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Chapter 1

Abstract

The fundamental problem of accessing a common resource by multiple ac-
tors is faced by many distributed systems, including processor transac-
tional memory, wire and radio networks communication medium, and access
to a shared resource on machines or data-centers. In many systems when
more than one device attempts to access the common resource simultane-
ously, a collision occurs and in effect no device can use it.

Multiple-access channel (MAC) is a well-established model reflecting the
key algorithmic challenges of such systems. In this model, stations attempt
to transmit packets via the shared communication channel in discrete inter-
vals of time called rounds. Due to the constraints of the channel, at most
one successful transmission can happen at any round. Usually we consider
the problem of keeping the system stable, while the packets to be trans-
mitted can be injected into devices’ buffers in an arbitrary way. That is,
the total number of packets kept in the buffers needs to be limited even
in an infinite execution.

In this dissertation we expand the classical MAC model by introducing
channel restraint, understood as a bound on the number of stations that can
be switched on simultaneously. Apart from proving bounds this restraint
puts on several classical protocol classes, we design and analyse optimal and
near-optimal algorithms functioning within this restraint as well as imple-
ment simulations for those algorithms.

In this dissertation we further expand the model by introducing rout-
ing ability for algorithms on MAC. Combined with the channel restraint,
this model substantially changes the way algorithms on MAC can operate.
We provide algorithms as well as bounds on abilities of protocol classes
to achieve certain levels of stability or packet latency.

The third original contribution presented here is a novel adversarial
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6 CHAPTER 1. ABSTRACT

average-case analysis method to study and compare algorithms performance.
We demonstrate how such approach can be used for analysis of behaviour
of some well-known algorithms. We also prove some dependencies between
average-case and the popular worst-case analysis, including a counterpart
of Little’s Law, in the context of adversarial packet arrival.

Finally we introduce a new taxonomy for the consider classes of models
and algorithms that covers and unifies a very wide spectrum of similar
settings considered in a vast related literature.

Keywords: multiple-access channel, adversarial packet injec-
tion, parallel queuing, routing, channel restraint, latency, through-
put, stability



Chapter 2

Streszczenie

Problem dostępu do wspólnego zasobu przez wiele urządzeń jest podsta-
wowym zagadnieniem w systemach rozproszonych, takich jak transakcyjna
pamięć procesora, przewodowa i bezprzewodowa komunikacja w sieciach
oraz dostęp do współdzielonego zasobu maszyn w centrach danych.

Kanał wielodostępowy (MAC) to jeden z podstawowych modeli bada-
nych w dziedzinie obliczeń rozproszonych. Jest on uważany za dobre przy-
bliżenie wielu rzeczywistych systemów a jednocześnie umożliwia przeprowa-
dzenie formalnej analizy bardzo licznych zagadnień algorytmicznych.

W rozważanymmodelu stacje nadają pakiety do współdzielonego kanału
komunikacyjnego w odrębnych odcinkach czasowych zwanych rundami. Ze
względu na ograniczenia kanału, co najwyżej jedna udana transmisja może
wystąpić w pojedynczej rundzie. W takim przypadku wszystkie stacje
otrzymują nadaną wiadomość. Koncentrujemy się głównie na zagadnieni-
ach, w których adwersarz wskazuje, do których stacji mają zostać do-
dane pakiety. Celem jest dostarczenie tych pakietów do wszystkich (lub
wskazanych) urządzeń za pomocą tak ograniczonego kanału komunikacyj-
nego.

W niniejszej rozprawie zaprezentowane zostały oryginalne (w większości
już opublikowane w naszych pracach) rozszerzenia klasycznego modelu MAC
wraz z licznymi powiązanymi wynikami, które ich dotyczą. Znajdziemy
w rozprawie zarówno algorytmy komunikacyjne wraz z ich formalną anal-
izą, jak też wyniki badań dotyczące ograniczeń dla pewnych naturalnych
klas problemów (granice dolne).

W rozprawie zaprezentowane zostały wyniki dla modelu, gdzie została
ograniczona liczba aktywnych stacji. Oznacza to, że co najwyżej k stacji
może w jednej rundzie być aktywnych (słuchać lub nadawać). Dla mod-
elu tego, motywowanego głównie ograniczeniami energetycznymi, wykazano
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8 CHAPTER 2. STRESZCZENIE

ograniczenia dolne dla różnych klas protokołów komunikacyjnych i skon-
struowano optymalne (lub bliskie optymalnym) protokoły.

Drugą grupą wyników stanowiących oryginalny wkład w niniejszą rozpra-
wę jest naturalne rozszerzenie modelu pozwalające na przesyłanie pakietów
wykorzystując stacje pośrednie. Wraz z opisanym wcześniej ograniczeniem
jednoczesnej liczby aktywnych stacji tak wzbogacony model prowadzi do
konstrukcji zupełnie innych algorytmów komunikacyjnych niż w modelu
klasycznym.

Dla zaproponowanego modelu zaprezentowano i formalnie przeanali-
zowano liczne algorytmy pod względem ich poprawności, opóźnień w komu-
nikacji oraz stabilności, czyli gwarancji, że liczba pakietów przetwarzanych
jednocześnie w systemie jest ograniczona nawet w nieskończonym wykona-
niu protokołu.

W rozprawie prezentujemy także analizę średniego przypadku wyda-
jności algorytmów dla adwersarialnego modelu. Udowadniamy między in-
nymi odpowiednik prawa Little’a.

Zaznaczmy, że większość wyników teoretycznych została poparta liczny-
mi symulacjami.

Pracę uzupełnia nowa taksonomia algorytmów, która unifikuje bardzo
różnorodne klasyfikacje obecne we wcześniejszej literaturze. Zaznaczmy,
że wyżej wspomniana taxonomia została także opublikowana jako orygi-
nalny wynik, w naszej wcześniejszej publikacji.



Chapter 3

Introduction

Networks of different kinds and purposes commonly contain areas of con-
tention between different actors over the access to common medium. The
medium constrains a system by collisions or denial of service, when more
than one device attempts to use it simultaneously. In practice, channel
access is constrained by physical factors, such as power, energy or availabil-
ity. First, the "energy" spent by devices during such unsuccessful-for-most
attempts is usually wasted. Second, for the case of multi-hop radio com-
munication, too many attempts to transmit by neighbors may not only
cause a collision in the considered node, but also in nodes of further dis-
tance. Third example, hardware systems are designed with a spike (max-
imal) power use in mind to prevent meltdown or blackout. The above
examples have led us to an investigation of restrained-channels, as a nat-
ural extension of the classical shared-channel communication model with
n devices (stations) attached to a single communication medium.

In our study we address those practical challenges via multiple-access
channel (MAC) model. In this model time is divided into discrete intervals
called rounds. In the model terminology, the shared medium and devices
(actors) attached to it are referred to as channel and stations, respectively.
Each station has a buffer of potentially unlimited size to store the incoming
packets. We say that incoming packets are injected into the stations buffers.
We call the ratio of the total number of packets injected into the system
to the number of the passed rounds an injection rate.

Due to constraints of the channel, at most one station can successfully
transmit a single packet during one round, and an additional restraint limits
the number of simultaneous activities (transmissions or listenings) on the
channel. Formally, there is an upper bound on the number of stations
attached to the channel that can be switched on simultaneously, which
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10 CHAPTER 3. INTRODUCTION

is interpreted as a cap on the channel use. Stations that are switched off
cannot transmit nor receive packets from the channel, but they can have
packets injected into them. We focus on the dynamic scenario, when packets
are injected continually. The primary goal is to design an algorithm that
guarantees stability, that is, a property that the sizes of queues in buffers.
Clearly, the stability depends on the number of packets that can be added
to the system (modeled as the injection rate of the adversary). The aim of
the algorithmic effort is to find the highest possible injection rate ρ for with
the system is stable. Note that ρ that guarantees stability is called usually
throughput. We need to find the highest possible throughput.

Another important aim is to minimize the time packets spend in sta-
tions’ queues, known as latency.

As another natural extension of the basic model presented in this dis-
sertation we study dynamic routing on multiple access channels when pack-
ets are injected continually. In this approach, algorithms are allowed to use
other stations of the system as the relay for packet re-transmission. A packet
can be repeatedly handed over among the stations such that it hops through
a sequence of stations in a store-and-forward manner until eventually it
is heard by its destination station, which consumes the packet. We consider
classes of algorithms defined by system restrictions for both restrained mul-
tiple access channels and restrained multiple access channels with routing
models. These restricted algorithms may, for example, not use relay sta-
tions, or not use control bits in packets, or have the on-off status for each
station scheduled in advance.

While doing our research, we have discovered ambiguity and parallel
definitions of similar concepts used in papers even from a very close re-
search fields causing difficulties in protocol classification, analysis and com-
parison of results. To mitigate it, our study contributes a generalized way
of definition of multiple access channel algorithms. In this work we ex-
tract the common part of previous studies on parallel queuing with con-
tention, and propose well-defined and unified criteria for classification of
MAC-type scheduling algorithms. As there is a natural difference in per-
formance evaluation between probabilistic and deterministic protocols, the
worst case analysis commonly used for deterministic protocols does not serve
well as the metric when applied to probabilistic protocols. This has been
reflected in the extensive simulations presented in this dissertation as well
as the assumed methodology while comparing various classes of protocols.

In order to better compare results in this area with the ones obtained for
the related model of stochastic packet arrival, we propose an average-case
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method of measurement and show some properties and results for this mea-
sure. We further connect the two areas by adopting the Little’s Law for
stochastic packet arrivals to the adversarial packet injection model. It de-
scribes the relationship between the system average queue size, latency and
adversary injection rates.

Thesis Structure

In the 1st Chapter we discuss and present the algorithmic problems of mul-
tiple access channel (MAC), including the related studies in the field and
model definition. The 2nd Chapter presents our unifying taxonomy for
MAC protocols, linking channel and station capabilities to information used
by particular protocol classes. Next, in the 3rd Chapter, we design and anal-
yse algorithms for the restrained multiple access channel under the classical
assumption of MAC model, where a packet has no specific destination sta-
tion but needs to be "heard" on the channel. We simulate the designed
algorithms and compare their performance to the classical Backoff proto-
cols.

In Chapter 4, we design and study protocols for restrained multiple
access channels under an additional assumption, in contrast to the above,
that each packet needs to be delivered to a particular station. Chapter 5
presents a counterpart of Little’s Law for adversarial queueing, together
with the method of average case analysis for discrete multiple access chan-
nel algorithms run against an adversary. We apply this method to several
well-known algorithms, showing how particular adversary strategies against
those algorithms relate to the worst-case estimates. We conclude the dis-
sertation in a brief summary in Chapter 6.

Majority of the content of this thesis first appeared in international
conferences and journals in the form of papers. The author of the the-
sis was supported by Polish National Science Center (NCN) Grants:

• UMO-2015/17/B/ST6/01897

• UMO-2017/25/B/ST6/02553

We provide a short description of the published papers below, together with
the general scope of the thesis author’s contribution to those papers.

1. [HKK21a] “New View on Adversarial Queuing on MAC”, joint work
with Marek Klonowski and Dariusz R. Kowalski, appeared in IEEE
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Communication Letters 2021. In this paper we proposed the com-
prehensive taxonomy of MAC protocols, modify and proof the Little’s
Law for adversarial queueing, define and apply the method for average
case analysis of MAC algorithms in adversarial setting. The author
of this thesis formulated the principles of the taxonomy together with
the initial classification planes, proof of the Little’s Law for adver-
sarial queueing and initial adversary strategies for the average case
analysis.

2. [HKK20] “Contention resolution on a restrained channel”, joint work
with Marek Klonowski and Dariusz R. Kowalski, appeared in IEEE
26th International Conference on Parallel and Distributed Systems
(ICPADS 2020). The authors studied how the introduction of re-
strained access control to MAC algorithms would affect class perfor-
mance. The author of this thesis transformed two algorithms known in
the literature to the restrained channel setting, achieving highest pos-
sible (theoretically proven) throughput and proved their correctness;
he also created simulations to compare the efficiency of the studied
protocols.
Let us stress that simulations presented here are substantially ex-
tended comparing to the conference version.

3. [CHJ+19] “Energy efficient adversarial routing in shared channels”,
joint work with Bogdan S. Chlebus, Tomasz Jurdziński, Marek Klo-
nowski and Dariusz R. Kowalski. [CHJ+19] appeared in Proceedings
of the 31th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA 2019). In this paper we studied restrained multiple
access channels together with the requirement on the packet to have
one of the channel’s stations to be its destination. The author of the
current thesis contributed to the construction and analysis of the al-
gorithm achieving the highest possible throughput, together with its
analysis.

Apart from three published papers, this dissertation contains results
included in two unpublished yet manuscripts (partially overlapping with
the previous papers).

1. [HKK21b] “Restrained medium access control on adversarial shared
channels”, joint work with Marek Klonowski and Dariusz R. Kowal-
ski. It is the extension of the paper above [HKK20]. The authors
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provide algorithms and analysis for another class of protocols with
rigid analysis of its correctness. Simulation results are provided in
greater detail.

2. [CHJ+21] “Energy efficient adversarial routing in shared channels”,
joint work with Bogdan S. Chlebus, Tomasz Jurdziński, Marek Klo-
nowski and Dariusz R. Kowalski. This is an extension of the pa-
per [CHJ+19]. The authors provide algorithms putting higher em-
phasis on latency as the performance metric, as well as provide full
proofs for all of the theoretical results.





Chapter 4

Algorithmic problems of MAC

We consider multiple access channel as a model of communication. In this
model, stations attempt to transmit packets via the shared communication
channel in discrete intervals of time, called rounds. Due to the constraints
of the channel, at most one successful transmission can happen at any round.

In this chapter we describe in more detail the assumptions of the model,
together with a thorough description of related work.

4.1 Model formalization

System. We follow the classical model of a shared channel, e.g., [CKR09,
HLR96]. In this model we distinguish n stations attached to a transmission
medium, called a multiple-access channel (MAC), working according to the
following rules:

• a packet transmitted by a station reaches all the stations instanta-
neously;

• a packet is successfully received if its transmission does not overlap
with any other transmissions.

We restrict attention to synchronous ’slotted’ model, in which stations
use local clocks ticking at the same rate and indicating the same round
numbers. It is assumed that each station knows n. Global round numbering
is available to the stations.

Each round consists of phases: transmission, listening and data process-
ing. The stations, according to their programs, attempt either to transmit
in the first phase or to listen to the channel in the second phase. The du-
ration of a round and the size of a packet are mutually scaled such that
it takes a round to transmit one packet.

15



16 CHAPTER 4. ALGORITHMIC PROBLEMS OF MAC

Figure 4.1: Example channel states by stations activity: top row represents
rounds from 1 to 11; leftmost column stands for station names A,B,C,D;
"X" stands for the transmission of the corresponding station in the corre-
sponding round; bottom row stands for the resulting state of the channel
in the end of the round with the arrow representing successful transmission
by the referred station; "-" stands for silence channel feedback. Rounds
1, 4, 5, 9, 10, 11 resulted in successful transmissions; rounds 3, 6, 8 resulted
in collisions; rounds 2, 7 were silent. Note that the channel feedback for
rounds with collision and silent rounds is the same.

We say that a station hears a transmitted packet when the station
receives the transmitted packet successfully as feedback from the channel.

If exactly one station transmits a packet in a round then all the sta-
tions that are switched-on∗ in this round hear the packet, including the
transmitting station.

When at least two stations transmit their packets in the same round
then no station can hear any packet in this round, including the transmitting
stations. We call this situation to be a collision on the channel. A round
during which no packet is transmitted is called silent. An example of channel
states relation to stations activity can be seen in Figure 4.1.

Collision detection. Optionally, algorithms can rely on capability to dis-
tinguish silence from collision on the channel. This capability is known
as collision detection mechanism or simply collision detection. Collision
detection enhances channel feedback to three possible output states: suc-
cessful transmission (with station name, if there is one in the packet), silence
and collision. It is assumed that names cannot be recovered from packets
participating in collision, thus only the fact of the collision occurrence can
be recorded. An example of feedback of the channel with collision detection
can be seen in Figure 4.2.

∗In the basic model we assume that all stations are switched-on all the time. We
deviate from this assumption in extensions of the model when only a limited number of
stations can be switched-on in a single round.
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Figure 4.2: Example channel states by stations activity for channels with
collision detection: top row represents rounds from 1 to 11; leftmost column
stands for station names A,B,C,D; "X" stands for the transmission of the
corresponding station in the corresponding round; bottom row stands for
the resulting state of the channel in the end of the round with the arrow
representing successful transmission by the referred station; "-" stands for
silence channel feedback; "|" stands for collision channel feedback. Rounds
1, 4, 5, 9, 10, 11 resulted in successful transmissions; rounds 3, 6, 8 resulted
in collisions; rounds 2, 7 were silent.

Packet arrival. We assume that packets are kept in individual queues
by each station, till they are successfully transmitted. Packets arrival to sta-
tions’ queues is called injection. We assume that an adversary can inject
packets to stations of his choice according to limitations characteristic for
a given adversary. Those limitations include injection rate ρ and bursti-
ness β, where ρ and β are numbers such that 0 < ρ ≤ 1 and β ≥ 1.
The adversary (ρ, β) is defined as follows: in each continuous time interval
of length t, the adversary can inject at most ρ · t + β packets; in any sin-
gle round, the maximum number of packets that the adversary can inject
is bβ + ρc.

This adversarial model of packet injection is called leaky bucket; it was
used before to model traffic in shared channels, in particular in [CKR12,
CKR09].

We introduce injection pace ν: the number of packets injected by the
adversary during any prefix of P rounds is at least ν|P |, were |P | stands
for the number of rounds in prefix P . Note that in previous work it was
implicitly assumed that ν = 0. We follow this assumption, and in all of the
algorithms and analysis ν = 0 unless it is stated otherwise.

Channel restraint. In our paper [HKK20] we introduced a concept of
channel restraint each station can be at one of two states – switched on
(on-mode) or switched off (off-mode). Only a switched-on station in a given
round can transmit a packet or listen to the channel. In a round in which
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a station is switched on, the station can set its timer to any positive in-
teger c, which results in the station spending the next c rounds in the
off-mode and returning to the on-mode immediately afterwards. The fol-
lowing is assumed: (1) it costs one unit to keep a station switched on in
a round, and (2) it costs a negligible amount to keep a station switched
off in a round. When representing the whole system’s channel expenditure
in a given round, we make it equal to the number of stations that spend this
round switched on. The upper bound on the number of stations that can
be switched on simultaneously in a round is the channel restraint of the sys-
tem. A multiple-access channel system is determined by the total number
of available stations and the channel restraint. We assume that the adver-
sary can inject packets into the station packet queue independently from
the station mode. Therefore, the adversary can inject packets to stations
in off-mode.

Protocol quality measures. We distinguish the following quality and
performance measures of algorithms:
Stability – queues of all stations stay bounded by some function on model
parameters n, ρ, β at any round;
Maximal latency – the maximal number of rounds spent by a packet in sta-
tion’s queues;
Channel restraint – upper bound on the number of online stations in one
round (we also say that the channel is k-restrained);
Throughput – the injection rate ρ for which all executions of the algorithm
are stable. Usually we are looking for maximal possible throughput†.

The queue size measure of an execution of an algorithm is defined as the
maximum number of packets queued in all stations in a round of this execu-
tion. The latency measure of an execution of an algorithm is defined as the
longest span of rounds a single packet have spent in stations queues. Both
the queue size and latency are natural performance metrics of algorithms
and are represented as functions of the size of the system n and the type
of an adversary ρ, b. If the latency of an algorithm is bounded then queues
are bounded as well, since a queue’s size at a station is always a lower bound
on the delay of some packet handled by this station. We say that an algo-
rithm is stable, against a class of adversaries, if the queue size is bounded,
for a given number of stations and an adversary in this class.

†Note that the maximal throughput may not exists. In such a case we try to find
a the limes superior of throughputs.
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We say that an algorithm has a universally bounded latency when la-
tency is bounded against each adversary of injection rate less than 1; we refer
to such algorithms as universal.

Knowledge. We say that a property of a system is known when it can
be used in codes of algorithms. It is assumed throughout that the size
of the system n and the channel restraint k < n are known, but the adver-
sary parameters ρ, β are not. Algorithms may have their correctness and
performance bounds depend on the magnitudes of the unknown parame-
ters of the communication environment. For example, an algorithm may
be stable or have bounded latency for sufficiently small injection rates.

Algorithm correctness. We say that a protocol with channel restrain k
and injection rates ρ is correct, if queues of all stations stay bounded at all
times independently from adversary strategy and for any round the number
of switched-on stations is at most k.

4.2 Previous and related work

OSI model. Open Systems Interconnection (OSI) model was created
to allow the constitution of heterogeneous computer networks [RLNJ06].
The model adopted a layered architecture comprising the layers called:
Physical, Data Link, Network, Transport, Session, Presentation, and Appli-
cation. Each layer was tasked with a specific responsibilities and therefore
associated algorithmic challenges.

The current work relates to the Data Link layer of the OSI model. This
layer is responsible for moving information between multiple devices within
the same logical network based on physical device addressing [DZ83].

Under the existing standards [IEEE802], it consists of two sub-layers.
Medium access control (MAC) is the lower of the two sub-levels, respon-
sible for the control of the hardware interacting with the communication
medium. Logical link control (LLC) is the upper of the two layers, serv-
ing as the interface between MAC and the higher Network level of com-
munication. Network layer provides the information to LLC in the form
of frames, LLC directs the data to MAC, which in its turn controls Physical
layer to transmit it to the medium. Reception of the information from the
medium is performed in the opposite order.
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Medium Access Control. MAC sub-layer primary functions defined
by existing standards [IEEE802] are: control of the access to the commu-
nication medium, transmission error protection, frame recognition, station
addressing.

The MAC sub-layer is further standardised by the area of applica-
tion: bridging (mesh) networks [IEEE802.1D], Ethernet (local wired net-
works) [IEEE802.3], wireless local area networks [IEEE802.11], wireless per-
sonal area networks [IEEE802.15], broadband wireless metropolitan area
networks [IEEE802.16] and wireless regional area networks [IEEE802.22].

In practice however, the research of medium access control algorithms
is driven by the challenges of physical applications. Recently, MAC algo-
rithms coexistence in overlapping wireless networks in the context of In-
ternet of Things (IoT) was studied by Mendy et al. [MF21]. Underwater
acoustic networks also grew to the field of its own, as survey of specialized
MAC algorithms by Jiang et al. [Jia18] highlights. Industrial networks rep-
resent another field. Study by Shayo et al. [SMM20] organises the related
knowledge for time division algorithms in this area. Protocols for power
line communication (PLC) accounting for signal fluctuations in embeddded
systems were studied by de Oliveira et al. [dVLR19]. Wireless sensor net-
works encompass limited compute and energy capacity of devices and are
thoroughly studied on its own account. Specifics of the field were outlined
in surveys by Demirkol et al. [DEA06] and by Yick et al. [YMG08]. Recent
work by Dibaei et al. [DG20] reviews wireless MAC algorithms from the
angle of full-duplex wireless networks. Akylidiz et al. in [AWW05] surveys
architectures and applications of the mesh networks, together with their
theoretical network capacities and communication protocols.

Cellular, aerial and satellite networks use shared channels under the
term of non-orthogonal multiple access, which can be explained as defini-
tions variations between fields as well as their respective problem scopes.
Those networks utilise a number of orthogonal communication channels,
with each particular channel facing medium access control algorithmic chal-
lenges [TDL+20].

Aerial vehicle communication in the context of cellular networks hosted
by unmanned vehicles was studied by Sohail et al. [SLW18]. Recent ad-
vances in multiple access for cellular 5G networks were reviewed by Ling-
long et al. [DWD+18]. Satellite multiple access communication as the com-
ponent of cellular 5G networks, with the review of related architectures and
trade-offs between availability, resource utilisation and spectrum efficiency
was studied by Xiaojuan et al. [YAL+19].
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Multiple Access Channel. As the variations of medium access control
algorithms were multiplying over the time, it became apparent that a model
strong enough – to incorporate all of the various applications, and simple
enough – to be able to deploy formal mathematics techniques, was needed
to work with algorithms across the fields. Multiple Access Channel is the
model fulfilling this call.

While it is difficult to trace the exact origins of the model, we can say
that as early as in 1976 Kasami et al. used it in their study [KL76] with
settings resembling those used in the current work.

The model of multiple access channel was considered in the number
of papers, including but not limited to [Gol00, Chl18, HLR96, CKR12].
The use of it splits mainly by the aspect of packet arrival: there are pa-
pers preferring adversarial (i.e., arbitrary) packet arrivals [ACR17, AC15,
ACKR19, CKR09, BCF+09, BFCH+05], as well as those focusing on the
stochastic ones [GJKP00, HLR96, BJKK18].

As medium access control and multiple access channel abbreviation
(MAC) overlap, please note that when we use it in this paper we refer
to the latter and not to the former (with the exception of the previous
paragraphs).

Apart from introducing new methods we extensively utilize many tech-
niques used for constructing and analysis of algorithms. Below we recall
most important ones.

Algorithm design methods. Several MAC-specific algorithm design pat-
terns have emerged: conceptual token passed from station to station, with-
holding the channel and combinatorial selector structures [Gol00, Chl18,
CKR12, Ind02].

Conceptual token technique utilises a distributed mechanism permit-
ting only a single station to conduct transmissions on the channel. Ru-
bin et al. employed this method on MAC in 1983 [RDM83] by designing al-
gorithms utilising the concept of the token, but we believe that this method
could of appear earlier. In more recent works by Anatharamu et al. [ACR09]
and Chlebus et al. [CKR12, CCK20, CKR09] authors develop algorithms
with the conceptual token technique, which can be seen as precursors to some
of the algorithms discussed in the current thesis. Those works also utilise
the concept of round-robin — passing the token from one station to another
in the order of stations names, with the last station passing the token to the
first station, hence creating a closed loop.
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The technique of withholding the channel to the knowledge of author
was first used by Chlebus et al. [CKR09]. This method permits stations
satisfying certain defined by the algorithm conditions, to transmit its pack-
ets until the queue of a station is not empty or contains number of packets
below some predefined limit.

Since then this technique has been widely used in the context of MAC,
including but not limited to works by Chlebus et al. [CCK20, CKR12],
Aldawsari et al. [AHJ20, ACK19] and Anatharamu et al. [ACKR19].

Explicit selectors and selective families were, to the knowledge of the au-
thor, first introduced by Komlós et al. [KG85]. Mathematical properties
of those combinatorial structures were further researched by Indyk [Ind02]
and Chlebus et al. [CK05].

Selectors have been used in the context of MAC since then, with a num-
ber of more recent works by Gorce et al. [GFK+17], De Bonis [De 19] and
Grancarek et al. [GJK19] utilising it. The relation of universally strong
selectors to packet-oblivious routing on multi-hop networks was studied
by Cholvi et al. [CGJK20]. Randomised use of selectors as well as the defi-
nition of ε selectors was recently introduced by De Bonis et al. [DBV17].

Algorithm analysis methods. New algorithms require thorough analy-
sis for correctness as well as measured performance metrics. Several analysis
techniques have been developed over the years.

Little’s Law in queueing theory describing the relationship between in-
jection rates, queue size and latency, has been introduced by Little [Lit61]
in the context of stochastic arrivals. The first attempt to obtain a similar
formula for adversarial packet arrival was made by Chlebus et al. [CKR12],
but it was made based on worst-case measurement and worked only for
specific class of protocols.

Selectors and selective families mentioned in the previous paragraph
has not been used only for constructing efficient algorithms. They also
provide means to obtain lower bounds and limitations for some problems.
Gargano et al. [GRV20] used superimposed codes to improve the known
results in the area. De Bonis et al. utilised selectors to study bounds of full-
duplex multi-packet reception on MAC [DV20].

Adversarial queueing. To the best of our knowledge, adversarial packet
injections on multiple-access channel were considered for the first time in the
context of contention resolution by Bender et al. in [BFCH+05] and Chle-
bus et al. [CKR06]. The authors of the latter paper introduced two types
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of an adversary: window and leaky-bucket. Rosen in [Ros02] have estab-
lished the relation between the two models and presented that they are
equivalent in most of the settings except the extreme case of injection rate
equal 1. We use the leaky-bucket type throughout this dissertation.

The authors of the former paper considered maximal possible through-
put of randomized backoff protocols in queue-free model, while in the latter
work deterministic distributed broadcast algorithms in the model of sta-
tions with queues were studied. Further results in this line considering
the maximum rate for which stability of stations queues or packets latency
is achievable include Bender et al. [BFGY16], Chlebus et al. [CKR09] and
Anantharamu et al. [ACR17, ACKR11], wherein the authors considered
a wide spectrum of models with respect to adversary’s limitations and ca-
pabilities of stations and the channel (e.g., distinguishing collisions from the
silence on the channel).

Algorithms with a partial knowledge of adversary strategy with atten-
tion to packet latency were studied by Bienkowski et al. [BJKK18]. Chle-
bus et al. in [CCK20] studied limitations of hearing on multiple access chan-
nel in relation to universal stability.

Energy and power constraints. Channel restraint introduced with the
current work, can be intuitively compared in some aspects to the limit
on power available to the system, which is novel to the model. On the other
hand, there are some papers dealing with energy constraints in parallel
environment, however for substantially different models/problems.

In the context of medium access control, several approaches were utilised
in order to limit or control energy expenditure. Schemes for shutting down
network interfaces for energy conservation when using the Ethernet were
proposed by Gupta and Singh [GS07]. Gunaratne et al. [GCNS08] investi-
gated policies to adaptively vary the link data rate in response to the de-
mand imposed on the link rate as a means of reducing the energy consump-
tion in Ethernet installations. Ogierman et al. [ORS+18] studied hardware-
related challenges with a focus on adversarial jamming limited by the energy
budget in medium access control protocols. Physical layer effects on a sin-
gle hop fading signal were also studied by Fineman et al. [FGKN16], with
particular attention to the spectrum reuse enabled by fading.

Algorithms managing energy usage were discussed in the surveys by Al-
bers [Alb10] and Irani and Pruhs [IP05]. Routing subject to energy con-
straints have been by Chabarek et al. [CSB+08] and Andrews et al. [AAZZ13,
AFZZ10]. Reducing network energy consumption via sleeping and rate-
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adaptation was addressed by Nedevschi et al. [NPI+08]. Randomized queue-
free throughput-based model for contention resolution with only bounds
on transmission energy being known was studied by De Marco et al. [MS17].

Distributed power control improving the energy efficiency of routing al-
gorithms in ad hoc networks has been proposed by Bergamo et al. [BGT+04].
Efficiency of broadcasting in ad-hoc wireless networks subject to the num-
ber of transmissions a node can perform, interpreted as energy constraint,
was studied in papers by Gąsieniec et al. [GKK+08], Kantor et al. [KP16]
and Karmakar et al. [KKPS17].

Jurdziński et al. [JKZ02] studied the problem of counting the num-
ber of active nodes in a single-hop radio network with the goal to simul-
taneously optimize the running time and the energy spent by each node,
which is understood as the length of time interval when a node is awake.
Klonowski et al. [KKZ12] considered energy-efficient ways to alert a single
hop network of weak devices.

Kardas et al. [KKP13] studied energy-efficient leader election in single-
hop radio networks. Chang et al. [CKP+17] studied the energy complexity
of leader election and approximate counting in models of wireless networks.

Chang et al. [CDH+18] as well as Klonowski and Pająk [KP18] stud-
ied trade-offs between the time and energy for broadcasting in a multihop
radio networks. Herlich and Karl [HK11] investigated saving power in mo-
bile access networks when base stations cooperate to be active or passive
in extending their range.



Chapter 5

The Taxonomy of MAC
algorithms

Rapid progress in design of new algorithms, while welcomed, may naturally
create ambiguity by introducing parallel definitions of similar concepts, thus
causing difficulties in protocols’ taxonomy, analysis and comparison of re-
sults. And this is the case for the area of MAC, what we have discovered
when we started our work: algorithms proposed for various types of net-
work, i.e., infrastructure wLANs, Ad-hoc networks, sensor networks, etc.
— were coming together with model alterations incompatible with previous
research.

The chapter is written based on part of the authors work published
in [HKK21a]. In this chapter we first present the classifications used in lit-
erature and we continue into the unifying taxonomy developed to improve
the granularity and applicability of the terminology across different fields.
We conclude the chapter with the list of known and proven in the current
work facts linked to the proposed taxonomy.

5.1 Existing naming conventions

One of the main challenges of MAC algorithms classification is in the multi-
tude of fields algorithms are applied in and those fields forming independent
silos developing their own terminology over the time.

We first review the history of development for related practically ap-
plied medium access control protocols classification, as it provides us with
the insight of what more abstract multiple access channel algorithms need
to satisfy. Later we follow on the history of MAC and model variations.
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Medium access control protocol classes. To the knowledge of the au-
thor, typical medium access control algorithms classification exists only for
the wireless communication field. Other areas, such as internet of things
(IoT) [AS19] or underwater acoustic cables [Jia18], partially relay to it and
rely on the field knowledge. Wireless medium access control protocols are
classified in literature by method the stations access to the channel. There-
fore, algorithms are divided into three main categories: random access, slot-
ted (scheduled) access and hybrid (mixed). Jurdak et al. [JLB04] analyze
and classify 34 wireless ad-hoc medium access control protocols using this
method. Ulah et al. [UAK+17] utilises this classification for medium access
control algorithms on wireless body area networks. Sami et al. [SNK+16] use
this method in their classification of medium access control strategies for
cooperative communication in wireless networks.

Random access protocols do not schedule time and contend for channels,
relying on access randomisation to resolve potential collisions. Recent works
in the area include a stochastic geometry-based model for low-power wide-
network, written by Beltramelli et al. [BMÖG21] and compressive random
access in cellular networks, written by Choi [Cho20].

Slotted access protocols require time to be synchronised across the sys-
tem, divide the time into slots and make stations to switch-on and exchange
packets in the beginning of each slot. Framed access protocols are the
sub-class of slotted-access, where slots are further organised into fixed-size
groups called frames. This allows algorithms to schedule channel access
in great detail so that collisions on the channel are prevented from hap-
pening in the first place. Most common time division medium access con-
trol algorithms were examined by Tambaval et al. [TNS+19] in the context
of emerging vehicular ad-hoc networks.

Hybrid access protocols is the combination of slotted and random access
protocols. By using both scheduling and randomisation, this class allows for
higher flexibility when compared to pure slotted access protocols and better
predictability when compared to pure random access class. One of the ear-
lier works by Rana et al. [RLNJ06] used this approach to adopt time slots al-
location to available bandwidth. More recent work by Chen et al. [CDGZ20]
worked on hybrid scheduling in heterogeneous half- and full-duplex wireless
networks. Sundararaj et al. [SMK18] developed a hybrid energy-efficient
medium access control algorithm for heavy-load wireless networks.

Multiple access channel protocol classes. Contrary to the classifi-
cation approach applied in medium access control field, multiple access
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channel field types algorithms by capabilities of the channel and stations
attached to it. This can be observed in th survey of multiple access chan-
nel algorithms written by Goldberg [Gol00]. Such an angle to classification
allows researchers to abstract away specifics of the environment into the
capabilities the algorithm would require in order to function in this envi-
ronment. The survey have distinguished between the two main classes of al-
gorithms: full-sensing [Cap79] and acknowledgement-based [GJKP04]. The
former assumes that each station has access to the history of transmission
attempts performed by all stations, while the latter assumes that each sta-
tion has access only to the history of own transmission attempts. Acknowl-
edgement based class had three more deviations: almost-acknowledgement-
based – as the sub-class provided with information about the estimated
system size [PS95]; age-based – as the sub-class utilising randomisation
of transmission probability based on packets age [Kel85]; backoff – as the
sub-class utilising probabilities associated with the number of stations failed
transmission attempts [HLR96].

Later works have further distinguished a subclass of full-sensing algo-
rithms. This sub-class was called adaptive and it had an additional capabil-
ity to add a small number of control bits to transmitted packets [CKR09,
MK10]. Collision detection mechanism was introduced into the model later
as well [ACR17, CKR12].

One can observe that those taxonomy systems do not provide planes
of capabilities on which all of the protocols can be compared. Historically,
a newly designed protocol classified as some class will have some additional
capability influencing its performance. And precisely because of this ca-
pability it could not be directly compared to other protocols of the class
or to other classes. This is the problem we attempt to address in our tax-
onomy proposed below.

5.2 Unifying classification

The classification of algorithms we are about to discuss was first introduced
in our paper [HKK21a]. We follow the approach of defining algorithms
in relation to channel and station capabilities. However we increase the
granularity of those capabilities, so that they can be seen as orthogonal
to each other. We believe that such an approach over time can allow the
community to use it across the fields.
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5.2.1 Taxonomy

We list the most important characteristics of the environment and the proto-
cols found in the literature, with respect to which they could be aware-type
and oblivious-type. In this taxonomy algorithms are defined by capabilities
they are aware of:
Synchronization:
Time-aware - stations know the global index of any round. Time-oblivious -
stations know only local time, i.e., the number of rounds from the beginning
of their current execution.
Collision Detection:
Collision-aware - stations know when collision occurs.
Collision-oblivious - stations cannot differentiate between the collision and
silent round.
Queue Size:
Queue-aware - stations know the size of their queues.
Queue-oblivious - stations know if there is a pending packet in their queues,
but not the size of its queue.
Transmitting identity:
Source-aware - stations may include to their transmissions transmitter iden-
tities and to read those values from packets heard on the channel.
Source-oblivious - stations do not have access to transmitter identity of the
packet.
Destination identity:
Destination-aware - stations may include to their transmissions receiver
identities and to read those values from packets heard on the channel.
Destination-oblivious - stations do not have access to receiver identity of the
packet.
Control bits:
Control-aware - stations have read and write access to the protocol-defined
packet control bits.
Control-oblivious - stations cannot include additional bits into their trans-
missions.
Memory use:
Memory-aware - stations have memory capacity to store the current state
and/or its historical values.
Memory-oblivious - stations have memory capacity only to track their own
state and/or history of states.
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Acknowledgement:
Acknowledgement-aware - stations receive an acknowledgement of their suc-
cessful transmission in the same round with that transmission.
Acknowledgement-oblivious - stations do not receive acknowledgement of suc-
cessful transmission.
Channel restraint:
Restraint-aware - the channel has an upper bound k on the number of si-
multaneously accessing stations, k < n, where n is the size of the system.
Restraint-oblivious - the channel has no upper bound on the number of si-
multaneously accessing its stations.
Routing:
Routing-aware - stations can transmit packets in multiple hops.
Routing-oblivious - the channel allows only single hop transmissions.
Random source:
Random-aware - stations have the ability to produce pseudo-random num-
bers.
Random-oblivious - stations have the ability to produce pseudo-random bits.

Importantly, each capability can be considered independently (we as-
sume that Transmitting and Destination Identities do not require Control
Bits capability to store station addresses in packets).

In what follows, we assume that algorithms are oblivious with respect
to all capabilities, unless specified otherwise.

Please note that the Routing capability applies only to the Destination-
aware channels. For the Destination-oblivious channels, the packet is deliv-
ered once it is successfully transmitted – rendering the Routing capability
obsolete.

5.2.2 Taxonomy mapping

With the proposed taxonomy, we are able to map existing in literature algo-
rithm classes to defined above granular capabilities for both: multiple access
channel and medium access control settings. In relation to studies [Gol00,
CKR09], multiple-access channel classes of Adaptive, Full-Sensing and Ac-
knowledgement based algorithms can be mapped to the proposed taxonomy
as follows:

• Adaptive: Queue, Time, Source, Memory and Control aware;

• Full-sensing: Queue, Time, Source and Memory aware;
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• Full-sensing with collision detection: Queue, Time, Source, Memory
and Collision aware;

• Acknowledgement-based: Acknowledgement-aware.

In relation to works [BMÖG21, TNS+19, SMK18], medium access control
classes can be mapped to the proposed taxonomy as follows:

• Random-access: Random-aware;

• Slotted-access: Time aware;

• Hybrid: Random and Time aware.

One can observe that medium access control classes are too generic and
do not allow in their current form for the assessment of channel capabilities.
However we can expect field interoperability improvements once such work
is completed.

5.3 Bounds by channel capabilities

In this section we formulate new and re-formulate old results on impossibil-
ities using the aforementioned taxonomy.

Known impossibilities. Below we state sample results on (worst case)
adversarial stability of MAC algorithms obtained in previous research. We
express known results using the new taxonomy.

Fact 1. [CKR09] Queue-oblivious and Control-oblivious algorithms are not
stable against adversaries with injection rates equal to 1.

Fact 2. [CKR12] Adaptive and Collision-sensing algorithms can be stable
against adversaries with injection rates ρ = 1 and ρ < 1 respectively.

New impossibilities. Part of the current thesis is dedicated to prov-
ing bounds and impossibilities for the changes associated with the changes
we introduce to the model. Below we summarise the impossibilities re-
lated to the channel capabilities, together with references to their respective
points of origin.

Fact 3. [Lemma 9 in section 6.4] Time-oblivious and Restraint-aware algo-
rithms are not stable against adversary with any ρ > 0.
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Fact 4. [Theorem 3 in section 6.4] Acknowledgement-aware, Restraint-aware
and Time-aware algorithms for system size n and channel restraint k are
unstable against adversaries with injection rates greater than min{ k

n
, 1

3 logn}.

Fact 5. [Theorem 8 in section 7.4.2] Time-aware, Destination-aware and
Restraint-aware algorithms for restraint 2 and a system size greater than
or equal to 3 are not stable against adversaries with injection rate 1.

Fact 6. [Theorem 16 in section 7.8.3] Destination-aware, Acknowledgement-
aware, Restraint-aware, Time-aware and Routing-oblivious algorithms for
system size n and channel restraint k are unstable against adversaries with
injection rates greater than k(k−1)

n(n−1) .





Chapter 6

Restrained Multiple Access
Channel

In this chapter we are investigating how introduction of the channel re-
straint k, understood as an upper bound on the number of active (listen-
ing or transmitting) stations per round, influences the throughput on that
channel for different classical classes of algorithms (Adaptive, Fully-sensing,
Acknowledgement-based).∗

Apart from algorithms design and their rigid formal analysis, a part
of this chapter is devoted to experimental results proving the efficiency of the
constructed protocols for realistic systems’ sizes. We also show that our
algorithms outperform back-off-type protocols both in terms of throughput
efficiency and system stability (i.e., queue sizes) in the model with restraint.
The results presented in this chapter can be considered as extensions of the
results from our paper [HKK20].

6.1 A summary of the results

We construct optimal or nearly-optimal solutions for different classes of pro-
tocols studied in the literature: achieving throughput 1 for adaptive pro-
tocols, throughput 1 − ε (for any fixed ε) for full-sensing protocols, and
throughput Θ( k

n log2(n)) for acknowledgement based protocols (the latter
result is complemented by the upper bound min{ k

n
, 1

3 logn} for this class
of protocols). All the performance bounds of algorithms are presented in
Table 6.1.

∗In this chapter we follow algorithm classification from our original paper [HKK20].
For the details of how Adaptive, Full-sensing and Acknowledgement-based classes map
to the newly introduced taxonomy, see Chapter 5.
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Algorithm Sec. Injection Queues Restraint Class

12 O’clock-ad 6.2 ρ = 1 O(n2 + β) 2 Adaptive

12 O’clock-fs 6.3 ρ < 1 O(n2 + β) 3 Full-sensing with CD

k-Light IS 6.4 ρ < Θ
(

k
n log2 n

)
k Acknowledgement-based

Impossibility 6.4 ρ > min{ k
n
, 1

3 log n
} Stable k Acknowledgement-based

Table 6.1: A summary of the performance bounds of algorithms and impos-
sibility results, broken into four main sub-topics. The adversary is of type
(ρ, β), where ρ is the injection rate and β is the burstiness coefficient. The
abbreviations used to specify properties or algorithms are as follows: IS
= interleaved selectors, CD - collision detection. 12 O’clock-ad and 12
O’clock-fs stand for 12 O’clock adaptive and 12 O’clock full-sensing
respectively.

The main conclusion from our results is that for some classes, i.e., adap-
tive and full sensing protocols, we are able to construct strongly restrained
algorithms without decreasing throughput of the system (i.e., comparing
to the respective families of protocols without channel restraint described
e.g. in [CKR09]). Note that for the adaptive class of algorithms we were
able to achieve the maximum possible throughput for the smallest possible
channel restraint.

Surprisingly, in some other classes, e.g., acknowledgement based proto-
cols, restraining the channel may substantially limit the throughput of effi-
cient solutions. Another consequence is that the amortized number of trans-
missions/listenings per packet is constant for our adaptive and full sensing
algorithms and O(n log2 n) for the acknowledgment-based one.

Let us stress that our acknowledgement-based algorithm uses a newly
introduced combinatorial structure, called k-light selector, which we thor-
oughly study for its own independent interest.

6.2 Adaptive protocol 12-O’clock

6.2.1 Protocol description

The 12-O’clock(n) algorithm, where n is the number of stations in the
system, schedules exactly two stations to be switched on in a single round
— one in the transmitting role and another in the listening role. Since only
one of those stations has the right to transmit, collision never occurs and
the channel restraint is 2. The algorithm allows for any adversary burstiness
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value β.

High level description. We call a group of n consecutive rounds a cycle
if the last round r of the group satisfies r = 0 mod n. End-of-cycle (or 12-
O’clock) rounds play an important role in coordination and decision making
during the execution; they also motivate the name of the algorithm.

Every station keeps an ordered list of all the stations. These lists are
the same in every station at the beginning of a cycle; at such a moment they
represent one list, which we call the list. Initially, the list consists of all the
stations ordered by their names.

Stations take the transmitting role in their order on the list. The process
of assigning transmitting stations to rounds can be visualized as passing
a virtual token from station to station, such that a station holding the
token is in the transmitting role. Station spends one round in the listening
role before taking the token, in order to learn the status of the channel.
When a cycle ends then the token is typically passed on to the next station
on the list. The order determined by the list is understood in a cyclic
sense, in that the first station assumes the transmitting role after the last
one in the list has concluded its assignment. An exception for this process
occurs when the transmitting station is moved to become the head of the
list while keeping the token.

The exception is handled as follows: a transmitting station B holding
the token has the right to keep it when it has at least 3n packets in its
queue. In such a case the station considers itself Big and informs other
stations about its status, by suitably setting a toggle bit in packets. All
of the stations while in the listening role, learn from this bit that they have
no right to take the token.

Station B has the right to keep the token until the first end-of-cycle
(12-O) round with queue size not greater than 3n — once this condition
is fulfilled, the station considers itself to be Last-Big, has the right to hold
the token for one more full cycle and informs other stations by setting
another toggle bit in its packets. By the end of this last cycle, all stations
move B to the head of the list. Starting with the next cycle stations follow
their routine, with station B being the head of the list and B holding
the token to transmit in the first round of the cycle. This mechanism
allows transmitting stations to stretch cycles, possibly indefinitely, should
the adversary inject packets in a certain way, e.g., into one station only.
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Istart
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Big bit
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Q > 3n

Q > 3n ∨ ¬ 12-O

Q ≤ 3n ∧ 12-O
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Figure 6.1: Finite state machine for a station in 12-O’clock adaptive algo-
rithm. Station states are represented by nodes: I stays for Idle state; L for
Listening state; T for Transmitting state; B for Big state; LB for Last-Big
state. Note that from the system perspective there are two stations with
the starting state being Transmitting and Listening respectively, otherwise
the starting state is Idle as shown. Arrows represent checks performed by
the distributed algorithm, where Q stands for station queue size, n for sys-
tem size, 12-O for the current round being the end-of-cycle round; Big bit
represents a control bit set in packet by station in either Big or Last-Big
states; on and off representing clock-based actions of switch-on and switch-
off respectively. Note that it takes one round to execute a check of each
arrow.
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1 Procedure transmitToTheChannel()
2 switch s.state do
3 case Transmitting do
4 if s.queue > 3n then
5 s.state := Big;
6 s.transmit();
7 else
8 if s.queue > 0 then
9 s.transmit();

10 s.state := Idle;
11 case Big do
12 if round = 0 mod n AND s.queue ≤ 3n then
13 s.state := Last-Big;
14 s.moveBigToFront(s.id);
15 s.transmit();
16 case Last-Big do
17 s.transmit();
18 if round = n - 1 mod n then
19 s.state := Transmitting;
Algorithm 1: 12 O’clock adaptive algorithm, transmission phase.

Technical description. Station can be at one of the five states: Idle,
Listening, Transmitting, Big or Last-Big. The last three states are given
the right to transmit; they could be encoded by two bits when attached
to the packet by the transmitting station. The Listening state is dedicated
to listening, while in the Idle state the station is switched off. Finite state
machine for the relationship between those states can be found on Fig. 6.1.

Pseudo-code. We assume that each station has its internal information
saved in the local object called s. The internal information includes the list
of stations, the state of the station (i.e. Idle, Listening, Transmitting, Big
or Last-Big), as well as methods allowing to modify this information. The
pseudo-code of the algorithm is presented as two procedures:

• transmitToTheChannel (Algorithm 1) – executed in the transmission
phase of the round;

• listenToTheChannel (Algorithm 2) – executed in the listening phase
of the round.

Both procedures are executed by switched-on stations.
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1 Procedure listenToTheChannel(channel)
2 switch s.state do
3 case Idle do
4 if shouldWakeUp() then
5 s.state = Listening;
6 case Listening do
7 switch channel.state do
8 case Silence do
9 s.state = Transmitting;

10 case Normal do
11 s.state = Transmitting;
12 case Big do
13 s.state = Idle;
14 case Last-Big do
15 s.state = Idle;
16 s.moveBigToFront(channel.id);
Algorithm 2: 12 O’clock adaptive algorithm, listening phase.

Methods. Procedures rely on the following methods:

• moveBigToFront(station ID) —moves station of the input ID to the
front of the (local) station list;

• transmit() — transmits a packet from the station queue, attaches
ID and state information to it;

• shouldWakeUp() — checks the idle timeout of the station, that is, the
number of rounds left until its predecessor could be in the Transmit-
ting state. It starts from n− 1 when the station drops the Listening
state, and decreases by 1 each round. Upon becoming 0, the procedure
outputs “true” and the station switches to Listening state.

Initialization. In the beginning all but the first two stations are in the
Idle state, while the one with the smallest ID is in Transmitting state and
its successor is in Listening state.

Idle state. In this state the station does not access the channel, it only
keeps updating its idling time until the next wake-up — each round de-
creases by 1. The starting number of idling rounds is either n or n − 1
or n − 2, depending on the state from which the station switches to Idle
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and the packet on the channel, see the description of Listening and Trans-
mitting states below. When the idling time decreases to zero, the state
switches to Listening.

Listening state. Station in the Listening state updates the local station
list when the Last-Big transmission occurs on a channel. It changes its state
to Transmitting upon receiving a packet from a station in the Transmitting
state or upon no packet received. Otherwise, it becomes idle for the next
n− 1 or n rounds until wake-up. The latter idling time is caused by move
of Last-Big station from behind of the Listening station location on the list
of stations, to the front, therefore increasing the Listening station location
on the list by 1.

Transmitting state. The Transmitting state is taken (from Listening
state) by a station once per cycle in the round corresponding to its current
position on the list of stations, unless there is a Big or Last-Big station
in this round. Station in the Transmitting state changes its state to Big
and transmits if its queue size is bigger than 3n. Otherwise, it transmits
being in the Transmitting state, provided it has a packet in its queue, and
changes its state to Idle (in order to awake in its listening turn during the
next cycle, after n− 2 rounds).

Big state. At the end of each cycle, each Big station checks whether
its queue size is still bigger than 3n; if not, it changes its state to Last-
Big. In any prior round, the Big station transmits a packet and remains
in the same state. The following property can be easily deducted: once
a station changes its state to Big (which happens when being in its regular
Transmitting state), it stays there till the end of the cycle; it may then
continue throughout whole next cycles, until it changes to Last-Big state
at the end of one of them.

Last-Big state. Station in the Last-Big state transmits until the end
of the cycle. It changes its state to the Transmitting in the end of the
cycle after the last transmission happens. Note that, due to the condition
of switching from Big to Last-Big state, a station remains in the Last-Big
state during this whole cycle, from the beginning when it switched from
the state Big to the end when it switches to Transmitting.
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6.2.2 Protocol correctness and performance analysis

Consider the total size of the queues in the beginning of the cycle. If the
size is greater than ` = n(3n−1)+1 we say that belongs to a dense interval,
otherwise it belongs to a sparse interval (here we consider intervals of time).
This way the execution of the algorithm consists of interleaved dense and
sparse intervals, each containing a number of whole cycles.

In relation to a fixed interval, we consider the following terminology:
station is pre-big in a given round of the interval if it has not been in the
Big state during this interval before that round, and it is post-big if it has
been at least once in the Last-Big state during the interval by that round.
Station is potentially-big if its queue size is bigger than 3n (i.e., the size
allows the station to become Big eventually) or it is in a Big or Last-
Big state. Note that this newly added terminology serves for the purposes
of analysis only. We use the lower case writing convention to distinguish
the newly added terms from the station states.

Observe that each station is pre-big in some prefix of the interval and
post-big in some (disjoint) suffix of the interval; each of these periods could
be empty or the whole interval. In-between of being pre-big and post-big,
a station is continuously in a Big state.

We define the following types of cycles depending on availability of Big
and Last-Big stations:

Type-1 cycle: without any Big or Last-Big station. Token is being
passed in the Round-Robin way, by adopting Listening and Transmitting
states. This means that at any single round there is one station in the
Transmitting state and one in the Listening state.

Type-2 cycle: with a station S starting to transmit as Big in some
round of the cycle. Here, the token is being passed in the Round-Robin
way by applying sequence of Listening and Transmitting states to each
station on the list, until S transmits. Since S becomes Big, it keeps the
token afterwards till the end of the cycle. Note that stations at Big and
Transmitting states cannot occur simultaneously in the same round, because
once there is a Big station all Listening stations immediately switch to Idle
state instead of switching to Transmitting state.

Type-3 cycle: with a Big station S holding the token for the whole cy-
cle. Upon waking-up in Listening state, a station will learn about the state
of S and become idle until their scheduled wake-up round in the next cycle.

Type-4 cycle: with a Last-Big station S keeping the token for the
whole cycle. Station can be in the Last-Big state only for a one cycle and
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after being in the Big state (at the end of the previous cycle). All stations
after switching from Idle to the Listening state will learn about the Last-
Big state of S and become idle until their scheduled wake-up round in the
next cycle.

The local lists of stations stay synchronized in the beginning of cycles;
in fact, only the type-4 cycle changes the order of stations, and the whole
cycle is needed to do it consistently in all stations (when they act as listen-
ers) so that they all apply the move of the Last-Big station to the beginning
of their local lists by the end of the cycle.

Lemma 1. Each cycle is of one of the above four types.

Proof Algorithm’s initialization conditions (Subsection 6.2.1) enforce that
the first cycle type is either type-1 or type-2, as there is no Big or Last-
Big station in the beginning. Type-1 can be followed only by the type-1 —
if there is no potentially-big station during the cycle, or by the type-2 cycle
otherwise. In the type-2 cycle the Big station is chosen during the cycle, and
thus the cycle can be followed by the type-3 cycle — if the Big station queue
size is above 3n at the end of the cycle, or by type-4 otherwise. The case
of type-3 cycles is the same as the ones of type-2 described above, as in both
types there is a Big station at the end (which determines conditions for
the next cycle); they can be followed only by a cycle of type-3 or type-4.
The type-4 cycle can be followed by type-1 — if there is no potentially-big
station, or by type-2 cycle otherwise. Using an inductive argument over
cycles, it can be concluded that each cycle is of one of the four defined
types. �

Lemma 2. In any dense interval, a station can cause a silent round (i.e.,
is in state Transmitting but has an empty queue) at most n− 1 times while
being pre-big.

Proof Silent rounds occur when some station holds the token but has
no packets in its queue. Note that it is only possible for stations in Trans-
mitting state, as stations in any of Big states have more than n packets
in their queues.

Assume that station S has no packets in its queue. Within a dense
interval, in each round there is a potentially-big station. For any cycle,
if potentially-big station is before S in the list, then S would receive no token
or receive it and decrease its position in the list. The position of S cannot
decrease more than n− 1 times, as there can be no potentially-big station



42 CHAPTER 6. RESTRAINED MULTIPLE ACCESS CHANNEL

after S if it is last in the list. When S is the last on the list it either never
has a possibility to transmit or becomes potentially-big. Pre-big station
life-cycle terminates once the station is in the Big state by definition. �

Lemma 3. In any dense interval, post-big or in a Big state station causes
no silent round.

Proof By definition of Big state, a station must have had more than
3n packets in its queue in the beginning of the current cycle or in the round
of the cycle when it turned into the Big state. Therefore, in each round
of the cycle it has packets and causes no silent round.

A post-big station S can be in any of the states. In the case of Listening
and Idle states, the station does not attempt to transmit, thus it cannot
cause a silent round. The case of Big state was already analyzed. If the
station enters Last-Big state, it switches to this state from the Big state
having more than 2n packets in its queue, thus in each round of the cycle
it has packets and causes no silent round.

It remains to analyze the case when S is in the Transmitting state.
Upon leaving the Last-Big state for the last time, it had at least n pack-
ets in its queues and was placed in the beginning of the list of stations,
by the algorithm construction. Then, observe that S has had an opportu-
nity to transmit only at some type-2 cycle, when there is no potentially-
big station before it on the list or when S is potentially-big at the time
it switches from Listening to Transmitting state. In the latter case, in-
stead of staying in Transmitting state it immediately switches to Big state,
in which case we already analyzed in the beginning of the proof.

In the former case, either potentially-big station after S becomes Big,
which implies that in some of the next cycles, it switches to Last-Big
state and the position of S on the list decreases without causing any more
silent rounds, or S receives no token and so it cannot cause a silent round
by default. The position cannot decrease more than n − 1 times, because
there can be no potentially-big station after S if S is the last on the list (the
argument is similar to the one from the proof of Lemma 2). Since S had
at least n packets when switching from its Last-Big state, it can transmit
and decrease its position at most n − 1 times or become Big, whatever
comes first; in any case, it has at least one packet when transmitting. �

Theorem 1. The 12 O’clock adaptive protocol achieves throughput 1 on the
channel with restraint 2 and the maximum number of packets stored in round
is at most O(n2 + β).
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Proof Consider an adversary with injection rate ρ = 1 and a burstiness β.
Within a sparse interval, there can be no more than `+n+β packets in the
stations at the end of any cycle for dense interval threshold `. Indeed, the
biggest possible number of packets that the system can start a cycle with
is equal to `, and the adversary can inject no more than n + β packets
in n consequent rounds of the cycle. Once the queue size becomes greater
than ` in the beginning of a cycle, the sparse interval terminates and the
dense interval begins.

In the remainder, we focus on dense intervals. Note that in the begin-
ning of a dense interval, the number of packets in the system is at most
` + n plus the burstiness above the injection rate (upper bounded by β);
indeed, as in the beginning of the preceding cycle the interval was sparse,
the number of packets was not bigger than `, and during that cycle the
adversary could inject at most n packets accounted to the injection rate
plus the burstiness.

Within any dense interval, a station in the Big or Last-Big state is guar-
anteed to be in each cycle, by the pigeon-hole principle. It makes type-1
cycle impossible to occur. Consider type-3 and type-4 cycles: during those
cycles packet is transmitted in every round, and thus a silent round can-
not occur; hence the number of packets does not grow (except of burstiness
above the injection rate, but this is upper bounded by β at any round of the
interval, by the specification of the adversary). In type-2 cycles, post-big
stations cannot cause silent round, by Lemma 3, and stations in Big state
cannot cause silent rounds as they always have more than 2n packets pend-
ing. Hence, type-2 cycles may have silent rounds caused only by pre-big
stations. However, there can be no more than n− 1 pre-big stations in the
system in the beginning of the dense interval (because there is at least one
potentially-big station). Each pre-big station can cause no more than n− 1
silent rounds, by Lemma 2. Observe that in each cycle with a silent round
some potentially-big station will change its state to Big — silent round
would not occur if there was a potentially-big station with higher position
in the list than any empty station. Hence, there can be no more than n− 1
cycles with silent rounds caused by same (pre-big) station. To summarize,
there are at most n− 1 cycles with silent rounds for each of at most n− 1
pre-big stations, resulting in the upper bound of `+(n−1)2+n+β on system
queues. Since only one of those stations has the right to transmit, collision
never occurs and channel restrain is 2. �

It should be noted that the algorithm requires each station to store the
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list of stations with some auxiliary data (that is linear w.r. to the system
size n). We do not see it as a limitation for most of the cases however, since
station queue size is square to the system size in the worst case, as we prove
it below.

That is, packets in the station queue should be stored in some sort
of memory. To fairly compare different protocols - queue size needs to be
taken into an account together with the size of the state.

6.3 Full-sensing version of protocol 12 O’clock

6.3.1 Protocol overview

The 12-O’clock full-sensing with collision detection protocol is an adap-
tation of the protocol described in Section 6.2 to the more restrictive algo-
rithm class. In this class, the protocol has no ability to attach control bits
to individual packets. Let us stress however that the protocol maintains the
ability to add transmitting stations’ identities to individual packets.

Similarly to the original algorithm, each station maintains the copy
of the ordered list of stations referred as the list. There is a conceptual
token permitting a station to transmit a packet to the channel. The token
is passed in Round-Robin way following the order of the list. Stations are
scheduled to switch on and listen to the channel one round before receiving
the token.

More precisely, for each round t, algorithm schedules two stations to be
switched on — station S holding the token and station S ′ following S in the
order of the list. Station S transmits a packet from its queue if it has one,
and station S ′ listens to the channel. Station S ′ claims the token at round
t+ 1 if S transmission was successful or there was a silence on the channel.
Station S switches off in the end of the round t if there was collision on the
channel (we describe how collisions can occur below) or the size of its queue
is less than 3n, where n is the number of stations.

In contrary, when station S discovers at round t that the size of its queue
is greater than 3n, S becomes big and withholds the channel starting from
round t + 1. It follows that there are three switched on stations at round
t + 1: S – as it has claimed the token by withholding the channel, S ′ –
as it has received the token by following the order of the list, and S ′′ – the
station following S ′ in the order of the list and scheduled to listen to the
channel. The token ambiguity at round t+1 results in collision if both S and
S ′ have packets in their queues. However we use the fact of the collision
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to inform both S ′ and S ′′ about the claim of station S on withholding the
channel. In the case of S ′ having no packets to transmit, there is no collision
at round t + 1. It follows that only the packet transmitted by S is heard
on the channel, hence both S ′ and S ′′ recognise that S holds the token
by extracting transmitter identity from the packet. For both of these cases,
station S ′′ learns that it cannot take the token at round t + 2, therefore
no more collisions occur.

Withholding the channel by station S lasts until the first round τ sat-
isfying the following conditions: (1) the queue size of S is less than 2n and
(2) round τ is a 12 O’clock round – meaning that τ mod n = 0.

Before round τ and while S is big, stations listen to the channel following
the order of the list. Whenever such a listening station S ′ learns that
S is big, S ′ moves the identity of S to the top of its local copy of the list.
Since S can become big only with its queue size counting not less than
3n packets, there are at least n rounds with station S transmitting while
being big. Therefore all of the stations learn that S is big and local copies
of the list are synchronized by the end of round τ . Starting from round
τ stations pass the token following the new order of the list and the system
returns to the initial configuration.

By distinguishing silence from collision, the algorithm is able to manage
edge cases, see the description below.

However, due to collisions the protocol is not universally stable, albeit
we will prove its stability against injection rates ρ ≤ n−1

n
.

Technical description. We consider three channel states: Silence when
there is no transmission, Transmission when there is single transmission
on the channel, Collision when there is more than one transmission. Sta-
tions can be at one of four states: Idle, Listening, Transmitting or Big.
The last two states are given the right to transmit; they are distinguished
by the order in the list – only Big station can transmit out of the order
of the list; in the only one possible case when Big station transmits within
the order, collision occurs and later transmissions clarify the system state.
The Listening state is dedicated to listening, while in the Idle state the
station neither transmits or listens. We describe these states later in this
section. As previously we assume that transmission happens before the lis-
tening phase. Simplified finite state machine for the relationship between
those states can be seen in Figure 6.2.
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Figure 6.2: Finite state machine for a station in 12-O’clock full-sensing
algorithm. Station states are represented by nodes: I stays for Idle state; L
for Listening state; T for Transmitting state; B for Big state. Note that from
the system perspective there are two stations with the starting state being
Transmitting and Listening respectively, otherwise the starting state is Idle
as shown. Arrows represent checks performed by the distributed algorithm,
where Q stays for station queue size, n for system size, 12-O for the current
round being the end-of-cycle round; silence for no transmission heard on the
channel,  for collision heard on the channel; predecessor stays for a packet
transmitted by the predecessor of the station heard on the channel; on and
off representing clock-based actions of switch-on and switch-off respectively.
Note that it takes one round to execute a check of each arrow.
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1 Procedure transmitToTheChannel()
2 switch s.state do
3 case Transmitting do
4 if s.queue > 0 then
5 s.transmit();
6 s.transmitted = true;
7 case Big do
8 s.transmit();
Algorithm 3: 12 O’clock full-sensing algorithm, transmission phase.

Pseudo-code. We assume that each station has its internal information
saved in the local object called s. The internal information includes the
list of stations, the state of the station (i.e. Idle, Listening, Transmitting
or Big), as well as methods allowing to modify this information. We also
assume that there is a globally accessible channel information — containing
the state of the channel (Silence, Collision, Transmission) and the identity
of the transmitting station (if there was a successful transmission). The
pseudo-code of the algorithm is presented as two procedures:

• transmitToTheChannel (Algorithm 3) – executed in the transmission
phase of the round;

• listenToTheChannel (Algorithm 4) – executed in the listening phase
of the round.

Procedures are executed by switched on stations.

Methods. The algorithm relies on the following methods:

• moveBigToFront(station ID) —moves station of the input ID to the
front of the (local) station list;

• transmit() — transmits a packet from the station queue, with at-
tached ID;

• shouldWakeUp() — checks the idle timeout of the station, that is, the
number of rounds left until its predecessor can be in the Transmitting
state. Depending on the moment of when the station switches to Idle
state, the starting value is either n or n − 1 or n − 2 and decreases
by 1 each round. Upon becoming 0, the procedure outputs “true” and
the station switches to Listening state.
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1 Procedure listenToTheChannel(channel)
2 switch s.state do
3 case Idle do
4 if shouldWakeUp() then
5 s.state = Listening;
6 case Listening do
7 switch channel.state do
8 case Silence do
9 s.state = Transmitting;

10 case Collision do
11 s.state = Listening;
12 case Transmission do
13 if channel.transmitterId=predecessor.id then
14 s.state = Transmitting;
15 else
16 s.state = Idle;
17 s.moveBigToFront(channel.id);
18 case Transmitting do
19 switch channel.state do
20 case Silence do
21 s.state = Idle;
22 case Collision do
23 s.state = Idle;
24 s.moveBigToFront(predecessor.id);
25 case Transmission do
26 if s.transmitted then
27 if s.queue > 3n then
28 s.state := Big;
29 else
30 s.state = Idle;
31 else
32 s.state = Idle;
33 s.moveBigToFront(predecessor.id);
34 case Big do
35 if mod(round,n) = n-1 AND s.queue ≤ 2n then
36 s.state := Transmitting;
37 s.moveBigToFront(s.id);
Algorithm 4: 12 O’clock full-sensing algorithm, listening phase.
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Initialization. In the beginning all but the first two stations are in the
Idle state, while the one with the smallest ID is in Transmitting state and
its successor is in the Listening state.

Idle state. In this state the station does not access the channel, it only
keeps updating its idling time until the next wake-up— it decreases by 1 each
round. The starting number of idling rounds is either n or n− 1 or n− 2,
depending on the state from which the station switches to Idle and the
packet on the channel, see the description of Listening and Transmitting
states below. After awakening, i.e., when the idling time decreases to zero,
the state switches to Listening.

Listening state. A station in the Listening state considers all three
channel state cases, in the following way.

Collision on the channel occurs only when a Big station S interrupted
its successor. No information is available on the channel, hence the Listen-
ing station keeps its state unchanged for one more round in order to hear
an ID of the Big station. Note that there will be two stations in the Lis-
tening state and one in the Big state next round. Both listening stations
would recognize S as Big and update their local station lists accordingly.

Upon hearing a silence, the Listening station knows that it will not
interrupt a Big station transmission next round and thus it changes its
state to Transmitting.

Finally in case of the transmission on the channel, the Listening station
checks transmission ID on the channel and either it takes the token from
its successor, or becomes idle and updates the local station list if it was
not its predecessor’s transmission. It becomes idle for the next n− 2, n− 1
or n rounds until subsequent wake-up; more specifically, the first idling time
n − 2 occurs when station waited additional round after collision on the
channel, the second idling time n− 1 occurs when the station hears a Big
station which is currently located after it on the list of stations, and the
last idling time n occurs when the Big station was located before it on the
list.

Transmitting state. The Transmitting state is taken by a station once
per cycle in the round corresponding to its current position on the list
of stations, unless there is a Big station in the beginning of that round.

A station in the Transmitting state changes its state to Idle when
there is a silence on the channel — it is possible only when it had no packets
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and there was no Big station in the beginning of this round. In the case
of collision, it updates its local station list by moving its predecessor from
the list to the front, as its is the only station which transmission on the
channel would allow the Transmitting station to change its state from
Listening to Transmitting.

If a Transmitting station was successfully heard on the channel, there
can be no Big station transmission in this round. Additionally, if the
station has a queue size exceeding 3n, it changes its state to Big and
keeps transmitting accordingly starting from the next round. Otherwise,
it changes its state to Idle, in order to awake in its listening turn during
the next cycle, after n − 2 rounds. If the station has not transmitted but
a single transmission occurs on the channel, then this is a transmission from
predecessor of Big station (any other Big station would cause the station
not to switch to the Transmitting state in the first place, as it would switch
directly from the Listening to Idle) which has not caused a collision only
because the Transmitting station has had no packets to transmit. In this
case the station behaves accordingly — updates the local list of stations
and changes its state to Idle.

Big state. At the end of each cycle, a Big station checks whether its queue
size is still bigger than 2n; if not, it changes its state to Transmitting. In
any other round, the Big station transmits a packet and remains in the
same state. The following property can be easily deducted: once a station
changes its state to Big (which happens when being in Transmitting state),
it stays there at least till the end of the next cycle; it may then continue
throughout the whole next cycles, until it changes to the Transmitting
state at the end of some of them.

6.3.2 Protocol correctness and performance analysis

Similarly to the Adaptive protocol analysis, we consider the sum of the
queues’ sizes in the beginning of a cycle. If the sum of queues’ sizes is
greater than ` = n(3n− 1) + 1 we say that it belongs to the dense interval,
otherwise it belongs to the sparse interval. This way any execution of the
Full-sensing algorithm consists of dense and sparse intervals. In relation
to a fixed interval we consider the following terminology: station is pre-big
if it had never been in the Big state and it is post-big if it was at least once
in the Last Big state, during the considered cycle. Station is potentially-big
if its queue size allows it to become Big (provided other necessary conditions
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would hold) or it is in the Big state. Each cycle can be only of one of the
three types:

Type-1. Without any Big station. Token is being passed in the Round-
Robin way, by adopting Listening and Transmitting states. This means
that at any single round there is one station in the Transmitting state and
one in the Listening state.

Type-2. With a Big station S starting to transmit as Big in some
round of the cycle. Here, the token is being passed in the Round-Robin way
by applying the sequence of Listening and Transmitting states to consecu-
tive stations on the list, until S transmits for the second time. The succes-
sor of station S cannot recognize S as Big since S is supposed to transmit
by the default Round-Robin way of passing the token within the list order.
Collision occurs if the successor of S has a packet to transmit. Otherwise,
in the case of successful transmission, stations in Listening and Transmit-
ting states active at this round would read the Big station ID from the
transmission, both changing their states to Idle afterwards. Otherwise the
station in the Transmitting state learns from the collision about the state
of S, and then it changes its state to Idle and updates the local station
list. The station which was in the Listening state at that time learns about
the state of S a round after the collision, since it could not be a successor
of any Big station.

Type-3. With a Big station S keeping the token for the whole cycle. All
but one station after waking-up in the Listening state will learn about the
state of S and become Idle until the next cycle. However, there is a station
which would not recognize S as Big, but it will be interrupted by its
transmission. Through the collision on the channel it would however learn
about the state of S, an then it changes its state to Idle and updates the
local station list.

The following two lemmas justify the usage of cycles defined above and
provide the limit on the number of collisions. They will be used implicitly
in the analysis.

Lemma 4. Each cycle is of one of the three above types.

Proof The initial conditions of the algorithm specified in Subsection 6.3.1,
enforce the system to start in the type-1 cycle. Type-1 cycle can be followed
by another type-1 cycle, if there is no potentially big station, or by a type-2
cycle otherwise.

In a type-2 cycle the Big station is chosen, and therefore it can only
be followed by a type-3 cycle — this is because the Big station needs



52 CHAPTER 6. RESTRAINED MULTIPLE ACCESS CHANNEL

to transmit more than n packets in order to start to consider changing its
state, which may happen only at the end of some cycle.

A type-3 cycle, with a Big station keeping the token (to transmit) for
the whole cycle, can be followed either by the same type of a cycle if the
adversary keeps injecting packets into the Big station, or by a type-1 cycle
if there is no potentially-big station, or by a type-2 cycle otherwise. �

Lemma 5. No more than one collision per cycle can occur.

Proof Note that in a type-1 cycle collision may not occur, as at any single
round there is station in the Transmitting state and another one in the
Listening state.

In a type-2 cycle no collision occurs until the second transmission of a sta-
tion in the Big state, by the same reasoning as for type-1 cycles. If the
Big station successor has packets in its queues there is a collision on the
channel. The station in the Transmitting state becomes Idle at the end
of this round until the next cycle. Stations further down on the list cannot
have the Big station as predecessor and would wake up in the Listening
state, learn about the Big station from its transmission and change their
state directly to Idle, hence there can be no more collisions.

A type-3 cycle with a Big station S holding the token. Consider the
case, when type-2 cycle precedes. We divide stations of the system into
two groups: group-A consists of stations after the Big station S on the
list, which have already learned about the state of S and updated their
local lists of stations. Group-B are stations before S on the list, which had
no occasion to do so. If group-A is empty, then there is a single succeed-
ing to S station in the group-B. It causes one collision due to assumption
of default Round-Robin predecessor, which is S. The rest of the stations
in this cycle will switch directly from the Listening to Idle state, thus
no more collisions occur. If both group-A and group-B are not empty, then
no station in the group-B can have S as predecessor, because S is down
in the list for any station in group-B by definition, and its not last on their
outdated list version since group-A is not empty. Due to group-A stations
having their lists updated, S is the first station in their lists, which together
with nonempty group-B assumption makes it impossible to any station from
the group-A to have S as predecessor. It follows that all of the group-A
and group-B stations would change state directly from Listening to Idle,
thus no collision occurs. If group-B is empty or type-3 cycle precedes the
current cycle, then the cyclic order of the list does not change (i.e. each
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station has the same successor and predecessor in the beginning and the
end of the cycle). It follows that there is a single succeeding to S station
which causes a single collision due to assumption of default Round-Robin
(described in Section 4.2) predecessor, which is station S. No more stations
can have S as predecessor, thus the rest of the stations would change state
directly from Listening to Idle and no more collisions occur. �

We call a round with collision caused by station in the Big state an as-
sertion round. In relation to cycles we assume that there is an assertion
round in every cycle, since this is the worst possible case – no more than
one collision in a cycle can occur by Lemma above. By a silent round we un-
derstand any non-assertion round with no successful transmission. We say
that a station causes a silent round if during this round it is in state Trans-
mitting; note that it may occur only if the station has empty queue in this
round. Observe also that there cannot be a Big station in a silent round,
as stations in Big state have more than n packets in their queues.

Lemma 6. In any dense interval, a station can cause a silent round at most
n− 1 times while being pre-big.

Proof Silent rounds occur when some station holds the token but has
no packets in its queue. Assume that a station S has no packets in its
queue. Within dense interval, in each round there is a potentially-big sta-
tion. For any cycle, if potentially-big station is before S on the list, then
S would receive no token or receive it and decrease its position on the list.
The position of S cannot decrease more than n − 1 times, because there
can be no potentially-big station after S if it is the last on the list. Since
in the dense interval there is always a Big station, S as the last station
in the list either has no possibility to cause silent round (when some other
station S ′ before it in the list changes state to Big), or becomes Big itself.
Pre-big station life-cycle terminates once station is in the Big state by our
definition, hence through the whole pre-big life-cycle station S may cause
no more than n− 1 silent round. �

Lemma 7. In any dense interval, a station causes no silent round while
being post-big or in a Big state.

Proof A post-big station S could be in a Big state, Transmitting state
or in one of the other two states. In the latter case, it does not attempt
to transmit, hence it cannot cause a silent round. If the station enters Big
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state, it switches from the Transmitting state at some round of the cycle,
having more than 3n packets in its queue; it’ll switch back to the Transmit-
ting state when having less than 2n packets in the end of the cycle. Thus,
in any round of the cycle the number of packets cannot drop below n, and
hence no silent round occurs.

It remains to analyze the case when S is in the Transmitting state.
Upon leaving the Big state for the last time, it had at least n packets in its
queues and was placed in the beginning of the list of stations, by the algo-
rithm construction. Then, observe that S has had an opportunity to trans-
mit only at some type-2 cycle when there is no potentially-big station be-
fore it on the list or when S is potentially-big at the time it switches from
Listening to Transmitting state. In the latter case, instead of staying
in Transmitting state it immediately switches to Big state, in which case
we already analyzed in the beginning of the proof. Otherwise (i.e., in the
former case), either some potentially-big station after S becomes Big, which
implies that in some of the next cycles, it will switch back to Transmitting
state and the position of S on the list decreases without causing any more
silent rounds, or S receives no token and so it cannot cause a silent round
by default. The position cannot decrease more than n − 1 times, because
there can be no potentially-big station after S if S is the last on the list (the
argument is similar to the one from the proof of Lemma 6). Since S had
at least n packets when switching from its Big state, it can transmit and
decrease its position at most n − 1 times or become Big, whatever comes
first; in any case, it has at least one packet when being in Transmitting
state. �

Theorem 2. The 12 O’clock full-sensing protocol achieves throughput 1− 1
n

on a channel with restrain of 3 and the maximum number of packets stored
in a round is at most `+ (n− 1)2 + n+ β = O(n2 + β).

Proof Injection rate stability limit of 1− 1
n
follows from inability to identify

a Big station B by B station successor in the list. This results in potential
collisions every cycle and in consequence wasting one each of n slots.

The analysis of bounds on the queue size bases upon sparse and dense
intervals defined above. Within a sparse interval, there can be no more
than ` + n + β packets in the stations at the end of any cycle. Indeed,
the biggest possible number of packets that the system can start a cycle
with is equal to `, and the adversary can inject no more than n+ β packets
in n consequent rounds of the cycle. Once the queue size becomes greater
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than ` in the beginning of a cycle, the sparse interval terminates and the
dense interval begins.

In the remainder, we focus on dense intervals. Note that in the begin-
ning of a dense interval, the number of packets in the system is at most
`+n+β. indeed, as in the beginning of the preceding cycle the interval was
sparse, the number of packets was not bigger than `, and during that cycle
the adversary could inject at most n packets accounted to the injection rate
plus the burstiness.

Within any dense interval, a station in the Big state is guaranteed
to exist in each cycle, by the pigeon-hole principle. It makes type-1 cycle
impossible to occur. Consider type-3 cycles: during those cycles a packet
is transmitted in every round, and thus a silent round cannot occur; hence
the number of packets does not grow (except of burstiness above the in-
jection rate, but this is upper bounded by β at any round of the interval,
by the definition of the adversary).

In type-2 cycles, by Lemma 7 silent rounds cannot be caused by post-big
stations and stations in Big state cannot cause silent rounds as they always
have more than 2n packets pending. Hence, type-2 cycles may have silent
rounds caused only by pre-big stations. However, there can be no more than
n − 1 pre-big stations in the system in the beginning of the dense interval
(because there is at least one potentially-big station). Each pre-big station
can cause no more than n − 1 silent rounds, by Lemma 6. Observe that
in each cycle with a silent round some potentially-big station will change its
state to Big — a silent round would not occur if there was a potentially-big
station with higher position on the list. Hence, there can be no more than
n − 1 cycles with silent rounds caused by same (pre-big) station. To sum-
marize, there are at most n−1 cycles with silent rounds for each of at most
n− 1 pre-big stations, resulting in the upper bound of `+ (n− 1)2 + n+ β

on the sum of the queue sizes in a round. �

6.3.3 Stability bound improvement

It was proved in [CKR09] that it is not possible to construct a full-sensing
stable protocol against an adversary ρ = 1 for a system with a number
of stations bigger than 3. Below we show how the 12 O’clock full-sensing
protocol can be modified to withstand injection rates higher than 1− 1

n
.

Lemma 8. For any given ρ < 1, the 12 O’clock full-sensing protocol can
be modified to be stable against the adversary with injection rate ρ .
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Proof Algorithm may handle any injection rate ρ smaller than 1 by fol-
lowing the strategy:
• Transmitting station considers itself Big when it has more then

2n+ kn packets, where k ≥ 1
n(1−ρ) is a positive integer;

• Transmitting station remembers of being interrupted by its predeces-
sor, and instead of waking up after the subsequent nearly n rounds, as in the
original 12 O’clock full-sensing protocol, it wakes up after kn rounds.

This way interruption may happen only once in kn rounds and the
adversary with injection rate of ρ = 1 − 1

kn
can be handled. We adjust

the sparse/dense border value to `′ = n((2 + k)n − 1) + 1, since the Big
station definition has changed. Following the logic of the proof of Theorem
2, in any dense interval there are at most k(n−1) cycles for each of at most
(n − 1) pre-big stations, resulting in the upper bound of total queue size
of `′ + k(n− 1)2 + n+ β = O(kn2 + β). �

6.4 Acknowledgment-based protocols

In this section we consider acknowledgment-based protocols in k-restrained
model and present the results first published in [HKK20].

First we prove two limitations for this class of protocols. One of this
limitations restricts the protocol class to use global-clock mechanism and
it is followed as the basic requirement later through this section.

Secondly, we introduce a new combinatorial construction called k-light
selectors. This construction is an extension of the well known selectors
concept and we believe that it can be of independent interest. We utilise
k-light selectors to design an algorithm that is throughput-optimal up to the
multiplicative polylogarithmic factor. The algorithm works in k-restrained
channel and achieves throughput Θ

(
k

n log2(n)

)
.

6.4.1 Upper bound on throughput

Lemma 9. There is no correct, k-restrained acknowledgment-based algo-
rithm with channel restrain k < n without a global-clock mechanism for any
ρ > 0.

Proof Assume that P is a correct k-restraint deterministic acknowledgment-
based protocol without a global clock in the system of n stations. Then for
each station Si, there is a default starting sequence pi, where i is the index
of the station. Because P is correct, each pi contains a first occurrence
of transmission bit 1. Let ti be the position of the first transmitting bit
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in the sequence pi. Because the system is not equipped in the global clock
mechanism, stations’ starting rounds are set by adversary. Let us say that
si is the first switched-on round of station Si. It follows that the first trans-
mission of station i occurs at round si + ti. In order to overload the system
adversary follows the strategy: choose round e as e = max{t1, . . . , tn}; start
station Si at round si = e − ti. Then all n > k stations transmit at round
e and thus P has to overflow channel restrain k. In consequence P is not
correct. �

Theorem 3. Acknowledgment-based algorithms in the k-restrained channel,
k < n, cannot achieve throughput higher than min{ k

n
, 1

3 logn}.

Proof To prove the theorem, assume first that k
n
≤ 1

3 logn . Consider a pe-
riod of τ consequent rounds. Suppose, to a contradiction, that during
τ rounds the adversary can inject τ · k/n+ 1 packets. The channel restrain
of k implies that at most k stations can be active and, therefore, during
τ rounds there could be at most τ ·k activities in total. There are n stations
in the system, hence, by pigeon-hole principle, there is a station allowed
to transmit at most τ · k/n packets during τ rounds. Acknowledgement-
based protocols with global clock provide adversary with a power to know
stations schedules in advance, as the adversary can calculate values of the
protocol function for any round and for each station; hence, it can pick
a station S, such that the number of scheduled switch-on rounds is minimal
within the system. Once the station S is chosen, the adversary can inject
τ · k/n + 1 packets into the queue of S. Queues of arbitrary length would
be generated by iteration of the procedure, thus the system cannot be sta-
ble, which results in contradiction. This proves that ρ cannot exceed k

n
.

The second case when the minimum formula equals to 1
3 logn follows directly

from Thm. 5.1 in [CKR09]. �

6.4.2 k-light Selectors

Let us consider a set N = {1, . . . , n} and its subsets S,X, Y ⊂ N . We say
that S hits X if |S ∩X| = 1. We say that S avoids Y if |S ∩ Y | = 0.

Definition 1. We say that a family S ⊂ 2N is a (n, ω)-selector if for
any subset X ⊂ N such that ω/2 ≤ |X| ≤ ω there are ω/4 elements hit
by at least one subset from S.

Note that this definition is a special case of a selective family [CK05].
The intuition behind S is as follows: we can “separate” at least a fraction
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of elements of any subset X (of appropriate size) using sets that belong
to S.

Definition 2. We say that S = (n, ω)-selector is k-light if any S ∈ S
satisfies |S| ≤ k.

Theorem 4. K-light (n, ω)-selector of size m = O ((ω + n/k) log n) exists.

Proof We divide the proof of the formula

m = O ((ω + n/k) log n) (6.1)

into two parts. The first part of the formula, O (ω log n) for ω ≥ n
k
, comes

directly from Lemma 1 done by Chrobak et al. [CGR02].
To prove the remaining part, let us assume that ω > 1 and ω is divisor

of n. Let m be the size of a selector to be fixed later. Let us choose
independently m random subsets of {1, . . . , n} of size l = n

ω
. That is,

S = (S1, . . . , Sm) is a random family. Let us consider any fixed sets X, Y ⊂
{1, . . . , n}, such that ω/4 ≤ |X| ≤ ω; |Y | ≤ ω/4 and a random Si.

Pr[Si avoids Y and hits X] =

(
|X|
1

)(
n−|X|−|Y |

l−1

)
(
n
l

) = |X| · l · (n− |X| − |Y |)l−1

nl
=

|X| · l
n− l + 1

l−2∏
i=0

n− |X| − |Y | − i
n− i

>
ω
4 · l
n

l−2∏
i=0

n− 5
4ω − i

n− i
≥

ω
4 · l
n

(
1−

5
4ω

n− l + 2

)l−1

≥
ω
4 ·

n
ω

n

(
1−

5
4ω

n/4

)l−1

≥

1
4 exp(−5) = c > 0 .

(6.2)

Let us bound the probability that for any sets X, Y such that ω/4 ≤
|X| ≤ ω and |Y | ≤ ω there exists an i such that Si hits X and avoids Y .
The probability of complementary event can be roughly bounded as follows:

ω∑
|X|= ω

2

(
n

|X|

)
ω∑
y=0

(
n

|Y |

)
(1− c)m ≤ ω2n2w(1− c)m ≤

n4ω(1− c)m ≤ e4ω lnn−m ln(1−c) < 1 .
(6.3)

Note that the last inequality holds for some m = O(ω log n). That
is, for such m the random structure S = (S1, S2, . . . , Sn) with probability
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greater then zero hits any X and avoids any Y of an appropriate sizes.
Thus such a structure must exist and in consequence we can take S and use
it for the reminder of the proof.

Now we show that S is a (n, ω)-selector. Let us take any X such that
ω/2 ≤ |X| ≤ ω and Y = ∅. By the property of S there exists Si1 such that
it hits X. Let {r1} = |Si1 ∩ X|. Now let us construct X = X \ {r1} and
Y = Y ∪{r1}. Since still ω/4 ≤ |X| < ω and |Y | ≤ ω/4 we can find Si2 ∈ S,
such that it hits the truncated X and avoids Y = {r1} thus there exists
r2 = |Si2 ∩X|. Then we set X = X \ {r2} and Y = Y ∪ {r2}. We iterate
such separation ω/4 times to get ω/4 distinct elements that are chosen from
the initial X. Thus we get the first case of the theorem.

To prove the second part of the formula (6.1) O ((n/k) log n) for n
k
> ω,

first we need to construct an n
ω
-light selector S ′ of size m = O(ω log n).

Clearly, this is possible using the above construction. Then we need to par-
tition each Si ∈ S ′ into d nkωe sets of size at most k to obtain a “diluted” se-
lector. This results in m = O( n

kω
ω log n) = O(n

k
log n) sets of size at most k.

�

6.4.3 Construction of selector in polynomial time

The previous section has provided a proof that k-light selectors exist, but
does not specify how it can be constructed. It turns out that the construc-
tion is not trivial, therefore in the current section we present a polynomial
time construction of k-light selectors. It uses two major components: dis-
persers and superimposed codes.
Dispersers. A bipartite graph H = (V,W,E), with set V of inputs and
set W of outputs and set E of edges, is a (n, `, d, δ, ε)-disperser if it has the
following properties: |V | = n and |W | = `d/δ; each v ∈ V has d neighbors;
for each A ⊆ V such that |A| ≥ `, the set of neighbors of A is of size
at least (1 − ε)|W |. Ta-Shma, Umans and Zuckerman [TUZ01] showed
how to construct, in time polynomial in n, an (n, `, d, δ, ε)-disperser for any
` ≤ n, some δ = O(log3 n) and d = O(polylog n).
Superimposed codes. A set of β binary codewords of length a, repre-
sented as columns of an a × b binary array, is a d-disjunct superimposed
code, if it satisfies the following property: no boolean sum of columns
in any set D of d columns can cover a column not in D. Alternatively,
if codewords are representing subsets of [a], then d-disjunctness means that
no union of up to d sets in any family of sets D could cover a set outside D.
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Kautz and Singleton [KS64] proposed a d-disjunct superimposed codes for
a = O(d2 log2 b), which could be constructed in polynomial time.
Polynomial construction of light selectors. We present a construc-
tion method for k-light (n, ω)-selectors of length m = O (ω polylog n) for
m = O

(
n
k
polylog n

)
and k ≥ n

ω
for k < n

ω
, in time polynomial in n.

Such setting is equivalent to constructing k-light (n, ω)-selectors of length
m = O ((ω + n/k) polylog n) in time polynomial in n. The construction
combines specific dispersers with superimposed codes. Let 0 < ε < 1/2
be a constant. Let G = (V,W,E) be an (n, ω/4, d, δ, ε)-disperser for some
δ = O(log3 n) and d = O(polylog n), constructed in time polynomial in n,
c.f., [TUZ01]. Let NG(v) stay for the set of neighbors of node v ∈ V in graph
G. Let M = {M1, . . . ,Ma} be the rows of the cδ-disjunct superimposed
code array of n columns, for a = O((cδ)2 log2 n), constructed in time poly-
nomial in n, c.f., Kautz and Singleton [KS64]; here δ is the parameter from
the disperser G and c > 0 is a sufficiently large constant. W.l.o.g. we could
uniquely identify an ith of the n columns of the superimposed code with
ith node in V .

For a constant integer c we define a k-light (n, ω)-selector S(n, ω, k, c)
with length at most min{n, a|W |α}, for some α to be defined later, which
consists of sets Si, for 1 ≤ i ≤ m. Consider two cases. For the case when
n ≤ m|W |α, we define Si = {i}. In the case of n > a|W |α, we first define
sets Fj as follows: for j = xa + y ≤ a|W |, where x, y are non-negative
integers satisfying x + y > 0, Fj contains all the nodes v ∈ V such that
v is a neighbor of the x-th node inW and v ∈My; i.e., Fx·a+y = My∩NG(x).
Next, we split every Fj into d|Fj|/ke subsets S of size at most k each,
and add them as elements of the selector S(n, ω, k, c). Note that each
set Si from S(n, ω, k, c) corresponds to some set Fj from which it resulted
by the splitting operation; we say that Fj is a parent of Si and Si is a child
of Fj. In this view, parameter α in the upper bound m ≤ a|W |α could
be interpreted as an amortized number of children of a set Fj. We will show
in the proof of the following theorem that α ≤ nd·(cδ)2 log2 n

k
· 1
a|W | + 1.

Theorem 5. S(n, ω, k, c) is a k-light (n, ω)-selector of length

m = O (min{n, (ω + n/k) polylog n}) (6.4)

for a sufficiently large constant c, and is constructed in time polynomial
in n.

Proof First we show that S(n, ω, k, c) is a k-light (n, ω)-selector, for suf-
ficiently large constant c > 0. Second, we consider the more complex case
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of n > a|W |α.
Let set A ⊆ V be of size between ω/2 and ω. Suppose, to the contrary,

that there are less than ω/4 elements in A hit by some sets in S(n, ω, k, c).
It implies that there is a subset B ⊆ A of size ω/4+1 such that none of the
elements in B is hit by sets from S(n, ω, k, c).

Claim. Every w ∈ NG(B) has more than cδ neighbors in A, where cδ
is a disjunctness parameter of M. The proof is by contradiction. As-
sume, for simplicity of notation, that w ∈ W is the w-th element of set W .
Suppose, to the contrary, that there is w ∈ NG(B) which has at most cδ
neighbors in A. More precisely, that |NG(w)∩A| ≤ cδ. By the fact thatM
is a cδ-disjunct superimposed code, for a = O((cδ)2 log2 n), we have that,
for every v ∈ NG(w) ∩ A, the equalities

Fw·a+y ∩ A = (My ∩NG(w)) ∩ A = My ∩ (NG(w) ∩ A) = {v} (6.5)

hold, for some 1 ≤ y ≤ a.
This holds in particular for every v ∈ B ∩NG(w)∩A. There is at least

one such v ∈ B ∩NG(w) ∩A, because set B ∩NG(w) ∩A is nonempty due
to w ∈ NG(B) and B ⊆ A. The existence of such v is in contradiction with
the choice of set B. More precisely, B contains only elements which are not
hit by sets from S(n, ω, k, c), but v ∈ B ∩ NG(w) ∩ A is hit by some set
Fw·a+y, thus is also hit by some children Sj ∈ S(n, ω, k, c) of Fw·a+y. This
makes the proof of the Claim complete.

Recall that |B| = ω/4+1. By dispersion, the set NG(B) is of size larger
than (1 − ε)|W |, hence, by the Claim above, the total number of edges
between the nodes in A and NG(B) in graph G is larger than

(1− ε)|W | · cδ = (1− ε)Θ((ω/4 + 1)d/δ) · cδ > ωd , (6.6)

for a sufficiently large constant c. This is a contradiction, since the total
number of edges incident to nodes in A is at most |A|·d = ωd. It follows that
S(n, ω, k, c) is a k-light (n, ω, k)-selector, for a sufficiently large constant c.

Before estimate the length m of this selector, note that the union of all
sets Fj in the case n > a|W |α is at most a · (|V | · d), because an element
in some Fj corresponds to some edge in the disperser and repeats at most
as many times as the number of rows a in the superimposed codeM. Hence,
the amortized number of children S ∈ S(n, ω, k, c) of a set Fj, parameter
α, is at most

a · (|V | · d)
k

· 1
a|W |

+ 1 . (6.7)
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The length m of this selector is thus at most

min{n, a|W |α} = O

(
min

{
n, δ2 log2 n · ωd/δ + nd · (cδ)2 log2 n

k

})
=

O (min {n, (ω + n/k) polylog n}) ,

(6.8)

since d = O(polylog n) and δ = O(log3 n).
The case n ≤ a|W |α is clear, since each element i in a set A of size be-

tween ω/2 and ω occurs as a singleton in some selector’s set, mainly in Si.
�

6.4.4 Protocol k-light Interleaved Selectors

W.l.o.g., to avoid rounding, assume that n is a power of 2 and therefore
log n is an integer. We consider a sequence of S1, . . . ,Slog(n), where Si is k-
light (n, 2i)-selector of size mi. Let Sji be the j-th set of the i-th selector.
That is, Si = {S1

i , . . . , S
mi
i }. Let us consider the round number t that can

be uniquely represented as t = j log n+i for 1 ≤ i ≤ log n and j ≥ 0. Station
x transmits in the t round if and only if x has a packet to be transmitted
and x ∈ Sj mod mi+1

i . The order of sets of selectors “activating” stations
is crucial for performance of the algorithm and motivate its name. This
order is depicted on the Fig. 6.3.

6.4.5 Protocol correctness and performance analysis

Obviously in a single round at most k stations can transmit, since the
sets Sji consist of at most k elements. We now analyze the performance
of the protocol.

Theorem 6. Assume that in round t there are r stations with nonempty
queues, such that 2i ≤ r < 2i+1. The system will make at least 2j/16 packets
heard on the channel before the round t′ = t+8∑j

l=iml log n for some j ≥ i.
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Figure 6.3: Interleaved Selectors: A = {S1,S2,S3}, where S1 = {S1
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Proof Let us first consider a set X0 ⊂ {1, . . . , n} of stations such that
|X0| = r and 2i−1 ≤ r < 2i. Let Si = {S1

i , . . . , S
mi
i } be a (n, 2i)-selector

and Si+1 = {S1
i , . . . , S

mi+1
i } be a (n, 2i+1)-selector for some i < log(n). We

assume that stations fromX0 have non empty queues of packets. We observe
all stations during T = mi+mi+1 rounds. We assume that the adversary can
add packets to queues (even to initially empty queues) during the execution
of the algorithm. Let Xt be the set of nonempty stations in round t. In the
j-th round stations from Xj ∩ Sji transmit for j < mi and Xj ∩ Sj−mi

i+1 for
j ≥ mi. In other words, in consecutive rounds transmit nonempty stations
pointed by sets from Si, then stations from Si+1.

Lemma 10. If less then 2i/16 different stations has transmitted during
T rounds of the process then |XT | ≥ min{r + 2i/8, 2i+1}.

Proof Let Y = ⋃T
i=1Xi\X0 be the set of all stations filled by the adversary

during the process. Let O∗ be the set of stations that are transmitted
during the process. Moreover, let T (X) denote the set of the stations that
transmitted at least once in the static case with the initial setX of nonempty
stations, i.e. when the adversary does not add any packets.

Clearly, |T (X0∪Y )| ≤ |O∗|+|Y |. Indeed, adding Y to the set of stations
with nonempty queues can increase the number of transmitting stations only
by |Y |. On the other hand if a transmission of a station is blocked in the
original process it must be also blocked in the case if all X0∪Y stations are
nonempty at the beginning.

Let us consider two cases. In the first we assume |X0 ∪ Y | < 2i+2.
In follows that |T (X0 ∪ Y )| ≥ 2i/4 because of the properties of selectors.
Thus 2i/4 ≤ |O∗|+|Y |. We assumed however that |O∗| < 2i/16 , thus |Y | >
3/16 · 2i. That is, the adversary added packets to at least 3/16 · 2i initially
nonempty stations but less then 2i/16 has transmitted. Finally in he round
T a least r + 2i/8 are nonempty. In the remaining case, if |X0 ∪ Y | > 2i+2

and only at most stations 2i/16 transmitted, the lemma holds trivially. �

Note that in any contiguous segment of (mi + mi+1) log n rounds, all
sets of stations with nonempty queues from selectors Si,Si+1 are allowed
to transmit (see Fig 6.3). Following Lemma 6.3 after (mi + mi+1) log n
executed rounds at least one of the three events occurred: (1) 2i/16 trans-
mitted; (2) the number of stations with nonempty queues increased by 2i/8;
(3) there is at least 2i+1 nonempty queues.

Note that event (3) may occur at most log n − i times, similarly event
(2) may occur at most 8(log n − i) times till reaching the state of at least
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2n−1 nonempty stations. Thus, after at most ∑logn−1
i=1 (mi + mi+1) log n +

mlogn log n = O(n
k

log2 n) rounds at least a fraction of nonempty stations
will transmit at least one packet. �

Combining Theorem 6 with Theorem 4 we get:

Corollary 1. The protocol achieves throughput Θ
(

k
n log2 n

)
on k-restrained

channels.

6.5 Algorithms simulations

In order to evaluate efficiency of developed protocols, we performed sim-
ulations for both new and existing algorithms and compared the results.
We analyzed the impact of the execution length, system size and injection
rates on the queue sizes and channel restrain.

We collate Adaptive and Full-sensing versions of the 12-O’clock al-
gorithm as well as 8-light Interleaved-Selectors and Round-Robin
algorithms with Backoff exponential and polynomial algorithms. Our
main simulation goals are to analyze and compare the following across the
considered protocols:

• General workflow for stable injection rates;

• Maximal throughput, - we look for the lowest injection rates where
queue size or latency show dependency on the number of rounds passed
(because practically time-dependent behavior indicates instability);

• Channel restrain below critical injection rates, so that channel re-
strain in stable executions could be evaluated.

A summary of the obtained results is presented in Figures 6.4a-6.6b.
Experiment results are presented without error bars to improve clarity,
as several graphs are present in each figure. Each recorded result is an
average of 120 experiments of one million rounds each.

6.5.1 Simulation implementation details

We have implemented algorithms 12 O’clock adaptive and full-sensing
versions, 8-light Interleaved-Selectors, Round-Robin, as well as ex-
ponential, linear and square polynomial versions of Backoff algorithm
in Java and Julia programming languages.
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Backoff protocols. Backoff protocol is a popular randomised con-
tention resolution algorithm. We follow the model and algorithm description
from [HLR96]. This kind of algorithm is defined as follows: each station
S maintains a positive integer value ω called window-size. For each round
t with station S having a packet in its queue, S randomly (uniformly) se-
lects a transmission round t′, such that t′ ≥ t and t′ < t + ω. The initial
value of the window size is ω = 1 by default. If there is a collision on the
channel at round t′, S refers to the window function f defined by the algo-
rithm to compute new window size ω′: ω′ = f(ω). Otherwise the window
size is reset: ω = 1. Popular window functions include polynomial, square
polynomial and exponential functions.

For the purposes of the simulation, we follow the parameters of window
size functions defined in [HLR96] as 2ω, 2ω2 and 2ω for polynomial, square
polynomial and exponential functions respectively.

Additionally, in our simulation the size of the window ω is capped at
constant 2048. Capping the window size is a technique commonly utilised
in practice. It allows to protect protocols from unnecessary increase of the
window size and thus improves their worst-case stability.

Acknowledgment-based protocols. Round-Robin protocol allows any
station i to transmit alone in rounds i modulo n. 8-light Interleaved-
Selectors are based on randomly generated binary matrices, tested to sat-
isfy the definition of k-light (n, ω)-selector. Note that finding such selector
is possible due to the small size of the utilised construction.

Adversary. In order to perform simulations, we need to define the be-
haviour of the adversary. We have chosen strategy of the adversary that
seems to be challenging for the algorithm and reflects some real-life sce-
narios. We define an adversary by three parameters used at each round
r: injection rate ρ – the probability that an adversary will have one more
packet in its stock, burst-probability p – the probability of adversary making
a decision to inject all of the stock packets at once, and finally the stock size
limit β – a constant forcing the adversary to inject all of its stock packets
once the stock size is equal to β.

We utilise two types of packet distribution in this section. We say
that the packet distribution is uniform when the adversary selects stations
to inject to with the same probability P = 1

n
. If uniform distribution is not

specified, we assume that the adversary selects a station to inject to Si with
probability Pi, where i ∈ {1, 2, 3, . . . , n}: P1 = P2 = 1

3 + 1
3n ; Pi>2 = 1

3n .
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Injection rate ρ and burst-parameter p have values in (0, 1). Note that
the burst-probability parameter models the adversary injection behavior:
between rare bursts of large numbers of packets (close to 0) and steady flow
(close to 1). The stock-size β is a constant equal to 256, basing on oper-
ational buffer size limits. After performing some preliminary experiments
for different values of p, we have chosen p = 0.5 for this presentation –
it occurred not to influence the performance as much as expected.

Metrics. We took into consideration several measurements of queues of a
protocol (at round r):

• max-max - a maximal queue size of a single station occurring up
to round r;

• avg-max - an average, taken over r rounds, of a maximal queue size
of stations at a round;

• max-avg - a maximal over r rounds of an average queue size of all
stations at a round;

• avg-avg - an average over r rounds of an average queue size of all
stations in a round.

(a) 12 O’clock full-sensing protocol queues against injection rates ρ =
0.968, started with queues in each station equal to q = 96.

(b) Relation between markers, colors and measurements of queues

Figure 6.4: Protocols during 1 mln rounds for a system size 32 against
uniform packet distribution.
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Note that the max-max and max-avg measurements can not decrease and
are always divergent against an adversary without burstiness limit (with
probability 1).

Comparison of those measurements for 12 O’clock full-sensing can
be seen in Figure 6.4a for system size n = 32 against uniform packet dis-
tribution. The 12 O’clock full-sensing protocol started with 3n = 96
packets per station (i.e., the total system queue size equal to 3n2) stabilizes
against injection rate ρ = 0.968, which is slightly smaller than the theoret-
ical stability boundary ρ = 31

32 = 0.96875, for all four measurements and
its both avg-max and avg-avg measurements decrease after handling the
starting queues burst (Figure 6.4a).

Based on the above results, we have chosen the avg-max measurement
for further comparison of protocols. This is because when considering other
three ways of measuring: max-max is highly volatile for the randomized
protocols (and thus it would not be fair for comparison randomized and
deterministic protocols) while avg-avg and max-avg do not envision the
worst case scenario we are focused on in this work. Note that the avg-
avg measurement, studied in [HLR96] and in many other previous papers
considering stochastic injections, may yield stability while having single
queues many times above the studied average.

6.5.2 Bounds on stable injection rates

In order to see how system queues behave for different system sizes, we have
combined simulation results for system sizes n ∈ {4, 5, . . . , 32} on a single
plot (Figure 6.5a).

We have excluded the full-sensing version of 12 O’clock since its re-
sults are similar to the adaptive version in most of the considered scenarios.
In this section we discuss the combined boundaries in Figure 6.5a and the
stable injection rates depicted in Figure 6.5b defined as minimal injection
rates ρ for system size n required to make the value of avg-max measurement
to exceed the constant value δ = 1024.

Throughput of Backoff algorithms achieved in our simulations is sim-
ilar to the results of simulations conducted by Hastad et al. [HLR96]. The
only differences are constants on the observed throughput. This difference
between the two results can be explained by the following: we implemented
more adversarial behavior instead of Poisson distribution, used 1 million
instead of 10 millions iterations for experiment length, avg-max measure-
ment instead of avg-avg (to better capture worst-case behavior), and finally
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we set-up a maximal window size limit to comply with real applications
of Backoff. Specifically, the maximal window size limit improves the ef-
ficiency of exponential Backoff protocol in comparison to other versions
of Backoff protocols in our context.

Acknowledgment-based protocols have the same Round-Robin im-
plementation of selectors for system sizes n ∈ {4, 5, . . . , 15, 17, 18}, because
we were unable to generate better (n, ω)-selectors for ω ≤ n/2 required for
Interleaved-Selectors in those cases. It follows that their plots over-
lap. The best achieved stability bound is around ρ = 0.6 for system size
n = 4, and it gradually decreases with the increasing system size (in a pace
resembling hyperbola). On the other hand, we can observe an improvement
of Interleaved-Selectors over Round-Robin protocol for bigger sys-
tems: for some system sizes its stability range is even a few times bigger than
the stability range of Round-Robin. The irregular shape of Interleaved-
Selectors stable injection rates in Figure 6.5b is caused by selectors being
generated independently for each (larger) system size, which leaves a scope
for further optimization of the quality of selectors.

Backoff protocols display dependency of queue stability on system size,
and the following two interesting phenomenons can be observed. First,
the lower rank polynomial/function of Backoff protocol the wider ex-
tremes in stable injection rates it achieves for different system sizes, e.g.,
ρ ∈ [0.55, 0.7] for exponential version versus ρ ∈ [0.45, 0.8] for square and
ρ ∈ [0.4, 0.85] for linear version, c.f., the values of ρ at the top boundaries
of corresponding regions in Figure 6.5a. The second observation is that for
smaller system sizes the protocols with lower rank function achieve higher
stable injection rates while for larger systems (starting from some size spe-
cific for the considered functions) the tendency is opposite c.f., Figure 6.5b.

12 O’clock protocols have the least negative impact of an increase
of system size over queue size stability, with 12 O’clock adaptive protocol
being a champion in this terms, c.f., Figure 6.5b. Note that the stable
injection rates of 12 O’clock full-sensing protocol improve with increasing
system size.

6.5.3 Channel restrain and stability

In order not to discriminate randomized Backoff protocols, which may
obtain large channel access peaks from time to time (unlike our deterministic
protocols that ensure bounded channel access at any round), we count
how many stations were switched-on on average (over rounds) to evaluate
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(a) Queue size by injection rates ρ ∈ [0, 1].

(b) Stable injection rates by system size.

(c) Relation between markers, colors and protocols.

Figure 6.5: Average round channel access and stable injection rates by sys-
tem size.
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(a) Ratios of the average round channel accesses (solid lines) and the queue size
(dotted lines) of a protocol to the corresponding performance of 12 O’clock
adaptive protocol.

(b) Average round channel accesses against queue sizes in logarithmic scale,
with markers set every 0.1.

(c) Relation between markers, colors and protocols.

Figure 6.6: Average round channel access against queue sizes for injection
rates ρ ∈ [0, 1] and system size n = 32.
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channel restrain. In Figure 6.6a we show the ratios of channel accesses and
queue size of the considered protocols to the corresponding performances
of 12 O’clock adaptive protocol.

Observe that for Backoff protocols the total number of stations at-
tempting to transmit or listen to the channel each round is close to the sys-
tem size, when these protocols work within their stable boundaries. In con-
trary, the 12 O’clock and Acknowledgment-based protocols have a small
number of switched on stations per round and this number is bounded
by the respective constant.

In order to better illustrate bi-criteria comparison of protocols, we com-
pare them with the State-aware protocol, which has full knowledge about
all of the queues in the beginning of each round and transmits a packet from
a station from the biggest queue. Note that this algorithm is a concept in-
troduced to provide a reference to the performance of other protocols. It
uses itself a global knowledge that is not accessible to the stations in the
MAC model.

This protocol models close-to-optimal queues and channel access for
given injection rates. Figure 6.6b presents our results in logarithmic scale:
more efficient protocols in restrain-queue dimensions are closer to the State-
aware protocol, as it represents the best performance algorithms can pos-
sibly achieve. This makes 12 O’clock adaptive protocol our champion
for all injection rates and 8-light Interleaved-Selectors to be the sec-
ond for injection rates lower than ρ = 0.3. (Full-sensing version of the 12
O’clock protocol has been omitted from the graphs as it behaved similarly
to its adaptive version in our experiment).





Chapter 7

Routing-assisted
communication on MAC

In this chapter we consider an extension of the standard multiple access
channel model, where: (1) each packet has one of the stations connected
to the channel as its destination; (2) a packet can only be delivered if its
destination station was switched-on in the round of packets transmission;
(3) algorithms can deliver packets in multiple hops, using stations other
than source and destination ones, for routing. Below we present a more
formalised and detailed model.

7.1 Shared Access Channels model extension

Packet construction. A packet p = (d, c) consists of its destination ad-
dress d and its content c. A destination is an integer in [0, n−1] interpreted
as a name of the station to which the packet needs to be delivered. A
packet’s contents is the information that the packet carries, which does not
effect how the packet is handled.

Routing packets. Each injected packet needs to be delivered to its des-
tination station. We say that a packet p = (d, c) gets delivered in a round
t when the following occurs: (1) a packet p is transmitted in round t

and is heard on the channel, (2) the destination station d is switched
on in round t. If a packet gets delivered then it is “consumed” by the
destination station and disappears from the system.

A packet may hop from station to station in a store-and-forward man-
ner. In effect a packet may be transmitted and heard on the channel a num-
ber of times.

73
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If a station transmits a packet, which is then heard on the channel, then
the packet is removed from the queue of the transmitting station. If a packet
is heard on the channel but is not delivered in this round, then some station
may adopt the packet by adding it to the queue; such a new station handling
the packet becomes a relay for the packet and treats it as if it were injected
directly by the adversary.

The task of routing is defined as follows: while packets are continually
injected into the system, stations transmit them such that they are even-
tually delivered. The total number of packets that are queued in a round
is referred to as the queue size in this round. The delay of a packet p is de-
fined as the difference t2 − t1 between the round t2 in which packet p gets
delivered and the round t1 in which packet p was injected.

Clearly, the channel restraint 2 is minimum to make the tasks of point-
to-point communication feasible in principle, since at least one transmitter
and one receiver need to be switched on in a round.

Routing algorithms. Routing is performed by distributed algorithms
that are executed by all the stations concurrently. Correctness of a routing
algorithm means that each injected packet is eventually delivered to its
destination and a delivery occurs exactly once for each packet.

A station switched-on in a round either transmits a packet or senses
the channel (listens to it) in this round. Whether control bits are included
in packets is a feature of algorithms. The bits encoding packet’s destination
address are not considered as control bits. Algorithms that have a packet
without any control bits are called plain-packet ones, they make a subclass
of general routing algorithms.

The destination address of a packet is just a station’s name, so it is rep-
resented by O(log n) bits. We consider only routing algorithms that use the
conservative amount of O(log n) control bits per packet. This restriction
on the number of control bits transmitted per round makes coordinating
actions among the stations complex and in consequence we need much more
subtler algorithm design.

Routing algorithms that do not use relay stations are said to route
directly, and otherwise they are said to route indirectly. Algorithms that
route directly make each packet hop only once, from the station into which
the packet got injected, straight to the destination.

A routing algorithm is called channel oblivious when it determines in ad-
vance, prior to the start of an execution, for each station i and each round t,
whether station i is on or off in round t. When a channel-oblivious algorithm
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execution on a channel is a subject to a channel restraint of at most k we call
such algorithm k-channel-oblivious. Observe that k-channel-oblivious algo-
rithm is more restricted than a simply k-channel-restraint algorithm. In-
deed, the latter has the ability to adjust which stations switch on on what
rounds while the former cannot.

Classification. In this chapter we follow algorithm classification from our
original paper [CHJ+19]. In the terminology of the taxonomy introduced
in the chapter 5, algorithms studied in this chapter are:

• Time-aware, as the global clock is required for them to function;

• Destination-aware, as this is the main property of the shared channel
compared to the classical MAC;

• Restraint-aware, as they provide a mechanism to adjust to the re-
straint k of the channel;

• Acknowledgement-aware, as MAC model assumes that stations know
if the packet was delivered in the end of each round.

Proposed in the current chapter division into General and Plain-packet
protocols reflects Control-bits channel capability. General protocols are
Control-aware, as they can attach control bits to packets. Symmetrically,
Plain-packet algorithms are Control-oblivious. Indirect and Direct routing
defined earlier in this chapter reflects Routing-aware and Routing-oblivious
capabilities respectively.

7.2 A review of subprocedure algorithms

In this chapter we utilise several existing algorithms as building blocks.
Below we present short their descriptions as well as related important facts
for those algorithms.

Move-Big-To-Front (MBTF). MBTF is an adaptive algorithm main-
taining dynamic list of all stations in private memory of each station de-
scribed in [CKR09]. Such a list is initialized at each station to have all the
names of stations arranged in the increasing order: 0, 1, 2 . . . , n − 1. The
local lists are manipulated in the same way by all stations, based on chan-
nel feedback, hence they are identical copies of each other. The algorithm
schedules exactly one station to transmit in a round, so that collisions never
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occur. This is implemented by having a conceptual token traversal through
the stations, which is initially assigned to the first station on the list. A sta-
tion with the token broadcasts a packet, if it has any, otherwise the round
is silent. A station with token considers itself big in a round when it has
at least n packets; it attaches a control bit to every packet it transmits
to indicate its big status. A big station is moved to the front of the list and
it takes the token with it. If a station that is not big transmits in a round,
or when it pauses due to the lack of packets while holding the token (so that
the round is silent), then the conceptual token is (virtually) passed at the
end of this round to the next station on the list (ordered in a cyclic fashion).
The algorithm is stable against adversary injection rates ρ = 1.

Round-Robin-Withholding (RRW). RRW is a full-sensing algorithm
operating in Round-Robin fashion [CKR09], that is – stations gain access
to the channel in the cyclic order of their identities. There is only one
station with a right to transmit, which is said to hold a conceptual token.
Once the station receives the token, it withholds the channel to unload all
the packets in its queue. A silent round is a signal for the next station,
in the cyclic order of identities, to take over the conceptual token. The
algorithm is stable against adversary injection rates ρ < 1.

Old-First-Round-Robin-Withholding (OF-RRW). OF-RRW is an
extension of the RRW algorithm [ACKR19]. It is obtained by categorising
packets into old and new. Intuitively, packets categorized as new become
eligible for transmissions only after all the packets categorized as old have
been heard. Formally, an execution is structured as a sequence of phases,
which are contiguous segments of rounds of dynamic length, and then the
notions of old versus new packets are defined with respect to them.

A phase is defined as a full cycle made by the conceptual token visiting
the stations. No additional communication is needed to mark a transition
to a new phase as all the stations can detect this by monitoring the position
of the virtual token. A token leaves a station holding it after the station
has transmitted all its old packets while new packets may remain waiting
for the next token’s visit. In a given phase, packets are old when they had
been injected in the previous phase, and packets injected in the current
phase are considered new for the duration of the phase. If a new phase
begins, the old packets have already been heard on the channel and the
new ones immediately graduate to becoming old. This means that the
“old-go-first” principle is implemented by having packets injected in a given
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phase transmitted only in the next phase. In particular, the first phase
does not include any transmissions of packets, as all the packets, if any, are
new. Specifically, algorithm OF-RRW operates by manipulating the token
similarly as algorithm RRW does, except that when a station gets access
to the channel by transmitting successfully, then the station unloads all the
old packets, while new packets stay in the queue when the token is passed
to the next station. The algorithm is stable against adversary injection
rates ρ < 1 as proved in [ACKR19].

7.3 A summary of the results

We develop deterministic distributed algorithms routing adversarial traffic
on the multiple access channels and assess their efficiency in the worst-case
sense, where performance bounds depend on the known number of stations
n and an unknown adversary. One of the algorithms maintains bounded
queues for the maximum injection rate 1 subject only to the channel re-
straint 3. This channel restraint is provably optimal, in that obtaining the
same throughput with the channel restraint 2 is impossible. Algorithms
that have bounded latency for each fixed adversary of injection rate less
than 1 are said to be universal. We give universal algorithms subject to
the minimum channel restraint 2 that have the latency polynomial in the
number of stations n. One of these algorithms uses control bits in packets
and has latency O(n2) and another has stations transmit plain packets only
and attains latency O(n3 log2 n).

An algorithm is k-channel-oblivious if at most k stations are switched on
in a round and for each station the rounds it is switched on are determined
in advance. We give a k-channel-oblivious algorithm that has latency O(n)
for adversaries of injection rates less than k−1

n−1 and show that there is no
k-channel-oblivious stable algorithm against adversaries with injection rate
greater than k

n
. An algorithm routes directly when it does not utilize relay

stations, in that each packet makes only one hop straight to its destination
from the station it is injected into. We give a k-channel-oblivious algo-
rithm routing directly that has latency O

(
n2

k

)
for adversaries of sufficiently

small injection rates that are O
(
k2

n2

)
. We develop a k-channel-oblivious al-

gorithm routing directly that is stable for injection rate k(k−1)
n(n−1) and show

that no k-channel-oblivious algorithm routing directly can be stable against
adversaries with injection rates greater than k(k−1)

n(n−1) . All the performance
bounds of algorithms and impossibility results are tabulated in Table 7.1.
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Algorithm/Impos. Sec. Injection Latency Queues Restr. Properties

Max throughput:
Orchestra 7.4.1 ρ = 1 ∞ 2n3 + β 3 NObl-Gen-Dir

Impossibility 7.4.2 ρ = 1 Stable 2

Universality:

Count-Hop 7.5.1 ρ < 1 2(n2+β)
1−ρ 2 NObl-Gen-Dir

Adjust-Window 7.5.2 ρ < 1 18n3 log2 n+2β
1−ρ 2 NObl-PP-Ind

Min Latency:
Two-Hops 7.6.1 ρ < 1

2
6n+β
1−2ρ 2 NObl-Gen-Ind

One-Hop 7.6.2 ρ < 1
3

6n+β
1−3ρ 2 NObl-Gen-Dir

Oblivious indirect:
k-Cycle 7.7.1 ρ < k−1

n−1 (32 + β) · n k Obl-PP-Ind

Impossibility 7.7.2 ρ > k
n Stable k Obl

Oblivious direct:

k-Clique 7.8.1 ρ ≤ k2
2n(2n−k) 8n2

k (1 + β
2k ) k Obl-PP-Dir

k-Subsets 7.8.2 ρ = k(k−1)
n(n−1) ∞ 2

(
n
k

)
(n2 + β) k Obl-Gen-Dir

Impossibility 7.8.3 ρ >
k(k−1)
n(n−1) Stable k Obl-Dir

Table 7.1: A summary of the performance bounds of algorithms and impos-
sibility results, broken into four main sub-groups. The adversary is of type
(ρ, β), where ρ is the injection rate and β is the burstiness coefficient. The
abbreviations used to specify properties or algorithms or routing are as fol-
lows: Obl = oblivious, NObl = non-oblivious, Gen = general, PP = plain-
packet, Dir = direct, Ind = indirect. The impossibilities are of existence
of stable routing algorithms subject to the given injection rate, channel
restraint, and properties of algorithms and routing. A bound on latency
is also a bound on the number of queued packets. Latency ∞ means that
it is possible for some packets never to be delivered. The parameters n and
k are known, i.e. they can be part of code of algorithms.

In the second column we also point where a given result is described in our
document.

7.4 Maximizing throughput

We present a direct-routing algorithm stable for injection rate 1. Clearly,
this is the maximum throughput possible on multiple access channels. The
algorithm requires channel restraint to be at least 3. We show that the num-
ber 3 is best achievable in this sense by proving the impossibility of attaining
throughput 1 with channel restraint 2.
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7.4.1 General direct-routing algorithm Orchestra

An algorithm stable for injection rate 1 which we give is called Orchestra.
It schedules at most three stations to be simultaneously switched on at any
round, with at most one of them transmitting. The algorithm builds on the
paradigms developed in [CKR09], which gave a broadcast algorithm with
throughput 1 for multiple-access channels without channel restraints.

We call a group of n − 1 consecutive rounds of an execution a season
if the last round t of the group satisfies t ≡ 0 (mod n−1). For each season,
there is a unique station associated with it called a conductor. Stations
that are different from a conductor are called musicians. A conductor for
a season transmits a packet in every round of this season, so there are no
silent rounds. A round when a packet heard on the channel includes only
control bits is called light.

Every station keeps an ordered list of all the stations. These lists are
the same in every station at the beginning of a season; at such a moment
they represent one list, which we call the baton list. Initially, the baton list
consists of all the stations ordered by their names. Stations assume the role
of conductors in their order on the baton list. The first station on the list
is assigned to serve as a conductor for the first season.

The positions of stations on the baton list are understood as follows:
the front entry of the list is considered as the first station on the list, then
the consecutive stations have their positions increased by one, and the tail
entry occupies the last nth position. In particular, if a station at position
i moves to become the head of the baton list, then this station acquires
position 1 while each station at the original position j < i, which means
closer to the front than i, gets its position incremented to j + 1, so that its
distance from the head of the list increases.

The process of assigning conductors to seasons can be visualized as pass-
ing a virtual baton from station to station, such that a station holding the
baton is a conductor. When a season ends then the baton is typically passed
on to the next station on the baton list. The order determined by the list
is understood in a cyclic sense, in that the first station becomes a conductor
after the last one in the list has concluded its assignment. An exception for
this process occurs when a conductor is moved to become the head of the
baton list while keeping the baton.

A conductor of a season is switched on in each round of the season.
A musician switches on during a season either to learn or to receive, or
possibly both.
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A packet transmitted by a conductor is destined to the musician who
receives and contains control bits for the musician who is to learn. We say
that the conductor sends

the packet to the musician who is to receive and teaches the musician
who is to learn.

We explain the actions of teaching/learning and sending/receiving next.
The purpose of learning is to obtain information from the conductor,

in particular one pertaining to a schedule to receive packets in the next
season with the same conductor. A station learns by extracting control bits
from a packet transmitted by the conductor and interpreting them as round
numbers to be switched on during the next season when the same stations
acts as conductor.

The purpose of receiving is to obtain packets injected into a conductor
and destined for a receiving musician.

For a packet transmitted by a conductor to effectively serve its purpose,
the following three involved stations need to be switched on simultaneously:
the conductor, the learning musician, and the receiving musician. Musicians
switch on during a season in the following manner. First, the musicians
switch on to learn: they do it one by one, in the order of their names, for
one round at a time. Second, the musicians switch on to receive: they do
it according to the schedule taught during the latest previous season when
the same station was a conductor.

A packet injected into a station, when it acts as a conductor, stays new
for the duration of this season, and after that becomes old. A packet injected
into a musician becomes old immediately. In particular, when a new season
begins, then all the packets queued in the stations are old. At the start
of a season, when some station becomes a conductor, this station computes
a schedule to send the old packets during the next season when it will be-
come a conductor again. The schedule concerns only these old packets that
have not been scheduled yet for the current season. A conductor schedules
packets to send in the order of their injections.

A station considers itself big if it has at least n2 − 1 old packets in its
queue. A conductor that is big at the beginning of a season teaches each
musician of this status, by suitably setting a toggle bit in packets. After
a musician learns this information, it moves the conductor to the front
of its private copy of the baton list. Such a season concludes with all the
musicians having identical private lists representing the baton list, with the
conductor at the front. A big conductor keeps the baton for the next season,
after moving to the front of the baton list, and stays at the front as long
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Figure 7.1: Example execution of Orchestra algorithm: top row repre-
sents rounds from 1 to 12; leftmost column stands for station roles: con-
duct, learn and receive; A,B,C stand for station names. In rounds 1 to 6
we observe seasons following the order of station names: stations A, B and
C conduct in seasons in rounds {1, 2}, {3, 4}, {5, 6} respectively. We assume
that in round 1 station A has informed station B of having two packets des-
tined to station B. We also assume that similarly, in round 4, station B has
informed station C that it has two packets destined to C. In what follows,
station A breaks the conducting order of names in round 9 by considering
itself big; this information, together with the information of B receiving
two packets from A in the next season has been passed to stations B and C
in rounds 7 and 8 respectively. Station A has not claimed big status further,
thus station B follows the order of conducting list in rounds 11 to 12.

as it is big.
This mechanism allows a single station to act as the conductor for long

stretches of seasons, possibly indefinitely, in the case when the adversary
injects packets into only one station.

An example of Orchestra algorithm execution can be seen in Fig-
ure 7.1.

We group seasons into contiguous intervals of seasons, depending on the
heaviness on traffic during these seasons. If the total number of packets
in the queues at the beginning of a season is greater than n3 − 2n+ 1 then
the season belongs to a dense interval of seasons, which means the traffic will
be heavy. Otherwise, a season belongs to a sparse interval of seasons, which
means that traffic might be light. We expect that there exist big stations
when traffic is heavy. A station is pre-big in a round of an interval of seasons
if it has not been big during this interval before the round. A station is post-
big in a round of an interval of seasons if it is not big now but it has been
big by this round during the interval.

Theorem 7. There are at most 2n3 + β packets queued in a round of exe-
cution Orchestra algorithm against an adversary of injection rate 1 and
with a burstiness coefficient β.
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Proof Let D = n3 − 2n+ 1 = n(n2 − 2) + 1 be the number of old queued
packets used to differentiate between dense and sparse intervals of seasons.
A big station has at least n2−1 old packets in its queue. By the pigeonhole
principle, there exists at least one big station during a season in a dense
interval of seasons.

We estimate the number of queued packets during a season by relating
the season to either a dense or a sparse interval. The adversary’s capability
to inject packets due to the burstiness coefficient is accounted for only once
at the end of a derivation of an upper bound on the number of queued
packets.

First, we consider sparse intervals. The system starts a season with
empty queues, so the first season belongs to a sparse interval. If the system
starts a season in a sparse interval then it has at most D packets. The
adversary can inject at most (n− 1) packets during a season. So there can
be at most these many old packets in stations within a sparse interval:

D + (n− 1) = n3 − 2n+ 1 + n− 1 = n3 − n , (7.1)

not including burstiness. This is also an upper bound on the number
of queued packets when a sparse interval ends and a dense interval begins.

Next, we consider dense intervals. In such an interval, the adversary can
be assumed to inject at full power, namely, a packet per round. If a packet
is heard on the channel, then this does not affect the number of queued
packets, since only one packet gets injected. Otherwise, if a light packet
is heard, this results in the number of queued packets incremented by 1.
This makes an upper bound on the number of light packets heard on the
channel serve as an upper bound on the increase on the number of queued
packets.

We claim that neither big nor post-big stations can contribute light
rounds when acting as conductors during dense intervals. It follows that
only pre-big stations contribute light rounds. We prove this claim next.

A big station has at least n2 − 1 packets in its queue at the beginning
of a season when it obtains the baton. It must have had at least n −
1 old packets to schedule at the beginning of the previous season it was
conducting, since the adversary could inject at most these many packets
in the meantime during n seasons, without accounting for burstiness:

n(n− 1) = n2 − 1− (n− 1) . (7.2)

A conductor that had at least n−1 old packets at the beginning of the pre-
vious season it conducted, has already scheduled a full season, so it sends
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a packet in each among the n − 1 rounds of the current season. We con-
clude that a big station contributes no light rounds as long as it gains and
maintains the status of a big conductor.

Consider a station i that is post-big but not big. Station i has an op-
portunity to transmit only when there is no big station before it on the list,
as such a station would be visited by the baton first and moved the baton
back to front. When station i receives the baton and i is not big, then
there is a big station after i, because such a station exists in every season
of a dense interval. The first big station encountered by the baton is moved
to the front of the baton list, thereby incrementing the i’s position to i+ 1.
The position of a station cannot increase more than n−1 times in this way.
The last time when i was big, it had at least n2 − 1 packets in its queues
and was placed at the front of the baton list. Station i had at least these
many packets when ending a season in which it was a big conductor:

n2 − 1− (n− 1) = n(n− 1) . (7.3)

So the station can afford to increase its position up to n times while con-
sistently sending n − 1 packets per season when serving as a conductor.
We conclude that a post-big station contributes no light rounds during sea-
sons in a dense interval.

We are finally ready to count light rounds in a dense interval, all of which
could be contributed by pre-big conductors only. There are at most n − 1
pre-big stations in the system at the beginning of a dense interval, because
at least one station is big. Light rounds occur in a season when the con-
ductor has fewer than n − 1 old packets scheduled to send; let us assume
conservatively that such a conductor does not have any scheduled packets
to send, to maximize the number of light rounds the season contributes.
A pre-big station i becomes a conductor only when the first big station
on the baton list is behind station i. After the baton leaves and eventually
reaches a big station, this big station advances to the front and the i’s po-
sition shifts by 1. Such shifts can occur at most n− 1 times. It follows that
a pre-big station can contribute at most (n− 1)2 light rounds when acting
as conductor in a dense interval. Therefore all the pre-big stations together
contribute at most (n− 1)3 light rounds as conductors.

The bound (7.1) estimates the number of queued packets when a dense
interval begins. This number can grow by at most the number of light
rounds while the adversary injects at full power, plus burstiness. These
three parts together contribute the following:

n3−1+(n−1)3+β = (n−1)(2n2−2n+1)+β = 2n3−4n2+3n−1+β ≤ 2n3+β .
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(7.4)

This quantity serves as the ultimate upper bound on the number of queued
packets. �

7.4.2 Lower bound for maximum throughput

Algorithm Orchestra requires at least 3 stations to be switched on in each
round. We show that this is necessary for any algorithm to have through-
put 1.

Lemma 11. Given an algorithm for a system of n ≥ 3 stations, let us as-
sume that we have defined an execution of the algorithm until some round
ti−1 such that the following holds: at least one station s has no packets
in its queues, no other station has packets to be delivered to s, and there are
at least i−1 packets in the system. Then either the execution can be extended
without bounds and the number of packets in the system grows unbounded
or here exists a round ti > ti−1 such that the execution can be extended until
ti in a way that the round ti satisfies the following conditions:

(a) no packet is successfully transmitted at round ti, and

(b) by the end of round ti at least one station s′ has no packet in its queues
and no other station has packets destined for station s′, and

(c) after round ti−1 and by the end of round ti, one packet per round
has been injected into the system on average and the burstiness was
at most 1.

Proof Let t0 be the first round, and i be an integer such that i > 0. Let
s1 and s2 be two stations different from s. We consider the following two
possibilities to extend an execution, as determined by the adversary after
round ti−1.

Case I: No packet is injected into station s, station s1 gets one packet in-
jected into it addressed to s in each odd round and one packet ad-
dressed to s2 in each even round:

Case II: No packet is injected into station s, station s1 gets one packet
injected into it addressed to station s2 in each round.

For station s, these two cases to extend the execution are indistinguish-
able up to a round t when station s becomes switched on for the first time
after round ti−1. Now there are two possible continuations:
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Continuation 1: such a round t does not exist; in the execution determined
by Case I the number of packets addressed to station s grows un-
bounded.

Continuation 2: such a t exists; then the execution determined by Case II
extended to round ti = t satisfies the following:

(a) no packet is heard at round t, as there are no packets involving
station s in the system;

(b) station s has no packets in its queues, since it had no packets
in round ti−1 and no packet in the system was addressed to it, and
between the rounds ti−1 and ti (inclusive) this has not changed;

(c) the adversary injects exactly one packet per round.

By the properties (a) through (c) above, and by the assumption that there
are at least i−1 packets in the system by round ti−1, the number of packets
at the end of round ti is at least i. �

Lemma 11 gives a sequence of rounds (ti)i≥0 such that there are at least
i packets queued in the system at round ti.

Theorem 8. No algorithm can be stable for channel restraint 2 and a system
size greater than or equal to 3 against adversaries with injection rate 1.

Proof Suppose that such an algorithm exists, to arrive at a contradiction.
The argument is by induction on the round numbers. Consider the first
round of an execution of the algorithm, to provide a base for induction.
By the assumption about the channel restraint, at least one station s needs
to be switched off. The assumptions of Lemma 11 are satisfied for t0 = 1,
so that i = 1.

Next we show the inductive step. We assume that the assumptions
of Lemma 11 are satisfied for some i ≥ 1, so that there is an execution
determined up to some round ti−1 such that the following holds: at least
one station s has no packets, no station has packets addressed for s, and
there are at least i− 1 packets in the system.

By Lemma 11, this prefix of an execution up to round ti−1 either could
be extended to a full execution such that the number of queued packets
grows unbounded, or there is a round ti and an extension that satisfy the
assumption of Lemma 11 for i+ 1. To conclude, either there is i such that
from round ti there is an unstable extension of the execution, or we could
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continue extending the execution through rounds tj, for all integers j. In the
latter case, the number of packets in the system grows unbounded with j,
and the resulting execution is unstable. �

7.5 Universal routing

We give two routing algorithms with universally bounded latency. One
routes directly while using control bits in packets to coordinate stations
and the other routes indirectly with plain packets only.

7.5.1 Direct-routing algorithm Count-Hop

The direct-routing algorithm using control bits in packets is called Count-
Hop; it operates as follows. One station is dedicated to serve as a coordi-
nator and the other stations are workers. An execution is structured into
phases. Packets transmitted in a phase need to be old, in that they were in-
jected in the previous phase. Packets injected in the current phase are new
for the duration of the phase. At a round when a phase ends, all the packets
available in the system become old for the next phase. These are the only
old packets for the next phase, which means that each station knows which
among its packets are old, for the duration of this phase, when a new phase
begins. The first phase consists of n rounds during which all the stations are
switched off. Each of the following phases proceeds through stages, which
are consecutive rounds spent by the stations working to accomplish some
task.

A phase is partitioned into n stages, one for each receiving station. Such
a stage for each receiving station consists of three substages. During the
first substage, each station, except for the receiving station v and the coor-
dinator, transmits once, sending a packet with the number of old packets
destined for v. This information allows the coordinator to assign to each
station a number of consecutive rounds to transmit all its packets to v. The
second substage consists of the coordinator transmitting the offset number
for each station to be switched off waiting for its turn to transmit. Fi-
nally, the third substage has all the stations switch on one by one when the
turn comes to transmit the old packets destined to v, while the station v

is switched on during the whole substage and the coordinator is switched off.
An example of Count-Hop algorithm execution can be seen in Figure 7.2.
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Figure 7.2: Example execution of Count-Hop algorithm: top row rep-
resents rounds from 1 to 12; leftmost column stands for station names
A,B,C,D,E; X stands for transmission and O for reception of packets;
bottom row represents sub-phases. In this example station E is the receiv-
ing station and D is the coordinator. In the first sub-phase (rounds 1, 2, 3),
stations A,B,C inform the coordinator station D about the number of old
packets they have in their respective queues destined to the receiving sta-
tion E. In the second sub-phase (rounds 4, 5, 6), the coordinator station
announces to stations A,B,C their respective reserved ranges of rounds
for transmission in the third sub-phase. Finally, in the third sub-phase
(rounds 7 to 12), stations A,B,C,D transmit all of the packets destined
to station E.

Theorem 9. A direct-routing algorithm Count-Hop requires the channel
restraint 2, is stable for each injection rate ρ < 1, and its latency for such
an injection rate is at most the following:

2(n2 + β)
1− ρ . (7.5)

Proof Each packet is delivered from the station of injection to the station
of destination in one direct hop, by the algorithm’s design. There are (n−1)2

rounds spent on transmitting auxiliary numbers, only. While such packets
are transmitted, the adversary can inject new packets. These packets will
extend the duration of the next phase by up to ρ(n − 1)2 rounds. This
phenomenon can be iterated in a cascade-like manner, since when packets
are transmitted, the adversary can use this time to inject even more packets.
Taking into account all the possible extensions of phases, the duration of any
phase is at most the following:

(n2 + β)(1 + ρ+ ρ2 + . . .) = n2 + β

1− ρ . (7.6)

A packet stays in a station during at most two consecutive phases. �
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7.5.2 Indirect-routing algorithm Adjust-Window

We describe an indirect-routing plain-packet algorithm that requires only
a constant channel restraint, but has universally bounded latency and at-
tains packet delay O(n3 log n). The algorithm is called Adjust-Window.

An execution of Adjust-Window is structured into segments called
time windows. The size of a time window may increase in the course of an ex-
ecution. The current size of a window is denoted by L. All the stations use
the same value of L at each round.

Packets injected before the current time window are called old and
packets injected during the current time window are called new for the
duration of the window. The goal to achieve during a window is to deliver all
the outstanding old packets to their destinations. Whether or not this goal
is accomplished in a particular time window may depend on the magnitude
of L. Old packets that do not get delivered in a window remain old for the
duration of the next window. If some old packets are not delivered in the
current time window, then the window size L gets doubled to become 2L,
which determines the duration of the next window. Otherwise, if all the old
packets are successfully delivered in a window, then the window size L stays
the same, and so the duration of the next window stays the same as well.

Algorithm Adjust-Window works with channel restraint 2. An exe-
cution is organized such that in each round at most one station transmits.
If a station i transmits a packet in a round and another station j is switched
on, then we say that station i sends the transmitted packet to j. If a station i
sends a packet to station j and the packet is heard on the channel, then
station i removes the packet from its queue and station j either consumes
it, if it is addressed to j, or else adopts it and becomes its relay station.
This means that packets may hop from station to station, and routing may
be indirect.

A time window is partitioned into three stages: Gossip, Main, and
Auxiliary. The goal of a Gossip stage is to exchange information between
stations regarding the numbers of old packets in their queues with par-
ticular destinations. In the Main stage, the stations transmit old packets
directly to their destinations according to a schedule based on the informa-
tion exchanged and learned during the preceding Gossip stage. A station
knows the part of such a schedule relevant to its actions: it knows when
to transmit packets to which destinations, and in which rounds to listen
to packets addressed to it. It may happen that a station i needs to convey
some information to a station j while station i does not have packets with
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the destination j, then i sends some packet(s) to j whose destination is dif-
ferent from j. An Auxiliary stage deals with delivering such relayed packets
to their destinations, as well as handling old packets at stations that could
not participate in neither Gossip nor Main stages due to lacking sufficiently
many packets.

All packets transmitted on the channel may only be plain packets.
This means that numbers encoded as strings of bits cannot be piggybacked
on packets. Instead, we design a protocol called coded transfer (of bits)
to encode sequences of bits by way of sequences of transmissions of sin-
gle packets, with rounds of transmissions possibly interspersed with silent
rounds. One round of coded transfer can convey one bit. Coded transfer
needs to overcome the following technical obstacle: a station that is sup-
posed to transmit a packet to convey a bit needs to have at least one packet
available in its queue, which after a successful transmission is removed from
the queue. This implies that stations with empty queues cannot trans-
mit packets and so their lack of transmission activity needs to be properly
interpreted by the other stations.

Coded transfer of bits works as follows. Lets assume that a station
i is to transfer r bits B1, B2, . . . , Br to another station j, for 0 ≤ i, j < n,
and the size of the queue of station i is at least r. Then, in r consecutive
rounds, station i sends a packet to j in the kth consecutive round if and
only if Bk = 1, for 1 ≤ k ≤ r, while station j listens to the channel.
This approach makes the transmitting station i use one packet for each
transmitted bit 1 and no packet for a 0. Station i may transmit packets not
addressed to j, if packets addressed to j are not available at i; if this occurs
then station j adopts them and becomes their relay.

The stages of a window take a specific duration, depending on n and L.
Let LG, LM , LA denote the number of rounds of a Gossip stage, a Main stage
and an Auxiliary stage, respectively. These three numbers sum up to L:
LM + LG + LA = L. The magnitudes of LG and LA are determined next,
and the remaining part of L rounds of a window is taken by a Main stage.

We specify that stations without sufficiently many old packets do not
participate either in Gossip stages or in Main ones. We categorize such
stations as small. In what follows, the notation lg x stands for dlog2(x+1)e.
Formally, a station is small in the considered window of size L if the size of its
queue at the beginning of that time window is less than 4n lgL; otherwise,
the station is large in the window. A large station has sufficiently many
packets to transmit should they be needed to convey bits by coded transfer.
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AGossip stage. The goal of a Gossip stage is to share information among
the stations about the contents of their queues at the beginning of the cur-
rent time window. Such transmission of information is performed indirectly
by coded transfer.

A Gossip stage consists of n2 phases, indexed by all pairs (i, j) for
1 ≤ i, j ≤ n. Each phase takes 2+3 lgL consecutive rounds. Thus, a Gossip
stage takes these many rounds:

LG = n2(2 + 3 lgL) . (7.7)

An (i, j)-phase for i 6= j is structured as follows. The station j listens to the
channel in each round of a phase, as the only station that does so. If the
station i is small, it stays silent for the whole phase; otherwise, if i is large,
it conveys some information to j as follows. The station i sends a packet
to j in the first round of the phase to notify j that i is large. Then, in the
second round of the phase, i sends a packet to j if and only if its queue size
is greater than L. Finally, during the following 3 lgL rounds of the phase,
i conveys the following three numbers to j by coded transfer:

1. the minimum of its queue size and L,

2. the number of packets in its queue with destination j, or L if the
number of packets to j is at least L,

3. the number of packets in its queue with destinations k such that k < j,
or L if the number of such packets is at least L.

An example of a single phase of Adjust-Window in the Gossip stage,
can be seen in Figure 7.3.

At the end of a Gossip stage, each station j knows one of the following
about each station i, where 0 ≤ i < n and the size of the queue of station
i is measured at the beginning of a Gossip stage:

(a) the queue size of i is less than 4n lgL, or otherwise

(b) the queue of i has more than L packets to some destination, or oth-
erwise

(c) the exact size of the queue of i, the number of packets in i with
destinations k such that k < j, and the number of packets in the
station i with the destination j, when none of the cases (a) nor (b)
holds.
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Figure 7.3: An illustration of a phase of Adjust-Window algorithm in the
Gossip stage: top row represents rounds from 1 to 12; leftmost column
stands for station pair indexes i, j, where 1 ≤ i, j ≤ n and i 6= j; X stands
for transmission; bottom row represents binary numbers received by sta-
tion j as the metadata of the transmission pattern. In this example, we as-
sume that system size n = 4, window length is L = 4, i-th station queue
is 64, station i has three packets destined to station j, there is one packet
in total in the queue of station i destined to any of stations k, such that
k < j. In the first round of the phase, station i informs that it is large.
In the second round, it signals that the size of its queue is greater than L.
In the following nine rounds station i encodes three numbers: L = 4, as its
queue of 64 packets is greater than L and 4 is the minimum of the two; the
number of packets destined to j (three packets); number of packets destined
to stations k, such that k < j (one packet).

This information determines the size of the next time window. Namely,
if there is some station i such that the queue size of i is greater than L then
the window size is doubled to become 2L. Similarly, if none among the
queue sizes is greater than L but the sum of the queue sizes of all the stations
is greater than the length of the Main stage, the window size is also doubled
to become 2L. If none of the two conditions holds, the time-window size
L stays the same for the duration of the next time window.

A Main stage. If it is known that some stations have their queue sizes
greater than L, then the Main stage is dedicated to the station with the
smallest name among them, which spends all the rounds transmitting its
packets. Suppose otherwise that no station has the size of the queue greater
than L. Let m be the total number of packets queued in the stations, which
is known by each station. The stations that are small in this window,
meaning with fewer than 2 + 3n lgL packets in queues at the beginning
of the window, do not transmit in this stage, as if they had no packets.
Based on the information collected in the Gossip stage, every station can
compute on its own a comprehensive schedule for delivering the minimum
of LM and m packets from their queues that have been already stored
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in these queues at the beginning of the current time window. The schedule
determines the sender of a packet and the destination of a packet for each
round. Transmitting according to such a schedule completes the stage,
where only a transmitter and receiver are switched on in each round.

A Main stage, as given above, has stations operate based on the sizes
of their queues at the beginning of the current time window. The actual
numbers of old packets that the stations have in their queues, when a Main
stage was planned, might have changed during the Gossip stage. This is be-
cause, as stations transmit old packets during a Gossip stage, these packets
are not necessarily received by their destination stations, and so still need
to be forwarded by the stations that received them and now should act
as relays. This issue is taken care of by Auxiliary stages.

An Auxiliary stage. The goal of this stage is to deliver all the old packets
that are in the queues of small stations along with the packets received
by the stations in a Gossip stage during the coded transfer that still need
to be forwarded. This task is accomplished by the following Round-Robin
style algorithm.

A stage is structured into phases of n2 rounds each, indexed by the pairs
(i, j) for 0 ≤ i, j < n. In a round (i, j) of a phase, j listens and i sends
a packet to j, provided that i has such a packet in its queue. An illustration
of a single phase can be found in Figure 7.4.

Figure 7.4: Illustration of a phase of Adjust-Window algorithm in the
Auxiliary stage: top row represents rounds from 1 to 12; leftmost column
stands for station names A,B,C,D; X stands for transmission O for re-
ception. In this example, station A transmits packets to stations B and
C in rounds 1 and 2 respectively; station B transmits packets to stations
A and D in rounds 4 and 6 respectively. Rounds 3, 5 and 7 to 12 are silent,
as station A has no packets destined to station D, station B has no packets
destined to station C, stations C and D have no packets in their queues.

Since each small station has at most 4n lgL packets at the beginning
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of a window, and a station can receive at most these many packets

(2 + 3 lgL) · (n− 1) ≤ 4n lgL (7.8)

during a Gossip stage, provided that 2 ≤ lgL, it is sufficient to execute
8n lgL phases to guarantee that all the considered packets are delivered
to their destinations. We may specify that an Auxiliary stage takes at most

LA = n2 · 8n lgL (7.9)

rounds.
To summarize, a Gossip stage consists of n2(2 + 3 lgL) ≤ 4n2 logL

rounds and an Auxiliary stage takes 8n3 logL rounds. A Main stage takes
the remaining rounds, their number being at least

L− 4n2 lgL− 8n3 lgL ≥ L− 9n3 lgL , (7.10)

for sufficiently large n. We set the initial value of L to the smallest natural
number such that the following inequality holds:

L− 9n3 lgL ≥ 1
2L . (7.11)

Thus the first Main stage takes at least half of the length of the first win-
dow, and so there is enough room for the first Gossip and Auxiliary stages
to be completed.

Theorem 10. A plain-packet algorithm Adjust-Window needs the chan-
nel restraint 2 and has the following its latency for each adversary of injec-
tion rate ρ < 1 and burstiness β is bounded by:

18n3 log2 n+ 2β
1− ρ , (7.12)

where n is sufficiently large with respect to ρ and β.

Proof It suffices to have such a window length L that the duration of a Main
stage is greater than the largest number of packets that might be injected
in a window, which is ρL+ β. Let us assume temporarily that ρ and β are
known to the stations and therefore the initial value of L can be properly
determined, based on these ρ and β. This assumption may be dropped,
as we show later.
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A Main stage has at least L−9n3 lgL rounds, so it suffices for a window
size L to satisfy the following inequality:

L− 9n3 lgL ≥ ρL+ β . (7.13)

The above inequality holds for L = 9n3 lg2 n+β
1−ρ , for n that is sufficiently large

with respect to ρ and β, as can be verified directly. The latency is at most
2L because a packet may spend two consecutive windows in a queue, first
as a new packet and then as an old one. This completes the analysis in the
case when L is properly set at the beginning of an execution.

Next we incorporate into the analysis the mechanism by which the
length of the next window may get increased after a current window is over.
If the window size is not increased at the end a time window W , then all
packets injected before W are delivered during W and therefore only pack-
ets injected during W are present in queues at the end of W . Then our
estimates of window size from the beginning of the proof apply.

Suppose the size of a time window W is greater than the window size
of the immediately preceding window. In general, let W1,W2,W3, . . . ,Wk

be a sequence of consecutive windows, where Wi−1 occurs directly after
Wi, for each i, and window W occurs directly after W1. Let moreover
this sequence be such that the size of the window Wi−1 is greater than the
window size of the window Wi, for each 1 < i ≤ k. This means that the
window size was increased at the end of Wi, and also either Wk is the first
window of the considered execution or the size of the window preceding
Wk is equal to the size of the window Wk. Thus, all packets injected before
Wk are delivered during Wk. Therefore, as the window size of Wi is twice
as large as the window size of Wi+1 for 1 ≤ i < k, the number of packets
in all queues at the beginning of the window W is at most the following:

ρL ·
(1

2 + 1
22 + · · ·+ 1

2k
)

+ β ≤ ρL+ β . (7.14)

In each execution, the window size L eventually becomes sufficiently large
to provide that all packets injected before a window are transmitted within
this window, and this final window size is at most

L = 9n3 lg2 n+ β

1− ρ , (7.15)

by an argument applied as in the first part of this proof. The latency is again
at most twice the length of such a longest window. �
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7.6 Minimizing latency

In this chapter we develop two general algorithms attaining the minimum
latency O(n) for constant channel restraint. Of those algorithms, one routes
directly and another indirectly.

7.6.1 General indirect routing algorithm Two-Hops

We give an algorithm for channel restraint 2 that has O(n) latency for
a constant range of injection rates. The algorithm does not have universally-
bounded latency. The algorithm is called Two-Hops.

An execution has a structure similar to that for algorithm Count-Hop.
One station is dedicated to serve as a coordinator and the other stations
are workers. An execution is structured into phases. Packets transmitted
in a phase need to be old, in that they were injected in the previous phase.
Packets injected in the current phase are new for the duration of the phase.
At a round when a phase ends, all the packets available in the system
become old for the next phase.

The first phase consists of n rounds during which all the stations are
switched off. Each of the following phases proceeds through stages, which
are consecutive rounds spent by the stations working to accomplish some
task. In the first stage of a phase, the workers begin by transmitting once
each in the order of their names. Each transmitted packet carries the num-
ber of old packets that the worker station holds. The coordinator collects all
these numbers, which allows to assign to each station a range of consecutive
rounds of length equal to the number of its packets for exclusive transmis-
sions. The second stage proceeds by the coordinator transmitting the con-
secutive numbers of rounds when stations need to switch on and transmit
all their packets, while the workers switch on to hear this packet one by one
in the order of their names. The third stage proceeds by each station switch-
ing on during the allocated range of consecutive rounds and transmitting
all its packets one by one while the coordinator collects them. After hearing
all the old packets, the coordinator knows how many of them are destined
for each particular station, so it can compute a schedule of ranges of consec-
utive rounds when each recipient station would need to switch on to hear
all the packets. The forth stage proceeds by the coordinator transmitting
the consecutive numbers of rounds when stations need to switch on to hear
all the packets destined for them, while the workers switch on to hear this
packet one by one in the order of their names. Each transmitted packet also
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includes the offset number of rounds to wait for the beginning of the next
phase. The fifth stage proceeds by the coordinator transmitting the packets
it handles one by one in the order of destination-station names, while the
receiving stations switch on at proper ranges of consecutive rounds to listen
to the channel. The last packet in a batch for a receiving station includes
a bit to indicate that the batch is over so that the station should switch off.

Theorem 11. Algorithm Two-Hops requires the channel restraint of 2,
it is stable for each injection rate ρ < 1

2 , and its latency for such injection
rates is at most the following:

6n+ β

1− 2ρ . (7.16)

Proof Each packet may make two hops, which effectively doubles the injec-
tion rate. It follows that the bound 2ρ < 1 is necessary to have stability. The
number of rounds per phase when packets are not transmitted is 3(n− 1),
which occurs during the first, second, and fourth stage. In a phase, the ad-
versary may inject packets during such 3(n− 1) rounds and during rounds
when packets are heard. This may lead to continually increasing phases
when each extra time t on hearing packets in a phase allows the adver-
sary to inject ρt more packets for the next phase, which will take time
2ρt to be transmitted. Additionally, the adversary may increase the num-
ber of injected packets by the burstiness coefficient. The number of packets
queued during consecutive phases may increase geometrically, if such a pat-
tern is iterated. We obtain the following bound on the number of rounds
in a phase:

(3(n− 1) + β)(1 + 2ρ+ (2ρ)2 + . . .) ≤ 3(n− 1) + β

1− 2ρ . (7.17)

A packet spends at most two consecutive phases waiting to be delivered.
The burstiness coefficient β can be used at most once if the adversary injects
at full power. It follows that the following is an upper bound on the delay
of a packet:

6n+ β

1− 2ρ , (7.18)

for ρ < 1
2 . �
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7.6.2 General direct routing algorithm One-Hop

A general algorithm for channel restraint 2 that has O(n) latency for a con-
stant range of injection rates is called One-Hop. One station has a role
of coordinator and other stations are workers. We assume existence of a static
list of names of stations and give to the first station from the list the role
of coordinator.

An execution is structured into phases. Each phase has associated with
it set of packets injected in the previous phase. We call those packets old
packets. Each phase consists of three stages: (1) evaluation of the number
of old packets, (2) creation of schedule connecting transmitting stations
to receiving ones and (3) execution of the schedule.

In the first stage, the coordinator in n − 1 rounds collects number
of old packets from each worker station in a Round-Robin way. From this
data it calculates the total number of old packets m. Next, in a sequence
of another n − 1 rounds, the coordinator provides each worker W with
the number of old packets m, together with the sum of number of packets
in queues of all workers before station W on the list. The latter is used
as the switch-off timeout for station W .

In the second stage the coordinator learns in m rounds the destina-
tion of each packet: workers switch-on one in a time, one round per packet,
to provide this information. After that, the coordinator calculates the num-
ber of receiving rounds required of each worker W and sum of receiving
rounds for all workers before W on the list. The latter is used as a switch-
off timeout for station W . In a sequence of n − 1 rounds the coordinator
delivers this information accordingly to each worker. In the following after
that m rounds it informs workers about rounds they are required to be re-
ceiving in the next stage. It is assumed that transmitting stations would
follow the order of the list and withhold the channel until all of their re-
spective old packets are transmitted.

Finally in the third stage ofm rounds, packets are successfully delivered.

Theorem 12. Algorithm One-Hop requires the channel restraint of 2,
it is stable for each injection rate ρ < 1

3 , and its latency for such injection
rates is at most the following:

6n+ β

1− 3ρ . (7.19)

Proof Consider a phase P . Lets assume that P has d old packets in the
queues of the stations in the beginning of the first round of P . It follows
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that the length of P is 3(n − 1) + 3d rounds. The length of the phase P
is triple the number of old packets in the phase, hence the bound 3ρ < 1
is necessary to ensure stability. During the phase P an adversary can inject
up to 3ρ(n+ d− 1) + β new packets, effectively extending the length of the
next phase P ′. Taking into account recurrent extension, we obtain the
following bound on the length of the phase:

(3 (n− 1) + β) (1 + ρ+ ρ2 + . . .) ≤ 3(n− 1) + β

1− ρ .

The packet latency is at most the double of that value, as packets injected
in the beginning of phase P will be transmitted by the end of the next phase
P ′. Hence the upper bound on the delay of a packet:

6n+ β

1− 3ρ , (7.20)

for ρ < 1
3 . �

7.7 Channel-oblivious indirect routing

Let an integer k < n denote a channel restraint. We present now a plain-
packet k-channel-oblivious algorithm called k-Cycle.

7.7.1 Plain-packet algorithm k-Cycle

The algorithm operates as follows. Up to k stations are switched on in each
round. The stations are assigned into ` (non-disjoint) groups of size k each.
The ith group is denoted as Gi, for 1, . . . , `. Group G1 consists of the k
stations 0, 1, . . . , k − 1, the next group G2 comprises the station k − 1 and
the next k − 1 stations k, k + 1, . . . , 2k − 2, the next group G3 includes
station 2k− 2 and the next k− 1 stations 2k− 1, 2k, . . . , 3k− 3, and so on,
with the last group padded with dummy stations if needed. The underlying
idea is that a group consists of k stations with consecutive numbers, and
a group Gi+1 starts from the last station in group Gi and includes the next
k − 1 stations. In general, the number of groups is at most ` ≤ n−1

k−1 + 1.
We assume that the inequality 2k ≤ n+1 holds. Observe that if it does

not, the algorithm selects a more restrictive channel restraint k′ < k, such
that 2k′ = n + 1. It follows that there are at least two groups in any
execution of k-Cycle algorithm.

Note that two consecutive groups share one station, called a connec-
tor of these groups, with group G` sharing station 0 as a connector with
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Figure 7.5: Example execution of k-Cycle algorithm: top row repre-
sents rounds from 1 to 120; leftmost column stands for station names
A,B,C,D,E, F ; X stands for stations being switched on in corresponding
rounds. In this example system size n = 6,channel restraint k = 3, time seg-
ment is δ = 20. There are three groups: G1 = {A,B, F}, G2 = {B,C,D}
and G3 = {D,E, F}. Observe that stations B, D and F are coordinators.

group G1. The stations in a group are ordered by their names into an or-
dered cycle. Groups themselves are also arranged into an ordered cycle as
follows: group Gi+1 follows group Gi, for i < `, and group G1 follows G`.

In each round t of an execution, all the stations in some group Gi are
switched on, with the other stations switched off; we say that group Gi is ac-
tive in round t. The pattern of activity among the groups follows round
robin according to the order cycle of the groups. A group is active for
a time segment of these many rounds:

δ = 4(n− 1)k
n− k

. (7.21)

When this time segment ends, the next group in the cyclic order takes over.
You can find an illustration of an example execution of k-Cycle algorithm
in Figure 7.5.

Each group executes an algorithm related to the broadcast algorithm
Old-First-Round-Robin-Withholding (OF-RRW) during the con-
secutive rounds the group is active. Algorithm OF-RRW was described
in Section 7.2, we adapt it as a building block of routing algorithms; the
details of the adaptation are given next.

There is a conceptual token associated with each group. The actions
of stations in a group are controlled by feedback from the channel. The
feedback is the same for all the stations in a group, which allows to handle
the token in such a manner that it is not duplicated nor lost. The token
passes through all the stations in a group in a Round-Robin manner. When
the token completes the whole cycle then this also ends a phase. Packets
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injected or adopted during a phase are new for this phase and otherwise they
are old for this phase. When a station receives a token then it transmits all
its old packets one by one. If there is no old packet to transmit by a station
holding the token then this station does not transmit anything, which results
in a silent round. A silent round triggers the token to advance to the next
station in the group in their cyclic order. When a station holding the token
of a group Gi transmits then the packet is heard on the channel by all the
stations in the group Gi. If the destination station of this packet belongs
to Gi then the packet gets delivered and otherwise the station in Gi that
is a connector with Gi+1 adopts the packet and becomes its relay. This
mechanism of handling packet implies that a packet may hop through all
the ` groups until it reaches its destination station.

Theorem 13. Algorithm k-Cycle routes packets correctly, when the chan-
nel restraint is at least k, and has latency at most (32 + β) · n against
an (ρ, β)-adversary such that ρ < k−1

n−1 .

Proof A group operates as a virtual cycle of k stations executing broadcast
algorithm OF-RRW. Such a cycle in isolation would have broadcast latency
at most

2
1− ρ · k + β(1 + ρ) ≤ 2k

1− ρ + 2β , (7.22)

for an injection rate satisfying only the inequality ρ < 1; see [ACKR19].
A packet may perform at most n−1

k−1 hops through consecutive groups, which
effectively amplifies injection rate by this factor. Therefore injection rates
need to be less than k−1

n−1 to make routing stable.
The bound (7.22) on packet delay has two parts, among which 2k

1−ρ ap-
plies to packets injected within the injection-rate component and 2β applies
to the packets for which injection-rate component does not suffice and they
need the adversary’s burstiness to justify their injection; see [ACKR19]. We
consider the delay of packets by categorizing the packets into two groups:
those for which the injection-rate component 2k

1−ρ suffices and the remaining
ones to which the burstiness component 2β needs to apply to justify their
delay. This categorization of packets is for analysis only.

For packets accounted for as injected subject to the injection-rate con-
straint, the bound 2k

1−ρ on packet delay becomes at most

2k(n− 1)
n− k

(7.23)
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after combining with the upper bound ρ < k−1
n−1 on injection rates.

Bound (7.23) on packet delay is less than the duration of a continuous
segment of rounds of activity of a group of stations determined by (7.21).
This implies that all the packets held by the stations in a group, and ac-
counted for as injected subject to the injection-rate constraint, are heard
on the channel when the group becomes active. This also means that these
among such packets that are addressed to other groups will hop through
the connector to the next group, while their current group is active. Such
hops will continue without delay other than that incurred by the period
of activity of the group where these packets reside.

The bound (7.23) needs to be increased to the duration δ for a period
of activity (7.21) of a group and then multiplied by the number of hops
a packet can make, to obtain a bound on latency of routing. This yields the
following estimate

4k(n− 1)
n− k

· n− 1
k − 1 ≤

8(n− 1)2

n− k
≤ 16(n− 1) , (7.24)

assuming 2k ≤ n + 1. This bound accounts for a full cycle of activity
of all the groups, but a packet may spend another such cycle waiting for
the group into which is got injected to become active. This means that
32 ·n is a bound on latency, restricted to packets that can be accounted for
as injected subject to the injection-rate restriction.

Next, we estimate the delay of packets that need the adversary’s bursti-
ness to account for their injection.

As we have presented above in the equation (7.23), 2(n−1)k
n−k is the number

of rounds needed for packets that can be accounted for as injected subject
to the injection-rate restriction. Out of the total duration length of δ =
4(n−1)k
n−k rounds, what remains are 2(n−1)k

n−k rounds that can be used to transmit
a surplus of packets due to the burst of injections.

Out of these many rounds, at most k can be wasted because the token
visits stations without packets. What remains are at least

2(n− 1)k
n− k

− k , (7.25)

rounds.
Observe that if 2k ≤ n + 1 then 2(n−1)

n−k ≥ 4, and so the quantity (7.25)
is at least 3k. The packet delay of the considered packets is thus at most
2β
3k multiplied by the number of groups, which is at most the following:

2β
3k ·

(
n− 1
k − 1 + 1

)
≤ 2β

3k ·
n+ k − 2
k − 1 ≤ 2β

3k ·
3
2n− 2
k − 1 ≤ βn . (7.26)
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The bound on latency is the maximum of the partial upper bounds 32n and
βn. �

Next we give an impossibility result which demonstrates that the bound
on injection rate in Theorem 13 is very close to optimal.

7.7.2 Throughput of channel-oblivious indirect routing

Fact 7. For each n and k < n, a k-channel-oblivious routing algorithm
is unstable against adversaries with injection rates greater than k

n
.

Proof If a station is switched on in a round then this contributes one
station-round. A range of consecutive rounds τ of |τ | = t rounds can con-
tribute at most kt station-rounds. By the double-counting principle, there
is some station v which is switched on for at most kt

n
rounds during these

t rounds. The adversary with injection rate ρ can inject at least ρt packets
into station v during these rounds. Even if v transmits successfully in each
round in τ then it can transmit at most kt

n
packets. If ρ > k

n
then there

remain at least these many packets that need to be queued by v:

ρt− kt

n
= t

(
ρ− k

n

)
. (7.27)

This number can be made arbitrarily large for a suitably large t. �

Corollary 2. There is no k-channel-oblivious universal algorithm when k =
c · n, for a constant c < 1.

Proof By Theorem 7, a k-channel-oblivious algorithm is unstable for in-
jection rates that are greater than the ratio k

n
= c < 1. �

7.8 Channel-oblivious direct routing

Let an integer k < n denote the channel restraint. Now we present a plain-
packet k-channel-oblivious algorithm that routes packets directly.

7.8.1 Plain-packet algorithm k-Clique

It is called k-Clique. There are up to k stations switched on in each
round. We assume that k is even and divides 2n, to simplify the notation.
The stations are partitioned into 2n

k
disjoint sets of size k

2 each. These sets
are combined in n

k
(2n
k
− 1) pairs of size k each. There are at least 3 pairs,
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assuming k
2 ≤

n
3 . If

k
2 >

n
3 then we can decrease k by keeping fewer stations

switched on, so that the inequality k ≤ 2n
3 holds.

In each round t of an execution, all the stations in some pair are switched
on, with the other stations switched off; we say that the pair is active
in round t. The pairs are arranged into a virtual cycle to assign them the
rounds of activity in a Round-Robin manner. A pair is active for one round
at a time, and then the next pair takes over. When a pair is active then
its stations execute an algorithm based on the principle of broadcasting
algorithm OF-RRW. A station that has the token transmits all the old
packets whose destinations are among the stations that make up the pair.

Theorem 14. If algorithm k-Clique is executed against a (ρ, β)-adversary
then it has a bounded latency for injection rates ρ < k2

n(2n−k) . Moreover if the
injection rate ρ is at most k2

2n(2n−k) the latency is at most 8n2

k
(1 + β

2k ) .

Proof Let m = n(2n−k)
k2 be the number of pairs. We will use the bound

m ≤ 2n2

k2 . A strategy for the adversary that maximizes queues and latency
works by injecting packets into one pair with destinations in the same pair
as well. Since a pair is allotted one round out of a segment of rounds
equal to the number of pairs, an injection rate needs to be less than the
inverse of the number of pairs, which is 1

m
= k2

n(2n−k) . For each pair, when
time is scaled only to the rounds which are assigned for the pair to execute
OF-RRW, the injection rate is less than 1, so the algorithm has bounded
latency.

Suppose that the inequality ρ < 1
m

holds. A pair of k stations operating
in isolation, and with time scaled only to the rounds assigned to the pair
to be active, would have effective injection rate m · ρ and so its latency
would be at most the following

2
1−mρ · k + β(1 +mρ) ≤ 2

1−mρ · k + 2β , (7.28)

after applying the known bound on broadcast latency of OF-RRW derived
in Theorem 1 in [ACKR19]. The bound needs to be increased by a multi-
plicative factor of m, since a pair operates in one round only in a segment
of m rounds. This gives the following estimate on latency:

2m
1−mρ · k + 2βm ≤ 2n2

k
· 2

1−mρ + 4βn2

k2 , (7.29)
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which holds for any injection rate satisfying ρ < m−1. Assuming addition-
ally that the inequality

ρn(2n− k) ≤ k2

2 (7.30)

holds, we can use the following estimate:

2
1−mρ = 2

1− ρn(2n−k)
k2

= 2k2

k2 − ρn(2n− k) ≤ 4 . (7.31)

This yields 8n2

k
(1 + β

2k ) as a bound on latency. �

7.8.2 General algorithm k-Subsets

We describe a direct-routing k-channel-oblivious algorithm achieving the
throughput k(k−1)

n(n−1) for any burstiness β. The algorithm is called k-Subsets.
It uses algorithm Move-Big-To-Front (MBTF) described in Section 7.2
as a subroutine. MBTF provides stability for injection rate 1 with any
burstiness, for a multiple access channel without any channel restraint.

Let us fix enumeration of all k-element subsets of set {1, 2, 3, . . . , n}
in order: A0, . . . , Aγ−1, where γ =

(
n
k

)
. For an integer i such that 0 ≤ i ≤

γ − 1 and an integer j ≥ 0, the rounds of the form i + jγ make thread i.
Algorithm MBTF operates in γ instantiations corresponding to the threads.
Each such an instantiation has a dedicated queue in every station. The
stations in Ai are active during thread i and process packets assigned to this
thread. An execution is structured into phases, each of length γ, such that
each thread has one round in a phase. A packet injected during a phase
j is treated by an instantiation of MBTF that handles it as if it were
injected “at round j.” These specifications mean that the algorithm is k-
channel-oblivious.

At the beginning of a phase, a station v assigns all the packets it re-
ceived in the previous phases to the threads in the following manner. For
each station w, station v keeps track of the numbers x0(w), . . . , xγ−1(w),
which represent the respective numbers of packets addressed to w and al-
ready allocated by v to threads 0, . . . , γ− 1. Station v allocates the packets
addressed to w that it received in the previous phase such that the resulting
allocation is as balanced as possible, subject to the constraint that a packet
addressed to w can be allocated to a thread i only if both stations v and w
are in the set Ai. The algorithm routes directly, since when a packet is heard
transmitted in a round assigned to a thread i, the receiver is switched on by
virtue of belonging to Ai.



7.8. CHANNEL-OBLIVIOUS DIRECT ROUTING 105

Obtaining balancing allocations implies that we make the numbers
x0(w), . . . , xγ−1(w) differ by at most 1 at the beginning of each phase.

Theorem 15. For each k < n, algorithm k-Subsets is stable against
adversaries with injection rate k(k−1)

n(n−1) and the number of queued packets
is at most 2

(
n
k

)
(n2 + β) in every round.

Proof Let λ = k(k−1
n(n−1) denote the injection rate we consider. Suppose that

the algorithm is not stable for injection rate λ, to arrive at a contradic-
tion. There exists a thread i in which some queue corresponding to packets
arriving at station v with address w and assigned to this thread grows
unbounded. Since algorithm MBTF is stable for injection 1 and a fixed
burstiness, there exists an infinite sequence of rounds t1, t2, . . . , tj, . . ., for
all j ≥ 1, such that the number of packets from station v to w that get
assigned to thread i by round j is at least |tj|/γ+j+2. Indeed, each thread
is executed once every γ rounds, so the execution of algorithm MBTF
in thread i would be stable if burstiness were bounded.

The algorithm allocating packets to threads guarantees that the num-
ber of packets with the same pair (v, w), of the source v and destination w,
assigned by v to threads with stations v and w being active is almost bal-
anced in each time period, in that the difference between any two of them
is either −1 or 0 or 1. A thread with this property is determined by the
stations different from v and w, so their number equals the following:(

n− 2
k − 2

)
=
(
n

k

)
· k(k − 1
n(n− 1) = γλ . (7.32)

The number of packets injected to v addressed to w by round tj, for every
j ≥ 1, is at least (tj/γ + j + 2) − 1 multiplied by the number of threads
handling packets from v to w. It follows that the following is a lower bound
on the number of packets addressed to w that are assigned by v to some
threads by round tj:

λtj + γλ(j + 1) = λ(tj + γ) + γλj . (7.33)

Therefore, the number of packets that arrive at v by round tj + γ is at least
λ(tj + γ) + γλj. This contradicts the restrictions on the adversary for
sufficiently large j, as the burstiness would be exceeded by round tj + γ,
and completes showing stability. A bound on the number of queued packets
follows from the respective bound for algorithm MBTF given in [CKR09],
which is applied independently for each thread. �
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It may occur in an execution of algorithm k-Subsets that some pack-
ets never get delivered and so remain queued forever. The algorithm can
be modified to prevent this as long as injection rates are less than k(k−1

n(n−1) .
Namely, it is sufficient to replace algorithm MBTF, used as a procedure

in k-Subsets, by Round-Robin-Withholding (RRW), see Section 7.2.
The resulting algorithm is stable for any injection rate less than k(k−1)

n(n−1)
and achieves bounded latency. By the performance bounds of RRW, see
Theorem 2 in [ACKR19], the latency is Θ(γ · (n+β)), for a fixed adversary
with injection rate less than k(k−1)

n(n−1) . The latency bound is at least γ =
(
n
k

)
,

which is exponential in n when k is linear in n.

7.8.3 Throughput of channel-oblivious direct routing

We give a matching lower bound on throughput, which demonstrates that
the throughput in Theorem 15 is maximum achievable in the class of channel-
oblivious algorithms.

Theorem 16. For each integer n and k < n, and for any k-channel-
oblivious algorithm routing directly, and for every adversary with an injec-
tion rate greater than k(k−1)

n(n−1) , some executions of the algorithm may be un-
stable against this adversary.

Proof We will count the following quantities: for each ordered pair (x, y)
of different stations x and y, if they are switched on simultaneously in a round
then this rounds contributes one station-pair round. A range of consecutive
rounds τ of |τ | = t rounds can contribute at most k(k − 1)t station-pair
rounds. By the double-counting principle, there is some ordered pair of sta-
tions (w, z) such that w and z are switched on together for at most k(k−1)

n(n−1) · t
rounds in the range of consecutive rounds τ . The adversary with injection
rate ρ can inject at least ρt packets into station w during these rounds. Let
all these packets be destined for z. Even if w transmits successfully in each
round in τ such that w is switched on along with z, then it can transmit at
most k(k−1)

n(n−1) · t packets. If ρ >
k(k−1)
n(n−1) then there remain at least these many

packets that need to be queued by w:

ρt− k(k − 1)
n(n− 1)t = t(ρ− k(k − 1)

n(n− 1)) . (7.34)

This number can be made arbitrarily large for a suitably large t. �



Chapter 8

Average case analysis on MAC

In order to be able to compare various approaches (e.g., stochastic and ad-
versarial input) in a fair way, we propose to pursue average-case analysis,
which is a novel approach in case of adversarial packet arrivals. In this
chapter we start from looking into the Little’s Law adaptation to the mul-
tiple access channel. This law defines the relation between the average sys-
tem packet latency, queue size and the rate of adversary injections. Later
we present the technique to study the algorithm average case performance
on three known in literature algorithms.

8.1 Previous and related work

Adversarial queueing on MAC. To the knowledge of author, previous
studies on adversarial queueing on multiple access channel were focused
on providing lower and/or upper bounds on algorithms or algorithms classes
performance. For instance, Bender et al. in [BFCH+05] use adversarial
queueing to study the worst case of Backoff protocols on MAC. Similarly
Chlebus et al. in [CKR06] have defined an adversary to study with greater
precision the bounds on the performance of MAC algorithms classes.

More recently, Aldawsari et al. [ACK19] utilise adversarial approach
as the framework to study worst-case latency scenario of ad-hoc broadcast
algorithms. Garncarek et al. [GJK18] investigate the worst case stabil-
ity of deterministic algorithms against adversarial packet injection. Ben-
der et al. [BKPY18] use adversarial packet arrivals to prove the worst-case
performance of the new version of Backoff protocol developed by authors.

Chlebus et al. [CKR09, CKR12] have developed deterministic algo-
rithms now considered classical: Round-Robin-Withholding (RRW), Move-
Big-To-Front (MBTF) and Search-Round-Robin (SRR). Those algorithms
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became classical, as they were among the first algorithms with their proven
adversarial worst-case performance being asymptotically optimal for respec-
tive classes. Recently, in the context of MAC channel jamming investi-
gation, Anatharamu et al. [ACKR19] provided upper bounds on average
system queue sizes and latency for those algorithms.

In the current chapter, we introduce the concept of the average-case
adversarial analysis, which can be seen as the special case of the worst
case analysis. In practice, medium access control algorithms are applied
in specific environments (i.e. underwater acoustic cables, satellite commu-
nication, etc.), and we believe that those environments can be represented
by the range of adversarial strategies. This way, with the proposed average-
case analysis technique, researches gain the ability to compare algorithms
by their practical applicability to specific areas – not only by the worst case
performance which might or might not be occurring in the real environ-
ment. We apply the proposed technique to deterministic broadcast algo-
rithms RRW, MBTF and SRR.

Little’s Law. Little’s Law was first formulated in 1961 by Little [Lit61]
in the context of stochastic queueing. The law has stated that the average
number of items in a queuing system is equal to the average arrival rate
of items to the system multiplied by the average latency of an item in the
system. Numerous law extensions and their applications were summarised
in more recent works by Whitt [Whi91], Wolff [Wol10] and Little [Lit11]∗.

Those authors distinguish the following main developments: the gener-
alisation of the law, stationary version of Little’s Law, Rate Conversation
Law and the distributional form of Little’s Law.

The generalisation of the law involves associating of items in the queue
with specific weights (e.g. Brumelle [Bru71], Heyman et al. [HS80]).

In Franken [FKAS82] and Miyazawa [Miy77] authors study a stationary
distribution of the size of queues (and some other parameters) in various
settings.

Note that in contrary to existing works, our contribution lifts the as-
sumption on existence of average arrival rate of items. Therefore our for-
mulation of the Little’s Law is both – more general in the aspect of packets
arrival and novel to the field.

∗The author of the last survey is John Little. He has summarized most important
achievements related to the law named after him in the period of over 50 years.



8.2. LITTLE’S LAW FOR ADVERSARIAL QUEUEING ON MAC 109

8.2 Little’s Law for adversarial queueing on MAC

For any prefix of t rounds, in whichm packets were injected into the system,
we use the following notation:

• Time-prefix injection rate is defined as ψt = m
t
;

• Time-prefix average system queue sizeQt is the average number of pack-
ets in the all queues up to round t;

• Time-prefix average system latency Lt is the average number of rounds
starting from injection and ending at minimum of round t and the
number of the round of a transmission of a given packet over all m
packets injected up to round t.

Lemma 12. For any prefix of t rounds in which m packets were injected
into the system, time-prefix injection rates are a quotient of the time-prefix
average queue size over the time-prefix average latency: ψt = Qt

Lt
.

Proof Consider a prefix of t rounds withm packets injected into the system
within this time. We observe the execution: set eij = 1 if the i-th arrived
packet was in the queue of some station in the system in the j-th round;
eij = 0 otherwise, for i ∈ {1, 2, 3, . . . ,m} and j ∈ {1, 2, 3, . . . , t}.

The time-prefix latency is the sum of rounds spent in queue by each
packet, divided by the number of packets m:

Lt = 1
m

m∑
i=1

t∑
j=1

eij . (8.1)

The time-prefix system queue size is the sum of all packets available in all
queues divided by the time-prefix length t:

Qt = 1
t

t∑
j=1

m∑
i=1

eij . (8.2)

It follows that Lt ·m = Qt · t. Finally, ψt = m
t

= Qt

Lt
. �

Let us consider an infinite execution, wherein infinite number of packets
are injected. We denote the system lower average queue size and the upper
average queue size as, accordingly:

Q
A

= lim inf
t→∞

Qt ; QA = lim sup
t→∞

Qt . (8.3)
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Similarly, the lower average latency and the upper average latency are:

LA = lim inf
t→∞

Lt ; LA = lim sup
t→∞

Lt . (8.4)

Note that LA is always at least 1, since we need at least one round for
transmitting an injected packets.

For a case when the system lower average queue size equals the upper
one, Q

A
= QA, and when the system lower average latency equals the upper

one, LA = LA, we define the system average queue size and, accordingly,
the system average latency, as follows: QA = lim

t→∞
Qt ; LA = lim

t→∞
Lt .

Lemma 13. The limit of the time-prefix injection rates ψt, with t going
to infinity, is bounded by the adversary injection rate ρ from above and
by the minimal injection pace ν from below:

ν ≤ lim inf
t→∞

ψt ≤ lim sup
t→∞

ψt ≤ ρ . (8.5)

Proof The middle inequality is obvious. Note that, the adversary can
inject at most β additional packets into the system, while keeping injection
rates at the highest available rates ρ:

lim sup
t→∞

ψt ≤ lim sup
t→∞

ρt+ β

t
= ρ . (8.6)

Adversary injection rates cannot drop below the minimal injection pace
ν for any prefix of t rounds, by the adversary definition. It follows that

lim inf
t→∞

ψt ≥ lim inf
t→∞

νt

t
= ν . (8.7)

�

Fact 8. Properties of limit superior and limit inferior imply:

lim inf
t→∞

ψt ≤
Q
A

LA
; lim sup

t→∞
ψt ≥

QA

LA
. (8.8)

Theorem 17. Little’s Law for adversarial queueing on MAC: the rela-
tion of the lower/upper average latency to the queue size of an algorithm A,
run under an adversary with injection pace ν and rate ρ, is:

ν ≤
Q
A

LA
≤ QA

LA
≤ ρ . (8.9)
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Proof The proof follows in part the classic approach, c.f.,[BG92]. Note
however that we need a more subtle argument to handle the case of adver-
sarial behavior. By combination of Lemma 13 and Fact 8, the first and the
last inequalities hold:

ν ≤ lim inf
t→∞

ψt ≤
Q
A

LA
; QA

LA
≤ lim sup

t→∞
ψt ≤ ρ . (8.10)

The in-between inequality follows from the properties of limit inferior and
limit superior, and the fact that LA ≥ 1. �

Corollary 3. For an adversary strategy, such that ρ = ν, the injection
rate is equal to the ratio of the system average queue size and the average
latency: ν = ρ = lim

t→∞
ψt = QA

LA
.

8.3 Deterministic Broadcast Algorithms

We study the system average queues for selected protocols.
Round-Robin-Withholding (RRW) [ACKR19, CKR12] is a full-

sensing† algorithm operating in round-robin fashion, that is – stations gain
access to the channel in the cyclic order of their identities. There is only one
station with a right to transmit, which is said to hold a conceptual token.
Once the station receives the token, it withholds the channel to unload all
the packets in its queue. A silent round is a signal for the next station,
in the cyclic order of identities, to take over the conceptual token.

We design adversary strategy to counter RRW algorithm. Adversary
strategy is coherent with the definition of the (ρ, β)-adversary, see Sec-
tion 4.1. The strategy is called Run-Robin-Run. Consider first ρ > 1/2.
We assume that the adversary injects packets with rate/pace ρ = ν and
burstiness β ≥ 1 in the following manner. The k-th packet is injected in
the round tk = mint{t : dρte ≥ k} to a target station specified below.

The target station is changed in time in a following way. At the be-
ginning the last station is the target station. When the target station re-
ceives the token according to the RRW protocol, the status of target station
is transferred to its predecessor (in the cyclic order of identities) and we say
that a new pass starts.

†In this chapter we follow algorithm classification from our original paper [HKK21a].
For the details of how Adaptive and Full-sensing classes map to the newly introduced
taxonomy, see Chapter 5.
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We simulate an execution of RRW algorithm against Run-Robin-Run
adversary strategy. See Figure 8.1 for simulation results compared to visu-
alised upper bounds derived in Fact 9.

Fact 9. [ACKR19] Upper bounds on queue sizes and packet latencies for
RRW are O

(
ρn

1−ρ + β
)
and O

(
n

(1−ρ)2 + β
1−ρ

)
, respectively.

Theorem 18. Algorithm RRW has QA = Θ( ρn
1−ρ) and LA = Θ( n

1−ρ) against
Run-Robin-Run (ρ, β)-adversary strategy, for any 0 < ρ = ν < 1 ≤ β.

Proof Let q0 = 0 be the number of packets in stations’ queues at the
beginning of the protocol, and iteratively, for i ≥ 1, let qi be the number
of packets at the beginning of the i-th subsequent pass. Note that the
first pass starts after the first n − 1 rounds of the execution, during which
no packet is transmitted. Thus, q1 = bρ(n− 1)c, because exactly bρ(n− 1)c
packets can be injected by the adversary during the first n − 1 rounds.
Let us consider qi, for i > 1. One can observe that the (i − 1)-st pass
takes qi−1 + n− 1 rounds: qi−1 transmitting rounds followed by n− 1 silent
round when the token is advanced through consecutive stations (in the cyclic
order). Thus, qi = bρ(qi−1 + n− 1)c. One can see, e.g., by induction, that

qi >
ρ(n− 1)(1− ρi)

1− ρ − 1
1− ρ . (8.11)

Assuming sufficiently big n and due to assumed ρ > 1/2, we get the lower
bound qi >

n−1
2(1−ρ) on the number of packets at stations’ queues at the

beginning of i-th pass. Let us generalize this bound to any round in the
i-th pass. At the beginning of the pass there are at least n−1

2(1−ρ) packets, thus
transmitting half of them takes at least n−1

4(1−ρ) rounds. Since we consider the
case ρ > 1/2, the adversary injects at least n−1

8(1−ρ) packets during that period.
Note that the newly injected packets are to be transmitted in the next pass.
This means that in every single round of the pass there are at least n−1

8(1−ρ)
packets, and consequently QA ≥ n−1

8(1−ρ) , which is Θ( n
1−ρ) by Fact 9, which

is Θ( ρn
1−ρ) since 1/2 < ρ < 1. The estimate Θ( n

1−ρ) on LA follows directly
from Corollary 3.

Note that in the remaining case of 0 < ρ ≤ 1/2, the same strategy
of the adversary as in the proof of the previous case gives QA = Θ(ρn)
and LA = Θ(n), which are asymptotically equal to Θ( ρn

1−ρ) and Θ( n
1−ρ),

respectively, due to the assumption 0 < ρ ≤ 1/2. �

Move-Big-To-Front (MBTF) [ACKR19, CKR09] is an adaptive al-
gorithm maintaining a dynamic list of all stations in private memory of each
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Figure 8.1: RRW protocol average queue and latency compared to the the-
oretical bounds by injection rates, after 10 mln rounds for a system size 64
against the respective adversary strategy.

station. Such a list is initialized at each station to have all the names of sta-
tions arranged in the increasing order: 0, 1, 2 . . . , n − 1. The local lists are
manipulated in the same way by all stations, based on channel feedback,
hence they are identical copies of each other. The algorithm schedules ex-
actly one station to transmit in a round, so that collisions never occur. This
is implemented by having a conceptual token traversal through the stations,
which is initially assigned to the first station on the list. A station with the
token broadcasts a packet, if it has any, otherwise the round is silent. A
station with token considers itself big in a round when it has at least n
packets; it attaches a control bit to every packet it transmits to indicate its
big status. A big station is moved to the front of the list and it takes the
token with it. If a station that is not big transmits in a round, or when it
pauses due to a lack of packets while holding the token (so that the round
is silent), then the conceptual token is (virtually) passed at the end of this
round to the next station on the list (ordered in a cyclic fashion).

We design adversary strategy to counter MBTF algorithm. The strat-
egy is called Avoid-Big. In the beginning of the execution the adversary
chooses arbitrary l = bρ · (n− 1)c out of n stations as target stations, start-
ing from station 1 and such that any two of them are of distance at least
n
l
−1 in the cyclic order, with station 0 being non-target (it is feasible since
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l < n). Adversarial strategy further consists of two stages. In the first stage
packets are injected to the target stations until each of them has exactly
n − 1 in its queue. In the second stage, the adversary keeps the number
of packets in queues of target stations at level n − 1 or n − 2, by injecting
an available packet to the last transmitting target station.

We simulate an execution of MBTF algorithm against Avoid-Big adver-
sary strategy. See Figure 8.2 for simulation results compared to visualised
upper bounds derived in Fact 10.

Fact 10. [ACKR19] Upper bounds on queue sizes and packet latencies for
MBTF are O (ρn2 + β) and O

(
n2

1−ρ + β
1−ρ

)
, respectively.

Theorem 19. Algorithm MBTF has QA = Θ(ρn2) and LA = Θ(n2)
against Avoid-Big (ρ, β)-adversary strategy, for any 2

n
≤ ρ = ν < 1 ≤ β.

Proof In the first stage of Avoid-Big adversarial strategy packets are in-
jected to the target stations until each of them has exactly n−1 in its queue.
We argue that it happens eventually. First, during this stage, MBTF be-
haves like round-robin algorithm, as there is no big station. Next, dur-
ing

⌈
1
ρ

⌉
· n rounds, l (non-big) target stations can remove at most

⌈
1
ρ

⌉
· l

packets form their queues, while at the same time the adversary injects⌊
ρ ·
⌈

1
ρ

⌉
· n
⌋
>
⌈

1
ρ

⌉
· l packets to them, thus first stage finishes in at most⌈

1
ρ

⌉
· n · l · (n− 1) rounds.
In the second stage, the adversary keeps the number of packets in queues

of target stations at level n−1 or n−2, by injecting an available packet to the
last transmitting target station; since the next target station is at least n

l
−1

positions ahead and ρ ·
(
n
l
− 1

)
≥ 1, there is at least one packet available

before the next target station transmits, which raises the queue level of the
last transmitting target station back from n − 2 to n − 1. Thus, in any
n rounds each target station cannot become big, transmits and receives one
packet. The surplus packets available to the adversary are injected to (non-
target) station 0. Hence, QA ≥ l · (n − 2) = Ω(ρn2), since ρ ≥ 2

n
. Thus,

by Fact 10: QA = Θ(ρn2). Finally, by Corollary 3: LA = QA/ρ = Θ(n2).
�

Search-Round-Robin (SRR) [ACKR19, CKR12] is a full-sensing al-
gorithm with collision detection proceeding as a systematic continuous search
for the next station with packets to transmit. The search is binary over the
list of stations’ names. One instance of a full sweep through all the stations
is called a phase. A phase starts with the interval [0, n − 1] representing
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Figure 8.2: MBTF protocol average queue and latency compared to the
theoretical bounds by injection rates, after 10 mln rounds for a system size
64 against the respective adversary strategy.

all the stations placed on the stack, and it ends when the stack becomes
empty.

If a station with pending packets is identified by the search, the search
is suspended while the station withholds the channel to transmit all its
packets. After all the packets held by a station have been unloaded, a silent
round follows, which triggers the search to be resumed.

A basic step in searching is to verify if there is a station with pending
packets, whose name is in a given interval of integers. Such a step is accom-
plished by all the stations in the interval transmitting their packets. Every
station receives the same feedback from the channel, whether it transmit-
ted or not, thus all the stations know if the interval is empty (silence), or
it contains a single station (packet heard), or it contains multiple stations
(collision). A search for the next station is completed by a packet heard.
A silence indicates that no station in the tested interval has packets and the
interval is discarded. A collision results in having the interval partitioned
into two halves of equal sizes, with one part processed immediately while
the other one is pushed on a stack of the binary search protocol to wait.
If a processed interval becomes empty or it is verified by silence that there
is no station with packets in it, then a new interval is obtained by popping
the stack.
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We design adversary strategy to counter SRR algorithm. The strategy
is called Sow-Discord. W.l.o.g. we can assume that both n and β are powers
of 2. Sow-Discord adversary strategy operates as follows. In the first round,
β packets are injected. The adversary divides the packets into two halves.
The first β/2 packers are split into β/4 pairs. Each pair is injected into
two consecutive stations, one packet per station. The pairs of stations are
injected evenly over n stations, starting from the first station, labelled 0.
More formally, the adversary injects one packet to each station with a label
(in the binary form) from the set:

S = {b1 . . . bl00 . . . 0b : b1, . . . , bl, b ∈ {0, 1}} ,

where l = log(β/4). The remaining β/2 packets are injected into the last
station, labelled n− 1.

We simulate an execution of SRR algorithm against Sow-Discord adver-
sary strategy. See Figure 8.3 for simulation results compared to visualised
upper bounds derived in Fact 11.

Fact 11. [ACKR19] For ρ ≤ 1
2+logn , queue sizes and packet latencies

of SRR are O(β) and O(β log n), respectively.

Theorem 20. SRR has QA = Θ(ρβ log n
β
) and LA = Θ(β log n

β
) against

Sow-Discord (ρ, β)-adversary strategy, for any 0 < ρ = ν ≤ 1
2+logn , β > 4.

Proof In contrast to previous protocols, here we first prove a lower bound
for latency.

Consider the station labeled n − 1. Observe that this station starts
to transmit the remaining β/2 packets after all other packets are successfully
transmitted. This takes β/2 +β/4 · (log(n)− log(β/4)) = Θ(β log n/β); i.e.,
at least half of injected packets need to wait at least Θ(β log n/β) rounds.
Combining it with upper bound in Fact 11, we get LA = Θ(β log n/β). By
Corollary 3: QA = Θ(βρ log(n/β)). �
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Figure 8.3: SRR protocol average queue and latency compared to the the-
oretical bounds by injection rates, after 10 mln rounds for a system size 64
against the respective adversary strategy; ρ = 1

2+logn = 0.125 stands for the
threshold where the chosen bounds apply.





Chapter 9

Summary

In this thesis we have reviewed the recent history of the multiple access
channel, together with the practically applied area of medium access control.
We have followed through the existing system of algorithms classifications
and comparisons. On top of the existing development, we provided a gran-
ular system capabilities-driven taxonomy of algorithms, allowing to further
improve interoperability of different fields of science. Next, we summarised
some known impossibilities for the algorithm capabilities defined by this
taxonomy.

In the main part we expanded the existing multiple access channel
model by the introduction of channel restraint – a constraint abstracting
the use of power in the system. In this expanded model we constructed
algorithms for channels of different capabilities. Those algorithms achieved
throughput 1 for adaptive class, throughput 1− ε (for any fixed ε) for full-
sensing class, and sub-optimal throughput Θ( k

n log2(n)) for acknowledgement
based class. Rigid theoretical proof of algorithms correctness was comple-
mented by comprehensive experiments. Those simulations confirmed the
theoretical results and provided an insight into how new algorithms relate
to the algorithms known in literature.

We have further expanded the multiple access channel model with the
introduction of packet destination and the ability of stations to route pack-
ets indirectly. We have designed a number of algorithms for this model. One
of the algorithms maintains bounded queues for the maximum injection rate
1 subject only to the channel restraint 3. We developed universal algorithms
subject to the minimum channel restraint 2 that have the latency polynomial
in the number of stations n. We constructed a k-channel-oblivious algorithm
that has latency O(n) for adversaries of injection rates less than k−1

n−1 and
showed that there is no k-channel-oblivious stable algorithm against adver-
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saries with injection rate greater than k
n
. We gave a k-channel-oblivious

algorithm routing directly that has latency O
(
n2

k

)
for adversaries of suffi-

ciently small injection rates that are O
(
k2

n2

)
. We developed a k-channel-

oblivious algorithm routing directly that is stable for injection rate k(k−1)
n(n−1)

and showed that no k-channel-oblivious algorithm routing directly is stable
against adversaries with injection rates greater than k(k−1)

n(n−1) .
We adopted Little’s Law to the context of adversarial queueing on mul-

tiple access channel. In this law, we proved inequalities holding for the
case when the asymptotic average for packet arrivals into the system do
not exist. With the use of this technique, we compared the worst-case
performance bounds of algorithms known in literature to those achievable
on average by specific adversary strategies. We have demonstrated the use-
fulness of the Little’s Law for adversarial queueing on MAC, by applying
it in the average case analysis technique.
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