concentration levels of all the entities of S. The formula TrA
is satisfied iff the valuation encodes a transition (q, c, q′) ∈ R such that q = σca(i),
c = σa(i) and q′ = σca(i+ 1). Then, the formula Pathsk is satisfied iff the valuation
encodes a path prefix σk such that the state σs(0) ofM is the initial state and

σs(i)
σa(i)−−−→ σs(i+ 1) for all i ∈ {0, . . . , k − 1}.

117

It remains to show that Loopsk ∧ |[φ]|k0 restricts the valuation so that the
formula [M, φ, k] is satisfiable iff it encodes a path prefix of a path in which φ
holds. To show this we apply the same reasoning as for ltl in [Biere et al., 2006,
Theorem 3.1], which follows by induction on the structure of the ltl formula.

5.4 Experimental evaluation

In this section we present the results of an experimental evaluation of the translation
presented in Section 5.3. The verification tool was implemented in Python and uses
Z3 [de Moura and Bjørner, 2008] for smt-solving. We implement an incremental
approach, i.e., in a single smt instance we increase the length of the encoded
interactive processes by unrolling their encoding until a witness for the verified
property is found, instead of creating separate instances for each length tested.

Additionally, we compare the implementation for CRRSC with an implemen-
tation for CRRS by verifying reachability properties of the CRRS obtained by
applying the translation defined in Section 5.1 to CRRSC. To provide a fair
comparison, both the verification approaches were implemented in Python using
similar techniques. The implementation for CRRS is based on the encoding from
Section 5.3 which is optimised for CRRS by using Boolean variables instead of
integer variables. The translation into smt for CRRS corresponds to the translation
for CRRSC – it is assumed that all concentration levels are equal to 1 when an
entity is present, and equal to 0 otherwise.

The reachability problem for CRRSC was defined in Section 5.2.2. However, it
can also be defined for pairs of multisets that are interpreted similarly to how the
reactants and inhibitors are used in the reaction enabledness condition. Then, the
k-step reachability can be defined for a pair ρ = (x,y) where x,y ∈ B(S). We say
that ρ is k-step reachable if there exists an interactive process π = (ζ, γ, δ) in cr-C
such that δ = (d0,d1, . . . ,dk), and x ≤ dk, dk(e) < y(e), for every e ∈ carr(y).

5.4.1 Macro-reactions

Incrementation and decrementation operations. With ↑ge and ↓ge we denote
the set of reactions encoding the operation of, respectively, incrementation and
decrementation of concentration levels of e ∈ S when g ∈ S is present with a
non-zero concentration. With Me we denote the maximal allowed value of e. Then:

↑ge
def
= {({e 7→ i, g 7→ 1},∅S , {e 7→ i+ 1}) | 1 ≤ i < Me}

and
↓ge
def
= {({e 7→ i, g 7→ 1},∅S , {e 7→ i− 1}) | 2 < i ≤Me}.

Permanency. In a similar way we introduce a set of reactions for encoding
permanency:

♦i
e
def
= {({e 7→ i}, i, {e 7→ i}) | 1 ≤ i ≤Me}

118

The above is a set of reactions ensuring permanency of e ∈ S that can be inhibited
by i ∈ B(S).

We exploit the notation to use ↑ge, ↓ge, and ♦i
e in place of regular reactions

ignoring that they are in fact sets of reactions. In the implementation for CRRSC
we introduce an optimisation where these reactions are encoded as macro-reactions,
that is, as simple operations on integer variables that increment, decrement, or
retain the value of the variable encoding concentration of e.

We assume the macro-reactions are allowed only when no ordinary reaction is
enabled.

5.4.2 Eukaryotic heat shock response

We test our implementation using an adaptation (chsr) of the model of the
eukaryotic heat shock response (hsr) described in Chapter 3. The adaptation
defined below modifies hsr such that it uses concentrations. The heat shock
response model was originally introduced in [Azimi et al., 2014b].

entity description
hsp heat shock protein
hsf heat shock factor
hsf2 dimerised heat shock factor
hsf3 trimerised heat shock factor
hse heat shock element
mfp misfolded protein
prot protein

hsf3 :hse hsf3 bound with hse
hsp:mfp hsp bound with mfp
hsp:hsf complex consisting of hsp and hsf
temp temperature value
cool decreases the temperature
heat increases the temperature

Table 5.1: Entities used in the heat shock response model.

The hsr model used stress and nostress entities to distinguish between the
presence and absence of the heat shock and it is assumed that the heat shock occurs
at (and above) the temperature of 42 ◦C . In chsr this is modelled using the temp
entity. All the entities except temp remain at the concentration level of one unit.
We assume that the maximal value of the temperature modelled using the entity
temp is 50.

The background set S for the RSC modelling chsr consists of the entities in
Table 5.1. The set Aord comprises the reactions in Table 5.2. We also define the
set of reactions dealing with temperature Atemp =↑heattemp ∪ ↓cooltemp ∪ �itemp , where
i = {heat 7→ 1, cool 7→ 1}. By defining the set i in this way we ensure that the

119

reactants inhibitors products
hsf 7→ 1 hsp 7→ 1 hsf 3 7→ 1

hsf 7→ 1, hsp 7→ 1,mfp 7→ 1 ∅S hsf3 7→ 1

hsf 3 7→ 1 hsp 7→ 1, hse 7→ 1 hsf 7→ 1

hsp 7→ 1, hsf3 7→ 1,mfp 7→ 1 hse 7→ 1 hsf 7→ 1

hsf3 7→ 1, hse 7→ 1 hsp 7→ 1 hsf3 :hse 7→ 1

hsp 7→ 1, hsf3 7→ 1,mfp 7→ 1, hse 7→ 1 ∅S hsf3 :hse 7→ 1

hse 7→ 1 hsf3 7→ 1 hse 7→ 1

hsp 7→ 1, hsf3 7→ 1, hse 7→ 1 mfp 7→ 1 hse 7→ 1

hsf3 :hse 7→ 1 hsp 7→ 1 hsp 7→ 1, hsf3 :hse 7→ 1

hsp 7→ 1,mfp 7→ 1, hsf3 :hse 7→ 1 ∅S hsp 7→ 1, hsf3 :hse 7→ 1

hsf 7→ 1, hsp 7→ 1 mfp 7→ 1 hsp:hsf 7→ 1

hsp:hsf 7→ 1, temp 7→ 42 ∅S hsf 7→ 1, hsp 7→ 1

hsp:hsf 7→ 1 temp 7→ 42 hsp:hsf 7→ 1

hsp 7→ 1, hsf3 7→ 1 mfp 7→ 1 hsp:hsf 7→ 1

hsp 7→ 1, hsf3 :hse 7→ 1 mfp 7→ 1 hse 7→ 1, hsp:hsf 7→ 1

temp 7→ 42, prot 7→ 1 ∅S mfp 7→ 1, prot 7→ 1

prot 7→ 1 temp 7→ 42 prot 7→ 1

hsp 7→ 1,mfp 7→ 1 ∅S hsp:mfp 7→ 1

mfp 7→ 1 hsp 7→ 1 mfp 7→ 1

hsp:mfp 7→ 1 ∅S hsp 7→ 1, prot 7→ 1

Table 5.2: Reactions of chsr (curly brackets are omitted)

result of changing the temperature will not be overridden due to the permanency.
Finally, the RSC for chsr is defined as:

Cchsr = (S,Aord ∪Atemp).

To define a CRRSC for Chsr we use the context automaton Ahsr = (Q, qinit , R)
where Q = {q0, q1}, qinit = q0 and

R = {q0
{hsf 7→1,prot 7→1,hse 7→1,temp 7→35}−−−−−−−−−−−−−−−−−−−−−→ q1,

q1
{cool 7→1}−−−−−−→ q1,

q1
{heat 7→1}−−−−−−→ q1,

q1
∅S−−→ q1}.

Then, the CRRSC for Cchsr is defined as cr-Cchsr = (Cchsr,Achsr). The context
set specified in Achsr for the transition from 0 (the initial state) corresponds to
the initial context set used in [Azimi et al., 2014b] as the minimal set of entities
needed in hsr, together with the temp entity indicating a temperature that does
not cause the heat shock.

120

First, we test the efficiency of our implementation by verifying the reachability
of the following results of cr-Cchsr:

– ρ1 = (x1,y1) where:

– x1 = {hsp:hsf 7→ 1, hse 7→ 1, prot 7→ 1},
– y1 = {temp 7→ 42};

– ρ2 = (x2,y2) where x2 = {mfp 7→ 1}, y2 = ∅S .

Reachability of ρ1 proves that it is possible to enter the state where chsr may
become stable, while reachability of ρ2 proves that it is possible for the proteins
to eventually misfold. The k-step reachability for ρ1 is proved for k = 4, while ρ2

ρ1 ρ2

time [s] memory [MB] time [s] memory [MB]
CRRS 17.32 25.08 38.78 28.38
CRRSC 0.35 24.87 0.93 24.99

improvement 49.48× 1.01× 41.69× 1.13×

Table 5.3: Results for the verification of reachability properties of chsr

for k = 9. There is no noticeable improvement in memory consumption for the
verification of CRRSC over CRRS. However, there is a significant difference in
the execution times in favour of CRRSC, e.g., for ρ1 the verification for CRRSC
is 49.48 times faster. The verification results2 for the reachability properties are
summarised in Table 5.3.

The verification results for rsltl formulae are presented in Table 5.4. The
verification of the formula φ2 requires more resources than φ1, since the result is
found for a larger value of k and the verified property contains more temporal
operators, resulting in a larger encoding.

5.4.3 Scalable chain

For the next benchmark we introduce the scalable chain (sc) model. The back-
ground set for the system is defined as S = {e1, e2, . . . , em, inc, dec}. Intuitively,

2The experimental results were obtained using a system equipped with 3.7GHz Intel Xeon E5
processor and 12GB of memory, running Mac OS X 10.12.3.

Formula k time [s] memory [MB]
φ1 XFheat>0(temp > 42) 9 1.01 30.04

φ2 XGheat>0((temp > 42)⇒ F(mfp > 0)) 21 3.18 34.77

Table 5.4: rsltl formulae for hsr with the verification performance

121

5
10

15
20

10

20
10−1

101

103

m
c

ti
m
e
(i
n
se
co
nd

s)

CRRSC
CRRS

Figure 5.2: Verification results for reachability in sc: execution time

the system executes reactions incrementing concentration levels of m entities, each
up to a maximal concentration level c. For i < m, when the maximal concentration
level of ei is reached, then the entity ei+1 is produced.

The inc and dec entities cause, respectively, incrementation or decrementation
of concentration levels. We define the following sets of reactions:

– P =
{

({ei 7→ c},∅S , {ei+1 7→ 1)}) | 1 ≤ i < m
}
,

– O =
{
↑incei , ↓

dec
ei | 1 ≤ i ≤ m

}
,

– F =
{

({em 7→ c}, {dec 7→ 1}, {em 7→ c})
}
.

The reactions of P implement the production of the subsequent entities, while
their concentration levels are changed by the reactions of O. The reaction of
F ensures persistency of the “final” entity em when it reaches the concentration
of c, unless dec is present. The RSC for the scalable chain system is defined as
Csc = (S,P ∪O ∪ F). Next, we define the context automaton Asc = (Q, qinit , R)
where Q = {q0, q1}, qinit = q0, and the set R consists of the following transitions:

– q0
{e1 7→1,inc 7→1}−−−−−−−−−→ q1,

– q1
{inc 7→1}−−−−−→ q1,

– q1
{dec 7→1}−−−−−→ q1.

Finally, we define cr-Csc = (Csc,Asc).
The verified reachability property of the scalable chain system is proved for

k = m · c−1. The property expresses the reachability of the maximal concentration
level of the entity em. The time and memory consumption results are presented
in Fig. 5.2–5.3.

122

5
10

15
20

10

20

102

103

m
c

m
em

or
y
(i
n
M
B
)

CRRSC
CRRS

Figure 5.3: Verification results for reachability in sc: memory consumption

In most cases there is an observable advantage of the implementation for CRRSC
when the value of c is relatively large compared to m, e.g., for m = 8 and c = 20
the results for CRRSC are 5.6 times better. For m = 10 and c = 14 the verification
of CRRS proved to be 1.6 times more efficient as it only consumed 1334 seconds,
compared to 2155 seconds for CRRSC. However, for m = 20 and c = 16 CRRS
was only 1.2 times better. We attribute this inconsequence to the heuristics of the
smt-solver used. The CRRSC implementation appears to be more memory-efficient
when dealing with larger concentration level values. It appears that when the
verified system is highly-dependent on a large domain of concentration levels, then
the CRRSC will most likely be more suitable.

To test the performance of our rsltl implementation we use a fixed maximal
concentration level c = 2 and verify the properties presented in Table 5.5. The time
and memory consumption results are presented in Fig. 5.4–5.5. The properties
expressed with φ1, φ2, and φ3 are proved for variable values of k that depend on
the scaling parameter m. Verifying the formula φ2 requires the most resources
since it contains multiple nested operators that also result in multiple levels of
recursion when computing the translation. Our implementation proved to be the
most efficient for φ4 and φ5. This is mostly due to the very low and constant value
of k. This means that only a very small portion of the model needs to be traversed
to prove these properties.

5.5 Concluding remarks

We introduced reaction systems with discrete concentrations, which support quanti-
tative modelling. Although the formalism is not more expressive than the standard
reaction systems, our experimental results demonstrate that expressing concen-

123

φ1 Finc>0(em = c)

φ2 φ2 = φ1
2,

φi2 = Finc>0((ei = c) ∧ φi2) for i ∈ {1, . . . ,m− 1},
where φm2 = Finc>0((em = c))

φ3 G((e1 = 1)⇒ Finc>0(em = c))

φ4 Finc>0(e1 = c)

φ5 X((e1 > 0)Rinc>0(e2 > 0))

Table 5.5: rsltl formulae for sc

Formula k

φ1 2 ·m− 1

φ2 2 ·m− 1

φ3 2 ·m
φ4 1

φ5 2

Table 5.6: Witness lengths for sc

0 5 10 15 20 25 30 35 40 45 50

10−1

100

101

102

103

m

ti
m
e
(i
n
se
co
nd

s)

φ1

φ2

φ3

φ4

φ5

Figure 5.4: Verification results for rsltl properties of sc: execution time

0 5 10 15 20 25 30 35 40 45 50
0

200

400

m

m
em

or
y
(i
n
M
B
)

φ1

φ2

φ3

φ4

φ5

Figure 5.5: Verification results for rsltl properties of sc: memory consumption

124

tration levels in an explicit way allows for some improvements in the efficiency
of verification, and opens up possibilities for introducing different optimisations.
The computational complexity of the model checking problem for reaction systems
brings limitations to the practical applicability of the method. However, our exper-
imental results demonstrate that the presented method scales well when verifying
properties of large models.

125

Chapter 6

Parametric model checking for rsltl

In this chapter we introduce parametric reaction systems and propose a method
for reaction synthesis that is based on bounded model checking for rsltl presented
in the previous chapter.

6.1 Parametric reaction systems

In parametric reaction systems, reactions can be defined partially, i.e., reactants,
inhibitors, and products in parametric reactions can be replaced with parameters.

Definition 6.1.1. A parametric reaction system (PRS) is a triple P = (S, P,A),
where:

– S is a finite background set,

– P is a finite set of elements called parameters, and

– A is a nonempty finite set of parametric reactions over the background set,
where each a ∈ A is a triple a = (r, i, p) such that r, i, p ∈ B(S) ∪ P .

The elements r, i, and p are respectively denoted by ra, ia, and pa and called
the reactants, inhibitors, and products of parametric reaction a.

Definition 6.1.2. Let P = (S, P,A) be a PRS. A parameter valuation of P is a
function v : P ∪ B(S)→ B(S) such that v(b) = b if b ∈ B(S).

We also write b←v for v(b). The set of all the parameter valuations for P is
denoted by PVP . Let v ∈ PVP . For any subset X ⊆ A of reactions of P we define:

X←v = {(a←v
r , a←v

i , a←v
p) | a ∈ X}.

By P←v we denote the structure (S,A←v) where all the parameters in A are
substituted according to the parameter valuation v. We say that v ∈ PVP is a valid
parameter valuation if P←v yields an RSC.

127

Definition 6.1.3. A context-restricted parametric reaction system (CRPRS) is
a pair cr-P = (P,A) such that P = (S, P,A) is a PRS and A = (Q, qinit , R) is a
context automaton over S.

For v ∈ PVP we define cr-P←v = (P←v,A).

Example 6.1.4. We consider a simple PRS for a simplified abstract genetic
regulatory system based on Example 2.2.2. The system contains two (abstract)
genes x and y expressing proteins X and Y , respectively, and a protein complex Q
formed by X and Y . The background set is defined as S = {x, x̂,X, y, ŷ, Y, h,Q},
where x̂ and ŷ denote RNA polymerase attached to the promoter of genes x and y,
respectively. Here h is used as an abstract inhibitor. Finally, the set of parametric
reactions consists of the following subsets:

– Ax = {({x}, {h}, {x}), ({x}, {h}, {x̂}), ({x, x̂}, {h}, {X})},
– Ay = {({y}, {h}, λ1), (λ2, {h}, {ŷ}), ({y, ŷ}, {h}, λ3)},
– AQ = {({X,Y }, {h}, {Q})}.

Notice that the reactions of Ay use parameters λ1, λ2, λ3 to define expression of
the protein Y .

Suppose that we investigate the processes starting from the states that already
contain x and y. This leads to the following definition of the context automaton:

A = ({q0, q1}, q0, R), where: R = {q0
{x,y}−−−→ q1, q1

∅−→ q1, q1
{h}−−→ q0)}. When the

context set contains the entity h, A reverts back to the initial location, while for
the empty context the automaton remains in q1.

Finally, the CRPRS is defined as cr-P = ((S, P,A),A), where: P = {λ1, λ2, λ3}
and A = Ax ∪Ay ∪AQ.

We focus on the synthesis of a parameter valuation, given n observations of the
behaviour of the system that are expressed with rsltl formulae.

Let cr-P = (P,A) be a CRPRS and F = {φ1, . . . , φn} be a set of rsltl
formulae. The aim of parameter synthesis for CRPRS is to find a valid parameter
valuation v of cr-P such that:(

M(cr-P←v) |=∃ φ1

)
∧ · · · ∧

(
M(cr-P←v) |=∃ φn

)
.

Each formula of F corresponds to an interactive process observed in the analysed
system via, e.g., experiments or simulations. Therefore, for each such process
we expect an individual path inM(cr-P←v) and we solve the n model checking
problem instances for rsltl in one instance. However, the parameter valuation v
is shared among all instances, which allows us to calculate v for which all the
properties of F are satisfied.

Example 6.1.5. Let us assume we performed an experiment on the system from Ex-
ample 6.1.4 where protein Y was expressed, and we collected the following observa-
tions related to the expression of Y :

128

– when the current state contains y, then y and ŷ are present in the next state:

φc1 = G¬h(y ⇒ X(y ∧ ŷ)),

– when y and ŷ are present, then Y is finally produced:

φc2 = G¬h((y ∧ ŷ)⇒ FY),

– the entities y, ŷ, and Y are eventually produced:

φr = (F¬hy) ∧ (F¬hŷ) ∧ (F¬hY).

These observations are made assuming h is not provided in the context set. Addi-
tionally, we observe that the protein Q is not present in the first three steps of the
execution and then, after an arbitrary number of steps, it is finally produced:

φd = ¬Q ∧ X(¬Q ∧ X(¬Q ∧ FQ)).

The observations are related to a single interactive process (or an experiment),
therefore we constrain the problem using the conjunction of all the observations.
Finally, the observations are expressed using the following rsltl formula:

φy = φr ∧ φc1 ∧ φc2 ∧ φd.

We perform parameter synthesis for F = {φy}, that is, we obtain a valid parameter
valuation v such that M(cr-P←v) |=∃ φ. In fact, it may be possible to obtain
more than one such valuation. A parameter valuation v1 such that

λ←v1
1 = {y}, λ←v1

2 = {y}, λ←v1
3 = {Y }

is valid and satisfies the requirements of our observations. A parameter valuation v2

such that

λ←v2
1 = {X, y}, λ←v2

2 = {x, x̂, y}, λ←v2
3 = {X, y, ŷ, Y,Q}

is an another example of a valid valuation which satisfies the requirements.

Example 6.1.6. We introduce an additional unknown into the system declared in
Example 6.1.4. That is, we add a parameter λ4 and re-define the reactions of Ax
in such a way that one of them uses the newly introduced parameter:

Ax = {({x}, {h}, {x}), (λ4, {h}, {x̂}), ({x, x̂}, {h}, {X})}.

Let us assume that in another experiment we observed when the current state
contains x, then x and x̂ are found in the next state. This is expressed with
the formula φx = G¬h(x⇒ X(x ∧ x̂)). Next, we perform parameter synthesis for
F = {φx, φy}, where φy is the formula from Example 6.1.5. We use two rsltl
formulae in F since our observations were gathered in two separate experiments
and may be related to separate interactive processes. A parameter valuation v such
that

129

λ←v
1 = {X, y}, λ←v

2 = {y}, λ←v
3 = {x̂, Y }, λ←v

4 = {Q}

is valid and satisfies the requirements of our observations.

The parameter valuation v2 obtained in Example 6.1.5 and the valuation
from Example 6.1.6 do not result in the same reactions as the original ones from
Example 2.2.2. This might be undesired, depending on the application of the
synthesis and the knowledge of the system under analysis. To address this issue, in
the following section we introduce parameter constraints which allow for providing
additional restrictions on the parameters used in the synthesis.

6.1.1 Parameter constraints

In some cases restricting parameter valuations using only rsltl formulae may prove
to be less efficient than constraining the valuation using specialised constraints for
the parameters of a PRS.

Definition 6.1.7. The grammar of the parameter constraints for P = (S, P,A) is
defined as follows:

c ::= true | λ[e] ∼ c | λ[e] ∼ λ[e] | ¬c | c ∨ c,

where λ ∈ P , e ∈ S, c ∈ IN, and ∼∈ {<,≤,=,≥, >}.

The set of all the parameter constraints for P is denoted by PC (P). Intu-
itively, λ[e] can be used to refer to the concentration of e ∈ S in the multisets
corresponding to the valuations of λ.

Definition 6.1.8. Let v be a parameter valuation of P . The fact that a parameter
constraint c holds in v is denoted by v |=p c and defined as follows:

v |=p true for every v,
v |=p λ[e] ∼ c iff λ←v(e) ∼ c,
v |=p λ1[e1] ∼ λ2[e2] iff λ←v

1 (e1) ∼ λ←v
2 (e2),

v |=p ¬c iff v 6|=p c,
v |=p c1 ∨ c2 iff v |=p c1 or v |=p c2.

Definition 6.1.9. A constrained parametric reaction system (CPRS) is a tu-
ple CP = (S, P,A, c) such that P = (S, P,A) is a PRS and c ∈ PC (P).

For v ∈ PVP , we then define CP←v = P←v. A parameter valuation v ∈ PVP is
valid in CP if it is valid in P and v |=p c.

Definition 6.1.10. A context-restricted CPRS (CR-CPRS) is a pair cr-CP =
(CP,A) such that CP = (S, P,A, c) is a CPRS and A is a context automaton
over S.

We also denote cr-CP←v = (CP←v,A).

130

Example 6.1.11. Let us consider the system used in Example 6.1.6. We might
want to assume that the parameters used in the reactions of Ay do not use any of
the entities used in the reactions of Ax. Let E = {x, x̂,X} be the set of entities
we want to exclude and that are used in Ax. The described restriction can be
expressed using the following parameter constraint:∧

i∈{1,...,3}

∧
e∈E

(λi[e] = 0)

Similarly, we can express that the parameter λ4 used in the reaction of Ax is only
allowed to use the entities of E: ∧

e∈(S\E)

(λ4[e] = 0).

Example 6.1.12. It is possible to constrain multisets corresponding to parameters.
Suppose λ1, λ2, λ3 ∈ P . To constrain λ←v

1 to be a sub-multiset of λ←v
2 (i.e.,

λ←v
1 ⊆ λ←v

2 , for all v), we define:

submset(λ1, λ2) =
∧
e∈S

(λ1[e] ≤ λ2[e]).

To constrain λ←v
3 to be the intersection of λ←v

1 and λ←v
2 (i.e., λ←v

1 ∩ λ←v
2 = λ←v

3 ,
for all v), we define:

intersect(λ1, λ2, λ3) =
∧
e∈S

((
(λ1[e] > λ2[e]) ∧ (λ3[e] = λ2[e])

)
∨
(
(λ1[e] ≤ λ2[e]) ∧ (λ3[e] = λ1[e])

))
.

The parameter synthesis problem for CR-CPRS is defined similarly as for CRPRS.
Let cr-CP = (CP,A) and F = {φ1, . . . , φn} be a set of rsltl formulae. The aim of
parameter synthesis for CR-CPRS is to find a valid parameter valuation v of cr-CP
such that:

(M(cr-CP←v) |=∃ φ1) ∧ . . . ∧ (M(cr-CP←v) |=∃ φn) . (6.1)

Next, we define the nonemptiness checking problem, which is a decision problem
related to the problem of parameter synthesis. This problem consists in checking if
there exists a valuation v such that the condition (6.1) holds.

131

6.1.2 Complexity analysis

Theorem 6.1.13. The nonemptiness checking problem for CR-CPRS and rsltl
is pspace-complete.

Proof. The lower bound follows directly from Corollary 5.2.9, hence the problem
is pspace-hard.

For the upper bound we need to show the problem is in pspace. To show
this we define a nondeterministic space-bounded algorithm and use Lemma 5.2.11.
Algorithm 17 presents an outline for the nonemptiness checking procedure. First,

Algorithm 17: Nondeterministic procedure for nonemptiness checking
1: guess v ∈ PVP
2: if v |=p c then
3: R := true
4: for all φ ∈ F do
5: R := (M(cr-CP←v) |=∃ φ) ∧R
6: end for
7: if R = true then
8: return true
9: end if

10: end if

the algorithm nondeterministically generates a valuation v ∈ PVP . If v is valid in
cr-CP , then it proceeds to verifying the rsltl formulae. For all the formulae φ ∈ F
the algorithm performs existential rsltl model checking inM(cr-CP←v). From
Lemma 5.2.11 and the fact that pspace is closed under complementation, i.e.,
pspace = copspace, the existential variant of the rsltl model checking problem is
also in pspace. The nonemptiness checking algorithm requires the space needed by
the algorithm for rsltl model checking. Since all the |F | model checking instances
are constructed independently and the algorithm only stores the overall result R, the
algorithm requires space for at most one instance at any given time. Additionally,
the algorithm requires space O(|A| · |S|) to store the valuation v and O(1) for the
verification result R. Therefore, the problem remains in pspace and given the
lower bound we conclude the problem is pspace-complete.

In the following section we show how the synthesis problem can be solved using
an incremental approach, which amounts to checking

(M(cr-CP←v) |=k
∃ φ1) ∧ . . . ∧ (M(cr-CP←v) |=k

∃ φn)

for k ≥ 0, by increasing the value of k until a valid parameter valuation is found.

132

6.2 smt-based encoding

In this section we provide a translation of the parameter synthesis problem for
CR-CPRS and rsltl into the satisfiability modulo theory (smt) with the integer
arithmetic theory.

Let cr-CP = ((S, P,A, c), (Q, qinit , R)) and F = {φ1, . . . , φn} be a set of rsltl
formulae. We encode the modelMcr-CP←v , where v is a valid parameter valuation
of cr-CP. Let k ≥ 0 be an integer, then for each f ∈ {1, . . . , n} we encode
any possible path prefix of Mcr-CP←v . The encoded path prefixes are bounded
with k. That is, for each formula φf we encode a separate path prefix representing
its witness. The entities of S are denoted by e1, . . . , em, where m = |S|. For
each φf ∈ F and i ∈ {0, . . . , k} we introduce sets of positive integer variables:

Pf,i = {pf,i,1, . . . , pf,i,m},
PEf,i = {pEf,i,1, . . . , pEf,i,m},
Qf = {qf,0, . . . , qf,k}.

Let ta : A→ {1, . . . , |A|} be a bijection mapping all the reactions to integers. For
each a ∈ A we introduce the set of variables encoding the products:

Pp
f,i,a = {ppf,i,ta(a),1, . . . , p

p
f,i,ta(a),m}.

Let σ.f be a path ofM(cr-CP←v), then

pf,i = (pf,i,1, . . . , pf,i,m) and

pEf,i = (pEf,i,1, . . . , p
E
f,i,m)

are used to encode (σ.f)b(i) and (σ.f)a(i), respectively. With pf,i[j] and pEf,i[j] we
denote, respectively, pf,i,j and pEf,i,j . For i ≥ 1 we define:

ppf,i = (ppf,i,1,1, . . . , p
p
f,i,1,m, . . . , p

p
f,i,|A|,1, . . . , p

p
f,i,|A|,m).

The following functions map the background set entities to the corresponding
variables of the encoding: for all i ∈ {0, . . . , k} we define tf,i : S → Pf,i and
tEf,i : S → PEf,i such that tf,i(ej) = pf,i,j and tEf,i(ej) = pEf,i,j for all j ∈ {1, . . . ,m}.
For all i ∈ {0, . . . , k} and a ∈ A we define tpf,i,a : S → Pp

f,i,a such that: tpf,i,a(ej) =

p
p
f,i,ta(a),j for all j ∈ {1, . . . ,m}.

The bijection e : Q → {1, . . . , |Q|} maps the states of the context automaton
to the integers used in the encoding. Let tp : P → {1, . . . , |P |} be a bijection
mapping all the parameters to their corresponding integers. We define:

ppar = (ppar1,1 , . . . , p
par
1,m, . . . , p

par
|P |,1, . . . , p

par
|P |,m).

For each parameter λ ∈ P we define:

Ppar
λ = {ppartp(λ),1, . . . , p

par
tp(λ),m}

133

and pmλ : S → Ppar
λ such that pmλ(ej) = p

par
tp(λ),j . Let a ∈ A and s ∈ {ra, ia, pa}.

Then, res(ej) denotes pms(ej) if s ∈ P , and s(ej) otherwise. To define the smt
encoding of the paths we need auxiliary functions that correspond to elements of
the encoding.

Initial state. To encode the initial state of the model for φf ∈ F we define

Init(pf,i, qf,i)
def
=

(∧
e∈S

tf,i(e) = 0

)
∧ qf,i = e(qinit),

where all the concentration levels are set to zero, and the context automaton is in
its initial state.

Parameter constraints and validity. With PC(ppar) we encode the parameter
constraints, require that the concentration levels of the reactants are always lower
than the concentration levels of the inhibitors, and ensure that all the multisets
corresponding to the parameters are non-empty, i.e., for each parameter at least
one entity must a have positive concentration level:

PC(ppar)
def
= encc(p

par) ∧

(∧
a∈A

∧
e∈S

reia(e) > 0⇒ (rera(e) < reia(e))

)
∧(∧

λ∈P

∨
e∈S

pmλ(e) > 0

)
,

where encc(ppar) is the encoding of c and it is defined over the variables of ppar.
The encoding follows directly from the semantics of parameter constraints.

Parametric reactions. The parametric reactions a ∈ A are encoded with

Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par)
def
=
∧
e∈S

((tf,i(e) ≥ rera(e) ∨ tEf,i(e) ≥ rera(e))∧

(tf,i(e) < reia(e) ∧ tEf,i(e) < reia(e)) ∧ (tpf,a,i+1(e) = repa(e))).

Product concentration levels. With the following formula we encode the
selection of the maximal concentration levels produced for each entity by all the
reactions:

Results(pf,i,p
p
f,i)

def
=

(∧
e∈S

tf,i+1(e) = max({0} ∪
⋃
a∈A
{tpf,a,i+1(e)})

)
.

134

Transitions of CPRS. We encode the local state changes of CP with the
following function:

TrCP(pf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)
def
=

(∧
a∈A

Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par)

)
∧

Results(pf,i+1,p
p
f,i+1).

Context. To encode a multiset c ∈ B(S) of context entities we define the following
function:

Ctc(pEf,i)
def
=
∧
e∈S

tEf,i(e) = c(e)

Transitions of CA. The encoding of the transition relation of the context
automaton is a disjunction of the encoded transitions:

TrA(qf,i,p
E
f,i, qf,i+1)

def
=

∨
(q,c,q′)∈R

(
qf,i = e(q) ∧ Ctc(pEf,i) ∧ qf,i+1 = e(q′)

)
.

Transition relation. The transition relation of the model for cr-CP is a con-
junction of the encoded transition relations for CP and A:

Trcr-CP(pf,i, qf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)
def
=

TrCP(pf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par) ∧ TrA(qf,i,p
E
f,i, qf,i+1).

Finally, to encode the paths ofMcr-CP←v that are bounded with k, we unroll the
transition relation up to k and combine it with the encoding of the initial state of
the model:

Pathskf
def
= Init

(
pf,0, qf,0

)
∧

k−1∧
i=0

Trcr-CP(pf,i, qf,i, ,p
E
f,i,p

p
f,i+1,pf,i+1,p

par).

The encoded rsltl formula φf at a position i ∈ {0, . . . , k} is denoted by |[φf]|ki .
To encode the formula |[φf]|ki we use our translation presented in Section 5.3.
However, for each formula φf ∈ F , we use independent sets of encoding variables
corresponding to its path, i.e., the variables indexed with f . The encoding Loopskf
for the loop positions is defined for each formula φf ∈ F . Finally, we perform the
synthesis of the parameter valuation v by testing the satisfiability of the following
formula:

[Mcr-CP←v , F, k] =
∧
φf∈F

(
Pathskf ∧ Loopskf ∧ |[φf]|k0

)
∧ PC(ppar). (6.2)

The presented encoding differs from the one for CRRSC and rsltl (Section 5.3)
in how the transition relation is encoded. Here, we use an additional step that

135

encodes the concentration levels of each entity produced by the individual reactions.
These results are then used to select the maximal concentration level produced for
a given entity. This is required because some reactions produce parameters for
which we do not have concretised values at the encoding stage. Therefore, it is not
possible to use the technique demonstrated in Section 5.3, where the reactions are
ordered and effectively only the one producing the maximal concentration level is
enabled.

We show the correctness of the proposed encoding for a given valid parameter
valuation.

Theorem 6.2.1. Let cr-CP = (CP,A) be a CR-CPRS, v ∈ PVcr-CP be a valid
parameter valuation,Mcr-CP←v be its model, and F be a set of rsltl formulae. For
any k ∈ IN, the formula [Mcr-CP←v , F, k] is satisfiable iff

∧
φ∈F

(
Mcr-CP←v |=k

∃ φ
)
.

Proof. Since we assume a valid parameter valuation v, to obtain a CRRSC we
can perform the substitution of all the parameters that occur in CR-CPRS. Then,
the proof is similar to the one of Theorem 5.3.1 for CRRSC and rsltl. The
formula PC(ppar) applies only to the encoding of parameters and after performing
the substitution we can simply assume that it is true as it does not constrain
anything. The formula [Mcr-CP←v , F, k] encodes |F | bounded model checking
instances (similar to what was described in Section 5.3). Let us consider φf ∈ F .
We assume an arbitrary k ∈ IN and focus on the satisfiability of Pathskf , since the
encoding of this formula differs from the corresponding one in the encoding for cr-C.
There exists a path σ.f inMcr-CP←v and (σ.f)k is its prefix of length k iff there
exists a valuation that represents (σ.f)k which satisfies Pathskf . Let i ∈ {0, . . . , k−1}.
We observe the formula Trcr-CP is satisfied for the valuation encoding (σ.f)s(i),

(σ.f)a(i) and (σ.f)s(i+ 1) iff (σ.f)s(i)
(σ.f)a(i)−−−−−→ (σ.f)s(i+ 1). This follows from the

encoding of TrCP and TrA. Let us first recall that (σ.f)s(i) = ((σ.f)b(i), (σ.f)ca(i)).
The formula TrCP is satisfied iff the valuation satisfies Results and Rcta for each
a ∈ A. The formula Rcta encodes the produced concentration levels for all the
entities e ∈ S by a ∈ A using the intermediate variables of Pp

f,i,a. Then, Results
ensures the maximal produced concentration levels for each entity and each reaction
are encoded using the variables of Pf,i+1. It follows from the construction that
Results and Rcta are satisfied iff the valuation encodes the concentration levels of
the entities in the successor state (σ.f)b(i+ 1) that are produced by the reactions
from the state (σ.f)b(i) combined with the context (σ.f)a(i). The formula TrA is
satisfied iff the valuation encodes a transition (q, c, q′) ∈ R such that q = (σ.f)ca(i),
c = (σ.f)a(i) and q′ = (σ.f)ca(i+ 1). Then, the formula Pathskf is satisfied iff the
valuation encodes a path prefix (σ.f)k such that the state (σ.f)s(0) ofMcr-CP←v

is the initial state and (σ.f)s(i)
(σ.f)a(i)−−−−−→ (σ.f)s(i + 1) for all i ∈ {0, . . . , k − 1}.

The rest of the proof for Loopskf and |[φf]|k0 follows as for Theorem 5.3.1.
Now it is easy to see that Pathskf∧Loopskf∧|[φf]|k0 is satisfiable iffMcr-CP←v |=k

∃ φf .
Finally, we conclude that [Mcr-CP←v , F, k] is satisfiable iffMcr-CP←v |=k

∃ φf for
all φf ∈ F .

136

In practice, the encoding [Mcr-CP←v , F, k] is intended to be satisfiable for any
valid parameter valuation v such that

∧
φ∈F

(
Mcr-CP←v |=k

∃ φ
)
. The constraints

that enforce the valuation to be valid are expressed using the encoding of PC. We
extract the valuation of the parameters of P when the formula (6.2) is satisfiable.
For the satisfied formula we obtain its model, i.e., the valuations of the variables
used in the formula. Let V (p) denote the valuation of a variable p used in our
encoding. The parameter valuations are defined as follows: λ←v(e) = V (pmλ(e))
for each e ∈ S and λ ∈ P .

6.3 Experimental evaluation

In this section we present the results of an experimental evaluation of the translation
presented in Section 6.2. We test our method on a parametric version (pmutex)
of the reaction system model for the mutual exclusion protocol introduced in
Chapter 3. The system consists of n ≥ 2 processes competing for an exclusive
access to the critical section. The background set of the CRRSC modelling the
mutual exclusion protocol is defined as S =

⋃n
i=1 Si, where the set of background

entities corresponding to the i-th process is defined as:

Si = {out i, req i, ini, act i, lock , done, s},

where the entities lock , done, and s are shared amongst all the processes.
We start by defining the context automaton A. Initially all the processes are

outside of their critical sections and are not requesting access, which is indicated
by the presence of outi for each i ∈ {1, . . . , n}. Next, we assume A may supply any
C ⊆ {act1 , ..., actn} such that |C| ≤ 2, allowing at most two simultaneously active
processes – we assume that if the context contains acti then the ith process is to
perform an action. This leads to the following definition of the context automaton:
A = ({q0, q1}, q0, R), where:

R = {q0
{out1 ,...,outn}−−−−−−−−−→ q1} ∪ {q1

C−→ q1 | C ⊆ {act1 , ..., actn} and |C| ≤ 2}.

We allow only at most two active processes at a time to avoid encoding in the
context automaton all the 2n transitions with subsets of {act1 , ..., actn}.

The ith process requests access to its critical section by producing reqi . Then, it
is possible for the process to enter the critical section when it is allowed to perform
an action and the critical section is not locked (the lock entity is not present). In
the case of entering a critical section, to avoid the situation where two processes
enter their critical sections synchronously, the assumption on acti is stricter: only
one acti for some i ∈ {1, . . . , n} is allowed to be present for the process to enter
the critical section. When a process enters its critical section, the critical section
is locked, i.e., the lock entity is produced. The lock entity is preserved until the
entity done appears, which is produced when a process leaves its critical section.
Any reaction in the system may be inhibited by the s entity.

137

This version of the mutual exclusion protocol implementation differs from the
one presented in Chapter 3 by the use of concentration levels. Each process after
requesting access to its critical section must wait at least one step before it is
allowed to gain access and after entering the critical section, the process performs
computations which take two steps.

Let Ai be the set of reactions of the ith process, for i ∈ {1, . . . , n}. Then, the
set Ai consists of the following reactions:

– ({outi 7→ 1, acti 7→ 1}, {s 7→ 1}, {reqi 7→ 1}),
– ({outi 7→ 1}, {acti 7→ 1}, {outi 7→ 1}),
– ({reqi 7→ 1, acti 7→ 1, actj 7→ 1}, {s 7→ 1}, {reqi 7→ 1}) for each j ∈ {1, . . . , n}

s.t. i 6= j,

– ({reqi 7→ 1}, {acti 7→ 1}, {reqi 7→ 2}),
– ({reqi 7→ 2, acti 7→ 1}, {actj 7→ 1 | j ∈ {1, . . . , n} and j 6= i} ∪ {lock 7→ 1},
{ini 7→ 3, lock 7→ 1}),

– ({ini 7→ 3, acti 7→ 1}, {s 7→ 1}, {ini 7→ 2}),
– ({ini 7→ 2, acti 7→ 1}, {s 7→ 1}, {ini 7→ 1}),
– ({ini 7→ 1, acti 7→ 1}, {s 7→ 1}, {outi 7→ 1, done 7→ 1}),
– ({ini 7→ 1}, {s 7→ 1}, {ini 7→ 1}).

Next, we assume here that the system is open and we allow for introducing new
processes that participate in the communication to gain access to the critical section.
Let us assume we are allowed to modify the behaviour of an additional process
(the nth process) only by introducing an additional reaction. Such an assumption
could be justified by a mechanism that accepts new processes to participate in the
protocol only if they contain the reactions of Ai for any i ∈ {1, . . . , n}, while the
remaining reactions could be performing some computation outside of the critical
section.

Our aim is to violate the property of mutual exclusion by making the first and
the nth process enter their critical sections simultaneously. The additional (mali-
cious) reaction uses the parameters of P = {λr, λi, λp} and is defined as follows:

Ap = {(λr, λi, λp)}

The set of reactions is defined as:

A =

(
n⋃
i=1

Ai

)
∪Ap ∪

{
({lock 7→ 1}, {done 7→ 1}, {lock 7→ 1})

}
.

Finally, we define the CRRSC modelling pmutex as: cr-CM = ((S, P,A, c),A),
where:

c =

(λp[inn] = 0) ∧
∧

λ∈P,e∈S\Sn

(λ[e] = 0)

 .

138

The constraint c constrains the additional reaction by requiring that it may produce
only entities related to the nth process and it cannot produce inn. This is to
avoid trivial solutions. Then, we need to synthesise a parameter valuation v

of cr-CPM which gives the rsltl property φ = F((in1 > 0) ∧ (inn > 0)), i.e.,
M(cr-CP←v

M) |=∃ φ.

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

5,000

n

ti
m
e
(i
n
se
co
nd

s)

cr-CP
cr-CPopt

cr-C
cr-Cnp

Figure 6.1: Synthesis results for pmutex: execution time

The verification tool that we use for this experiment was implemented in Python
and it uses Z3 4.5.0 [de Moura and Bjørner, 2008] for smt-solving. We implement
an incremental approach, i.e., in a single smt instance we increase the length of
the encoded interactive processes by unrolling their encoding until witnesses for
all the verified formulae are found. Then, the corresponding parameter valuation
is extracted. The verification results1 presented in Fig. 6.1–6.2 compare four
approaches: the implementation of the encoding from Section 6.2 (cr-CP) and its
extension (cr-CPopt) that optimises the obtained parameter valuations by using
OptSMT provided with Z3. We also use the same encoding for verification of
the rsltl property (cr-C), i.e., we replace all the parameters with the obtained
parameter valuations and test the formula φ in the same way as it is possible with
the method defined in Chapter 5. Next, we compare our results with the ones
obtained using the non-parametric method (cr-Cnp) defined in Chapter 5.

Our experimental implementation provides a valuation v which allows to violate
the mutual exclusion property, where λ←v

r = {outn 7→ 1}, λ←v
i = {s 7→ 1}, and

λ←v
p = {reqn 7→ 2, done 7→ 1} for all the values n ≥ 2 tested. This valuation was

obtained using cr-CPopt.
1The experimental results were obtained using a system equipped with 3.7GHz Intel Xeon E5

processor and 12GB of memory, running Mac OS X 10.13.2.

139

0 5 10 15 20 25 30

0

200

400

600

800

1,000

1,200

1,400

1,600

n

m
em

or
y
(i
n
M
B
)

cr-CP
cr-CPopt

cr-C
cr-Cnp

Figure 6.2: Synthesis results for pmutex: memory consumption

When using cr-CPopt, the memory consumption increases. However, the
method might require less time to calculate the result than cr-CP . The difference
in time and memory consumption between the parametric (cr-CP) and the non-
parametric (cr-C) approach is minor. However, cr-Cnp is the most efficient of all
the approaches tested. This suggests that our parameter synthesis method might
possibly be improved by optimising the encoding used.

6.4 Concluding remarks

We have presented a method for reaction mining which allows for calculating
parameter valuations for partially defined reactions of reaction systems. We also
demonstrated how the presented method can be used for synthesis of an attack
in which we inject an additional instruction represented by a reaction, where we
use rsltl to express the goal of the attack.

Assuming there is a finite set of allowed concentration levels for the parame-
ters, the presented method also allows for enumerating all the possible parameter
valuations for fixed-length processes. This can be achieved by adding an additional
constraint blocking the parameter valuation obtained in the previous step.

When dealing with parameter synthesis, the parameters could be associated
with the model [Alur et al., 1993b, Hune et al., 2002] or with the formalism used
to express its properties [Knapik et al., 2015, Jones et al., 2012].

We focused on the synthesis of the parameters which appear in the reaction
system. One could also consider extending this approach to include parameters
in the context automaton. This could allow to synthesise the behaviour of the

140

environment which leads to satisfaction of the verified rsltl property. However, in
the implementation of our approach, when the verified formula is satisfied, we also
obtain the witness which contains the entire context sequence generated by the
context automaton. This sequence represents the behaviour of the environment
which leads to satisfaction of the rsltl formula.

Parameters could also be introduced in the rsctl or rsltl formulae to obtain
parametric variants of these logics, e.g., by introducing parameters in place of the
families of sets of entities (or the multiset expressions for rsltl).

141

Chapter 7

Reaction systems model checking toolkit

This chapter presents an overview of the reaction systems model checking toolkit
which has evolved from the experimental implementations presented in the previous
chapters. The toolkit consists of two independent modules. This is the result
of using two different underlying verification methodologies: Reactics-bdd uses
bdds for storing an manipulating states of the verified systems, and Reactics-smt
interacts with an smt-solver to perform the verification.

7.1 Reactics-bdd

Reactics-bdd is implemented in C++. In this thesis the version 2.0 is described.
In the previous versions of the tool, ICRRS and rsctl were used as the input.
However, since CRMARS and rsctlk extend these in a conservative way, the
current version no longer supports the input of ICRRS and rsctl. The architecture
of Reactics-bdd is presented in Figure 7.1. The parser module parses a single
input file containing a description of a CRMARS and a list of rsctlk formulae.
Each formula is labelled with an identifier that allows for it to be selected from
the command line. The parser module uses an API providing all the methods
required to build the data structures used for storing CRMARS and the rsctlk
formulae. The provided API could also be used to implement a graphical interface
for the tool or an alternative parser. The data structure for CRMARS is held
by the RctSys module, CtxAut is responsible for the operations on the context
automaton, and RSform is used for the rsctlk formulae. The Boolean functions
used in the symbolic encoding in the form of bdds are handled by SymRS, which
is responsible for the symbolic representation of CRMARS. The SymRS module
interacts with the CUDD library. Finally, the MChecker module implements all
the model checking tasks and state space manipulation methods.

When the program is executed with the -h parameter it prints out a list of the
available options. The output of the command is presented in Figure 7.4. The

143

CRMARS rsctlk

parser

CtxAutRctSys RSform

SymRS

MChecker CUDD

Figure 7.1: Architecture of Reactics-bdd

options -b, -x, and -z were described in Section 3.7 and 4.7. The main feature of
the tool is rsctlk model checking and it is performed when -c form is provided,
where form is the identifier of the formula to be verified. The reaction system
and the formula to be verified need to be declared in the input file, using the
specification language introduced in the following section.

7.1.1 Reaction systems specification language

We introduce here Reaction Systems Specification Language (rssl), which is the
input language of Reactics-bdd. We assume ident to be any alphanumerical string
that starts with a letter. Firstly, we introduce the basic expressions of the language:

〈entity〉 ::= 〈ident〉

〈entities〉 ::= 〈entity〉 ‘,’ 〈entities〉
| 〈entity〉

〈entities-with-empty〉 ::= ε
| 〈entities〉

〈proc-ident〉 ::= 〈ident〉

144

〈proc-ent〉 ::= 〈proc-ident〉 ‘.’ 〈entity〉

〈formula-ident〉 ::= 〈ident〉

The elements such as entity, proc-ident and formula-ident are defined to improve
readability of the rules, but their definitions could be easily omitted and their
occurrences replaced with ident. The root element of the grammar is input, and it
is defined together with the main constructs of the language as follows:

〈input〉 ::= ε
| ‘options’ ‘{’ 〈options〉 ‘}’ ‘;’ 〈input〉
| ‘reactions’ ‘{’ 〈reactions-per-proc〉 ‘}’ ‘;’ 〈input〉
| ‘context-automaton’ ‘{’ 〈ctxaut〉 ‘}’ ‘;’ 〈input〉
| ‘rsctlk-property’ ‘{’ 〈formula-ident〉 ‘:’ 〈rsctlk〉 ‘}’

‘;’ 〈input〉

〈options〉 ::= ε
| 〈option〉 ‘;’ 〈options〉

〈option〉 ::= ‘make-progressive’
| ‘use-context-automaton’

〈reactions-per-proc〉 ::= ε
| 〈process〉 ‘;’ 〈reactions-per-proc〉

〈process〉 ::= 〈proc-ident〉 ‘{’ 〈reactions〉 ‘}’ ‘;’

〈reactions〉 ::= ε
| 〈reaction〉 ‘;’ 〈reactions〉

〈reaction〉 ::= ‘{’ 〈entities〉 ‘,’ 〈entities-with-empty〉 ‘->’ 〈entities〉 ‘}’

〈entities-with-empty〉 ::= ε
| 〈entities〉

Processes are synonymous with agents. The option make-progressive modifies the
specified context automaton according to the construction presented in Chapter 4, to
ensure it is progressive. Currently the option use-context-automaton is required
for all the inputs. In the future versions we may allow for specifying different ways
of controlling the contexts by introducing similar options. Context automata are
specified using the ctxaut rule:

〈state〉 ::= 〈ident〉

〈states〉 ::= 〈state〉 ‘,’ 〈states〉
| 〈state〉

〈proc-entities〉 ::= 〈proc-ident〉 ‘=’ ‘{’ 〈entities〉 ‘}’

〈entities-per-proc〉 ::= 〈proc-entities〉 〈entities-per-proc〉
| 〈proc-entities〉

145

〈transition〉 ::= ‘{’ 〈entities-per-proc〉 ‘}’ ‘:’ 〈state〉 ‘->’ 〈state〉 〈state-cond〉
‘;’

〈transitions〉 ::= ε
| 〈transition〉 ‘;’ 〈transitions〉
| 〈transition〉

〈state-cond〉 ::= ε
| ‘:’ 〈state-constr〉

〈ctxaut〉 ::= ε
| ‘states’ ‘{’ 〈states〉 ‘}’ ‘;’ 〈ctxaut〉
| ‘init-state’ ‘{’ 〈state〉 ‘}’ ‘;’ 〈ctxaut〉
| ‘transitions’ ‘{’ 〈transitions〉 ‘}’ ‘;’ 〈ctxaut〉

For the state constraints we use the following grammar:

〈state-constr〉 ::= 〈proc-ent〉
| ‘(’ 〈state-constr〉 ‘)’
| ‘NOT’ 〈state-constr〉
| 〈state-constr〉 ‘AND’ 〈state-constr〉
| 〈state-constr〉 ‘OR’ 〈state-constr〉
| 〈state-constr〉 ‘XOR’ 〈state-constr〉

The formulae of rsctlk are specified using the following grammar:

〈agent〉 ::= 〈proc-ident〉

〈agents〉 ::= 〈agent〉 ‘,’ 〈agents〉
| 〈agent〉

〈rsctlk〉 ::= 〈proc-ent〉
| ‘(’ 〈rsctlk〉 ‘)’
| ‘NOT’ 〈rsctlk〉
| 〈rsctlk〉 ‘AND’ 〈rsctlk〉
| 〈rsctlk〉 ‘OR’ 〈rsctlk〉
| 〈rsctlk〉 ‘XOR’ 〈rsctlk〉
| 〈rsctlk〉 ‘IMPLIES’ 〈rsctlk〉
| ‘EX’ 〈rsctlk〉
| ‘EU’ ‘(’ 〈rsctlk〉 ‘,’ 〈rsctlk〉 ‘)’
| ‘EF’ 〈rsctlk〉
| ‘EG’ 〈rsctlk〉
| ‘E’ ‘<’ 〈state-constr〉 ‘>’ ‘X’ 〈rsctlk〉
| ‘E’ ‘<’ 〈state-constr〉 ‘>’ ‘U’ ‘(’ 〈rsctlk〉 ‘,’ 〈rsctlk〉 ‘)’
| ‘E’ ‘<’ 〈state-constr〉 ‘>’ ‘F’ 〈rsctlk〉
| ‘E’ ‘<’ 〈state-constr〉 ‘>’ ‘G’ 〈rsctlk〉
| ‘AX’ 〈rsctlk〉
| ‘AU’ ‘(’ 〈rsctlk〉 ‘,’ 〈rsctlk〉 ‘)’

146

| ‘AF’ 〈rsctlk〉
| ‘AG’ 〈rsctlk〉
| ‘A’ ‘<’ 〈state-constr〉 ‘>’ ‘X’ 〈rsctlk〉
| ‘A’ ‘<’ 〈state-constr〉 ‘>’ ‘U’ ‘(’ 〈rsctlk〉 ‘,’ 〈rsctlk〉 ‘)’
| ‘A’ ‘<’ 〈state-constr〉 ‘>’ ‘F’ 〈rsctlk〉
| ‘A’ ‘<’ 〈state-constr〉 ‘>’ ‘G’ 〈rsctlk〉
| ‘UK’ ‘[’ 〈agent〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’
| ‘NK’ ‘[’ 〈agent〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’
| ‘UE’ ‘[’ 〈agents〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’
| ‘NE’ ‘[’ 〈agents〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’
| ‘UC’ ‘[’ 〈agents〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’
| ‘NC’ ‘[’ 〈agents〉 ‘]’ ‘(’ 〈rsctlk〉 ‘)’ .

The grammar for rsctlk is consistent with the one defined in Chapter 4. The
semantics is straightforward but we use different tokens for the epistemic operators:
the universal operators are prefixed with U and the existential operators with N,
e.g., UK is K and NK is K. An example of an input file specified in rssl is presented
in Figure 7.2.

7.2 Reactics-smt

Reactics-smt is implemented in Python. The architecture of Reactics-smt is
presented in Figure 7.5. This module does not have a traditional input file and
the system together with its properties needs to be specified in Python. This
requires interacting with the RctSys, CtxAut, and FormLTL modules directly to
specify a model checking instance. The verification tasks are implemented by
SMTCheckerRS, SMTCheckerRSC, and SMTCheckerPRS. The SMTCheckerRS
implements a basic BMC method for CRRS using mostly Boolean variables in
the encoding. The SMTCheckerRSC extends SMTCheckerRS by allowing for
specifying concentrations, which are encoded using integer variables. Finally, the
SMTCheckerPRS provides an extension allowing for CR-CPRS synthesis. When
verifying rsltl properties, the verification modules use FormEnc to obtain the
(incremental) encodings for the verified rsltl formula. All the verification modules
and the FormEnc module interact with the Z3 smt-solver. The smt-solver used
is Z3 [de Moura and Bjørner, 2008].

7.2.1 Interacting with Reactics-smt

Here we demonstrate how to use Reactics-smt with Python. We focus on parameter
synthesis since it contains all the elements of the other types of implemented methods.
Firstly, all of the required modules need to be imported. The Python code for the
imports is presented in Listing 7.1. In our example we use the following system:
P = (S, {λ}, A) where S = {a, b, c, h} and A = {({a 7→ 1}, {h 7→ 1}, {b 7→ 2}),
(λ, {h 7→ 1}, {c 7→ 1})}. The code that creates P is presented in Listing 7.2. The

147

options { use-context-automaton; make-progressive; };
reactions {

proc0 {
{{out}, {} -> {approach}};
{{approach}, {req} -> {req}};
{{allowed}, {} -> {in}};
{{in}, {} -> {out,leave}};
{{req}, {in} -> {req}};

};

proc1 {
{{out}, {} -> {approach}};
{{approach}, {req} -> {req}};
{{allowed}, {} -> {in}};
{{in}, {} -> {out,leave}};
{{req}, {in} -> {req}};

};
};

context-automaton {
states { init, green, red };
init-state { init };
transitions {

{ proc0={out} proc1={out} }: init -> green;
{ proc0={allowed} }: green -> red : proc0.req;
{ proc1={allowed} }: green -> red : proc1.req;
{ proc0={} }: green -> green : ~proc0.req AND ~proc1.req;
{ proc1={} }: green -> green : ~proc0.req AND ~proc1.req;
{ proc0={} }: red -> green : proc0.leave;
{ proc1={} }: red -> green : proc1.leave;
{ proc0={} }: red -> red : ~proc0.leave AND ~proc1.leave;
{ proc1={} }: red -> red : ~proc0.leave AND ~proc1.leave;

};
};

rsctlk-property { f1 : EF(E<proc0.allowed>X(proc0.in))
AND EF(E<proc1.allowed>X(proc1.in)) };

rsctlk-property { f2 : EF(proc0.approach AND proc1.approach) };

rsctlk-property { f3 : AG(proc0.in IMPLIES K[proc0](~proc1.in)) };

rsctlk-property { f4 : AG(proc0.in IMPLIES C[proc0,proc1](~proc1.in)) };

Figure 7.2: Input file for Reactics-bdd

148

%
./

re
ac

ti
cs

-c
f2

-v
in

pu
t.

rs
Ve

rb
os

e
le

ve
l:

1
ii

VE
RB

OS
E(

1)
:

re
ac

ti
cs

.c
c

(m
ai

n:
14

6)
:

Pa
rs

in
g

in
pu

t.
rs

ii
VE

RB
OS

E(
1)

:
rs

in
_d

ri
ve

r.
cc

(s
et

up
Re

ac
ti

on
Sy

st
em

:9
0)

:
Us

in
g

RS
wi

th
CA

ii
VE

RB
OS

E(
1)

:
rs

in
_d

ri
ve

r.
cc

(s
et

up
Re

ac
ti

on
Sy

st
em

:9
1)

:
Us

in
g

or
di

na
ry

RS
ii

VE
RB

OS
E(

1)
:

sy
mr

s.
cc

(e
nc

od
e:

53
):

En
co

di
ng

..
.

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(i

ni
tB

DD
va

rs
:1

00
):

In
it

ia
li

si
ng

CU
DD

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(i

ni
tB

DD
va

rs
:1

04
):

Pr
ep

ar
in

g
BD

D
va

ri
ab

le
s

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(i

ni
tB

DD
va

rs
:2

95
):

Al
l

BD
D

va
ri

ab
le

s
re

ad
y

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eC
tx

Au
tT

ra
ns

:9
35

):
En

co
di

ng
co

nt
ex

t
au

to
ma

to
n’

s
tr

an
si

ti
on

re
la

ti
on

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eT
ra

ns
it

io
ns

:7
62

):
De

co
mp

os
in

g
re

ac
ti

on
s

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eT
ra

ns
it

io
ns

:7
70

):
En

co
di

ng
re

ac
ti

on
s

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eT
ra

ns
it

io
ns

:7
85

):
Us

in
g

mo
no

li
th

ic
tr

an
si

ti
on

re
la

ti
on

en
co

di
ng

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eT
ra

ns
it

io
ns

:8
20

):
Re

ac
ti

on
s

re
ad

y
ii

VE
RB

OS
E(

1)
:

sy
mr

s.
cc

(e
nc

od
eT

ra
ns

it
io

ns
:8

23
):

Au
gm

en
ti

ng
tr

an
si

ti
on

s
wi

th
tr

an
si

ti
on

s
fo

r
co

nt
ex

t
au

to
ma

to
n

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eI
ni

tS
ta

te
s:

84
0)

:
En

co
di

ng
in

it
ia

l
st

at
es

(u
si

ng
co

nt
ex

t
au

to
ma

to
n)

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(g

et
En

cC
tx

Au
tI

ni
tS

ta
te

:9
26

):
En

co
di

ng
co

nt
ex

t
au

to
ma

to
n’

s
in

it
ia

l
st

at
e

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

eI
ni

tS
ta

te
s:

84
7)

:
In

it
ia

l
st

at
es

en
co

de
d

ii
VE

RB
OS

E(
1)

:
sy

mr
s.

cc
(e

nc
od

e:
77

):
En

co
di

ng
do

ne
Us

in
g

BD
D-

ba
se

d
Bo

un
de

d
Mo

de
l

Ch
ec

ki
ng

ii
VE

RB
OS

E(
1)

:
mc

.c
c

(c
he

ck
RS

CT
LK

bm
c:

62
3)

:
Bo

un
de

d
mo

de
l

ch
ec

ki
ng

fo
r

RS
CT

LK
fo

rm
ul

a:
EF

((
pr

oc
0.

ap
pr

oa
ch

AN
D

pr
oc

1.
ap

pr
oa

ch
))

ii
VE

RB
OS

E(
1)

:
mc

.c
c

(c
he

ck
RS

CT
LK

bm
c:

62
5)

:
Pr

oc
es

si
ng

th
e

fo
rm

ul
a:

en
co

di
ng

en
ti

ti
es

ii
VE

RB
OS

E(
1)

:
mc

.c
c

(c
he

ck
RS

CT
LK

bm
c:

62
7)

:
En

ti
ti

es
en

co
de

d
ii

VE
RB

OS
E(

1)
:

mc
.c

c
(c

he
ck

RS
CT

LK
bm

c:
62

9)
:

Pr
oc

es
si

ng
th

e
fo

rm
ul

a:
en

co
di

ng
ac

ti
on

s/
co

nt
ex

ts
ii

VE
RB

OS
E(

1)
:

mc
.c

c
(c

he
ck

RS
CT

LK
bm

c:
63

1)
:

Co
nt

ex
ts

en
co

de
d

Fo
rm

ul
a

EF
((

pr
oc

0.
ap

pr
oa

ch
AN

D
pr

oc
1.

ap
pr

oa
ch

))
ho

ld
s

F
ig
ur
e
7.
3:

R
ea
ct

ic
s-

bd
d
ve
ri
fic

at
io
n
ou

tp
ut

149

--
-- ReactICS -- Reaction Systems Model Checker --
--

Version: 2.0
Contact: Artur Meski <meski@ipipan.waw.pl>

Usage: ./reactics [options] <input file>

TASKS:
-c form -- perform RSCTLK model checking (form: formula identifier)
-P -- print parsed system
-r -- print reactions
-s -- print all the reachable states
-t -- print all the reachable states with their successors

OTHER:
-b -- disable bounded model checking (BMC) heuristic
-x -- use partitioned transition relation
-z -- use reordering of the BDD variables
-v -- verbose (use more than once to increase verbosity)
-p -- show progress (where possible)

Benchmarking options:
-m -- measure and display time and memory usage
-B -- display an easy to parse summary (enables -m)

Figure 7.4: Reactics-bdd output with usage information

add_bg_set_entity method is used to add the entities of S with their maximal
concentration level. To create a parameter λ and get an object that can be used later
on to define reactions using λ, we use the get_param method and save the returned
object. The reactions are defined in a straightforward way using the add_reaction
method. In Listing 7.3 we show how to represent the context automaton A =
({q0, q1}, q0, R) where R = {(q0, {a 7→ 3}, q1), (q1,∅S , q1), (q1, {h 7→ 1}, q1)}. In
Listing 7.4, P and A are used to create an instance of cr-P = (P,A). The method
show() called on an instance of ReactionSystemWithAutomaton prints out the
defined system to the standard output. The result of calling show() on the defined
system is presented in Figure 7.6. Finally, in Listing 7.5 we demonstrate how to

from rs import *
from smt import *
from logics import *
from rsltl_shortcuts import *

Listing 7.1: Reactics-smt imports

150

prs = ReactionSystemWithConcentrationsParam ()

ent_with_conc = [("a", 3), ("b" ,2), ("c" ,1), ("h" ,1)]

for ec in ent_with_conc:
prs.add_bg_set_entity(ec)

lda = prs.get_param("lda")

prs.add_reaction ([("a" ,1)],[("h" ,1)],[("b", 2)])
prs.add_reaction(lda ,[("h" ,1)],[("c" ,1)])

Listing 7.2: Simple PRS in Reactics-smt

ca = ContextAutomatonWithConcentrations(prs)
ca.add_init_state("0")
ca.add_state("1")

ca.add_transition("0", [("a", 3)], "1")
ca.add_transition("1", [], "1")
ca.add_transition("1", [("h", 1)], "1")

Listing 7.3: Simple CA in Reactics-smt

crprs = ReactionSystemWithAutomaton(prs , ca)
crprs.show()

Listing 7.4: Introduction of CRPRS in Reactics-smt

f = ltl_F(bag_entity("h") == 0, "c")
pc = param_entity(lda , "a") == 0

checker = SmtCheckerRSCParam(crprs , optimise=True)
checker.check_rsltl(formulae_list =[f], param_constr=pc)

Listing 7.5: Verification instance in Reactics-smt (parameter synthesis)

151

CRRS CRRSC CR-CPRS rsltl

CtxAutRctSys FormLTL

SMTCheckerRS

SMTCheckerRSC

SMTCheckerPRS

FormEnc

Z3

Figure 7.5: Architecture of Reactics-smt

verify f = Fh=0(c > 0) with a parameter constraint λ[a] = 0. To perform parameter
synthesis we first create an instance of SmtCheckerRSCParam. The instance is
initialised with the defined CRPRS and with optimise set to True, which enables
OptSMT and results in minimisation of the synthesised parameter valuations. We
initialise verification by calling check_rsltl(). The defined cr-P becomes a
CR-CPRS when parameter constraints are provided to the check_rsltl() call.
Therefore, check_rsltl() is invoked with two arguments: a list of rsltl properties
of the system and the parameter constraint. Here, the list of formulae to be
verified contains only the formula f . The rsltl formulae are constructed using the
functions defined in the rsltl_shortcuts.py file included with the source code
of Reactics-smt. The source code also includes examples of rsltl formulae. The
verification output for the specified system is presented in Figure 7.7.

7.3 Final remarks

This chapter provided an overview of the reaction systems model checking toolkit.
Two separate modules based on bdds and smt translations were described. More
examples and details on the implementations can be obtained with the software
package available at http://arturmeski.github.io/reactics.

152

http://arturmeski.github.io/reactics

[*] Background set: {a, b, c, h}
[*] Reactions:

reactants inhibitors products
- { a=1 } { h=1 } { b=2 }
- { @lda } { h=1 } { c=1 }

[*] Permanent entities:
[*] Meta reactions:
[*] Maximal allowed concentration levels:
- a = 3
- b = 2
- c = 1
- h = 1

[*] Context automaton states:
- 0 [init]
- 1

[*] Context automaton transitions:
- 0 --({ (’a’, 3) })--> 1
- 1 --(0)--> 1
- 1 --({ (’h’, 1) })--> 1

Figure 7.6: Reactics-smt: the output for the specified CRPRS

153

[i] Running rsLTL bounded model checking
[i] Tested formulae:
[i] F[h == 0](c > 0)
[i] INITIALISING...
[i] Preparing variables for path=0 (level=0)
[i] Concentration level assertions for path=0 (level=0)
[i] STARTING TO ITERATE...

------------------------[Working at level=0]------------------------
[i] Generating the encoding for F[h == 0](c > 0) (1 of 1)

[...]

------------------------[Working at level=2]------------------------
[i] Generating the encoding for F[h == 0](c > 0) (1 of 1)
[i] Cache hits: 3, encode calls: 8 (approx: 3)
[i] Adding the formulae to the solver...
[i] Adding the encoding for the loops...
[i] Testing satisfiability...
[+] SAT at level=2

=============================[WITNESS]==============================

Witness for: F[h == 0](c > 0)

[level=0]
State: { }
Context set: { a=3 }

[level=1]
State: { b=2 }
Context set: { }

[level=2]
State: { c=1 }

Parameters:

lda: { b=1 }

[i] Time: 0.050708999999999976 s
[i] Memory: 28.60546875 MB

Figure 7.7: Verification output for parameter synthesis in Reactics-smt

154

Chapter 8

Conclusions

In this chapter we summarise the results of this thesis and provide problems we
intend to address in our future work.

8.1 Overview and summary

In this thesis, we have shown model checking is applicable to reaction systems.
We introduced context-restricted reaction systems that allow for specifying the

environment in which the reaction system is functioning, rather than considering all
possible context sequences generated by the background set of reaction system. The
initial approach presented in Chapter 3 considers only a subset of the entities of the
background set that are assumed to be relevant for the interactions of the system
with its environment. Only these entities are used to generate the processes of the
analysed reaction system. Since the properties of reaction systems depend heavily
on their interactions with the environment, we introduced rsctl. It is a temporal
logic extending ctl and supporting the specification of context sets. We gave a
Boolean encoding for the context-restricted reaction systems and used it to define a
symbolic model checking method for checking rsctl properties of reaction systems.
The method uses binary decision diagrams that allow for efficient storage and
manipulation of the state-space of the verified system. We also provided complexity
analysis for rsctl model checking and proved the problem is pspace-complete.

In [Azimi et al., 2016] the authors defined several biologically-inspired properties
of reaction systems together with the corresponding verification problems. We
developed a logic that also allows to verify properties such as conserved sets (mass
conservation), invariant sets, and steady states. A reaction systems model for the
eukaryotic heat shock response mechanism was presented in [Azimi et al., 2014a].
We expressed the properties specified in the paper using rsctl, and automatically
verified them using our implementation. There also exist other approaches to
automated analysis of reaction systems such as [Azimi et al., 2015a] or [Nobile et

155

al., 2017], but they are not exhaustive since they only allow for simulation of reaction
systems. The convergence and occurrence properties [Salomaa, 2013a, Salomaa,
2013b, Formenti et al., 2015] can also be specified in rsctl using, respectively,
the AX and EX operators.

We generalised reaction systems by introducing multi-agent reaction systems.
This new formalism allowed for modelling of distributed and multi-agent systems
while also being a conservative extension of ordinary reaction systems. We also
introduced extended context automata which, in contrast to the previously de-
fined context automata, make it possible to specify the behaviour of environment
depending on the state of the multi-agent reaction system. This is achieved by
specifying transition guards in the extended context automaton that restrict the set
of states of the multi-agent reaction system in which the context associated with the
transition is allowed to be provided. For dealing with a combination of temporal
and epistemic properties of multi-agent reaction systems, we combined rsctl with
ctlk to define rsctlk, which effectively extends rsctl with epistemic opera-
tors. For the introduced formalism we provided a Boolean encoding and given
a symbolic model checking method based on binary decision diagrams. We also
demonstrated the model checking problem for rsctlk to be pspace-complete. We
applied the proposed method to verification of two scalable multi-agent systems
with temporal-epistemic properties.

Bounded model checking [Biere et al., 1999a] is one of the most successful
verification methods applied to verification of real-world systems [Copty et al.,
2001]. To complement symbolic model checking based on binary decision diagrams,
we provided bounded model checking for reaction systems based on a reduction
to a variant of the Boolean satisfiability problem. We introduced rsltl, which
is a logic for expressing linear-time temporal properties of reaction systems. It
is based on ltl, and similarly to rsctl, it also allows for specifying restrictions
of the permitted contexts. Additionally, we introduced reaction systems with
discrete concentrations that allow for easier modelling of quantitative aspects of
reaction systems. The proposed extension does not provide greater expressivity
than the original formalism; however, it facilitates more efficient verification when
quantitative aspects are relevant to the functioning of the system. Although
there exist other approaches that support modelling of complex dependencies of
concentration levels and their changes, e.g., chemical reaction networks theory based
on [Horn and Jackson, 1972], reaction systems provide much simpler framework
and the processes of reaction systems take into account interactions with the
external environment. Reaction systems with durations studied in [Brijder et
al., 2011c] share some similarities with the formalism of reaction systems with
discrete concentrations. However, in contrast to reaction systems with durations,
the execution of reaction systems with discrete concentrations does not explicitly
depend on a counter that can be implemented using reactions (see the translation
into reaction systems presented in [Brijder et al., 2011c]). The bounded model
checking method was implemented by translating the problem into an smt formula

156

Formalism rsctl/rsctlk rsltl

RS bdd-mc, bdd-bmc (Ch. 3), rsctl only smt-bmc (Ch. 5)

MARS bdd-mc, bdd-bmc (Ch. 4), rsctlk –

RSC – smt-bmc (Ch. 5)

PRS – smt-bmc (Ch. 6)

Table 8.1: Summary of the results

and then verifying its satisfiability using an smt-solver. For this approach, we
also showed how to generalise the notion of context-restricted reaction systems
by introducing context automata for modelling the environment and more precise
specification of the context sequences that the environment generates. We have
also shown the rsltl model checking problem to be pspace-complete.

In some practical applications, we may be presented with a physical system
for which we might be unable to model all of its reactions fully. To address this,
we extended our approach for bounded model checking of rsltl to produce a
method for reaction mining. We introduced a formalism for parametric reaction
systems, where reactions can be defined partially by using parameters in place of
the unknown reaction elements. The valuations of the parameters are synthesised
given some, potentially empirically obtained, observations expressed using rsltl.
To this aim we allow for multiple formulae, where each formula specifies a separate
observation related to a possible process or execution in the original system. This
approach is implemented by translating the problem into an smt formula and
checking its satisfiability. The parameter valuations are extracted for a satisfiable
smt encoding instance. In the encoding, for each rsltl formula we use a separate
set of variables to represent a separate path in which the corresponding rsltl
formula must hold. However, the encoding of the parameters are shared amongst
the encodings of the paths. This allows us to extract parameters that guarantee
all of the specified rsltl formulae hold. An application of the proposed method
was used to synthesise an attack on a mutual exclusion protocol by calculating
parameters of a malicious reaction to be injected into the system. The decision
problem corresponding to the introduced parameter synthesis problem is proved to
be pspace-complete.

For all the introduced verification methods, we provided implementations and
evaluated them experimentally. This resulted in an implementation of a complete
toolkit for verification of reaction systems. The provided implementations avoid
representing state-spaces explicitly by using symbolic model checking techniques.
This is particularly important given the complexity of the problems tackled in this
thesis. The toolkit has been released online with its complete source code and is
available for everyone to use and modify.

157

The verification methods proposed in this thesis are summarised in Table 8.1.
Our bdd-based model checking methods do not support direct modelling of discrete
concentrations. Moreover, in all of our bdd-based verification methods we also
implement the bdd-based bmc heuristic [Copty et al., 2001, Cabodi et al., 2002].

8.2 Future work and other research problems

We now provide an overview of the problems that we intend to address in our
future work.

Verification of universal properties

To verify rsltl properties of reaction systems (Chapter 5), we proposed a method
based on bounded model checking. Such an approach can provide a significant
advantage when verifying existential properties because, it is sufficient to find a path
prefix for which the verified property holds. This means that the verification can
be performed on a fraction of the original model. However, the method is unable
to disprove existential properties (or alternatively, to prove universal properties).
Therefore, in our future work we plan to provide a complete method for the
verification of rsltl. The method proposed in this thesis can be used as a complete
method provided it is known when the entire model has been explored. This can
be achieved by establishing a method for computing the diameter (completeness
threshold) [Clarke et al., 2004] of the model and using it as the condition to stop
model exploration. We also wish to propose a bdd-based model checking method
for rsltl, similar to the one proposed for rsctl, which would be a complete method
capable of verifying rsltl formulae interpreted existentially and universally.

The parameter synthesis method (Chapter 6) focuses on existential observations
that are very natural when obtained from simulations or experiments performed
on the system, since it is problematic to derive conclusions about all the possible
executions when investigating only a subset of them. However, when we consider
some underlying physical properties of the system under investigation, these can
be formulated as universal observations. Therefore, in our future work we are
going to focus on the synthesis problem with universal observations. Since we use
bounded model checking, if no valid parameter valuation exists and no bound on k
is assumed, then our method does not terminate. As previously mentioned, this
can be solved by computing the diameter of the verified model.

Generalised properties specification formalism: rsctl∗k

To allow for verification of a wider class of properties, we are also going to de-
fine rsltlk: a logic that will extend rsltl with epistemic operators, similarly
to rsctlk. To implement model checking for rsltlk, an automata-based approach
could be used, just like the one for ltlk presented in [Męski et al., 2014b]. Combin-
ing symbolic model checking method for rsltlk together with the one introduced

158

for rsctlk (Chapter 4) would result in a verification method for rsctl∗k that
would combine rsltlk and rsctlk similarly to how ctl∗ combines ctl with ltl.

The formalism of multi-agent reaction systems and the verification method
could be generalised to allow for direct modelling of concentration levels. However,
to achieve performance gains, instead of binary decision diagrams a type of decision
diagrams that allow for assigning integers to valuations should be used.

Timed reaction systems

Reaction systems with time were considered in [Ehrenfeucht and Rozenberg, 2009].
We would like to introduce a formalism for reaction systems with time constraints
that would facilitate model checking of real-time systems in the reaction systems
setting. Model checking for a discrete time modelling formalism could adopt
methods of [Półrola et al., 2014] and [Męski et al., 2011b] for continuous time.

Specification patterns

For the model of eukaryotic heat shock response [Azimi et al., 2014a] we provided its
specification using rsctl (Chapter 3). Different biologically-inspired properties of
reaction systems studied in [Azimi et al., 2016] can be specified using the temporal
logic formalisms introduced in this thesis. Providing generalised mappings of
properties of reaction systems into temporal formulae expressing them [Dwyer et
al., 1998] could help simplify the process of formalising behaviours of the analysed
systems. These specification patterns could also be used to describe the observations
in reaction synthesis (Chapter 6).

Efficiency improvements

Improvements of the encodings defined and used in Chapter 5 and 6 are potentially
possible by using an smt theory involving bit vectors or by basing the rsltl encoding
on one of the more involved and more efficient encodings for ltl presented in [Biere
et al., 2006]. In the approach for parameter synthesis we unroll all the path prefixes
simultaneously and assume they are of the same length. This happens even if a
witness for any of the verified formulae is found for a relatively short path prefix.
The unwinding could be optimised to prevent this from happening.

8.3 Final remarks

The benefits of engineering new vaccines and drugs is undisputed, and is a clear
demonstration of the applicability of synthetic biology. In such applications,
development of methods for ensuring correctness of the results at the design stage
is an important area of research. A paper published in Nature [Purnick and
Weiss, 2009] presented an overview of the research results in synthetic biology. It
highlighted the fact that the biological systems are being engineered to become

159

more and more complex, and it is impossible to use intuition alone to analyse
combinations of even small systems. Consequently, developing efficient methods
that support such analyses is crucial. While reaction systems are not mentioned
in the paper it has been demonstrated by various researchers (see [Corolli et al.,
2012, Azimi et al., 2014a, Azimi et al., 2015b, Barbuti et al., 2018]) that they can be
used for biological modelling. Furthermore, the paper points out the applicability
of model checking in identifying various parameters of these systems. For example,
model checking could support identifying the mutations to perform, and could help
to predict the behaviour after these perturbations have been made.

This thesis has introduced automated verification methods for reaction systems.
These methods are based on model checking and allow for verification of temporal
and epistemic properties of reaction systems. Additionally, extensions of reaction
systems facilitating more efficient verification as well as modelling and verification
of wider classes of systems were introduced. We also demonstrated how state-
of-the-art methods and data structures such as smt-solving and binary decision
diagrams can be used for representing large state-spaces to support model checking
for reaction systems. All of the proposed methods were implemented and resulted in
introduction of a toolkit for verification of reaction systems, which is now available
to the research community.

160

Bibliography

[Alhazov et al., 2016] Artiom Alhazov, Bogdan Aman, Rudolf Freund, and Sergiu
Ivanov. Simulating R systems by P systems. In Membrane Computing, 17th
International Conference, CMC 2016, Milan, Italy, July 25-29, 2016, pages
51–66, 2016.

[Alhazov, 2006] Artiom Alhazov. P systems without multiplicities of symbol-
objects. Information Processing Letters, 100(3):124 – 129, 2006.

[Alur et al., 1993a] R. Alur, C. Courcoubetis, and D. Dill. Model checking in
dense real-time. Information and Computation, 104(1):2–34, 1993.

[Alur et al., 1993b] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi.
Parametric real-time reasoning. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA,
pages 592–601, 1993.

[Armando et al., 2006] Alessandro Armando, Jacopo Mantovani, and Lorenzo Pla-
tania. Bounded model checking of software using SMT solvers instead of SAT
solvers. In Model Checking Software, 13th International SPIN Workshop, Vienna,
Austria, Proceedings, pages 146–162. Springer Berlin Heidelberg, 2006.

[Azimi et al., 2014a] Sepinoud Azimi, Bogdan Iancu, and Ion Petre. Reaction
system models for the heat shock response. Fundamenta Informaticae, 131(3-
4):299–312, 2014.

[Azimi et al., 2014b] Sepinoud Azimi, Bogdan Iancu, and Ion Petre. Reaction
system models for the heat shock response. Fundam. Inf., 131(3-4):299–312,
July 2014.

[Azimi et al., 2015a] Sepinoud Azimi, Cristian Gratie, Sergiu Ivanov, and Ion Petre.
Dependency graphs and mass conservation in reaction systems. Theoretical
Computer Science, 598:23–39, 2015.

[Azimi et al., 2015b] Sepinoud Azimi, Charmi Panchal, Eugen Czeizler, and Ion
Petre. Reaction systems models for the self-assembly of intermediate filaments.
Annals of University of Bucharest, LXII(2):9–24, 2015.

161

[Azimi et al., 2016] Sepinoud Azimi, Cristian Gratie, Sergiu Ivanov, Luca Manzoni,
Ion Petre, and Antonio E Porreca. Complexity of model checking for reaction
systems. Theoretical Computer Science, 623:103–113, 2016.

[Azimi et al., 2017] Sepinoud Azimi, Charmi Panchal, Andrzej Mizera, and Ion
Petre. Multi-stability, limit cycles, and period-doubling bifurcation with reaction
systems. International Journal of Foundations of Computer Science, 28(08):1007–
1020, 2017.

[Azimi, 2017] Sepinoud Azimi. Steady states of constrained reaction systems.
Theoretical Computer Science, 701:20–26, 2017.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT Press, 2008.

[Barbuti et al., 2016a] Roberto Barbuti, Roberta Gori, Francesca Levi, and Paolo
Milazzo. Investigating dynamic causalities in reaction systems. Theoretical
Computer Science, 623:114–145, 2016.

[Barbuti et al., 2016b] Roberto Barbuti, Roberta Gori, Francesca Levi, and Paolo
Milazzo. Specialized predictor for reaction systems with context properties.
Fundamenta Informaticae, 147(2-3):173–191, 2016.

[Barbuti et al., 2017] Roberto Barbuti, Roberta Gori, Francesca Levi, and Paolo
Milazzo. Generalized contexts for reaction systems: definition and study of
dynamic causalities. Acta Informatica, pages 1–41, 2017.

[Barbuti et al., 2018] Roberto Barbuti, Pasquale Bove, Roberta Gori, Francesca
Levi, and Paolo Milazzo. Simulating gene regulatory networks using reaction
systems. In Proceedings of the 27th International Workshop on Concurrency,
Specification and Programming, Berlin, Germany, September 24-26, 2018., 2018.

[Behrmann et al., 2004] Gerd Behrmann, Alexandre David, and Kim G. Larsen.
A tutorial on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International School on
Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[Bengtsson et al., 1995] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal — a Tool Suite for Automatic Verification
of Real–Time Systems. In Proc. of Workshop on Verification and Control of
Hybrid Systems III, number 1066 in Lecture Notes in Computer Science, pages
232–243. Springer–Verlag, October 1995.

[Biere et al., 1999a] Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
Masahiro Fujita, and Yunshan Zhu. Symbolic model checking using SAT

162

procedures instead of bdds. In Proceedings of the 36th Conference on Design
Automation, New Orleans, LA, USA, June 21-25, 1999., pages 317–320, 1999.

[Biere et al., 1999b] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic model checking without BDDs. In Proceedings of
the 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’99, pages 193–207. Springer-Verlag, 1999.

[Biere et al., 2006] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala,
and Viktor Schuppan. Linear encodings of bounded LTL model checking. Logical
Methods in Computer Science, 2(5), 2006.

[Bottoni et al., 2019] Paolo Bottoni, Anna Labella, and Grzegorz Rozenberg. Re-
action systems with influence on environment. Journal of Membrane Computing,
pages 1–17, 2019.

[Brijder et al., 2010] Robert Brijder, Andrzej Ehrenfeucht, and Grzegorz Rozen-
berg. A note on causalities in reaction systems. Electronic Communications of
the EASST, 30, 2010.

[Brijder et al., 2011a] Robert Brijder, Andrzej Ehrenfeucht, Michael Main, and
Grzegorz Rozenberg. A tour of reaction systems. International Journal of
Foundations of Computer Science, 22(07):1499–1517, 2011.

[Brijder et al., 2011b] Robert Brijder, Andrzej Ehrenfeucht, Michael Main, and
Grzegorz Rozenberg. A tour of reaction systems. International Journal of
Foundations of Computer Science, 22(07):1499–1517, 2011.

[Brijder et al., 2011c] Robert Brijder, Andrzej Ehrenfeucht, and Grzegorz Rozen-
berg. Reaction systems with duration. In Computation, Cooperation, and
Life - Essays Dedicated to Gheorghe Paun on the Occasion of His 60th Birthday,
volume 6610 of LNCS, pages 191–202. Springer, 2011.

[Brijder et al., 2012] Robert Brijder, Andrzej Ehrenfeucht, and Grzegorz Rozen-
berg. Representing reaction systems by trees. In Computation, Physics and
Beyond, volume 7160 of Lecture Notes in Computer Science, pages 330–342,
2012.

[Brodo et al., 2019] Linda Brodo, Roberto Bruni, and Moreno Falaschi. Enhancing
reaction systems: a process algebraic approach, 2019.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[Burch et al., 1991] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model
checking with partitioned transition relations. pages 49–58. North-Holland,
1991.

163

[Cabodi et al., 2002] G. Cabodi, P. Camurati, and S. Quer. Can BDD compete
with SAT solvers on bounded model checking? In Proc. of the 39th Design
Automation Conference (DAC’02), pages 117–122, 2002.

[Clarke and Emerson, 1981] Edmund M. Clarke and E. Allen Emerson. Design
and synthesis of synchronization skeletons using branching-time temporal logic.
In Logics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981,
pages 52–71, 1981.

[Clarke et al., 1986] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite state concurrent systems using temporal logic specifications:
A practical approach. ACM Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[Clarke et al., 1999] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 1999.

[Clarke et al., 2004] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and
Ofer Strichman. Completeness and complexity of bounded model checking.
In Verification, Model Checking, and Abstract Interpretation, 5th International
Conference, VMCAI 2004, Proceedings, pages 85–96, 2004.

[Copty et al., 2001] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila
Kamhi, Armando Tacchella, and Moshe Y. Vardi. Benefits of bounded model
checking at an industrial setting. In Computer Aided Verification, 13th Inter-
national Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings,
pages 436–453, 2001.

[Corolli et al., 2012] Luca Corolli, Carlo Maj, Fabrizio Marini, Daniela Besozzi,
and Giancarlo Mauri. An excursion in reaction systems: From computer science
to biology. Theoretical computer science, 454:95–108, 2012.

[de Moura and Bjørner, 2008] Leonardo de Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In Proceedings of the 14th International Conference on
Tools and Algorithms for Construction and Analysis of Systems, TACAS 2008,
pages 337–340. Springer-Verlang, 2008.

[Dennunzio et al., 2014] Alberto Dennunzio, Enrico Formenti, and Luca Manzoni.
Extremal combinatorics of reaction systems. In International Conference on
Language and Automata Theory and Applications, pages 297–307. Springer,
2014.

[Dennunzio et al., 2015a] Alberto Dennunzio, Enrico Formenti, and Luca Manzoni.
Reaction systems and extremal combinatorics properties. Theoretical Computer
Science, 598:138–149, 2015.

164

[Dennunzio et al., 2015b] Alberto Dennunzio, Enrico Formenti, Luca Manzoni, and
Antonio E Porreca. Ancestors, descendants, and gardens of eden in reaction
systems. Theoretical Computer Science, 608:16–26, 2015.

[Dennunzio et al., 2015c] Alberto Dennunzio, Enrico Formenti, Luca Manzoni, and
Antonio E Porreca. Preimage problems for reaction systems. In International
Conference on Language and Automata Theory and Applications, pages 537–548.
Springer, 2015.

[Dennunzio et al., 2016] Alberto Dennunzio, Enrico Formenti, Luca Manzoni, and
Antonio E Porreca. Reachability in resource-bounded reaction systems. In
International Conference on Language and Automata Theory and Applications,
pages 592–602. Springer, 2016.

[Dwyer et al., 1998] Matthew B. Dwyer, George S. Avrunin, and James C. Cor-
bett. Property specification patterns for finite-state verification. In Proceedings
of the Second Workshop on Formal Methods in Software Practice, March 4-5,
1998, Clearwater Beach, Florida, USA, pages 7–15, 1998.

[Ehrenfeucht and Rozenberg, 2007a] Andrzej Ehrenfeucht and Grzegorz Rozen-
berg. Events and modules in reaction systems. Theoretical Computer Science,
376(1-2):3–16, 2007.

[Ehrenfeucht and Rozenberg, 2007b] Andrzej Ehrenfeucht and Grzegorz Rozen-
berg. Reaction systems. Fundamenta Informaticae, 75(1-4):263–280, 2007.

[Ehrenfeucht and Rozenberg, 2009] Andrzej Ehrenfeucht and Grzegorz Rozenberg.
Introducing time in reaction systems. Theoretical Computer Science, 410(4-
5):310–322, 2009.

[Ehrenfeucht and Rozenberg, 2014] Andrzej Ehrenfeucht and Grzegorz Rozenberg.
Zoom structures and reaction systems yield exploration systems. International
Journal of Foundations of Computer Science, 25(03):275–305, 2014.

[Ehrenfeucht and Rozenberg, 2015] Andrzej Ehrenfeucht and Grzegorz Rozenberg.
Standard and ordered zoom structures. Theoretical Computer Science, 608:4–15,
2015.

[Ehrenfeucht et al., 2012a] A. Ehrenfeucht, J. Kleijn, M. Koutny, and G. Rozen-
berg. Reaction systems: A natural computing approach to the functioning of
living cells. A Computable Universe, Understanding and Exploring Nature as
Computation (H. Zenil, ed.), pages 189–208, 2012.

[Ehrenfeucht et al., 2012b] Andrzej Ehrenfeucht, Jetty Kleijn, Maciej Koutny, and
Grzegorz Rozenberg. Minimal reaction systems. In Transactions on Computa-
tional Systems Biology XIV, pages 102–122. Springer, 2012.

165

[Ehrenfeucht et al., 2017a] Andrzej Ehrenfeucht, Jetty Kleijn, Maciej Koutny, and
Grzegorz Rozenberg. Evolving reaction systems. Theoretical Computer Science,
682:79–99, 2017.

[Ehrenfeucht et al., 2017b] Andrzej Ehrenfeucht, Ion Petre, and Grzegorz Rozen-
berg. Reaction systems: A model of computation inspired by the functioning of
the living cell. In The Role of Theory in Computer Science: Essays Dedicated
to Janusz Brzozowski, pages 1–32. World Scientific, 2017.

[Emerson and Halpern, 1986] E. Allen Emerson and Joseph Y. Halpern. "some-
times" and "not never" revisited: on branching versus linear time temporal logic.
J. ACM, 33(1):151–178, 1986.

[Fagin et al., 2003] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning About Knowledge. MIT Press, Cambridge, MA, USA, 2003.

[Formenti et al., 2014a] Enrico Formenti, Luca Manzoni, and Antonio E Porreca.
Cycles and global attractors of reaction systems. In International Workshop on
Descriptional Complexity of Formal Systems, pages 114–125. Springer, 2014.

[Formenti et al., 2014b] Enrico Formenti, Luca Manzoni, and Antonio E Porreca.
Fixed points and attractors of reaction systems. In Conference on Computability
in Europe, pages 194–203. Springer, 2014.

[Formenti et al., 2015] Enrico Formenti, Luca Manzoni, and Antonio E Porreca.
On the complexity of occurrence and convergence problems in reaction systems.
Natural Computing, 14(1):185–191, 2015.

[Grumberg and Veith, 2008] Orna Grumberg and Helmut Veith, editors. 25 Years
of Model Checking - History, Achievements, Perspectives, volume 5000 of Lecture
Notes in Computer Science. Springer, 2008.

[Hirvensalo, 2012] Mika Hirvensalo. On probabilistic and quantum reaction sys-
tems. Theoretical Computer Science, 429:134–143, 2012.

[Horn and Jackson, 1972] F. Horn and R. Jackson. General mass action kinetics.
Archive for Rational Mechanics and Analysis, 47(2):81–116, 1972.

[Hune et al., 2002] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits Vaan-
drager. Linear parametric model checking of timed automata. The Journal of
Logic and Algebraic Programming, 52-53:183 – 220, 2002.

[Huth and Ryan, 2004] M. Huth and M. Ryan. Logic in Computer Science: Mod-
elling and Reasoning about Systems. Cambridge University Press, 2004.

[Ivanov et al., 2018] Sergiu Ivanov, Vladimir Rogojin, Sepinoud Azimi, and Ion
Petre. WEBRSIM: A web-based reaction systems simulator. In Enjoying
Natural Computing - Essays Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday, pages 170–181, 2018.

166

[Jamroga and Ågotnes, 2007] Wojciech Jamroga and Thomas Ågotnes. Modular
interpreted systems. In Proceedings of the 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’07, pages 131:1–131:8,
New York, NY, USA, 2007. ACM.

[Jamroga et al., 2013] Wojciech Jamroga, Artur Męski, and Maciej Szreter. Mod-
ularity and openness in modeling multi-agent systems. In Proceedings Fourth
International Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2013, Borca di Cadore, Dolomites, Italy, 29-31th August 2013., pages
224–239, 2013.

[Jones and Lomuscio, 2010] Andrew V. Jones and Alessio Lomuscio. Distributed
bdd-based BMC for the verification of multi-agent systems. In 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
Toronto, Canada, May 10-14, 2010, Volume 1-3, pages 675–682, 2010.

[Jones et al., 2012] Andrew V. Jones, Michal Knapik, Wojciech Penczek, and
Alessio Lomuscio. Group synthesis for parametric temporal-epistemic logic.
In International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 Volumes), pages 1107–1114,
2012.

[Kauffman, 1969] S.A. Kauffman. Metabolic stability and epigenesis in randomly
constructed genetic nets. Journal of Theoretical Biology, 22(3):437 – 467, 1969.

[Kleijn and Koutny, 2011] Jetty Kleijn and Maciej Koutny. Membrane systems
with qualitative evolution rules. Fundam. Inf., 110(1-4):217–230, January 2011.

[Kleijn et al., 2018] Jetty Kleijn, Maciej Koutny, Lukasz Mikulski, and Grzegorz
Rozenberg. Reaction systems, transition systems, and equivalences. In Adven-
tures Between Lower Bounds and Higher Altitudes - Essays Dedicated to Juraj
Hromkovič on the Occasion of His 60th Birthday, pages 63–84, 2018.

[Knapik et al., 2015] Michal Knapik, Artur Męski, and Wojciech Penczek. Action
synthesis for branching time logic: Theory and applications. ACM Trans.
Embedded Comput. Syst., 14(4):64:1–64:23, 2015.

[Kroening and Strichman, 2016] Daniel Kroening and Ofer Strichman. Decision
Procedures - An Algorithmic Point of View, Second Edition. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2016.

[Laroussinie et al., 2004] François Laroussinie, Nicolas Markey, and Ph. Schnoe-
belen. Model checking timed automata with one or two clocks. In CONCUR,
pages 387–401, 2004.

[Lichtenstein and Pnueli, 1985] Orna Lichtenstein and Amir Pnueli. Checking that
finite state concurrent programs satisfy their linear specification. In Proceedings

167

of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’85, pages 97–107, New York, NY, USA, 1985. ACM.

[Lomuscio et al., 2009] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi.
Mcmas: A model checker for the verification of multi-agent systems. In Computer
Aided Verification, pages 682–688. Springer Berlin Heidelberg, 2009.

[McMillan, 1993] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[Męski et al., 2014a] Artur Męski, Wojciech Penczek, and Grzegorz Rozenberg.
Model checking temporal properties of reaction systems. Technical Report 1028,
ICS PAS, April 2014.

[Męski et al., 2014b] Artur Męski, Wojciech Penczek, Maciej Szreter, Bożena
Woźna-Szcześniak, and Andrzej Zbrzezny. BDD- versus SAT-based bounded
model checking for the existential fragment of linear temporal logic with knowl-
edge: algorithms and their performance. Autonomous Agents and Multi-Agent
Systems, 28(4):558–604, 2014.

[Męski et al., 2015] Artur Męski, Wojciech Penczek, and Grzegorz Rozenberg.
Model checking temporal properties of reaction systems. Information Sciences,
313:22–42, 2015.

[Męski et al., 2016] Artur Męski, Maciej Koutny, and Wojciech Penczek. Towards
quantitative verification of reaction systems. In Unconventional Computation and
Natural Computation: 15th International Conference, UCNC 2016, Manchester,
UK, July 11-15, 2016, Proceedings, pages 142–154, 2016.

[Męski et al., 2017] Artur Męski, Maciej Koutny, and Wojciech Penczek. Veri-
fication of linear-time temporal properties for reaction systems with discrete
concentrations. Fundam. Inform., 154(1-4):289–306, 2017.

[Męski et al., 2019] Artur Męski, Maciej Koutny, and Wojciech Penczek. Model
checking for temporal-epistemic properties of distributed reaction systems. Tech-
nical Report CS-TR-1526, School of Computing, Newcastle University, Newcastle
upon Tyne, UK, April 2019.

[Męski et al., 2011a] Artur Męski, Wojciech Penczek, and Agata Półrola. BDD-
based bounded model checking for temporal properties of 1-safe petri nets.
Fundamenta Informaticae, 109(3):305–321, 2011.

[Męski et al., 2011b] Artur Męski, Agata Półrola, Wojciech Penczek, Bozena
Wozna-Szczesniak, and Andrzej Zbrzezny. Bounded model checking approaches
for verification of distributed time petri nets. In Proceedings of the International
Workshop on Petri Nets and Software Engineering, Newcastle upon Tyne, UK,
June 20-21, 2011, pages 72–91, 2011.

168

[Męski et al., 2018] Artur Męski, Maciej Koutny, and Wojciech Penczek. Reaction
mining for reaction systems. In Unconventional Computation and Natural Com-
putation - 17th International Conference, UCNC 2018, Fontainebleau, France,
June 25-29, 2018, Proceedings, pages 131–144, 2018.

[Nobile et al., 2017] Marco S Nobile, Antonio E Porreca, Simone Spolaor, Luca
Manzoni, Paolo Cazzaniga, Giancarlo Mauri, and Daniela Besozzi. Efficient
simulation of reaction systems on graphics processing units. Fundamenta
Informaticae, 154(1-4):307–321, 2017.

[Okubo and Yokomori, 2015] Fumiya Okubo and Takashi Yokomori. Recent devel-
opments on reaction automata theory: A survey. In Recent Advances in Natural
Computing, pages 1–22. Springer, 2015.

[Okubo and Yokomori, 2016] Fumiya Okubo and Takashi Yokomori. The compu-
tational capability of chemical reaction automata. Natural Computing, 15(2):215–
224, 2016.

[Okubo et al., 2012a] Fumiya Okubo, Satoshi Kobayashi, and Takashi Yokomori.
On the properties of language classes defined by bounded reaction automata.
Theoretical Computer Science, 454:206–221, 2012.

[Okubo et al., 2012b] Fumiya Okubo, Satoshi Kobayashi, and Takashi Yokomori.
Reaction automata. Theoretical Computer Science, 429:247–257, 2012.

[Okubo, 2014] Fumiya Okubo. Reaction automata working in sequential manner.
RAIRO-Theoretical Informatics and Applications, 48(1):23–38, 2014.

[Panda and Somenzi, 1995] Shipra Panda and Fabio Somenzi. Who are the vari-
ables in your neighborhood. In Proceedings of the 1995 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 1995, San Jose, California, USA,
November 5-9, 1995, pages 74–77, 1995.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

[Paun et al., 2010] Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. The
Oxford Handbook of Membrane Computing. Oxford University Press, Inc., New
York, NY, USA, 2010.

[Paun, 2002] Gheorghe Paun. Membrane computing: an introduction. Springer-
Verlag, Berlin Heidelberg New York, 2002.

[Pecheur and Raimondi, 2006a] C. Pecheur and F. Raimondi. Symbolic model
checking of logics with actions. In MoChArt, pages 113–128, 2006.

169

[Pecheur and Raimondi, 2006b] Charles Pecheur and Franco Raimondi. Symbolic
model checking of logics with actions. In Model Checking and Artificial Intel-
ligence, 4th Workshop, MoChArt IV, Riva del Garda, Italy, August 29, 2006,
Revised Selected and Invited Papers, pages 113–128, 2006.

[Peled, 1993] D. Peled. All from one, one for all: On model checking using
representatives. In Proceedings of the 5th Int. Conf. on Computer Aided
Verification (CAV’93), volume 697 of LNCS, pages 409–423. Springer-Verlag,
1993.

[Penczek and Lomuscio, 2003] W. Penczek and A. Lomuscio. Verifying epistemic
properties of multi-agent systems via bounded model checking. In Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’03, pages 209–216, New York, NY, USA, 2003. ACM.

[Penczek and Półrola, 2006] Wojciech Penczek and Agata Półrola. Advances in
Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach,
volume 20 of Studies in Computational Intelligence. Springer, 2006.

[Półrola et al., 2014] Agata Półrola, Piotr Cybula, and Artur Męski. SMT-based
reachability checking for bounded time petri nets. Fundam. Inform., 135(4):467–
482, 2014.

[Păun and Rozenberg, 2002] Gheorghe Păun and Grzegorz Rozenberg. A guide
to membrane computing. Theor. Comput. Sci., 287(1):73–100, 2002.

[Purnick and Weiss, 2009] Priscilla E. M. Purnick and Ron Weiss. The second
wave of synthetic biology: from modules to systems. Nature reviews. Molecular
cell biology, 10(6), 2009.

[Queille and Sifakis, 1982] Jean-Pierre Queille and Joseph Sifakis. Specification
and verification of concurrent systems in CESAR. In International Symposium
on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings,
pages 337–351, 1982.

[Raimondi and Lomuscio, 2005] Franco Raimondi and Alessio Lomuscio. Symbolic
model checking of multi-agent systems using OBDDs. In In Proc. of the 3rd
NASA Workshop on Formal Approaches to Agent-Based Systems (FAABS III),
volume 3228 of LNCS, pages 213–221. Springer-Verlag, 2005.

[Rudell, 1993] Richard Rudell. Dynamic variable ordering for ordered binary deci-
sion diagrams. In Proceedings of the 1993 IEEE/ACM International Conference
on Computer-aided Design, ICCAD ’93, pages 42–47. IEEE Computer Society
Press, 1993.

[Salomaa, 2012a] Arto Salomaa. Functions and sequences generated by reaction
systems. Theoretical Computer Science, 466:87–96, 2012.

170

[Salomaa, 2012b] Arto Salomaa. On state sequences defined by reaction systems.
In Logic and Program Semantics, pages 271–282. Springer, 2012.

[Salomaa, 2013a] Arto Salomaa. Functional constructions between reaction sys-
tems and propositional logic. International Journal of Foundations of Computer
Science, 24(01):147–159, 2013.

[Salomaa, 2013b] Arto Salomaa. Minimal and almost minimal reaction systems.
Natural Computing, 12(3):369–376, 2013.

[Salomaa, 2014] Arto Salomaa. Minimal reaction systems defining subset functions.
In Computing with New Resources, pages 436–446. Springer, 2014.

[Salomaa, 2015] Arto Salomaa. Two-step simulations of reaction systems by
minimal ones. Acta Cybern., 22(2):247–257, 2015.

[Salomaa, 2017] Arto Salomaa. Minimal reaction systems: Duration and blips.
Theoretical Computer Science, 682:208–216, 2017.

[Shang et al., 2019] Zeyi Shang, Sergey Verlan, Ion Petre, and Gexiang Zhang.
Reaction systems and synchronous digital circuits. Molecules, 24:1961, 05 2019.

[Shmulevich and Dougherty, 2010] Ilya Shmulevich and Edward R. Dougherty.
Probabilistic Boolean Networks - The Modeling and Control of Gene Regulatory
Networks. SIAM, 2010.

[Sneppen, 2014] Kim Sneppen. Models of Life: Dynamics and Regulation in
Biological Systems. Cambridge University Press, 2014.

[Somenzi, 1994] Fabio Somenzi. Cudd: Colorado University decision diagram
package. http://vlsi.colorado.edu/∼fabio/CUDD, 1994.

[Stockmeyer and Meyer, 1973] Larry J. Stockmeyer and Albert R. Meyer. Word
problems requiring exponential time: Preliminary report. In Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973,
Austin, Texas, USA, pages 1–9. ACM, 1973.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific J. Math., 5(2):285–309, 1955.

[Teh and Atanasiu, 2017] Wen Chean Teh and Adrian Atanasiu. Minimal reaction
systems revisited and reaction system rank. International Journal of Foundations
of Computer Science, 28(03):247–261, 2017.

[van der Meyden and Wong, 2003] Ron van der Meyden and Ka-shu Wong. Com-
plete axiomatizations for reasoning about knowledge and branching time. Studia
Logica, 75(1):93–123, 2003.

171

[Voellmy and Boellmann, 2007] Richard Voellmy and Frank Boellmann. Chaper-
one Regulation of the Heat Shock Protein Response, pages 89–99. Springer New
York, New York, NY, 2007.

172

	Introduction
	Research hypothesis
	Related work
	Contributions
	Publications
	Collaborations

	Structure of this thesis

	Preliminaries
	Reaction systems
	Examples of reaction systems
	Basic examples
	Heat shock response model

	Summary

	Model checking for rsctl
	Controlling context sequences
	Examples
	Logic for reaction systems
	Syntax and semantics
	Examples of properties expressible in rsctl

	Verification of rsctl properties
	Complexity analysis

	Bounded model checking using bdds
	Encoding ICRRS into Boolean formulae
	Experimental results
	Heat shock response model
	Binary counter
	Mutual exclusion protocol
	Abstract pipeline system
	Summary

	Concluding remarks

	Model checking for rsctlk
	Context automata
	Multi-agent reaction systems
	Logic for temporal-epistemic properties
	Model checking for rsctlk
	Bounded model checking using bdds
	Boolean encoding
	Experimental results
	Train-gate-controller
	Distributed abstract pipeline
	Observations

	Summary

	Model checking for rsltl
	Reaction systems with discrete concentrations
	Linear-time temporal logic for reaction systems
	rsltl as ltl
	Complexity analysis
	Bounded semantics

	smt-based encoding
	Experimental evaluation
	Macro-reactions
	Eukaryotic heat shock response
	Scalable chain

	Concluding remarks

	Parametric model checking for rsltl
	Parametric reaction systems
	Parameter constraints
	Complexity analysis

	smt-based encoding
	Experimental evaluation
	Concluding remarks

	Reaction systems model checking toolkit
	Reactics-bdd
	Reaction systems specification language

	Reactics-smt
	Interacting with Reactics-smt

	Final remarks

	Conclusions
	Overview and summary
	Future work and other research problems
	Final remarks

